
XPERANTO: A Middleware for Publishing Object-Relational
Data as XML Documents

Michael Carey* Jerry Kiernan Jayavel Shanmugasundaram+
Eugene Shekita Subbu Subramanian

IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

carey@acm.org, kiernan@almaden.ibm.com, jai@cs.wisc.edu,
shekita@almaden.ibm.com, subbu@us.ibm.com

Abstract

The eXtended Markup Language (XML) is
quickly emerging as the universal format for
publishing and exchanging data on the World
Wide Web. As a result, data sources, including
object-relational databases, are now faced with a
new class of users and applications; customers
and programs that would like to deal directly
with XML data rather than being forced to deal
with the data source’s particular (e.g., object-
relational) schema and query language. The goal
of the XPERANTO middleware project is to
support this new class of users and applications.
XPERANTO does this by providing query-able
“XML Views” over the underlying object-
relational database. Users can then query and
(re)structure XML data using an XML query
language, without having to deal with the
underlying SQL tables and query language. The
XPERANTO system translates XML-based
queries into SQL requests, receives the tabular

query results, converts them into XML, and then
returns XML documents to the system’s users
and applications.

1. Motivation and Introduction

XML [2][4] is emerging as the standard for publishing
and exchanging data on the World Wide Web. As a result,
many “e-businesses” want to publish their existing data as
XML documents so that their business partners can
process them. For example, an online wholesale
bookstore may want to make its inventory available in
XML form so that retail merchants can process this
information over the Internet. It is also important to
provide query capability over such XML data because, for
instance, a retail merchant may want to check whether the
wholesale bookstore has a particular book in stock (this is
a selection query over the inventory XML document).

The goal of the XPERANTO project [3] at the IBM
Almaden Research Center is to publish object-relational
data as XML documents. XPERANTO operates as a
middleware on top of existing (object-)relational database
systems and provides query-able “XML Views” over
them. In doing so, it shields users of XPERANTO from
the underlying database and language (SQL) and allows
them to create and query XML data using an an XML
query language (currently XML-QL [5]). Thus,
businesses that have large amounts of important business
data stored in existing (object-)relational databases can
use XPERANTO to make this data available on the
Internet in query-able XML form.

XPERANTO differs from other similar systems that
we are aware of [6] in the following ways. First,
XPERANTO is based on a “pure XML” philosophy –
users and developers do no need to know or learn SQL.

*Currently at Propel, 2350 Mission College Blvd., Santa Clara,
CA 95054.
+
Also at the University of Wisconsin, Madison, WI 53706.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

646

Second, XPERANTO attempts to push as much
processing down to the relational engine as possible for
more efficient query execution [7]. Third, XPERANTO
handles object-relational structures in addition to flat
relational structures. Finally, XPERANTO enables the
seamless querying of relational data (such as column
values) and meta-data (such as column names).

For the remainder of this demo proposal, we outline
the architecture of the XPERANTO system and show it
can efficiently support query-able XML views by doing
smart XML query rewrites and by harnessing the
sophisticated processing capability of the underlying
(object-)relational engine.

2. The XPERANTO High Level Architecture

As mentioned earlier, XPERANTO is a middleware
system that works on top of existing (object-)relational
database systems. Figure 1 shows the high level
architecture of the XPERANTO system. XPERANTO
starts by providing a default virtual view of a given
(object-)relational database (step 1). XML application
developers can then create more complex or specialized
views (which are also virtual) on top of this default view
(step 2) by using an XML query language (currently
XML-QL). These tailored views can then be made
available to other applications and/or user groups, who
can in turn create more complex view over the existing
views (step 3). The views can then be queried using the
same XML query language used to define them (step 4)
and XPERANTO returns the result XML document (step
5). XPERANTO clients use an XML-based RPC facility –

Simple Object Access Protocol [1] – to communicate with
the XPERANTO middleware for creating and querying
XML views and retrieving the XML results.

Note that XPERANTO takes a "pure XML" approach
to the problem of publishing (object-)relational data as
XML - i.e., developers interact with XPERANTO using
only XML (and an XML query language); they do not
have to use or learn SQL.

An interesting and novel aspect of XPERANTO is that
it provides a uniform framework that allows users to use
XML as a way to seamlessly query over both relational
data and relational metadata. This power stems from the
fact that the XPERANTO default XML view of a
relational database does not distinguish between data
(such as column values) and metadata (such as column
names). In this sense, XPERANTO provides users and
applications a more powerful query capability than SQL.

3. XPERANTO Internals

We now describe the internals of the XPERANTO system
and show how it supports query-able XML views over
relational sources. As Figure 2 shows, when an user or
applications poses an XML-QL query over an XML view,
it is first parsed and translated into an internal
representation called XQGM (Xml Query Graph Model).
The representation is designed to be language neutral (i.e.,
not tied to the XML-QL query language) so that
XPERANTO can be easily modified to support the
standard XML query language when one becomes
available.

Figure 1: XPERANTO Architecture

(1)

(Object-)Relational Database System

XPERANTO
Middleware

Default XML View

Complex XML View

(2) XML-QL

(4) User/Application
Query (XML-QL)

(5) Result XML
Document

Complex XML View

(3) XML-QL

647

Once the query parser creates XQGM for a user query,
the XPERANTO rewrite engine performs XML view
composition in the middleware layer (i.e. outside of any
database system) and produces simplified XQGM that is
semantically equivalent to the original XQGM. The SQL
generator component then converts this simplified XQGM
representation to SQL queries that generate the content of
the XML document. A typical XML query over an XML
view will result in just one SQL query being issued, thus
harnessing the query processing capabilities of the
underlying relational engine [7]. The relational query
results are then tagged in the XPERANTO middleware
layer in order to produce the result XML document.

One attractive aspect of the XPERANTO approach is
that it can work with any existing relational database
system since the XPERANTO system generates regular
SQL and tags the results outside the database engine.

4. The Demo

In this demo, we will illustrate the "pure XML" approach
by presenting how the XPERANTO system automatically
creates a default XML view over an (object-)relational
database system. We will then show how developers can
create more complex XML views on top of the system’s
default view. We will demonstrate how views are
composed on top of other views, how queries on these
views are translated into SQL queries, and how the results
are converted into XML in the XPERANTO middleware
layer.

5. References

[1] T. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Nielson, S. Thatte, D. Winer,
“SOAP: Simple Object Access Protocol,”
http://www.w3.org/TR/SOAP.

[2] T. Bray, J. Paoli, C.M. Sperberg-McQueen,
“Extensible Markup Language (XML) 1.0” ,
http://www.w3.org/XML/1998/06/xmlspec-report-
19980910.htm.

[3] M. Carey, D. Florescu, Z. Ives, Y. Lu, J.
Shanmugasundaram, E. Shekita, S. Subramanian,
“XPERANTO: Publishing Object-Relational Data as
XML,” Workshop on the Web and Databases
(Informal Proceedings), May 2000.

[4] R. Cover, “The SGML/XML Web Page,”
http://www.oasis-open.org/cover/xml.html.

[5] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D.
Suciu, “XML-QL: A Query Language for XML,”
Proceedings of the 8th International World Wide Web
Conference, Toronto, May 1999.

[6] M. Fernandez, W. Tan, D. Suciu, “SilkRoute:
Trading Between Relations and XML,” Proceedings
of the 9th International World Wide Web Conference,
Amsterdam, May 2000.

[7] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, B. Reinwald, “Efficiently
Publishing Relational Data as XML Documents” ,
Proceedings of the VLDB Conference, Egypt,
September 2000.

Figure 2: XPERANTO Internals

Query Parser XPERANTO

Query over XML View

XML Tagging

XQGM

Query Rewrite

XQGM

SQL Translation

ORDBMS

SQL Query Relational Result

XML Result

648

