Building and Customizing Data-Intensive Web Sites
using Weave

Khaled Yagoub, Daniela Florescu, Valérie Issarny, Cezar Andrei*
INRIA-Rocquencourt
Domaine de Voluceau, 78153 Le Chesnay Cédex, France

{firstname.lastname}Qinria.fr

1 Overview

We call a data-intensive Web site a Web site that pro-
vides access to large numbers of pages whose content is
dynamically extracted from a database. In this context,
producing a Web page may require costly interaction with
the database system for connection and querying. The
database interaction cost adds up to the non-negligeable
base cost of Web page delivery, thereby increasing much
the client waiting time.

Various solutions have been proposed to improve Web
performance by reducing the waiting time for a page.
These solutions include predictive prefetching, caching of
Web objects, and architecting the network and Web servers
for scalability and availability [1]. Among these works, Cao
et al. [3] introduce cache applets, which enable Web servers
to attach a piece of Java code to each dynamic document.
This code is run whenever a request for a cached document
is received. A cache applet can either rewrite the cached
document and return it, or request the cache to either fetch
or regenerate the document. Close to this work, Barnes et
al. [2] propose a domain-specific programming language,
CacheL, for defining customizable caching policies. The
language allows defining how objects are cached, replaced,
and kept consistent. While these solutions present bene-
fits, they remain insufficient to improve the Web latency
of pages built from database content when the query exe-
cution cost dominates.

We demonstrate Weave!, a data-intensive Web site
management system developed at INRIA. The system ad-
dresses the performance problem of accessing dynamic Web
pages in the case of sites whose content is derived from re-
lational databases.

*The current address of this author is “Politehnica” Uni-
versity of Bucharest. The work has been done while Cezar was
visiting INRIA.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

607

In a previous research, we addressed the problem of run-
time management of data-intensive Web sites [4]. The pro-
posed solution was to cache in the database the results of
parameterized queries, under the form of relational tables,
and reuse the results for subsequent requests. This im-
proves performance of handling database queries, allows
for efficient update propagation, and enables caching of
data that are shared among various pages. However, this
solution can alter the Web site’s performance in the case
of a low hit ratio or when the query execution time is not
the most prominent cost (every cache action access the
database via expensive SQL statements).

In the current version of Weave, we generalize this work.
Our goal is to reduce the response time for serving page re-
quests through an appropriate customizable cache system.
Our solution enables data caching at various levels of data
elaboration within the site. The system allows to cache the
results of database queries, intermediate XML fragments
and HTML files. In addition, it provides a declarative lan-
guage (WeaveL) for specifying Web site structure and con-
tent, and an extension of this language for specifying the
customized cache management policy within the site.

2 System description

Figure 1 depicts the architecture of the Weave system. In
the following, we briefly discuss the key features and the
corresponding components of Weave.

Declarative Web site specification. Weave [4] adopts
the XML graph data model to describe the structure and
the content of the Web site independently of its graphical
representation (different models can be seen in [1]). An
instance of this data model corresponding to a particular
Web site is an XML site graph, which is a directed labeled
graph with two types of nodes: internal nodes correspond-
ing to Web pages, and leaf nodes corresponding to data
values attached to pages. Links between pages are modeled
as arcs between the internal nodes representing them in the
graph. An XML site graph is defined intensionally, via an
XML site schema, rather than extensionally (i.e., one Web
page/XML fragment at a time). Therefore, a site schema
represents nothing else than an XML view definition over
a database. In this view, the Web pages are classified into

Lhttp:/ /www-caravel.inria.fr/Eprototype_WEAVE html

homogeneous collections called site classes. Applying the
site schema to a particular instance of the database results
in a complete XML site graph. The graphical representa-
tion of the site is described using XSL style sheets.

Two components are fundamental in the Weave system:
the XML Generator, which applies the definition of the site
schema to the underlying data and produces (fragments
of) the XML site graph, and the HTML Generator, which
applies XSL style sheets to XML fragments, resulting in
browsable HTML pages.

The WeaveL language. XML site schemas are described
using the WeaveL language. A WeaveL program consists
of a set of site class specifications. Each class specification
contains the declaration of the parameters identifying an
instance of the class, the SQL query whose result gives
all possible instances for the above parameters (describing
how to produce all instances of the class), the specification
of the data contained in an instance, and the specification
of the hyperlinks from an instance of the respective class.

Suppose we want to produce a browsable version of the
data contained in the TPC/D benchmark [4]. A fragment
of a program written in WeaveL is presented bellow. It
describes Supplier pages, where each such page contains
the name of the supplier, a set of links to the pages of his
customers, and a form allowing a user to search information
about the parts the supplier produces. The query given
in the clause instances specifies how to obtain from the
database all the possible values of the parameter $SK. This
information is needed for the static evaluation of the Web
site.

define class Supplier($SK)
{instances using Q0}

data name using Q1;
link customer to Customer($CK) using Q2);
form parts

input $partname text
link to PartList($partname);

}

// where Q1, Q2,... are (parameterized) SQL queries defined as:

define query Q0 as
select s.s_suppkey as $SK from Supplier s ;

define query @1 as
select s.s_name as name
from Supplier s
where s.s_suppkey = $SK ;

In order to support page components modeling, the link
clause can be prefixed with the keyword embedded. In the
example, if the clause link customer was prefixed by em-
bedded, the system would compute all the customers pages
related to the given supplier and embed them in the sup-
plier page instead of creating links to these pages. More-
over, for performance purpose, a link clause can be prefixed
with the keyword prefetch. In our example, if prefetched
was used, a request for a Supplier page would trigger a

608

HTTP Fiequemsl T HTTP Pages

Interface I

XML ||
style sheets|H!

Figure 1: Architecture of the Weave system.

self (artificial) request to Weave for all the customer pages
reachable via the given supplier page.

The XML Generator is responsible for the evaluation
of the queries in the site schema and producing the corre-
sponding XML data. Given a particular binding for the pa-
rameter $SK of the class Supplier, the XML generator pro-
duces the XML fragment corresponding to the Web page.
For example given $SK=421, the following XML fragment
is generated:

<XML._fragment id=" Supplier_421 ">
<class> Supplier < /class>
<parameter> /21 </parameter>

<data_fragment name="name " >
<data_value> Supplier#000000421 < /data_value>
<data_fragment>

<link_fragment name="customer " >
<link_item>
<XML._fragment id=" Customer_2" >
<class> Customer < /class>
<parameter> 2 </parameter>
</XML_fragment>
<anchor> Customer#000000002 </anchor>
</link_item>

</link_fragment>

<form_fragment name="parts " >
<XML_fragment>
<class> PartList </class>
<input> $partname </input>
</XML_fragment>
<input type="tezt”> $partname </input>
< /form_fragment>

</XML_fragment>

I'hree-level caching architecture. For performance
sake, Weave can cache data at three levels of abstraction:
tables, XML, and HTML. As in [4], the DB cache man-
ager controls caching and lookahead computation within

the database system. It interfaces with the system, and of-
fers additional capabilities such as the pooling of database
connections.

Compared to the HTML cache, which caches HTML
files on disk, the XML cache has the advantage of storing
less data and allows for carefully controlling the granular-
ity of the cached data, ranging from the entire page to
fragments of the page. Moreover, it allows diminishing the
load generated on the database by the Web server.

The architecture (Figure 1) includes a manager for each
individual cache and a cache scheduler. The cache man-
agers share the same interface and implement standard
cache operations for data retrieval like addition and re-
moval. These operations are triggered by events such as
HTTP requests and data invalidations. The scheduler co-
ordinates the execution of cache managers. It interacts
with one or more of the individual caches according to the
caching policy set for the given page.

The system architecture is modular and can easily be
distributed. The replication of components on proxies and
clients is also possible.

Customized cache management. Our final goal is to
automatically compile a declarative specification of a Web
site into a customizable runtime policy. A runtime policy
controls the runtime behavior of the Web site so to make
optimal usage of the caches according to the users’ access
patterns and the update frequency of the data. It specifies
which data to prefetch or to cache (HTML pages, XML
fragments, relational tables, or any combination of those),
which particular items to prefetch or cache (e.g, which par-
ticular HTML pages or XML fragments), and which actions
to perform under different events, such as page requests,
data updates or environmental changes.

So far our system does not support such an automatic
generation of runtime policies. However, to ease the task
of the Web site administrator, we introduce WeaveRPL,
a high level language for the abstract specification of the
cache system’s behavior (the specification is similar for
each cache). The language is based on event-condition
rules. It enables to explicitly specify the global policies
implemented by an individual cache manager for setting
overall features such as the maximum cache size, and the
actions to be carried out upon a global event such as a
cache overflow. Furthermore, it builds upon the declar-
ative Web site specification, and allows the definition of
per-site-class customized caching (basically, how to han-
dle events related to data retrieval, addition, removal, and
staleness).

In the following example, the HTML cache is configured
as a single container, named HTML_CONT, which stores
instances of classes Supplier, Customer, and Part. The con-
tainer can be used to cache all Part instances and only
instances of the Supplier and Customer classes that satisfy
the following constraints: instances of Supplier must have
a size less than 2KB, and instances of Customer must have
an access frequency that is greater than 0.3. Upon initial-
ization (handling of the onlnit event), the HTML cache is
fed with all the instances of class Part, and only with the
instances of class Supplier, whose value of key SK is less
than 100 and which meet the aforementioned constraint
on size over cached instances. The content of the cache

609

is refreshed every 30 minutes using the onTimer event, re-
moving all the stored instances whose age is greater than
10 minutes. Whenever the cache is full (onFull event), a
traditional LRU algorithm is applied for the replacement
of the instances.

Cache HTML

//Container definitions
define container HTML_.CONT as
select Supplier where size <= 2KB,
Customer where frequency >= 0.3,
Part;
//ECA rules
onlnit compute Part, Supplier(SK) where SK<100;
onTimer(30mn) remove all where age>10mn;
onFull(200M) applay LRU;

}

The XML cache specified in the example below also con-
tains a single container (XML_CONT).

Cache XML

//Container definitions
define container XML_CONT as
select Customer : fragments{name, supplier};
//ECA rules
onlnit compute all;
onTimer(120mn) reinit;

}

As opposed to its HTML counterpart, the XML cache con-
tainer is used only to cache the fragments corresponding
to the name of a given Customer and the set of links to
his suppliers’ pages. We assume that these fragments are
not frequently updated and worth being cached. The other
fragments, which are links to orders’ pages of a Customer,
are supposed to be frequently updated and therefore should
be built on demand. The container is refreshed every 2
hours by removing and recomputing all the instances (reinit
action).

Even in the absence of an automatic way to generate
runtime policies, a high level language for specifying such
policies does ease the production of data intensive Web
sites, compared to existing approaches. By using our sys-
tem, a Web site administrator is only requested to ab-
stractly describe the desired cache management. Besides
this language, Weave provides also an API for Web ap-
plication programs to explicitly control the content of the
caches.

3 Demonstration

The main focus of the demonstration is on Weave’s abil-
ity of improving the performance of Web sites through a
customized cache management. To this end, we compare
different runtime policies with a Web site derived from the

File Edit Insert Compile Run Audit Help
MECTEE
17 Suppliers =
define query Q6 as
select 0.0 custkey as ck, || _suppkey as sk, s.s_name as sn
From_ ~HSTOMER - UNFTER | OaCERT
Szl
" Database Sehemas [ihomeryagoub weavetests files, schemas /sche | Browse.. |
el)
H Runtime Policy: ‘/hnme/yagnub/weave/!e;(;/mes/np/dynam\: p ‘ ‘ Erowsa... ‘
dES XSL style sheets directory: ‘humE/yaguuh/weavﬁ/(es(s/ﬁ\eﬁ/xs\/‘ ‘ Browse... ‘
i
XML/HTML directary: ‘/hnma/yagnub/weave/!a;(;/mes/ ‘ ‘ Erowsa... ‘
def
< Base url: [reigyen
i
[Trace mod
User name: |yagoub J
[/ [Static eval
i) Password: [erer]
i
Driver: [oracle jdbc driver OracleDriver |
aroup by o.0_custkey, |

Jfhaving sum(l | _exten Database URL: [dbcoraclethin@rachel:1521:db

select p.p_partkey as pk|
from PART p, PARTSUP!

/¢ pares Databae live connections: [
define query Q11 as
where p.p_partkey=ps ok |[cancel
e
ass definitions 7
FLLLEERLL AT P8R80 TT T

define class Root() {

(ink suppliers
to Suppliers(=

Figure 2: Weave configuration window.

TPC/D benchmark database. The data is loaded into the
Oracle8 DBMS.

Figure 2 shows the Weave user interface that allows a
Web administrator to edit, modify and compile a WeaveL
program or a runtime policy. The administrator can also
set the execution parameters of Weave like the selected run-
time policy and the maximum number of reusable database
connections through this interface.

The demonstration starts by showing how to specify the
Web site using the WeaveL language and a set of XSL style
sheets. Then, we automatically run the Web site under two
extreme conditions: when the entire site is precomputed
before the pages are requested (purely static evaluation)
and when each page is computed on the fly (purely dy-
namic evaluation). We show that it is immediate to derive
from the declarative specification each of the above extreme
approaches. In doing so, we run the Web site according to
a particular trace (which can be given or generated based
on a certain probability distribution).

For each execution (Figure 3), the system can be con-
figured to generate reports containing information about
the distribution of the various execution costs (database
access, XML generation, HTML generation), the average
total response time and the average XML and HTML file
size. This information can be generated per page or per
site class. Figure 4 shows an example of a Weave report
obtained after browsing the TPC/D Web site. The report
also displays the details of the execution time for all of the
queries involved in building a particular page (see Figure
4).

Based on the results of the execution reports, the Web
site administrator can tailor a specific caching strategy
aimed at performance improvement. We show how com-
plex caching strategies can be expressed in our formalism
by simply using high level runtime policies. Given a partic-
ular runtime policy, the Web site can be rerun; the system
will interpret the runtime policy and utilize the caches ap-
propriately. Finally, by comparing the execution reports

610

File Edit Insert Campile Run Audit Help

 MECEEL

lprogram dynarmic { =

xml generator : {
EAEEER LI E R TR R EE L LERL TR TR LR R LT R

’ wery definitions
N RN NN Ny NNy NNy NN
efine query QO as
select s.s_suppkey as 5K
from SUBBIIFR <
017

Sarver connectians

Building times

[IWeb server []Database [¥SQL queries [/ XML generation [/ HTML generation

Respaonse time File sizes

[¥ Response time Threshold: |0 msec.

Page access

[OXML file size [JHMTL size

[¢l Total access [0 Database cache hit XML <ache hit [1HTML cache hit

Page selection Infarmation to display

@ All pages () Selection) Per class

[Show | [Upare] [cancet|
s.s_suppkey=I|_suppkey

group by o.0_custkey, |I_suppkey, s.5_name

@ Values () Cast distributian (26

1] orders
define query Q7 as
select 0.0_orderdate as od, 0.0_custkey as ck, 0.0_orderkey as ok
from ORDERT o

define query QF as -

Figure 3: Execution reports main window.

File Edit Insert Compile Run Audit Help
ElEEE
(ink suppliers m
to Suppliers(
anchor *Suppliers’)
Gink customers
Eetoner Fages queryexec | xmigen | htmigen
anchor “Custom| |supplier565 2741 5263 547.50 -
Supplier 535 2665 3053 857
} Supplier_5 98 2500 2729 203
CustSuppBrand_131657_45... [377
define class Custof |CustSuppBrand 35111 998... [318
(h‘nkcreg‘mns CustSuppBrand_149660_37 .. 304 CUIT HEERTnE
A Custsupp_96710_7035 245 10
using Q3 QiL bEj =
outmap rk R CustSupp_35111_2690 243 u e
anchor rm) CustSuppType_149660_629.. (237 g
Custsupp_35111_2978 211 a1z 165
define class supp| |Custsupp 149680 5242 211 Qs 1154
Qink reglons Custsupp 35111 9131 182 23 i
wosunplieres| londer 3172 5a as 224
OGRS (R Order_3143 4550 Q; z;:
anchor my CustSuppPart 35111 5514_...|35 &
Parsupp_197_5 198 E) 2] 222
define class suppli| |Custsupppart_88710_7035_ |32 7
Partsupp_200_5201 5050 64 2150
(::t:;zge PartSupp_135_2700 29 136 4
T T Partsupp_195_195 25 55 5
output rm) Part 800 1250 24]
p Par_788 12 17 s
ata comment
e Customers_ 3 13 10
inmap RK/ ke
output rc)
(ink suppnat || H
& QrrHCR Ry Close Query details Dump
usin
inmap RKfrk
outmap nk/N
anchar nn} 58]

Figure 4: Query execution time report.

obtained from various runtime policies we show that a
mixed strategy (caching data at different levels) is gen-
erally optimal, and therefore desirable.

References

[1] http://caravel.inria.fr/~yagoub/webdbase.html.

[2] J. F. Barnes and R. Pandey. Providing dynamic and cus-
tomizable caching policies. In Proc. of USENIX Symp. on
Internet Technologies and Systems, 1999.

[3] P. Cao, J. Zhang, and K. Beach. Active cache: Caching
dynamic contents (objects) on the Web. In Proc. of Mid-
dleware, 1998.

[4] D. Florescu, V. Issarny, P. Valduriez, and K. Yagoub.
Caching strategies for data-intensive Web sites. In Proc.
of the Int. Conf. on Very Large Data Bases (VLDB), 2000.

