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Abstract

Nearest neighbor search in high dimensional spaces is an

interesting and important problem which is relevant for a

wide variety of novel database applications. As recent re-

sults show, however, the problem is a very di�cult one, not

only with regards to the performance issue but also to the

quality issue. In this paper, we discuss the quality issue

and identify a new generalized notion of nearest neighbor

search as the relevant problem in high dimensional space.

In contrast to previous approaches, our new notion of near-

est neighbor search does not treat all dimensions equally

but uses a quality criterion to select relevant dimensions

(projections) with respect to the given query. As an ex-

ample for a useful quality criterion, we rate how well the

data is clustered around the query point within the selected

projection. We then propose an e�cient and e�ective al-

gorithm to solve the generalized nearest neighbor problem.

Our experiments based on a number of real and synthetic

data sets show that our new approach provides new in-

sights into the nature of nearest neighbor search on high

dimensional data.

1 Introduction

Nearest neighbor search in high dimensional spaces is
an interesting and important, but di�cult problem.
The traditional nearest neighbor problem of �nding
the nearest neighbor xNN of a given query point q 2
R
d in the database D � R

d is de�ned as

xNN = fx0 2 Dj8x 2 D; x 6= x
0 :

dist(x0; q) � dist(x; q)g:
Finding the closest matching object is important for
many applications. Examples include similarity search
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in geometric databases [14, 12], multimedia databases
[8, 17], and data mining applications such as fraud
detection [11, 6], information retrieval [3, 16] among
numerous other domains. Many of these domains con-
tain applications in which the dimensionality of the
representation is very high. For example, a typical
feature extraction operation on an image will result in
hundreds of dimensions.

Nearest neighbor problems are reasonably well
solved for low dimensional applications for which ef-
�cient index structures have been proposed. Starting
with the work on the R-Tree [10], a wide variety of mul-
tidimensional indexes have been proposed which work
well for low dimensional data (see [9] for a comprehen-
sive overview). These structures can support a wide
range of queries such as point queries, range queries,
or similarity queries to a prede�ned target. Many em-
pirical studies have shown that traditional indexing
methods fail in high dimensional spaces [5, 22, 4]. In
such cases, almost the entire index is accessed by a
single query. In fact, most indexes are handily beaten
by the sequential scan [19] because of the simplicity of
the latter.

However, as recent theoretical results [5] show,
questions arise as to whether the problem is actually
meaningful for a wide range of data distributions and
distance functions. This is an even more fundamental
problem, since it deals with the quality issue of near-
est neighbor search, as opposed to the performance is-

sue. If the nearest neighbor problem is not meaningful
to begin with, then the importance of designing e�-
cient data structures to do it is secondary. This paper
is positioned to deal with the quality issue of near-
est neighbor search, and examines several theoretical
and practical aspects of performing nearest neighbor
queries in high dimensional space.

There can be several reasons for the meaningless-
ness of nearest neighbor search in high dimensional
space. One of it is the sparsity of the data objects in
the space, which is unavoidable. Based on that obser-
vation it has been shown in [5] that in high dimensional
space, all pairs of points are almost equidistant from
one another for a wide range of data distributions and
distance functions. In such cases, a nearest neighbor
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query is said to be unstable. However, the proposition
of [5] is not that the di�erence between the distance
of the nearest and the farthest data point to a given
query point approaches zero with increasing dimen-
sionality, but they proved that this di�erence does not
increase as fast as the distance from the query point
to the nearest points when the dimensionality goes to
in�nity. It is still an open question whether and when
nearest neighbor search in high dimensional spaces is
meaningful. One objective of this paper is to qualify
the results reported in [5].

It is useful to understand that high-dimensional
nearest neighbor problems often arise in the context
of data mining or other applications, in which the no-
tion of similarity is not �rmly pre-decided by the use
of any particular distance function. Currently often
used is an instance of the Lp metric (p = 1, manhat-
tan; p = 2, euclidian) based on all dimensions. In
this context, many interesting questions arise as to
whether the current notion of NN search solves the
right problem in high dimensions. If not, then what is
the nearest neighbor in high dimensions? What is the
meaning of the distance metric used? One of the prob-
lems of the current notion of nearest neighbor search
is that it tends to give equal treatment to all features
(dimensions), which are however not of equal impor-
tance. Furthermore, the importance of a given dimen-
sion may not even be independent of the query point
itself.

In this paper, we report some interesting experi-
ments on the impact of di�erent distance functions on
the di�erence between the nearest and farthest neigh-
bor. As we will see, our �ndings do not contradict the
�ndings of [5] but provide interesting new insights. We
discuss why the concept of nearest neighbor search in
high dimensional feature spaces may fail to produce
meaningful results. For that purpose, we classify the
high dimensional data by their meaning. Based on our
discussion and experiments, we introduce a new gen-
eralized notion of nearest neighbor search which does
not treat all dimensions equally but uses a quality cri-
terion to assess the importance of the dimensions with
respect to a given query. We show that this generalized
notion of nearest neighbor search, which we call pro-
jected nearest neighbor search, is the actually relevant
one for a class of high dimensional data and develop
an e�cient and e�ective algorithm which solves the
problem.

The projected nearest neighbor problem is a much
more di�cult problem than the traditional nearest
neighbor problem because it needs to examine the
proximity of the points in the database with respect to
an a-priori unknown combination of dimensions. Inter-
esting combinations of dimensions can be determined
based on the inherent properties of the data and the
query point which together provide some speci�c no-
tion of locality. Note that the projected nearest neigh-

bor problem is closely related to the problem of pro-
jected clustering [1, 2] which determines clusters in the
database by examining points and dimensions which
also de�ne some speci�c notion of data locality.

This paper is organized as follows. In the next sec-
tion, we discuss the theoretical considerations on the
meaningfulness issues for nearest neighbor search in
high dimensional spaces and qualify some of the ear-
lier results presented in [5]. In section 3, we provide
a discussion of practical issues underlying the prob-
lems of high dimensional data and meaningful nearest
neighbors. Our generalized notion od nearest neigh-
bor search and an algorithm for solving the problem
are presented in section 4. Section 5 discusses the em-
pirical results and section 6 discusses the conclusions
and summary.

2 Nearest Neighbor Search in high-
dimensional Spaces

The results of [5] show that the relative contrast of the
distances between the di�erent points in the data set
decreases with increasing dimensionality. In this sec-
tion we �rst present some interesting theoretical and
practical results which extend the results presented in
[5]. The results are very interesting since { despite the
pessimistic results of [5] { the results show that mean-
ingful nearest-neighbor search in high dimensions may
be possible under certain circumstances.

2.1 Theoretical Considerations

Let us �rst recall the important result discussed in
Beyer et. al. [5] which shows that in high dimen-
sions nearest neighbor queries become unstable. Let
Dmind be the distance of the query point

1 to the near-
est neighbor and Dmaxd the distance of the query
point to the farthest neighbor in d-dimensional space
(see Table 1 for formal de�nitions).

The theorem by Beyer et al. states that under
certain rather general preconditions the di�erence be-
tween the distances of the nearest and farthest points
(Dmaxd �Dmind) does not increase with the dimen-
sionality as fast as Dmind. In other words, the ratio
of Dmaxd �Dmind to Dmind converges to zero with
increasing dimensionality. Using the de�nitions given
in Table 1, the theorem by Beyer et al. can be formally
stated as follows.

Theorem 1
If limd!1 var

�
kXdk

E[kXdk]

�
= 0, then

Dmaxd �Dmind

Dmind
!p 0:

1For our theoretical considerations, we consistently use the
origin as the query point. This choice does not a�ect the gener-
ality of our results, though it simpli�es our algebra considerably.
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d Dimensionality of the data space
N Number of data points
F 1-dim. data distribution in (0; 1)
�F Mean of F
Xd Data point from Fd, each coordinate

follows F
distd(�; �) Sym. dist. func. in [0; 1]d,with

distd(�; �) � 0 and triangle inequality
k � k Dist. of a vec. to the origin (0; : : : ; 0)
Dmaxd max. dist. of a data point to origin
Dmind min. dist. of a data point to origin
P [e] Probability of event e
E[X ] Expected value and
var[X ] variance of a random variable X
Yd !p c A sequence of vectors Y1; : : : converges

in probability to a constant vector c if:
8� > 0 limd!1P [distd(Yd; c) � �] = 1

Table 1: Notations and Basic De�nitions

Proof: See [5]. �
The theorem shows that in high dimensional space
the di�erence of the distances of farthest and near-
est points to some query point does not increase as
fast as the minimum of the two. This is obviously a
problem since it indicates poor discrimination of the
nearest and farthest points with respect to the query
point.

It is interesting however to observe that the di�er-
ence between nearest and farthest neighbor (Dmaxd�
Dmind) does not necessarily go to zero. In contrast,
the development of (Dmaxd �Dmind) with d largely
depends on the distance metric used and may actu-
ally grow with the dimensionality for certain distance
metrics. The following theorem summarizes this new
insight and formally states the dependency between
(Dmaxd � Dmind) and the distance metric used. It
allows to draw conclusions for speci�c metrics such as
the Manhattan distance (L1), Euclidean metric (L2),
and the general k-norm Lk.

Theorem 2

Let F be an arbitrary distribution of two points and

the distance function k � k be an Lk metric. Then,

limd!1E
�
Dmax

k
d �Dmin

k
d

d(1=k)�(1=2)

�
= Ck;

where Ck is some constant dependent on k.

Proof: see Appendix. �
We can easily generalize the result for a database of N
uniformly distributed points. The following theorem
provides the result.

Theorem 3
Let F be an arbitrary distribution of n points and the

distance function k � k be an Lk metric. Then,

Ck � limd!1E
�
Dmax

k
d �Dmin

k
d

d(1=k)�(1=2)

�
� (N � 1) � Ck;

Metric Dmax�Dmin converges against

L1 C1 �
p
(d)

L2 C2

Lk; k � 3 0

Table 2: Consequences of Theorem 2

where Ck is some constant dependent on k.

Proof: If C is the expected di�erence between
the maximum and minimum of two randomly drawn
points, then the same value for N points drawn from
the same distribution must be in the range [C; (N �
1) � C]. �
A surprising consequence of theorem 2 is that the
value of Dmaxd � Dmind grows (in absolute terms)
as d

(1=k)�(1=2). As a result, Dmaxd � Dmind in-
creases with dimensionality as

p
d for the Manhat-

tan metric (L1 metric). The L1 metric is the only
metric for which the absolute di�erence between near-
est and farthest neighbor increases with the dimen-
sionality. It is also surprising that for the Euclidean
metric (L2 metric), Dmaxd � Dmind converges to
a constant, and for distance metrics Lk for k � 3,
Dmaxd �Dmind converges to zero with increasing d.
These consequences of theorem 2 are summarized in
Table 2.

2.2 Experimental Con�rmation

We performed a series of experiments to con�rm these
theoretical results. For the experiments we used syn-
thetic (uniform and clustered) as well as real data sets.
In Figure 1, we show the average Dmax � Dmin of
a number of query points plotted over d for di�erent
metrics. Note that the resulting curves depend on the
number of data points in the data set. These exper-
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Figure 1: jDmax�Dminj depending on d for di�erent
Lk metrics (uniform data)

imental results are no contradiction to the results of
[5]. The reason that even for the L1 and L2 metrics
Dmaxd�Dmind

Dmind
!p 0 is that Dmind grows faster with
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d than Dmaxd � Dmind. In case of the L1 metric,
Dmind grows linearly with d and in case of the L2

metric, Dmind grows as
p
d with d. As a result, for

the L1 metric limd!1
p
d
d

= 0 and for the L2 metric

limd!1 C2p
d
= 0.

The theoretical and experimental results of this sec-
tion show that for Lk metrics with k � 3, nearest
neighbor search in high dimensional spaces is mean-
ingless while for the L1 and L2 metrics the distances
may reveal important properties of the data.

3 Problems of high dimensional data
and meaningful nearest neighbor

In one- or two-dimensional spaces, it is usually rela-
tively easy to understand the properties of the data
and identify the data distribution. It is safe to as-
sume that all dimensions are equally relevant and
that a standard (Euclidean) metrics provides mean-
ingful results. In general, this is not true in the high-
dimensional case.

To get a deeper understanding of the nature of high
dimensional data, it is important to uncover the mean-
ing of the dimensions. High dimensional data points
or feature vectors are typically derived from complex
real world objects like products, images, CAD data,
etc. In considering the di�erent types of data, we iden-
ti�ed three main methods to derive a high dimensional
feature vector from a complex real world object:

� enumerating some properties of the object (irre-
versible transformation),

� determining histograms which describe some sta-
tistical properties of the object (irreversible trans-
formation) or

� transforming the full description of the object into
a feature vector (reversible transformation).

In the following, we examine the impact of the three
potential sources of high dimensional data to the
meaningfulness of the nearest neighbor problem.

1. Enumeration of Properties: We use an ex-
ample in order to elucidate this case. For our example,
we assume that we want to compare cars. Comparing
cars is often done by deriving various properties of the
cars such as motor power, equipment, design and so on.
Each measurement forms a dimension which is only re-
lated to the other measurements of the same object.
When users query the car data base, they can select or
weight the importance of the di�erent properties, and
in that way each user is able to form his own meaning-
ful distance metric. The reason why a user can easily
perform a meaningful nearest neighbor search is that
the dimensions are directly interpretable by the user.
By omitting some of the dimensions and by weighting
them the user can control the degree of abstraction for

the nearest neighbor search. In our experience, the di-
mensionality of such data is in the medium range (10
to 50). The dimensionality can be reduced by pooling
dimensions together to a single categorical dimension
and forming a hierarchy for the new dimension.

2. Determination of Histograms: Histograms
are often used to produce high dimensional data be-
cause they allow a 
exible description of complex prop-
erties of real world objects. Examples are color his-
tograms [20], word counts for document retrieval and
text mining [13, 16] and census data [15]. Each bin
of the histogram is taken as a single dimension. The
information transformation from the real world ob-
ject into the histogram is an irreversible process which
means that some information about the object is lost.
The user of a histogram data base has to be aware of
this. The goal of the query has to match the reduced
information of the transformed object. On the other
hand the histogram may contain information about
aspects (for instance the background in an image) the
user wants to abstract from. In that case, the infor-
mation in the histogram must be reduced to the rel-
evant portion. However, in contrast to the enumera-
tion method the users are generally not able to specify
the reduction because they usually do not know the
underlying transformation. Another di�erence to the
previous method is that it is not useful to group the di-
mensions independently from the users and the query
points. In general, all possible groupings are poten-
tially meaningful. First approaches to deal with this
problem of query speci�cation are reported in [8, 18].
In general, the connection between the information in
the histograms and the semantic information of the
objects is weak. The dimensionality of such data can
vary from the medium to large range (10 to 1000).

3. Full Feature Description: The third method
is to use the description of complex a object directly
as a feature vector. The advantage is that all infor-
mation about the object is stored in the feature vector
and that the object is reconstructible from the vector.
However, often the real world objects do not allow a
representation as a feature vector with �xed length.
Examples for data which allow such a representation
are molecular biology data [7]. Like the histogram
data, it is also not meaningful to group the dimen-
sions to sensible units independently from the query
point and/or the user. Due to the possibility of recon-
struction, the semantic aspects are strongly connected
to the information stored in the feature vectors.

The three types of high dimensional data relate to
di�erent aspects of meaningfulness. In general there is
not a single meaningful nearest neighbor for a query,
but the user has to select the desired aspects. For the
�rst category of high dimensional data, the user is able
to specify his/her notion of `meaningfulness' (the ac-
tual relevant aspects) by his knowledge about the real
world objects. This procedure is similar to analyti-
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cal querying in an OLAP environment. To deal with
the second and third types of data, the user needs help
from the data creator or the database system to specify
the `meaningful' aspects. But how does a speci�cation
assistance for the relevant aspects may look like? For
certain applications, there exist data dependent meth-
ods which use interaction in the selection process [8].
In this paper, we focus on a method which selects the
relevant dimensions automatically by extracting and
rating additional information about the data distribu-
tions.

As a second question, we investigate how good a
single metric can serve as a similarity measure for the
second and third type of data. We already mentioned
that for those types of data the relevant dimensions
(attributes) depend on the query point and the inten-
tion of the user. If the meaningfulness of a metric de-
pends on the query point, then a metric can not serve
as a measure of similarity between the query object
and all other objects. In other words, a metric which
is only based on the relevant attributes (which are as-
sumed to be a subset of all attributes) can only serve
as a criterion for similarity in a local environment of
the query point. Objects (or data points) outside of
this environment are incomparable to the query ob-
ject, because they may have other relevant attributes.
In summary, one can say that for the second and third
types of data, the relationship between the metric and
the intended similarity becomes weaker with increas-
ing distance to the query point. As a consequence,
meaningful metrics for high dimensional data spaces
have to be varied according to the considered query
point and the data objects under consideration. Our
generalized notion of nearest neighbor search which is
presented in the next section provides an automatic
adaptation of the similarity measure in order to allow
a meaningful nearest neighbor search in high dimen-
sional space.

4 Generalized NN Search

In the previous sections, we have seen that the prob-
lem of �nding a meaningful nearest neighbor in high
dimensional spaces consists of the following two steps:
First, an appropriate metric has to be determined, and
second, the nearest neighbor with respect to this met-
ric has to be determined. The �rst step deals with se-
lecting and weighting the relevant dimensions accord-
ing to the users intention and the given query point.
This step is obviously rather di�cult since it is di�cult
to select and weight the relevant dimensions among
all combinations of hundreds of dimensions. The basic
idea of our approach is to automatically determine a
combination of relevant dimensions for a given query
point based on the properties of the data distribution.
Although our approach can not guess the users inten-
tion, the data distribution contains highly relevant in-
formation and allows a much better and more mean-
ingful nearest neighbor search.

4.1 De�nition

In this section, we propose a generalization of the near-
est neighbor search problem which remains meaningful
in high-dimensional spaces. The basic idea of our new
notion of nearest neighbor search is to use a quality cri-
terion to dynamically determine which dimensions are
relevant for a given query point and use those dimen-
sions to determine the nearest neighbor2. The space
of all combinations of dimensions can also be seen as
the space of axes-parallel projections of the data set,
and the problem can therefore be de�ned as an op-
timization problem over the space of projections. In
the following, we formalize our generalized notion of
nearest neighbor search. First, we formally introduce
a quality criterion which is used to rate the usefulness
of a certain combination of dimensions (projection).

Let D = fx1; : : : ; xng; xi 2 Rd be a database of d-
dimensional feature vectors, xq 2 Rd the query point,

p : Rd ! R
d0

; d
0 � d a projection, and dist(�; �) a

distance function in the projected feature space.

De�nition 1 (Quality Criterion)
The quality criterion is a function

C(p; xq ; D; dist) ! R; C � 0 which rates the

quality of the projection with respect to the query

point, database, and distance function. In other

words, the quality function rates the meaningfulness

of the projection p for the nearest neighbor search.

In section 4.3, we develop a useful quality criterion
based on the distance distribution of the data points
to the query point within a given projection.

Let P be the space of all possible projections p :
R
d ! R

d0

; d
0 � d and 8x 2 R

d : p(p(x)) = p(x). To
�nd a meaningful nearest neighbor for a given query
point xq we have to optimize the quality criterion C

over the space of projections P .

De�nition 2 (Generalized NN Search)
A meaningful nearest neighbor for a given query point

xq 2 Rd is the point
3

xNN =
�
x
0 2 Dj8x 2 D; x 6= x

0 :

dist
�
pbest(x

0); pbest(xq)
� � dist

�
pbest(x); pbest(xq)

�	
;

pbest =
�
p 2 P j MAX

p:Rd!Rd0

;d0�d

�
C(p; xq ; D; dist)

		
:

Solving the generalized nearest neighbor problem
problem is a di�cult and computation intensive task.
The space of all general projections P is in�nite and
even the space of all axes-parallel projections is expo-
nential. In addition, the quality function C is apriori

2Note that the nearest neighbor determined by our approach
may be di�erent from the nearest neighbor based on all dimen-
sions.

3Note that our de�nition can be easily generalized to solve
the k-nearest neighbor problem by �xing the selected projection
and determining the k nearest neighbors.
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unknown and therefore, it is di�cult to �nd a general
and e�ciently computable solution of the problem. In
the next section, we develop an algorithm which pro-
vides a general solution of the problem.

4.2 Generalized Nearest Neighbor Algorithm

The most important but di�cult task in solving the
generalized nearest neighbor problem is to �nd the
relevant projections. As mentioned in the previous
subsections, this decision is in general query and data
dependent which makes the problem computationally
di�cult. For our following considerations, we restrict
the projections to the class of axes-parallel projec-
tions, which means that we are searching for meaning-
ful combinations of dimensions (attributes). The re-
stricted search space has still an exponential size with
respect to dimensionality, which makes enumeration
impossible for higher dimensionalities.

In order to keep our algorithm generic and allow
di�erent quality criterions (cf. subsection 4.3), our
�rst approach was to use general optimization algo-
rithms such as random search, genetic and greedy op-
timization, for which the implementations can be made
largely independent of the speci�c problem structure.
In random search, simple random combinations of di-
mensions are evaluated in terms of the quality crite-
rion, and the best projection is returned. The ge-
netic algorithm uses multiple populations which are
mutated and combined based on the quality crite-
rion, and the greedy algorithm directly uses the best
one-dimensional projections which are combined into
higher-dimensional ones. All three algorithms are
sketched in pseudo code (see �gures 3, 4 and 5).

The results of the �rst experiments showed that
none of the three algorithms was able to �nd the rele-
vant subset of dimensions. Even for synthetic data, for
which the relevant subset of dimensions is known,only
a subset of the relevant dimensions was found. Ran-
dom search was found only useful to check whether a
given quality criterion is e�ective on a speci�c data
set or not. If the random search does not �nd any
projection with good quality, both genetic and greedy
algorithm are likely to fail in �nding a good projec-
tion as well. However, in cases when random search
does not fail, the genetic search provides much better
results. The greedy algorithm assumes that the in-

uence of a dimension on the quality is independent
from other dimensions. In general, this assumption
is not true for real data sets. A crucial problem is
that one-dimensional projections of high dimensional
data usually do not contain much information and so
the greedy algorithm picks the �rst dimensions ran-
domly and is therefore not useful for selecting the �rst
dimensions. It turned out, however, that the greedy
algorithm can be used e�ectively to re�ne results from
random or genetic search.

Our algorithm to determine the relevant subset of

p nn search (xq; dtar; D; C; dist)
dtmp := 3 to 5
no iter := 10 to 20
ptmp := genetic search( xq; dtmp; D; C; dist; no iter)
pbest := greedy search( xq; dtar; D; C; dist; ptmp)
xNN := p nn search( xq; D; dist; pbest)

return ( xNN )

Figure 2: Generalized Nearest Neighbor Algorithm

random search (xq; dtar; D; C; dist; no iter)
pbest:quality := 0
for i := 0 to no iter do

p := generate random projection( dtar )
p:quality := C(p; xq; D; dist)
if pbest:quality < p:quality then pbest := p

end do

return ( pbest )

Figure 3: Random Optimization

genetic search (xq; dtar; D; C; dist; no iter)
population := ;, pop size = 100, elite := 10, child := 80
for i := 0 to pop size do

p := generate random projection( dtar )
p:quality:=C(p; xq; D; dist)
population:insert(p)

end do

for i := 0 to no iter do

new pop := ;
insert the elite best projection into new pop

for j := elite to elite+ child do

// projections with high quality have higher
// probability to be selected for cross-over
parent1:=randomly select a projection from old pop

parent2:=randomly select a projection from old pop

child := gen. a new proj. by comb. parent1, parent2
child:quality := C(p; xq; D; dist)
new pop.insert( child )

end do

qualify and insert pop size� (elite+ child) random
projections into new pop

population := new pop

end do

select the best projection pbest and return it

Figure 4: Genetic Optimization

greedy search (xq; dtar; D; C; dist; ptmp)
set of selected dimensions S := ; or from ptmp

for i := 0 to dimtar do

pick the dimension ki 62 S such that the quality of the
projection based on S [ fkig is maximal

S := S [ fkig
end do

return (pbest(S))

Figure 5: Greedy Optimization
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dimensions is therefore based on a combination of the
genetic and the greedy algorithm. For determining the
�rst three to �ve dimensions, we use a genetic algo-
rithm and for extending the result to more dimensions
we use a greedy-based search. Figure 2 shows the pseu-
docode of the algorithm. For controlling the degree of
abstraction and improving the e�ciency, we use the
target dimensionality dtar = d

0 � d as a parameter
of the algorithm. If the genetic algorithm determines
the �rst �ve of the relevant dimensions and the greedy
algorithm the remaining ones, the complexity of our
algorithm is

O((5 �#(Iterations) � PopulationSize+
d � (dtar � 5)) � O(Quality Determination)):

4.3 Distance Distributions

In this section we develop a quality criterion based
on the distance distribution with respect to the query
point. The distance distribution of a data set D with
respect to a query point xq is the distribution of dis-
tances of the data points x 2 D from xq . More for-
mally, we have to consider the probability that the
distance of a query point xq to another data point is
smaller than a threshold distt:

�(distt) = P [dist(xq ; x) < distt]; x 2 D; distt 2 R
The corresponding probability density is

f(distt) = �0(distt):

Note that �(distt) is not continuous and therefore we
can only estimate the probability density f(distt). In
this subsection, we use simple histograms for approx-
imating the frequency of the distances of the data
points from the query points.

To examine how typical distance distributions look
like, we examine the distance distribution for di�erent
dimensionalities. Let us �rst consider the case of high-
dimensional uniform data. We know that in this case

the distances are meaningless. Figure 6 shows typi-
cal distance distributions4 of a 50-dimensional data set
consisting of 100,000 data points uniformly distributed
in [0; 1]d. Figure 6 (a)-(c) show typical projections5

onto randomly chosen 50, 10, and 2 dimensions. The
distance distribution has always one peak which means
that all data points are basically in one big distance
cluster from the query point. As a consequence from
the theorem in [5] the peak gets sharper as the dis-
tance to the query point grows. We neglect this e�ect
for our quality criterion by estimating the density only
in the range [dmin; dmax], because this e�ect is com-
mon to mostly all distributions and from section 2 we
conclude that this e�ect does not necessarily tell some-
thing about the meaningfulness of the nearest neigh-
bor. From the discussion in section 3 we assume that
a meaningful distance distribution should show two
peaks. The nearer peak is formed by the points which
are comparable to the query point (the metric is re-
lated to a type of similarity). The other peak { in most
cases the larger one { is formed by those points which
are incomparable to the query point because other at-
tributes are relevant for those data objects. However,
with respect to the currently used attributes they are
assumed to behave like uniformly distributed data.

How to detect a two peak distance distribution?
Our idea is to use kernel density estimation (see [21]
for an introduction) to smooth the distribution and
suppress random artifacts. To measure the quality we
increase the kernel width (smoothing factor) until the
smoothed distribution yields only two maxima. The
obtained kernel width is h1. Then we increase the ker-
nel width further until the distance distribution yields
only one maximum. This results in the kernel width
h2. We use the di�erence between the smoothing fac-
tor for one maximum and for two maxima h2 � h1
as our quality criterion to measures the similarity of
a current distance distribution with a distance distri-
bution that yields two signi�cant peaks. To get rid
of possible disturbances in the tail of the distribution,
which may also result in two maxima, we use only
the k nearest percent of the data. Figure 7 shows
distance distributions of data, which contains full uni-
formly distributed data and a projected cluster, which
means that these points follow a Gaussian distribution
in some dimensions and a uniform distribution in the
others. Figure 7(a) shows the distance distribution in
a projection where all dimensions are relevant, which
means that all selected dimensions are used in the def-
inition of the projected cluster. In Figure 7(b), one
relevant dimension is replaced by a non-relevant and
in Figure 7(c) two relevant dimensions are replaced by
non-relevant ones. In 7(c) the two peak structure is
hard to recognize and the quality criterion gives no

4In case of uniform data, the distance distribution is always
similar independent of the chosen query point.

5In case of uniform data, the distance distribution always
looks the same independent of the chosen projection.
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(a) all rel. Dim. (b) one non-rel. Dim.

(c) two non-rel. Dim.

Figure 7: Distance Distribution of Data
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Figure 8: Generalized Nearest Neighbor Classi�cation
(Synthetic Data)

hint on the hidden relevant dimensions. From these
observations we can conclude that the genetic algo-
rithm can only optimize projections with a dimension-
ality of 3-5. If the dimensionality is higher the quality
criterion degenerates to an oracle and the algorithm
can only guess a good projection { and the probability
to guess a good projection in high dimensional data is
rather low.

5 Experiments

In this section we report experiments, to show the ef-
fectiveness of our quality function and the generalized
notion of nearest neighbor search. Note that in real
world application the quality function have to be mod-
i�ed due to the data dependency of the term `mean-
ingful'. In our experiments we focused on improving
the e�ectiveness of the nearest neighbor search in gen-
eral and omitted as far as possible dependencies of the
quality function from the data.

First we compared the e�ectiveness of the general-
ized k-nearest neighbor search with the full k-nearest
neighbor search. For this purpose we used synthetic
labeled data, consisting of two types of data. The
�rst and relevant part follows a normal distribution
in some of the dimensions, but are uniformly dis-
tributed with respect to the other dimensions. The
second not relevant part is uniformly distributed in
the whole feature space. In the experiments with the
synthetic data we used only query points from the
�rst part. For the e�ectiveness we measured the per-
centage of relevant data in the result of a k-nearest
neighbor search(precision). For all experiments we set
k = 20. Figure 8 shows the results for the compar-
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Figure 9: Improvement (Real Data)

Database Class NN P-NN Improv.

Ionosphere
0 0.52% 0.66% 27%
1 0.95% 0.94% 0%

Spam
0 0.77% 0.85% 10%
1 0.64% 0.79% 23%

Table 3: Generalized Nearest Neighbor Classi�cation
(Real Data)

ison of the generalized nearest neighbor search with
the full nearest neighbor search. The data sets consist
of a projected cluster of 200 relevant points (normaly
distributed in 7 of 30 dimensions) and 500 to 2500
not relevant points (uniformly distributed). The im-
provement over the full nearest neighbor search is up
to 14%.

We also applied our method to labled real data
sets from the UCI Machine Learning Repository
(www.ics.uci.edu/mlearn/). We used the Ionosphere
Database and the Spambase Database. The Iono-
sphere Database consists of 351 instances with 34 nu-
meric attributes and contains 2 classes, which come
from a classi�cation of radar returns from the iono-
sphere. The Spambase Database is derived from a col-
lection of spam and non-spam e-mails and consists of
4601 instances with 57 numeric attributes. In both
cases we used a target dimensionality of dtar = 10 for
the generalized nearest neighbor. The results are av-
erages over 20 randomly selected queries. Our gener-
alized nearest neighbor search shows an improvement
of up to 27% (�gure 9).

To adopt our generalized nearest neighbor search
to other applications like image retrieval or document
search we suggest to use a fast k-nearest neighbor
search on all dimensions with large k or a key word
search as a �lter step.

To show the applicability of our method we exam-
ined the search time depending on the number of data
points (�gure 10). In our implementation we did not
use any index structure, but used a simple linear scan
to calculate our quality function and the query results.
The experiments were measured on a Pentium III, 500
MHz with 200 MB RAM.
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6 Conclusion

In this paper, we developed a generalized notion of
nearest neighbor search in high dimensional spaces.
We show that our new notion is highly relevant in
practical applications and improves the e�ectiveness

of the search. The basic idea is to determine a relevant
subset of dimensions depending on the query point
and the data distribution by an optimization process
which rates the distance distribution for the selected
subset of dimensions according to an elaborate quality
criterion. Our new technique for solving the gener-
alized nearest neighbor problem is not only valuable
for allowing a more meaningful and e�ective nearest
neighbor search in high dimensional spaces but it also
provides a better understanding of the data and the
relevant notion of proximity. The experimental results
show the high potential of our new technique which is
likely to extent the common full-dimensional nearest
neighbor search in most applications that deal with
high dimensional data. Futher research on similarity
search applications should elaborate the observation
that the notion of similarity often depend from the
data point and the users intentions and so could be
not uniquely prede�ned. High dimensional data may
contain di�erent aspects of similarity. Open research
questions include: how to �nd appropriate quality cri-
terias for the meaningfulness of similarity search; what
can be done using automated algorithms; when are in-
teractive techniques to determine the meaningfulness
of similarity search more e�ective than automated al-
gorithms?
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Appendix

Theorem 2

Let F be an arbitrary distribution of two points and

the distance function k � k be an Lk metric. Then,

limd!1E
�
Dmax

k
d �Dmin

k
d

d1=k�1=2

�
= Ck;

where Ck is some constant dependent on k.

Proof: Let Ad = (P1 : : : Pd) and Bd = (Q1 : : :Qd)
with Pi and Qi being drawn from F . Let PAd =

fPd
i=1(Pi)

kg1=k be the distance of Ad to the origin

using the Lk metric. Let PBd = fPd
i=1(Qi)

kg1=k.
We assume that the kth power of a random vari-

able drawn from the distribution F has mean �F;k
and standard deviation �F;k. This means that:

PA
k
d=d!p �F;k; PBk

d=d!p �F ;k:

We express jPAd � PBdj in the following numera-
tor/denominator form:

jPAd � PBdj = j(PAd)
k � (PBd)

k jPk�1
r=0(PAd)k�r�1(PBd)r

(1)

Dividing both sides by d1=k�1=2, expanding the numer-
ator in terms of Pi and Qi, and regrouping on right-
hand-side provides

jPAd � PBdj
d1=k�1=2

=
jPd

i=1((Pi)
k � (Qi)

k)j=pdPk�1
r=0

�
PAd

d1=k

�k�r�1 �PBd

d1=k

�r (2)

Since each P
k
i � Q

k
i is a random variable with zero

mean and �nite variance, the expected value of the

numerator is a constant because of the central limit
theorem. The denominator converges to the constant

k � (�F;k)(k�1)=k
because of the convergence behavior

of PAk
d=d and PB

k
d=d and Slutsky's theorem. The

result follows. �
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