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Abstract
Many efficient algorithms to compute
multidimensional aggregation and Cube for
relational OLAP have been developed. However,
to our knowledge, there is nothing to date in the
literature on aggregation algorithms on
compressed data warehouses for
multidimensional OLAP. This paper presents a
set of aggregation algorithms on very large
compressed data warehouses for
multidimensional OLAP. These algorithms
operate directly on compressed datasets without
the need to first decompress them. They are
applicable to data warehouses that are
compressed using variety of data compression
methods. The algorithms have different
performance behavior as a function of dataset
parameters, sizes of outputs and main memory
availability. The analysis and experimental
results show that the algorithms have better
performance than the traditional aggregation
algorithms.

1. Introduction

      Decision support systems are rapidly becoming a key
to gaining competitive advantage for businesses. Many
corporations are building decision-support databases,

called data warehouses, from operational databases. Users
of data warehouses typically carry out on-line analytical
processing (OLAP) for decision making.
      There are two kinds of data warehouses. One is for
relational OLAP, called ROLAP data warehouse
(RDW)[2,3,4]. The other one is for multidimensional
OLAP, called MOLAP data warehouses (MDW) [5,6,7].
RDWs are built on top of standard relational database
systems. MDWs are based on multidimensional database
systems. A MDW is a set of multidimensional datasets. In
a simple model, a multidimensional dataset in a MDW
consists of dimensions and measures, represented by
R(D1, D2, ..., Dn; M1, M2, ..., Mk), where Di's are
dimensions and Mj's are measures.
      The data structures in which RDWs and MDWs store
datasets are fundamentally different. RDWs use relational
tables as their data structure. That is, a "cell" in a logically
multidimensional space is represented as a tuple with
some attributes identifying the location of the cell in the
multidimensional space and other attributes containing the
values of the measures of the cell. By contrast, MDWs
store their datasets as multidimensional arrays. MDWs
only store the values of measures in a multidimensional
space. The position of the measure values within the
space can be calculated by the dimension values.
      Multidimensional aggregation and Cube[1] are the
most common operations for OLAP applications. The
aggregation operation is used to "collapse" away some
dimensions to obtain a more concise dataset, namely to
classify items into groups and determine one value per
group. The Cube operation computes multidimensional
aggregations over all possible subsets of the specified
dimensions.
      Computing aggregation and the Cube are core
operations on RDWs and MDWs. Methods of computing
single aggregation and the Cube for RDWs have been
well studied. In [11], a survey of the single aggregation
algorithms for relational database systems is presented. In
[1], some rules of thumb are given for an efficient
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implementation of the Cube for RDWs. In [12] and [13],
algorithms are presented for deciding what group-bys to
pre-compute and indexing for RDWs. In [14] and [15] , a
Cubetree storage organization for RDW aggregation
views is presented. In [16] , fast algorithms for computing
the Cube operator for RDWs are given. These algorithms
extend sort-based and hash-based methods with several
optimizations.
      Aggregation pre-computing is quite common in
statistical databases[17]. Research in this area has
considered various aspects of the problem such as
developing a model for aggregation computations[18],
indexing pre-computed aggregations[19], and
incrementally maintaining them[20].
      While much work has been done on how to efficiently
compute aggregation and the Cube for RDWs, to the best
of our knowledge, there is only one published paper on
how to compute the Cube for MDWs[10], and there is no
published work on how to compute single
multidimensional aggregation for MDWs.
      MDWs present a different challenge in computing
aggregation and the Cube. The main reason for this is the
fundamental difference in physical organization of their
data. The multidimensional data spaces in MDWs
normally have very large size and a high degree of
sparsity. That has made data compression a very
important and successful tool in the management of
MDWs. There are several reasons for the need of
compression in MOLAP data warehouses. The first reason
is that a multidimensional space created by the cross
product of the values of the dimensions can be naturally
sparse. For example, in an international trade dataset with
dimensions exporting country, importing country,
materials, year and month, and measure amount, only a
small number of materials are exported from any given
country to other countries. The second reason for
compression is the need to compress the descriptors of the
multidimensional space. Suppose that a multidimensional
dataset is put into a relational database system. The
dimensions organized in tabular form will create a
repetition of the values of each dimension. In fact, in the
extreme, but often realistic case that the full cross product
is stored, the number of times that each value of a given
dimension repeats is equal to the product of the
cardinalities of the remaining dimensions. Other reasons
for compression in MDWs come from the properties of
the data values. Often the data values are skewed in some
datasets, where there are a few large values and many
small values. In some datasets, data values are large but
close to each other. Also, sometimes certain values tend to
appear repeatedly.
      There are many data compression techniques
applicable for MDWs [8,9]. A multidimensional dataset
can be thought of as being organized as a
multidimensional array with the values of dimensions as

the indices of the array. The rearrangement of the rows
and columns of the array can result in better clustering of
the data into regions that are highly sparse or highly
dense. Compression methods that take advantage of such
clustering can thus become quite effective.
      Computing multidimensional aggregation and Cube
on compressed MDWs is a big challenge. Since most
large MDWs must be compressed for storage, efficient
multidimensional aggregation and Cube algorithms
working directly on compressed data are important.
      Our goal is to develop efficient algorithms to compute
multidimensional aggregation and Cube for compressed
MDWs. We concentrate on single multidimensional
aggregation algorithms for compressed MDWs. This
paper presents a set of multidimensional aggregation
algorithms for very large compressed MDWs. These
algorithms operate directly on compressed datasets
without the need to first decompress them. They are
applicable to a variety of data compression methods. The
algorithms have different performance behavior as a
function of dataset parameters, sizes of outputs and main
memory availability. The algorithms are described and
analyzed with respect to the I/O and CPU costs. A
decision procedure to select the most efficient algorithm,
given an aggregation request, is also given. The analysis
and experimental results show that the algorithms
compare favorably with previous algorithms.
      The rest of the paper is organized as follows. Section
2 presents a method to compress MDWs. In section 3,
description and analysis of the aggregation algorithms for
compressed MDWs are given. Section 4 discusses the
decision procedure that selects the most appropriate
algorithm for a given aggregation request. The
performance results are presented in section 5.
Conclusions and future work are presented in section 6.

2. Compression of MDWs

      This section presents a method to compress MDWs.
Each dataset in a MDW is first stored in a
multidimensional array to remove the need for storing the
dimension values. Then, the array is transformed into a
linearized array by an array linearization function. Finally,
the linearized array is compressed by a mapping-complete
compression method.

2.1 Multidimensional Arrays

      Let R(D1, D2, ..., Dn; M1, M2, ..., Mm) be an n-
dimensional dataset with n dimensions, D1, D2, ..., Dn, and
m measures, M1, M2, ..., Mm, where the cardinality of the
ith dimension is di for 1≤ i ≤ n. Using the multidimensional
array method to organize R, each of the m measures of R
are first stored in a separate array. Each dimension of R is
used to form one dimension of each of these n-
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dimensional arrays. The dimension values of R are not
stored at all. They are the indices of the arrays which are
used to determine the position of the measure values in
the arrays. Next, each of the n-dimensional arrays is
mapped into a linearized array by an array linerization
function.
      Assume that the values of the ith dimension of R is
encoded into {0, 1, ..., di-1} for 1?  i?  n. The array
linerization function for the multidimensional arrays of R
is
LINEAR(x1, x2, ..., xn)=x1d2d3...dn+x2d3...dn+… +xn-1dn +xn

= (… (x1d2+ x2)d3+… )dn-2+xn-2)dn-1+xn-1)dn+xn.

In each of the m linearized arrays,the position where the
measure value determined by array indices (i1, i2, ..., in) is
stored  is denoted by LINEAR(i1, i2, ..., in).
      Let [X] be the integer part of X. The reverse array
linerization function of the multidimensional array of R is

R-LINEAR(Y) = (y1, y2, ..., yn),
where, yn=Y mod dn, yi=[...[Y/dn]...]/di+1] mod di for
2≤i≤n-1, y1=[[... [[Y/dn]/dn-1]...]/d3]/d2]. For a position P in
a linearized array, the dimension values (i1, i2, ..., in)
determining  the measure value in position P, is R-
LINEAR(P).

2.2 Data Compression

      The linearized arrays that store multidimensional
datasets normally have high degree of sparsity and need
to be compressed. It is desirable to develop techniques
that can access the data in their compressed form and can
perform logical operations directly on the compressed
data. Such techniques (see [8]) usually provide two
mappings. One is forward mapping, it computes the
location in the compressed dataset given a position in the
original dataset. The other one is backward mapping, it
computes the position in the original dataset given a
location in the compressed dataset.
      A compression method is called mapping-complete if
it provides forward mapping and backward mapping.
Many compression techniques are mapping-complete,
such as header compression [21] and chunk-offset
compression [10]. The algorithms proposed in this paper
are applicable to all the MDWs that are compressed by
any mapping-complete compression method. To make the
description of the algorithms more concrete, we assume
that the datasets in the MDWs have been stored in a
linearized array, each of which has been compressed using
the header compression method[21].
The header compression method is used to suppress
sequences of missing data codes, called constants, in
linearized arrays by counts. It provides an efficient access
to the compressed data by forward and backward
mappings with I/O and CPU costs of O(log2log2S), where
S is the size of the header, using interpolation search[22].

This method makes use of a header that  is a vector of
counts. The odd-positioned counts are for the
unsuppressed sequences, and the even positioned counts
are for suppressed sequences. Each count contains the
cumulative number of values of one type at the point at
which a series of that type switches to a series of the
other. The counts reflect accumulation from the beginning
of the linearized array to the switch points. In addition to
the header file, the output of the compression method
consists of a file of compressed data items, called the
physical file. The original linearized array, which is not
stored, is called the logical file. Figure 1 shows an
example. In the figure, LF is the logical file, 0's are the
suppressed constants, v's are the unsuppressed values, HF
is the header and PF is the physical file.

3. Multidimensional Aggregation Algorithms

      In this section, we assume that datasets in MDWs are
stored using the compressed multidimensional arrays
method presented in section 2. Without loss of generality
we assume that each dataset has only one measure.
      Let R(D1, D2, ..., Dn; M) be a multidimensional
dataset. A dimension order of R, denoted by Di1

Di2
...Din

,
is an order in which the measure values of R are stored in
a linearized array by the array linearization function with
Dij

 as the jth dimension. Different dimension orders leads
to different orders of the measure values in the linearized
array. In the following discussion, we assume that R is
stored initially in the order D1D2...Dn.
      The input of an aggregation algorithm includes a
dataset R(D1, D2, ..., Dn; M),  a group-by dimension set
{A1, A2, ..., Ak}⊆{D1, D2, ..., Dn} and an aggregation
function F. The output of the algorithm is a dataset S( A1,
A2, ..., Ak; F(M)), where the values of F(M) are computed
from the measure values of R by the aggregation function
F. In the rest of the paper, we will use the following
symbols for the relevant parameters:
      di: the cardinality of the dimension Di of R.
      N: the number of data items in the compressed
linearized array of R.
      Noh: the number of data items in the header of R.
      Nr: the number of data items in the compressed
linearized array of S.
      Hrh: the number of data items in the header of S.
      B: the number of data items of one memory buffer or
one disk block.

3.1. Algorithm G-Aggregation
3.1.1 Description
 G-Aggregation is a "general" algorithm in the sense that
it can be used in all situations. The algorithm performs a
multidimensional aggregation in two phases. In phase
one, called transposition phase, it transposes the
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dimension order of the input multidimensional dataset R
into a favorable dimension order so that the aggregation
can be easily computed. For example, let R(A, B, C, D;
M) be a 4-dimensional dataset that is stored in a linearized
4-dimensional array in the dimension order ABCD.
Assume that {B,C} is the group-by dimension set. The
dimension order BCAD and BCDA are favorable
dimension orders for computing the aggregation with
group-by dimension set {B,C}. In phase two, called
aggregation phase, the algorithm computes the
aggregation by one scan of the transposed R. Figure 2
illustrates the algorithm. For expository purposes, we use
the relational form in Figure 2. In reality, the algorithm
works directly on the compressed linearized array of R.
      The transposition phase assumes that W buffers are
available. Data from the compressed array (physical file)
is read into the buffers. For each data item in a buffer, the
following is done: (i) backward mapping is performed to
obtain the logical position in the logical file, (ii) the
dimension values of the item are recovered by the reverse
array linearization function, and (iii) a new logical
position of the item in the transposed space is computed
using the array linearization function. This new logical
position, called a "tag", is stored with the data item in the
buffer. An internal sort is performed on each of these
buffers with respect to the tags of the data items. The
sorted data items in these buffers are next merge-sorted
into a single run and written to disk along with the tags.
This process is repeated for the rest of the blocks in the
physical file of R. The runs generated and their tags are
next merged using the W  buffers. A new header file is
constructed for the transposed compressed array in the
final pass of the merge sequence. Also, the tags associated
with the data items are discarded in this pass. The file
produced containing the (shuffled) data items is the new
transposed compressed linearized array. The aggregation
phase scans the transposed array once, and aggregates the
measure values for each combined values of the group-by
dimensions one by one.
      To transpose the compressed multidimensional array
of R, G-Aggregation reads, writes and processes the run
files (of the same size as that of the original compressed

file) 













B
N

Wlog  times in the transposition phase. To

perform the final aggregation, another scan is needed. In

each of the two phases, each of the original and
transposed header files are read once. If the aggregation is
performed as early as possible, the size of the run files
will be reduced and the I/O and CPU costs will be
reduced dramatically. To improve the algorithm, we
perform aggregation and merge at the same time. With
such “early” aggregation, run files will be smaller than the
original file, and the cost for creating and reading the
transposed header file is deleted.
      The improved G-Aggregation assumes that W+2
buffers, each of size B, are available. One buffer is used
for input and another for output. W buffers are used as
aggregate and merge buffers, denoted by buffer[j] for
1≤j≤W. Let R(D1, D2, … , Dn; M) be the operand, and {A1,
A2, ..., Ak}⊆{D1, D2, … , Dn} be the group-by dimension
set.
      The improved G-Aggregation also consists of two
phases. The first phase generates the sorted runs of R in
the order A1A2... Ak. Every value v in each run is a local
aggregation result of a subset of R with an identification
tuple of the group-by dimension values (a1, a2, … , ak) as
its tag. To generate a run, the algorithm reads as many
blocks of the compressed linearized array of R as

possible, sorts them in the order A1A2...Ak, locally
aggregates them and fills the W buffers with the locally
aggregated results. For each buffer[j], the algorithm reads
an unprocessed block of the compressed linearized array
of R to the input buffer. For each data item v in the input
buffer the following is done: (i) backward mapping is
performed to obtain the logical position in the logical file;
(ii) the dimension values {x1, x2, ..., xn} of v are recovered
using the reverse array linearization function, and (iii) the
values {a1, a2, ..., ak} of the group-by dimensions {A1, A2,
..., Ak} (called a "tag") are selected from {x1, x2, ..., xn}
and then stored with v in the input buffer. An internal sort
is performed on the data items in the input buffer with
respect to the tags of the data items. The sorted data
items, each of which is in the form (v, tag) in the input
buffer, are next locally aggregated and stored to buffer[j].
The process is repeated until buffer[j] is full.  When all
the W buffers are full, all the data items in the W buffers

LF:  v1 v2 0 0 0 0 0 0 0 0 0 v3 v4 v5 v6 v7 0 0 v8 v9 v10 0 0 0
HF:     2                         9                 7     11         10     14
PF:  v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 1.

A  B  C  D   M

1   1  1   1   2
1   1  1   2   3
1   1  2   1   3
1   1  2   2   3
1   2  1   1   3
1   2  1   2   4
2   1  1   1   3
2   1  2   1   3
2   2  1   2   4
2   2  2   1   5
2   2  2   2   4

B  C  A  D  M

1   1  1   1   2
1   1  1   2   3
1   1  2   1   3
1   2  1   1   3
1   2  1   2   3
1   2  2   1   3
2   1  1   1   3
2   1  1   2   4
2   1  2   2   4
2   2  2   1   5
2   2  2   2   4

transposition

B  C   sum(M)

1   1       8
1   2       9
2   1      11
2   2       9

aggregation

R(A, B, C, D; M) R(B, C, A, D; M)

S(B, C;sum( M))

Figure 2.
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are locally aggregated and merged in order of their tags,
and written to disk to form a sorted run. The whole
process is repeated until all runs are generated.
      In the second phase, the sorted runs generated in
phase one are aggregated and merged using W buffers. A
new header file is constructed for the compressed array in
the final pass of the aggregation and merge sequence, and
the tags associated with the data items are discarded. The
final compressed file produced is the compressed
linearized array of the aggregation result. Figure 3
describes the main steps of the algorithm.

3.1.2 Analysis

      We first analyze the I/O cost of G-Aggregation. In
phase one,  BN / +(  BN /0 -1)+  BNoh /  disk block
accesses are needed to read the original compressed
linearized array of R, read the original header file and
write the sorted runs to disk (the last block is kept in
memory for use in the second phase). Here N0 (≤ N) is the
number of data items in all the runs generated in this
phase. In phase two, logWS passes of aggregation and
merge are needed. Let NI be the number of data items in
the output of the Ith pass for 1?  I?  logWS. Obviously,
Nr=NlogWS. A buffering scheme is used so that in the odd
(even) pass, disk block reading is done from the last (first)
block to the first (last) block. One block can be saved
from reading and writing by keeping the first or last block
in memory for use in the subsequent pass. In the last pass,
we need to build and write the result header file. Thus,

 BNr / +(  BN /0 -1)+  
 
∑

−

=
−

1log

1

)1/(2

S

i

W

BiN +  BNrh /

disk accesses are required in the phase. In summary, the
I/O cost of G-Aggregation is

Iocost(G-

Aggregation)=  BN / +  BNoh / +  BNr / +  BNrh / +

 
 
∑

−

=

−
1log

0

)1/(2
S

i
i

W

BN .

From the algorithm, Nr≤N0≤N and Nr≤NI≤NI-1. The

average value of N0 is 
)1(2

))(1(
+−

++−
r

rr
NN

NNNN =
2

rNN + . The

average value of NI is 
)1(2

))(1(

1

11
+−

++−
−

−−
ri

riri
NN

NNNN =
2

1 ri NN +− .

Solving the recursive equation NI=
2

1 ri NN +− , we have

NI≤ 12

1
+i (Nr+N)+Nr. Thus, on the average,

 
 
∑

−

=

−
1log

0

)1/(2
S

i
i

W

BN ≤
 
∑

−

=

1log

0

2
S

i

i
W

B
N ≤

 
∑

−

=
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1log

0
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2

1
(2

S

i
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i

W

B
N

B
NN ≤2(

B
NN r+ +  

B
N

S r
Wlog ).

Since S≤ 





BW
N , the average value of Iocost(G-

Aggregation) is
AIOcost(G-

Aggregation)=O(  BN / +  BNoh / +  BNr / +  BNrh / +2(

B
NN r+ +

B
Nr 














BW
N

Wlog )).

      Next, we analyze the CPU cost of G-Aggregation. Let
NI be the same as above for 0≤ I≤ logWS. In the first
phase, for each value in the compressed linearized array
of R, we need to perform a backward mapping and a
reverse array linearization. A backward mapping requires
one computation because we scan the array and header
from the beginning. A reverse array linearization
operation requires 2(n-1) divisions and subtractions. Thus,
2N(n-1)+N computations are needed for the backward
mapping and reverse array linearization in this phase. N-
N0 computations are needed for the local aggregations in
this phase. There are also  BN /  blocks, each with size B,
to sort. To sort a block with size B requires Blog2B
computations. Thus,  BN / Blog2B computations are
required to sort the  BN /  blocks. The N0 output data
items of the first phase are generated by merging W
buffers. Generating a data item requires at most log2W
computations. Therefore, the total number of CPU
operations for the first phase is 2Nn-

N0+ 





B
N Blog2B+N0log2W. In the second phase, the

algorithm performs logWS iterations. The Ith iteration

involves the aggregating and merging of 







− 1iW

S  runs into









iW

S and output NI data items. In the Ith iteration, NI-1 –NI

aggregations are needed. The NI output data items are

buffer[W]...

Run with 
  tags

 run  run run

Run 
with 
 tags

Run with 
  tags

single
    run

read

Aggregate
     and   
   Merge

Write

 Compute tags 
   and sort at 
 first scan of R

 local aggregate

buffer[1] buffer[2]

buffer-out

buffer-in

     Data 
Warehouse

Start

Figure 3.
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generated by merging W buffers. Each data item requires
at most log2W computations. In the final iteration, the Nr
computations are needed to compute the result header
counts. Therefore, the number of computations required
by the second phase is

 
)log)(( 2

log

1
1 WNNN i

S

i
ii

W

+−∑
=

− +Nr=N0 +
 
∑
=

S

i
i

W

WN
log

1
2log .

We can show that the the average value of CPUcost(G-
Aggregation) is

ACPUcost(G-Aggregation)=O(2Nn+ 





B
N Blog2B +

(N+2Nr+ Nr 













BW
N

Wlog ) log2W ).

3.2 Algorithm M-Aggregation

3.2.1 Description

      This algorithm is superior to G-Aggregation in case
the aggregation result fits into memory. M-Aggregation
computes aggregation by only one scan of the compressed
linearized array of the operand dataset R. It reads blocks
of the compressed linearized array of R one by one. For
each data item v in the compressed linearized array of R,
the following is done: (I) backward mapping is performed
to obtain v’s logical position; (ii) the dimension values of
v, (x1, x2, … , xd), are recovered by the reverse array
linearization function from the logical position of v, and
the values (a1, a2, … , ak) of the group-by dimensions are
selected from (x1, x2, … , xd); (iii) if there is a w that is
identified by (a1, a2, … , ak)  in the output buffer, aggregate
v to w using aggregation function, otherwise insert v with
(a1, a2, … , ak) as a tag into the output buffer using hash
method. Finally, the algorithm builds the new header file
and writes the output buffer to the result file discarding
the tags. M-Aggregation is described as follows.

3.2.2 Analysis

      M-Aggregation requires one scan of the original
compressed linearized array of R, and a writing of the
resulting file. Also, the reading of the original header file
and writing of the new header file are needed. The total
I/O cost is
IOcost(MAggregation)=        BNBNBNBN rhohr //// +++ .
      The CPU cost of M-Aggregation is, for each data item
in the compressed linearized array of R, the cost of
performing a backward mapping, a reverse array
linearization, a hashing computation, and an aggregation
or memory operation (move data to output buffer), and
the cost for computing the result header counts. As
discussed in 3.1.2, a backward mapping requires only one

computation. All the backward mappings for all data
items in the compressed linearized array of R requires N
computations. All the reverse array linearizations for all
data items require 2N(n-1) computations. Steps (8) and (9)
require N hash computations. Computing the result header
counts requires Nr computations. The algorithm requires
N-Nr aggregation and Nr memory operations also. Thus,
CPU cost of the algorithm is at most

CPUcost(M-Aggregation)= 2Nn+Nh+Nr,
where h is the number of computations needed by a
hashing computation.

3.3 Algorithm Prefix-Aggregation

3.3.1 Description

      This algorithm takes advantage of the situation where

the group-by dimension set contains a prefix of the
dimension order D1D2… Dn of the operand dataset R(D1,
..., Dn; M). It performs aggregation in main memory by
one scan of the compressed linearized array of R. It
requires a memory buffer large enough to hold each
portion of the resulting compressed linearized array for
each “point” in the subspace composed by the prefix.
      In rest of the paper, R(D1, ..., Dk, ak+1, ..., ak+p, Dk+p+1,
..., Dn; M) represents a subset of R(D1, ..., Dn; M) whose
dimension values on {Dk+1, ..., Dk+p} are {ak, ..., ak+p.}.
We use an example to illustrate the algorithm. Assume
that the operand dataset R has four dimensions A, B, C
and D, and is stored in a compressed array in the order
ABCD. Let us consider the aggregation with group-by
dimension set {A, B, D} that contains a prefix, AB, of the
dimension order of R. Figure 4 shows  an example of
computing the aggregation with group-by dimension set
{A, B, D}. For each “point” (a, b) in the subspace (A, B)
of R, namely (1,1), (1,2), (2,1) or (2,2) in Figure 4, the
algorithm performs the aggregation on R(a, b, C, D; M)
with D as the group-by dimension and appends to the
result file. The new header counts is computed at the
same time. This is the partial result of the aggregation
under the fixed “point” (a, b). All partial results are

AB=11

AB=12

AB=21

AB=22

For each 
point(x,y) in 
subspace 
(A,B), 
aggregate 
R(x,y,C,D;M)
with group-by
 dimension D.

R'(A,B,D;SUM(M))

A  B  D   SUM(M)

 1   1   1       4
 1   1   2       5
 1   2   1       7
 2   1   1       3
 2   2   2     10

A   B   C  D   M

 1    1   1   1    4
 1    1   1   2    5
 1    2   1   1    3
 1    2   2   1    4
 2    1   1   1    1
 2    1   2   1    2
 2    2   1   2    4
 2    2   2   2    6

R(A,B,C,D;M)

AB=11

AB=12

AB=21

AB=22

Figure 4.
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concatenated to form the final aggregation result. The
reason is that the subspace (A, B) is stepped through in the
same order as the original R, i.e., the rightmost index is
varying the fastest. Prefix-Aggregation is as follows.

3.3.2 Analysis

      Prefix-Aggregation requires the reading of the original
compressed array of R, and writing of the resulting file.
Also, the reading of the original header file and writing of
the new header file are needed. The total I/O cost is

IOcost(Prefix-Aggregation)=
       BNBNBNBN rhohr //// +++ .

      The CPU cost of Prefix-Aggregation is, for each data
item in the compressed linearized array of R, the cost for
performing a backward mapping, a reverse array
linearization, a comparison (step (9)) and an aggregation
or a   memory operation (move data to output buffer), and
the cost of computing new header counts. Thus, the CPU
cost of Prefix-Aggregation is at most

CPUcost(Prefix-Aggregation)=N(2n+1)+Nr.

3.4 Algorithm Infix-Aggregation

3.4.1 Description

      This algorithm takes advantage of the situation where
the set of group-by dimensions is an infix of the
dimension order D1D2… Dn of the operand R(D1, D2, ...,
Dn; M). Let {Dt+1, Dt+2, ..., Dt+k} be the group-by
dimensions, and D be the size of the subspace composed
by D1, D2, ..., and Dt, denoted by (D1, D2, ..., Dt).
Obviously, Dt+1Dt+2...Dt+k is an infix of the order D1D2...
Dn. For each “point” (a1, ..., at) in (D1, ..., Dt), there is a
sorted run, R(a1, ..., at, Dt+1, Dt+2, ..., Dn; M) in the order
Dt+1Dt+2...Dt+k. R(D1, D2, ..., Dn; M) is the connection of D
such runs. The algorithm merges the D runs in order of
Dt+1Dt+2...Dt+k and perform aggregation at the same time.
Figure 5 shows an example how the algorithm aggregates
with group-by dimension set {C, D} on R(A, B, C, D, E;
M). To perform the aggregation, R is first partitioned into
4 sorted runs, R(1,1, C, D, E; M), R(1,2, C, D, E; M),
R(2,1, C, D, E; M) and R(2,2, C, D, E; M). Then all the
runs are projected to R(C, D; M) without removing
repeated values. Finally, the projected runs are aggregated
and merged to generate the aggregation result.
      Infix-Aggregation assumes W buffers, each with size
B, are available. If W≥D, the algorithm becomes a main
memory algorithm and requires only one scan of the
compressed linearized array of R.
      Infix-Aggregation is slower than Prefix-Aggregation
when W<D but not as memory intensive as Prefix-
Aggregation. It requires logWD passes to merge the D
runs, where each pass merges W runs into one run. While

the runs are merged, local aggregations are performed at
the same time. When all the runs are merged into one run,
the aggregation result is generated. In the algorithm, R(a1,
a2, ..., at-1, Dt, Dt+1, ...., Dt+k; M) represents the run for a
“point” (a1, a2, ..., at) in the subspace (D1, D2, ..., Dt). The
start position of the run R(a1, a2, ..., at, Dt+1, Dt+2, ...., Dn;
M) in the compressed linearized array of R can be
computed by the following algorithm.
 Using interpolation search[22] in step (2) and backward
mapping, The I/O cost of the algorithm is at most
2log2log2Nh, and  the CPU cost of the algorithms is at
most 2log2log2Nh+4(n-1), where Nh is the number of data
items in header.
      Infix-Aggregation starts by first computing the start
positions of the D runs in the compressed linearized array
of R. Then, it computes the aggregation in logWD
iterations.  In the first iteration, it partitions the D runs
into  WD /  groups, each with W runs, and aggregates and
merges each group into one sorted run in the order
Dt+1Dt+2...Dt+k. For the jth group (1≤j ≤ WD / ), the
algorithm reads as many blocks of each run in the jth

group as possible, locally aggregates them by aggregation
function F, and fills the local aggregation results in one of
the W buffers. When all the W buffers are filled, the local
aggregation results in the W buffers are aggregated and
merged further and are appended to the jth new run. The
process is repeated until all the data items in all runs of
the jth group have been aggregated and merged into the jth

new run. After the first iteration, the D runs are merged
into  WD /  sorted runs in the order Dt+1Dt+2...Dt+k . In the
following iteration ith iteration in general, the algorithm

partitions the 







− 1iW

D runs produced in the (i-1)th iteration

run 1

run 2

aggregate
and merge2    1    1    1    1     2

2    1    1    1    2     5
2    1    1    2    1     3
2    1    2    1    1     4
2    1    2    1    2     5
2    1    2    2    1     4
2    2    1    1    2     3

A   B   C   D   E    M

1    1    1    1    1     2
1    1    1    1    2     5
1    1    1    2    1     3
1    1    2    1    1     4
1    1    2    1    2     5
1    1    2    2    1     4
1    2    1    1    2     3
1    2    1    1    1     3
1    2    2    2    1     4
1    2    2    2    2     3

2    2    1    1    1     3
2    2    2    2    1     4
2    2    2    2    2     3

C    D    M

1     1      2
1     1      5
1     2      3
2     1      4
2     1      5
2     2      4  

C    D    M

1     1      3
1     1      3
2     2      4
2     2      3 

C    D    M

1     1     2
1     1     5
1     2     3
2     1     4
2     1     5
2     2     4

C    D    M

1     1     3
1     1     3
2     2     4
2     2     3

run 3

run 4

C   D   sum(M)

1    1        26   
1    2        6
2    1        18
2    2        22

R(A, B, C, D, E; M)

S(C, D; sun(M))

AB=11

AB=12

AB=21

AB=22

Figure 5.
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into 







iW

D  groups, each with W runs.

Full analysis is omitted due to lack of space. We can show
that the average value of CPUcost(Infix-Aggregation) is

ACPUcost(Infix-Aggregation)=O(2Nn +2Dlog2log2Noh

+4D(n-1)+(N+Nr+Nr  DWlog )log2W).

4. Comparisons of Algorithms and Selection
Procedure

      Let X and Y  be two algorithms. We use X ≥cost Y  to
represent the fact that the total cost of X (I/O + CPU costs
) is greater than or equal to the total cost of Y. Similarly X
≥CPU Y  denotes that the CPU costs of X are larger than
that of Y. From the analysis of the I/O and CPU costs of
the algorithms proposed in the paper, we have the
following observations. All the justifications of the
observations are presented in [23].
      Observation 1.
G-Aggregation≥costPrefix-Aggregation,
G-Aggregation≥costM-Aggregation ,
M-Aggregation≥costPrefix-Aggregation,
 and
 Infix-Aggregation≥costPrefix-Aggregation.
      Observation 2.
 If  Infix-Aggregation≥CPUM-Aggregation,
 then Infix-Aggregation≥costM-Aggregation.
      Observation 1 gives partial order of the algorithms in
terms of  I/O and CPU cost. According to the partial
order, Prefix-Aggregation and M-Aggregation have better
performance. However, these two algorithms require more
memory. Further more, Prefix-Aggregation places special
requirements on the group-by dimensions.

Figure 6 presents the order determined by
observation 1. Each directed edge expresses a relation
"≥cost".  A dashed edge between two algorithms represents
no cost domination relation can be determined between
the two.
      Below, a general decision procedure is given which is
based on the order graph in Figure 8. In the procedure, α
represents "the group-by dimension set contains a infix of

the dimension order of the operand", β represents "the
size of the aggregation result is not greater than the size of
the available memory", γ presents " the group-by
dimension set contains a prefix of the dimension order of
the operand ", and η presents " available memory satisfies
the requirement of Prefix-Aggregation ". Also A= Infix-
Aggregation ≥cost G-Aggregation; B=Condition of
Observation 2; C= Infix-Aggregation≥cost M-Aggregation

5. Experimental Results

      To examine the performance of the aggregation
algorithms in practice, all the four aggregation algorithms
have been implemented. The logical disk block size is 4k
bytes.
      To compare with the aggregation algorithms in
relational database systems, we also implemented the sort
and hash based traditional aggregation algorithms[11] in
relational database systems. The experimental results
show that our algorithms have much better performance
than the traditional aggregation algorithms.
      There are four factors that affect the performance of
the aggregation algorithms. The first one is data density,
namely the fraction of the cells in a multidimensional
space actually containing valid data. The second one is
compression ratio, this is affected by the number of
dimensions and the size of the extra storage space
required by compression methods. In the header
compression method, the extra storage space is the header
size. The third one is size of the available memory. The
last one is dimension size, namely the number of elements
in each dimension.
      We conducted experiments to investigate the effect of
the four factors on the performance of the algorithms. In
the experiments, datasets were randomly generated, and
stored using the compressed multidimensional array
method for our algorithms and relational tables for the
traditional aggregation algorithms. In each experiment,
we randomly generated 10 aggregation operations, and
then let each algorithm perform all the 10 operations, and
we took the average execution time of the 10 operations
as the final execution time of the algorithm. In the rest of
this section, G, M, Infix and Prefix denote the G-
Aggregation, M-Aggregation, Infix-Aggregation and
Prefix-Aggregation. Sort and Hash denote the sort and
hash based relational aggregation algorithms, and "X>Y"
means "the execution time of algorithm X is greater than
that of Y".

5.1. Performance Related to Number of Valid
Data Entries

G-Aggregation

Prefix-Aggregation

M-Aggregation

Infix-Aggregation

Figure 6.
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      In these experiments, the benchmark dataset scheme
consists of 15 dimensions and one measure. The data
types of all dimensions are 4-byte integer. The data type
of the measure is 4-byte float number. We randomly
generated 4 versions of the benchmark with 1,000,000,
5,000,000, 10,000,000 and 20,000,000 valid data entries.
The header size of each dataset is 50% of the dataset size.
The aggregation result size of each dataset is 20% of the
dataset size. Since M, Infix and Prefix have special
requirements on aggregation dimensions and memory
size, five sets of experiments were conducted.
      In the first set of experiments, available memory size
is fixed at 640K bytes. The memory size and the
aggregation operations performed in this set of
experiments satisfy the requirements of Prefix. Figure 7
presents the execution times of the algorithms while the
number of data entries varies from 1,000,000 to
20,000,000. The figures indicate that Hash>Sort>G
>Prefix, namely Prefix is the fastest algorithm and Hash is
the slowest one. The figures also show that the larger the

dataset size is the larger the ratio of the execution times of
Sort and Hash to the execution time of G or Prefix. The
reason is that the I/O cost of Sort and Hash increases
much faster than that of G and Prefix when the operand

dataset size increases. In the figures, we also see that all
the execution times have a big jump at the data entry
number 5,000,000. It is because that the available
memory size can hold the whole aggregation result when
the dataset size smaller than 5,000,000.
      In the second set of experiments, available memory
size is fixed at 640K bytes for G, Infix and Sort, and the
aggregation operations performed satisfy the requirements
of Infix. In order to get the aggregation results in accept
time using Hash algorithm, the available memory size is
set to 20% of the aggregation result size for Hash. Figure
8 presents the execution times of the algorithms while the
data entry number varies from 1,000,000 to 20,000,000.
The figures indicate that Hash>Sort>G >Infix.
      In the third set of experiments, available memory size
is the size of the maximum aggregation result, 125M
bytes, namely 20% of the maximum dataset size

20,000,000, so that all the aggregation results fit in
memory.  Figure 9 presents the experiment results. It
indicates that all the execution times are smaller than the
first and second sets of experiments. The reason is that
large available memory makes all algorithms faster. The
figure also shows Sort>Hash>G >M when the data entry
number is greater than 5,000,000. In the figures, we see
that the execution times of G are smaller than the

Figure. 7.
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execution times of M when the data entry number is
smaller than 5,000,000. It is because that when the dataset
fit in memory M spends more CPU time for hashing
computation.
      The fourth set of experiments is to study the
performance of the algorithms M, Infix and Prefix in case
of the aggregation results fitting in memory. The
parameters are the same as in the third set experiments.
Figure 10 presents the comparisons of M and Infix, and
figure 11 presents the comparison of M and Prefix.
      The fifth set of experiments is to compare the
performance of the algorithms G, Sort and Hash without

any restriction. The available memory size was fixed at
640K. The experiment results in Figure 12 show
Hash>Sort>G.

5.2. Performance Related to Data
Compression Ratio

      We first conducted experiments to study the

performance of the algorithms while the dataset size is
fixed and the dimension number, which has great effect
on the compression ratio, varies. For the experiments, the
dimension number of the operand datasets was varied
from 2 to 20, the number of data entries was fixed at
10,000,000 data entries, each with 64 bytes, and the
aggregation result size was kept at 2,000,000 data entries.
Similar to section 5.1, we conducted five sets of
experiments to meet the requirements of Prefix, Infix and

M. In the first two sets of experiments, the available
memory size is fixed at 12.5M bytes.
     In the first set of the experiments, the aggregation
operations performed satisfy the requirements of Prefix.
Figure 13 presents the experiment results. This figure
shows that the execution times of G and Prefix increase
very slowly while the dimension number increases. The
reason is that the dimension number of a dataset does not
effect the size of the compressed array storing the dataset
so that the I/O costs of G and Prefix vary very small when
the number of the dimensions increases. On the opposite,
when the dimension number of a dataset increases, the
size of the relational table storing the dataset increases.
Thus, the I/O costs of Hash and Sort increase very fast
with the increasing of the dimension number.
      In the second set of experiments, the aggregation
operations performed satisfy the requirements of Infix.
Figure 14 presents the experiment results. This figure
shows that the execution times of Sort and Hash still
increase much faster than Infix and G with the same
reason in the first set of experiments.
      In the third set of experiments, To meet the
requirement of M, memory size is fixed at 125M bytes to
hold the aggregation result. Figure 15 presents the
experiment results. The figure shows that the execution
times of Sort and Hash increase much faster than M and
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G, the performance of M is only a little better than G in
case of aggregation results fitting in memory, and Hash is
fast than Sort when available memory size is large
enough.
      The fourth set of experiments is to study the
performance of the algorithms M, Infix and Prefix in case
of the aggregation results fitting in memory. The
parameters are the same as in the third set experiments.
Figure 16 presents the comparison of M and Infix, and
figure 17 presents the comparison of M and Prefix.
       In the fifth set of experiments, memory size is fixed
at 12.5M bytes. Figure 18 presents the experiment results.
The figure indicates that the execution times of G increase
much slowly than Sort and Hash.
       Similar to the above four sets of experiments, we also
conducted five sets of experiments to study the
performance of the aggregation algorithms while the
header size, which also has effect on compression ratio,
varies. The experiment results show that the execution
times of Sort and Hash kept at the same while the header
size increases because that the header size has no effect
on the relational table, and the header size has little effect

on the performance of G, M, Prefix and Infix. The details
of the experiments see [23].

6. Summary and Conclusion

      In this paper, a collection of aggregation algorithms
was described and analyzed. These algorithms operate
directly on compressed datasets in MDWs without the
need to first decompress them. The algorithms are
applicable to MDWs that are compressed using  mapping
complete compression methods. A decision procedure is
also given to select the most efficient algorithm based on
aggregation request, available memory, as well as the
dataset parameters. The analysis and experimental results
show that the algorithms have better performance than the
traditional aggregation algorithms.
      In conclusion, direct manipulation of compressed data
is an important tool for managing very large data
warehouses. Aggregation is just one (and important) such
operation in this direction. Additional algorithms will be
needed for OLAP operators on compressed
multidimensional data warehouses. We are currently
working on other operators such as searching, Cube, and
other higher level OLAP operators on compressed
MDWs.
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