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Abstract

An increasing number of web sites have their data ex-
tracted from relational databases. Several commercial
products and research prototypes have been moving in the
direction of declarative specification of the sites’ structure
and content. Specifically, the entire site is specified using
a collection of queries describing the site’s nodes (corre-
sponding to web pages and the data contained in them)
and edges (corresponding to the hyperlinks). Given this
paradigm, an important issue is when to compute the site’s
pages. Two extreme approaches, with obvious drawbacks,
are (1) to precompute the entire site in advance, and (2)
to evaluate on demand all the queries necessary to con-
struct a given page. We consider the problem of automati-
cally optimizing the run-time management of declaratively
specified web sites. In our approach, given a declarative
site specification and constraints on the application, an ef-
ficient run-time evaluation policy is automatically derived.
An evaluation policy specifies which data to compute at a
given browser request. We describe several optimizations
that can be used in run-time policies, focusing mostly on
optimizations that exploit the structure of the web site. We
evaluate experimentally the impact of these optimizations
on a web site derived from the TPC/D database. Finally,
we describe a heuristic-based optimization algorithm which
compiles a declarative site specification into a run-time pol-
icy that incorporates the proposed optimizations.

1 Introduction

The World Wide Web (WWW) has been proven to be an
excellent medium for businesses to disseminate informa-
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tion. As a result, the ability to populate web sites with
content derived from large databases has become the key to
building enterprise web sites. Tools addressing this prob-
lem range from low-level CGI-bin scripts to more sophisti-
cated tools provided by most major DBMS vendors, that
enable embedding SQL queries in HTML templates.

In parallel, a new paradigm for building and maintain-
ing web sites based on declarative specifications has arisen
in the research community [9, 3, 7, 2, 20]. Two main fea-
tures underlie this paradigm. First, a declarative speci-
fication is based on a logical model of the web site, that
captures the content and structure of the web site and is
meant to be independent of its graphical presentation. Sec-
ond, the logical model of the site is defined as a view, in
some declarative language, over the data underlying the
site. Web-site management systems based on declarative
representations have been shown to provide good support
for common tasks which are otherwise tedious to perform,
such as automatic site updates, site restructuring, creation
of multiple versions of a site from the same data, and spec-
ification and enforcement of integrity constraints [10].

An example of this paradigm, which is the focus of this
paper, is the case where web sites’ content is derived from
large relational databases. We model web sites as graphs
whose nodes represent pages in the web site or data items
associated with pages, and the links in the graph represent
either hyperlinks between pages or association of data with
pages in the site. The structure of the web site is defined
intensionally by a site schema, which can be regarded as a
hyperlink view defined over the relational database.

A critical issue that arises when sites’ contents are popu-
lated from large databases is when to compute the pages in
the site [21] and/or the corresponding nodes in the logical
model. One approach is to materialize the site completely,
i.e., evaluate all the database queries in the site defini-
tion, and compute the complete site before users browse
it. Unfortunately, this approach has several obvious draw-
backs. First, precomputation cannot be applied to sites
with forms (since the inputs are only known at run-time).
Second, materializing the site would imply an important
space overhead, often even greater than duplicating the en-
tire database, since the same information in the database



can appear in multiple web pages. Finally, propagating
updates from the database to the web site is costly once
the site has been materialized.

A second extreme approach (deployed by commercial
tools for extracting content of web sites from databases)
is to precompute only the root(s) of a web site, and when
a page is requested, to issue to the database a set of pa-
rameterized queries that extract the necessary data. The
main disadvantage of this approach is that some queries
may be too expensive to evaluate at run-time, which is
unacceptable given the interactive nature of web access.
Furthermore, evaluating queries at run-time may result in
repeated computation. An obvious repetition occurs when
multiple browsers request the same page. A second, more
interesting observation, is that successive queries issued by
a single browser share much of their computation.

Multiple requests for the same web page could conceiv-
ably be treated by web caching techniques. However, these
solutions have two problems. First, current caching tech-
niques do not cache dynamically generated pages. Second,
even if caching techniques are extended (e.g., by server-side
caching for dynamically generated pages), the granularity
of an entire HTML page is too coarse. Clearly, in order to
develop optimizations based on sharing of computation in
query sequences, a deeper semantic analysis of the web-site
structure is required.

Currently, since response time is the main priority, web
site builders end up hardwiring optimizations into the de-
sign of their sites. Such hardwiring is a labor intensive task
which needs to be repeated whenever changes are made to
the site’s structure. This paper considers the problem of
automatically optimizing the run-time behavior of the dy-
namic evaluation of declarative web sites. We describe a
framework, where a declarative specification is compiled
into a run-time policy. The policy decides which actions
to perform and which queries to evaluate depending on
the browsing history. Run-time policies are able to express
several traditional optimizations, such as view materializa-
tion and data caching, and novel optimizations that depend
on the structure of the web site, such as optimization un-
der preconditions and lookahead computation. In a sense,
the distinction between the declarative specification of the
web site and the run-time policy is analogous to the dis-
tinction between a declarative query and a query execution
plan in a traditional database. As in the latter context,
we automatically compile the declarative specification into
an “optimal” run-time policy which is “equivalent” to the
declarative specification, using a global cost model, statis-
tics on the database and browsing patterns.

As a first cut, a possible approach to our problem is to
consider the set of parameterized queries that are executed
against the database as a particular workload, and to apply
some of the existing techniques aimed at optimizing a given
workload. Such techniques have been considered in various
contexts, such as view materialization [24, 13, 12, 14, 6],
index selection, data caching [16, 15, 8], multiple query
optimization [23], and reuse of query invariants [17, 22].

However, none of the above techniques exploit a key as-
pect of our context, namely the structure of the web site.
The structure of a web site imposes a topology over the pos-
sible navigational paths through the site and therefore on
the set of queries in the workload. More precisely, at each
point in the site, while issuing new queries to the database,
we have an additional valuable information about the past
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queries issued to the database (which we call the browsing
context), as well as extra information about the likelihood
of possible future queries that may be executed. In this pa-
per, we show that exploiting this structure leads to signif-
icant savings over and above the application of the known
techniques mentioned above. As a consequence, our tech-
niques are also useful beyond web-site management, for
contexts in which the application imposes an analyzable
topology on the workload of queries (e.g. SQL queries em-
bedded in programming languages or trigger chains).

In summary, we make the following contributions.

e We describe a framework for automatic compilation of
web-site specifications. The framework distinguishes be-
tween a declarative specification of the structure and
content of a web site, and a run-time policy governing
the computation of the web site. The formalism for de-
scribing run-time policies can encompass traditional op-
timizations as well as novel ones specific to our context.

e We describe several optimization techniques for speed-
ing up the run-time behavior of web sites. One class
of optimizations includes precomputing a set of views
and caching results of certain computations. The second
class of optimizations exploits the structure of the web
site and includes (1) simplification of queries based on
known preconditions, and (2) lookahead computation,
i.e., computing more data than is immediately needed
for use in nodes that are likely to be visited subsequently.
We evaluate the impact of these optimization techniques
on a web site derived from the TPC/D data, and show
that each of them, even in isolation, yields significant
speedups.

e Based on our experiments, we describe a set of guidelines
for constructing an algorithm for compiling declarative
specifications into run-time policies. We show that ap-
plying these guidelines in our experimental setting pro-
duced high-quality run-time policies.

e We describe the implementation of STRUDEL-R. system®,
which embodies the ideas described in the paper.

The paper is organized as follows. Section 2 describes
declarative web-site management systems and different
run-time management techniques. Section 3 formally de-
fines the problem we consider in the paper. Section 4 de-
scribes several optimization techniques and evaluates their
impact. Section 5 formally defines run-time policies, and
Section 6 describes the compilation methodology. Finally,
Section 7 describes the implementation of STRUDEL-R, and
then we conclude with related work.

2 Declarative specification of web sites

We begin by describing the general architecture of declar-
ative web-site management systems, as embodied in the
STRUDEL-R system. We note that the key architectural as-
pects of the STRUDEL-R are common to other systems for
declarative web-site management [2, 3, 20, 7]. STRUDEL-R
is based on a logical representation of a web site, called a
site graph, which is independent of its graphical presenta-
tion or of the underlying data management systems. The
site graph models the pages in the web site, the links be-
tween them, and the data associated with each page. A

1STRUDEL-R is a derivative of the STRUDEL system [9] where
the content is derived from a single relational database system,
as opposed to multiple external semi-structured data sources.



site graph in STRUDEL-R is defined intensionally, via a site
schema. Applying the site schema to a particular instance
of the database results in a site graph. The site graph
computed by the above procedure can be converted into a
browsable web site by applying HTML templates to each
of the nodes in the graph.

The STRUDEL-R system contains two components. The
site graph generator applies the intentional definition of
the site schema to the underlying data and produces (frag-
ments of) the site graph. The HTML generator applies
HTML templates to nodes in the site graph, resulting in
browsable HTML pages. In the rest of this section we de-
scribe site graphs and site schemas. The details of the
HTML templates [9] are not relevant to our discussion.

2.1 Site graphs

A site graph is a directed, rooted, labeled graph. There are
two types of nodes in the site graph: internal nodes cor-
responding to web pages, and leaf nodes corresponding to
data values. 2 An edge between two internal nodes, called
a ref are, models a hyperlink, or the nesting of page compo-
nents; an edge from an internal node to a leaf, called a data
arc, models data values to be displayed on the page. Ev-
ery arc [ in the site graph is labeled with a string label(l),
and with a string anchor(l): label(l) is the name of the
relationship between the two nodes (e.g., “Region”), while
anchor(l) is the string shown on the HTML link corre-
sponding to the arc (e.g., the name of the region “Eu-
rope”).

In STRUDEL-R pages are classified into a small num-
ber of relatively homogeneous collections [9]: for example
nodes corresponding to customers form a collection, while
those corresponding to suppliers another. We refer to the
collections of pages in a web site as site collections. Each
internal node can be uniquely identified by a term of the
form F(ai,...,an), where F is the collection’s name, and
ai,-..,an are data items from the database: such an ex-
pression is called a Skolem term, and n > 0 is the collec-
tion’s arity. We can always model a highly specialized node
as a collection with one member, e.g., the root collection
Root is of arity 0 and has a single member: Root().

2.2 Site schemas

A site schema is a directed, rooted, labeled graph G,
whose nodes are partitioned into internal nodes and leaf
nodes. There is one internal node for each site collection
F, and that node is labeled by a Skolem term of the form
F(X,,...,X,) (F(X), in short), where F' is a site col-
lection name and Xi,...,X, are variables. The root is
labeled by a 0-arity Skolem function: in this paper it will
always be Root(). Leaf nodes are labeled with single vari-
ables and correspond to data items. As before we classify
edges into ref arcs and data arcs. ~ ~
A ref arc between two internal nodes F1(X1) and F5(X3>)
in the site schema is labeled by a query specifying the con-
ditions needed for the existence of an arc between instances
of F1 and F» in the site graph. Similarly a data arc between
F1(X;) and Y has a query specifying the conditions needed

2To simplify the exposition, our discussion does not include
the formalisms needed to model forms in HTML pages, as well
as the internal structure within a page. However, we note that
extending site specifications to include the above features is rel-
atively straightforward.

629

Root()

Suppliers() Customers()
1
SupilierReg(RK)\ CustomerReg(RK)
Q N i (o7}
v Q5 Q6
SupplierNat(NK) " ‘\ CustomerNat(NK)
Q o
Q2L .--" "~ Supplier(SK) ~A- "~ -< QB Q14 .-~~~ "%~ Customer(CK)
/ % N L, % N
PartSupp(PK, SK) o CustSupp(CK, SK) OrderDate(CK, OD)

Qi1 Q12
Q10

CustSuppType(CK, SK, PT) CustSuppPart(CK, SK, PK)

20 Q7
N Q15 5 Q7 Q19

Order(OK)

Pan(PK) = CusSuppPartDte(CK, K, PK, OD)

Figure 1: The site schema for the TPC/D example. For
clarity, we omitted the data arcs, the anchors and the la-
bels.

for the existence of a corresponding arc in the site graph.
In this paper we use the notation of conjunctive queries
(corresponding to select-project-join queries in SQL) of the
form:

g(X) : —e1(X1),...,em(Xm),

where e1,...,em are relations in the database and
X, X1,...,Xm are tuples of variables or constants. We
denote all variables in ¢ by Vars(q), and call the variables
in X distinguished variables. Thus, arcs in the site schema
are labeled as follows.

e Ref Arcs: an arc from F;(X;) to F»(X>) is labeled
by a triple: (g, anchor, label), where: (a) ¢ is a conjunc-
tive query whose distinguished variables are X1 UX3>, (b)
anchor is either a string or one of the distinguished vari-
ables of ¢, and (c) label is a constant string associated
with the arc.

¢ Data arcs: an arc from F(X) to Y is labeled by a pair:
(q,label), where q and label have the same meaning as
above and X U {Y'} are distinguished variables of q.

Example 2.1 We use the following example throughout
the paper and in our experiments. Suppose we want to
produce a browsable version of the data contained in the
TPC/D benchmark. The database contains information
about products, customers, and orders. A simplified ver-
sion of the TPC/D schema is given below.

Part(partkey, name, brand, type, size)

Supplier(suppkey, name, address, nationkey, phone)
PartSupp(partkey, suppkey, availqty, supplycost, comment)
Customer(custkey, name, address, nationkey, phone)
Nation(nationkey, name, regionkey, comment)
Region(regionkey, name, comment)

Lineitem(orderkey, linenumber, partkey, suppkey, quantity)
Order(orderkey, custkey, orderstatus, totalprice, orderdate)

The site schema shown in Figure 1 provides the follow-
ing organization of the data. The root node has two links to
suppliers (Suppliers()) and customers (Customers()). Both
suppliers and customers are grouped by geographical re-
gion (e.g., SupplierReg(RK)), and inside each region by na-
tionality (e.g., SupplierNat(NK)). Suppliers and customers
have further links to detailed information about orders.
Specifically there is one page for each customer-supplier
pair (CustSupp(CK,SK)) where the customer ordered from
the supplier: that page can be accessed from both the sup-
plier and customer pages. From here there are further links



to pages detailing orders placed by that customer to that
supplier. Of course, in designing the web site, we also add
links back to facilitate navigation. The definitions of the
queries in the site schema are given in Figure 2.

2.3 Semantics of site schemas

A site schema G and a database instance D define a unique
site graph G(D) as follows.

e Create ref arcs: let | = (g,anchor,label) be an arc
from F1(X1) to F>(X2). Let g(D) be the result of eval-
uating g over the database D. For each tuple a € ¢(D),
we define a1 and a» as restrictions of @ to the variables
X: and Xo, respectively. Then, G(D) contains a link
between Fi(a1) and F»(a2), labeled label and whose an-
chor is the value of the variable anchor in the tuple a.
We note that if the nodes Fi(a;) and F>(a2) were not
in the site graph, then they are added as a side effect of
inserting the arc.

e Create data arcs: let | be a data arc in G between
the nodes F(X) and Y, labeled by (g, label). For each
a € q(D) we define a1 and a3 as projections of @ on X
and Y, respectively. Then, G(D) contains a link between
F(a1) and a2, labeled label.

e Root node: the root node in G(D) is Root().

e Eliminate unreachable nodes: any node in the site
graph that is not reachable from the root is removed.

2.4 Strategy for site graph evaluation

There are many strategies for computing the site graph.
The semantics described above provide a natural method
to compute the entire site graph in advance of browsing.
We refer to it as the static evaluation strategy.

An alternative strategy is to expand the site graph dy-
namically, starting from the root and computing the nodes
in the site graph only upon request. We recall that each
web page corresponds to a node F(a) is the site graph.
Therefore, an HTTP request for a given page translates
into a request for a node of the form F(a). To construct
that page we need to compute all the data appearing in the
page as well as all the outgoing HTML links. Formally, this
translates into the following procedure.

Given a site schema G and a database instance D, in
order to produce the node F'(a), the dynamic algorithm
proceeds as follows:

o Create ref arcs: let I(g, anchor, label) be an arc from

F(X) to F1(X1). Let (D) be the result of evaluating gA
(X = a) over the database D. For each tuple b € ¢(D),
we define b1 to be the projection of b on X1. Then, G(D)
contains a link between F'(a) and Fi(b1), labeled label
and whose anchor is the value of the variable anchor in

the tuple b.

o Create data arcs: let [ = (q,label) be a data arc from
F(X) to Y. For each tuple b € (D) we define b; to be
the projection of b on Y. Then, G(D) contains a link
between F'(a) and b1, labeled label.

Starting at Root() and applied repeatedly (e.g., in depth
first order), this procedure eventually computes the en-
tire site graph. It is important to note that this graph is
provably isomorphic to the site graph given by the static
computation, assuming that the database is not changing
during the computation.
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3 Problem definition

The static and the dynamic evaluation algorithms repre-
sent two extreme strategies, with obvious advantages and
disadvantages. The goal of our work is to automatically
find an optimal intermediate strategy for a given web site,
that combines pre-computation, caching and dynamic eval-
uation of the requested data. The optimal strategy is ex-
pressed as a run-time policy, which specifies which data to
precompute or cache and which actions to execute at each
page request, depending on the history of the browsing.

In this section we set up a general framework for study-
ing run-time policies and formally define the optimization
problem we consider.

3.1 Inputs to the optimization problem
3.1.1 Statistics on browsing patterns

To evaluate a particular run-time policy, it is necessary to
know the characteristics of the browsing patterns. There-
fore, we assume that we have access to the following statis-
tics:

e Node probability distribution: let Fi, ..., F, be the
set of internal nodes in the site schema. We assume the
availability of the probability distribution (p1,...,pn),
where p; is the probability that a request for a page on
the site (from any user) will be for an instance of F;.

e Arc probability distribution: for internal node F in
the site schema, with the set of successors Fi,..., Fn,
we assume the availability of the probability distribution
(lo, U1, ..., 1), where l; is the probability that a user will
request a page of type F; after viewing a page of type F,
and [ is the probability that a user does not follow one
of F’s children (i.e., either stops browsing or goes back
to a predecessor page).

e Value probability distribution: for each internal
node F in the site schema, let (F(a1),...,F(as)) be its
instances in the site graph. We assume that we have
the probability distribution (r1,...,7s), where r; is the
probability that a request for a page of F' will be for
F((l]’).

e Context probability distribution: since in our
framework the actions to evaluate a specific node de-
pend on the browsing history leading to that point, we
assume that there exists an integer k, such that for every
internal node F' and and a path P = Fi,..., F] in the
site schema where F; = F and | < k, we can obtain the
probability that, given a request for an instance of F', it
was made after following the path P.

The statistics above can be obtained in several ways.
One possibility is to analyze the web site log and another
is for the web site administrator to estimate them based on
knowledge of the application. It is important to emphasize
that, since these statistics (except for the value probability
distribution) concern the site schema, they are independent
of database updates.

3.1.2 Application constraints

Clearly, the choice of an optimal run-time strategy depends
on specific constraints of the given application. In our
framework, we identify the following measures associated
with a given web site:



RK, RN) :- Region(RK, RN, _)

NK, RK, NN) :- Nation(NK, RK, NN, _)

SK, SN, NK) :- Supplier(SK, SN, _ ,NK, _)
CK, CN, NK) :- Customer(CK, CN, _, NK, )

QI(
Q2(
Q3(
Q4
Q5(SK, RK, RN) :- Supplier(SK, _, _, NK, _), Nation(NK, _, RK, _), Region(RK, RN, )
Q8(
Q7(
Q8(

CK, RK, RN) :- Customer(CK, _, _, NK, _), Nation(NK, _, RK, _), Region(RK, RN, _)

PK, SK, PN) = Part(PK, PN, _, _, ), PartSupp(PK, SK, _, _, .)

CK, SK, CN) :- Customer(CK, CN, _, _, ), Lineltem(OK, _, _, SK, _), Order(OK, CK, _, _, -)
QY(CK, SK, SN) :- Supplier(SK, SN, _, _, _), Lineltem(OK, _, _, SK, _), Order(OK, CK, _, _, .)
Q10(OK, CK, OD) :- Order(OK, CK, _, _, OD)
Q11(CK, SK, PT) :- Lineltem(OK, _, PK, SK, .), Order(OK, CK, _, _, _), Part(PK, _, _, PT, )
Q12(CK, SK, PK, PN) :- Lineltem(OK, _, PK, SK, _), Order(OK, CK, _, _, _), Part(PK, PN, _, _, )
Q13(CK, SK, SN) :- Supplier(SK, SN, _, _, _), Lineltem(OK, _, _, SK, ), Order(OK, CK, _, _, _)
Q14(CK, SK, CN) :- Customer(CK, CN, _, _, ), Lineltem(OK, _, _, SK, _), Order(OK, CK, _, , -)
Q15(CK, SK, PK, PN, PT) :- Lineltem(OK, _, PK, SK, ), Order(OK, CK, _, _, .), Part(PK, PN, _, PT, _)
Q16(CK, SK, PK, PN) :- Lineltem(OK, _, PK, SK, _), Order(OK, CK, _, _, .), Part(PK, PN, _, _, _)
Q17(CK, SK, PK, OD) :- Lineltem(OK, -, PK, SK, _), Order(OK, CK, _, _, OD), Part(PK, _, _, _, .)
Q18(CK, SK, PK, PN, OD) - Lineltem(OK, _, PK, SK, _), Order(OK, CK, _, ., OD), Part(PK, PN, _, _, )
Q19(CK, SK, PK, OK, OD) :- Lineltem(OK, _, PK, SK, _), Order(OK, CK _, _, OD), Part(PK, _, _, _, -)
Q20(PK, SK, SN) :- PartSupp(PK, SK, _, , ), Supplier(SK, SN, _, _, .)
Q21(SK, PK, SN) :- Supplier(SK, SN, _, _, ), PartSupp(PK, SK, _, _, -)
Q22(CK, SK, PK, CN) :- Customer(CK, CN, _, _, ), Lineltem(OK, _, PK, SK, _), Order(OK, CK, _, _, .)

Figure 2: Queries labeling the arcs in the site schema in Figure 1. The attribute names in boldface are bound variables

in the dynamic evaluation.

o size(WS): the size of the (possibly) materialized HTML
pages plus the size of the (possibly) precomputed or
cached data;

o age(WS): every data item I shown in the web site de-
pends on a set of data items dep(I) in the database.
The age of a web site denotes the maximum difference
between the timestamp of a data item I in the web site
and the timestamp of a data item in dep([).

o wait(WS): the maximum estimated cost of all the
database operations needed to compute a web page.

We assume that a given web site has a set of given pa-
rameters (S, A,W) such that we have the following con-
straints: (size(WS) < S,age(WS) < A, wait(WS) < W),
specifying that we should not exceed space S, the maxi-
mum waiting time should be at most W, and the web site
freshness should be at least A.

3.2 Cost model

Among the evaluation strategies that satisfy the above con-
straints, our goal is to find the strategy minimizing the
waiting time for expanding an instance of a node in the
site schema, weighted by the probability of requesting that
node. Formally, we denote by waitrp(F (X)) the average
time for executing the queries needed for expanding a node
of type F(X) in a run-time policy RP. Let Fi,...,F, be
the set of internal nodes in the site schema. The cost for-
mula that we use to estimate the efficiency of a specific
run-time policy RP for a web site is:

cost(RP) = ipi x waitrp (F;) (1)

i=1

3.3 Equivalence of run-time policies

Ideally, our optimization algorithm should choose among
equivalent run-time policies, i.e., policies that produce
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identical site graphs. However, equivalence of site graphs
is tricky to define when the underlying data is updated
concurrently with the site graph expansion. In this work,
we consider a weak equivalence condition, by imposing an
age constraint of k£ time units on the site. In this case,
we are assured that all the data associated with a given
page is computed on snapshots within k£ time units from
one another.

4 Optimization techniques for web-site
management

In order to develop a meaningful formalism for specify-
ing run-time policies, we first need to consider which opti-
mizations such a formalism should capture. In this section
we describe several techniques for optimizing the dynamic
evaluation of web sites, and validate their utility. The first
class of optimizations includes precomputation of material-
ized views and dynamic caching of data. The second class
is more specialized for our context, and exploits the struc-
ture of the web site in order to reformulate the queries in
the site definition and to determine useful caching policies.

We evaluate the impact of our optimizations on the
STRUDEL-R system. Our experiments were performed on
a web site derived from the TPC/D benchmark. The ex-
periments were run on a TPC/D database at scale factor
1, resulting in a database of 1.84GB. We used the Oracle
DBMS Version 7.3.2 and a dedicated Ultra Sparc I machine
(143 MHz and 128MB of RAM), running SunOS Release
5.5. The indexes on the database were manually tuned
for performance before applying our optimizations.

Our experiments measure the average time for the
database operations needed to expand a node in the site
graph. The numbers are generated as a result of running
100 independent browsing sequences of length at most 20.
The browsing sequences are generated by choosing the next
web page randomly using a uniform distribution over the
emanating links. Note, however, that since our experi-



ments report speedups per node in the site schema, as op-
posed to the global utility of a run-time policy, the uniform
distribution does not bias the results. The experiments re-
port only the running times for the nodes affected by the
proposed optimization and are all presented on a logarith-
mic scale.

4.1 Query simplification under preconditions

The first optimization we consider is a query rewriting
technique that exploits the knowledge about the path used
to reach a given node. When evaluating a parameterized
query with a particular input, we can often simplify the
query if we know which previous query produced the input.
For example, assume the user requests the node F»(a») af-
ter visiting F'(a1), and qo is the query on the corresponding
arc between Fy and F5 in the site schema. According to
the semantics, the tuple (@1, @2) is in the result set of go. In
order to expand F5(a») we have to evaluate all the queries
labeling the outgoing arcs from the node F5 in the site
schema, with the additional selection X2 = a2. Let q be
one of those queries. In some cases the query gA (X2 = a2)
can be simplified given that we know that the tuple (@1, a2)
is in the result set of go (i.e., some conjuncts will be re-
moved from the query). The following example illustrates
this optimization, which we call simplification under pre-
conditions.

Example 4.1 Consider a request for an instance of the
node CustSuppPart(CK,SK,PK) in Figure 1. In order to
expand this node we have to compute the following query.
In the rest of the paper we note in bold the variables which
are bound in the evaluation of the queries.

Q16(CK,SK,PK,PN) :- Order(OK,CK,_,_,.),
Part(PK,PN,_,_,_), Lineltem(OK,-,PK,SK,.)

‘We observe that one way we could have reached this node
is from CustSupp(CK,SK) via the edge Q12. To be more
precise, the values binding the variables CK, SK, PK should
be in the answer set of the query:

Q12(CK,SK,PK,PN) - Part(PK,PN,_,_,_),
Order(OK,CK,_,,-), Lineltem(OK,_,PK,SK,_)

Based on this knowledge, it is possible to expand the in-
stance of the CustSuppPart(CK,SK,PK) node by computing
the following simpler query:

Q16'(CK,SK,PK,PN) :- Part(PK,PN,_,_,)

Query simplification under preconditions is a form of query
rewrite.  Unlike traditional query rewriting techniques,
this rewriting cannot be done manually by the person writ-
ing the queries for the site specification. For example, the
user cannot manually replace Q16 in Figure 1 with Q16’ for
several reasons. First, this query is not safe for the static
evaluation (since some variables in the head do not occur
in the body). Second, we may not use this query even dur-
ing dynamic evaluation if the time between page requests
exceeds the age limit of the site. In that case we need to
use the original query Q16. Third, the correctness of this
rewrite depends on the user’s browsing context. When
there are multiple paths to a node in the site schema, we
obtain different rewritings of the query depending on the
path traversed.
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Figure 3: The left graph shows the speedups obtained
from query simplification under preconditions. The right
graph shows the running times of data caching (hits or
misses), view materialization and the original queries.

When query simplification under preconditions modifies
the query, it always reduces the running time. Figure 3
(left) shows the running times for the naive dynamic run-
time policy versus the policy where all queries are simpli-
fied under preconditions (this plan is referred to as Plan 00
in the figures). As we can see, we obtain up to a 4 fold
speedup in performance (for the node CustSuppPartDate).
The figure shows all the nodes that benefited from query
simplification under preconditions. In subsequent experi-
ments, we always compare the additional optimizations to
the plan obtained after applying query simplification under
preconditions.

4.2 View materialization

Another way to speed up the web-site’s performance is to
precompute materialized views. The problem is to decide
which set of views V to materialize in order to optimize
the evaluation of the parametrized queries involved in the
run-time of the web site. The problem of choosing a set of
materialized views for a given query workload has received
significant attention in the recent literature [24, 13, 12, 14,
6].

Two issues are important when deciding which views to
materialize. First, it is essential to choose simultaneously
the views and their respective indexes. Second, we need to
consider views with outerjoins. In order to simultaneously
optimize two queries q1 and g2 which have a common sub-
query gs (i-e., g1 = g3 Aqi and q2 = q3 A q3), it is attractive
to materialize the outerjoin of the queries g3, ¢; and g5,
i.e., materialize the expression (g3X_gq})XC g5 In this case,

the materialized result can be reused in both ¢; and g¢»2°.

Example 4.2 As an example, assume we decide to mate-
rialize the following view with an index on the attribute
SK:

V(CK,SK,PK,CN) :- Order(OK,CK,_,_,.),
Lineltem(OK,_,PK,SK,.), Customer(CK,CN,_,_,_)

The view V can be used in answering the queries Q14, Q8
and Q22. We measured considerable speedup rates for the

3We note that algorithms for rewriting queries using views
are actually simpler when joins are replaced by outerjoins.



respective nodes: 32 for PartSupp nodes and 18 for Supplier
nodes. However, the additional space needed for the view
and the indexes is around 600M (27% of the size of the
original database).

4.3 Data caching

View materialization decreases query response time, but
comes at the expense of significant space overhead and high
maintenance costs. An alternative strategy is to cache at
run-time the result of parameterized queries executed so
far [8, 16] and reuse the result if the same computation is
requested again. In this way we can store less data and still
obtain significant speedups in certain cases. Furthermore,
it is often cheaper to periodically invalidate data in a cache
than to pay the cost of view maintenance.

Therefore, our optimization algorithm stores the re-
sult of certain parameterized queries in particular relations
called cache functions. Formally, a cache function f is a
pair (g, input(f)), where gy is a conjunctive query and the
input variables input(f) are a subset of the distinguished
variables of g¢. The function encodes a mapping a — S,
where @ is a binding for input(f), and S is the set of tuples
in the answer of g5 whose projection on input(f) is a.

In our system, cache functions are implemented as ta-
bles in the DBMS, with the same schema as their corre-
sponding view ¢y. At run-time, the corresponding table
is initialized to be empty, and tuples from gy are inserted
whenever ¢ is evaluated with new bindings for the input
variables. We impose the following invariant on the con-
tents of a cache function: for any constant a, either the
cache function does not contain any tuples from qy whose
projections on input(f) is a, or it contains all such tuples.

An important question is how functions are used at
run-time. Assume that we have a cache function f =
(gf,input(f)) stored in a table T and a query ¢ to be ex-
ecuted. Let ¢’ be the equivalent reformulation of g that
uses the view gy and let ¢" be obtained by replacing the
occurrence of g in ¢’ by T. The result of the queries g
and ¢" are identical if and only if all the needed values for
computing ¢” are cached in T. Therefore, before comput-
ing ¢’ we first need to check whether the needed values are
cached, and if not, we compute them before submitting q" .
In order to guarantee that we can perform this check, we
limit the ways in which functions can be used. Specifically,
we require that for any occurrence of T in ¢”, the variables
corresponding to input variables of the cache function are
also bound variables in ¢ (and consequently in ¢"). If at
least one of the queries that have to be evaluated in order
to expand a certain type of node can benefit from a cache
function, we say that the cache is used in this node.

Finally, an important difference between materialized
views and cache functions concerns their maintenance pol-
icy. Here we assume that views are periodically updated,
while functions are not. Instead, expired or invalidated
tuples are simply dropped from a function.

Example 4.3 As we saw in Example 4.2, the view V sig-
nificantly improved performance but at the price of high
space overhead. Suppose that instead of V we want to
maintain a semantically equivalent cache function, updated
while expanding an instance of a node Supplier(SK) and
used in the node PartSupp(PK,SK). For simplicity, we mark
in bold the input variables of the cache function.
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F(SK,CK,PK,CN) :- Customer(CK,CN,_,_,_),
Lineltem(OK,_,PK,SK,_), Order(OK,CK,_,_,_)

Assume we store the content of the cache function in the
table T. The query Q22’ bellow is equivalent to the query
Q22, in the case where the binding for the variable SK given
in Q22 is cached in T.

Q22°(CK,SK,PK,CN) :- T(SK,CK,PK,CN)

At run-time, when we compute Q22’, we first check to see if
the given value for SK occurs in the cached input values in
T. If we have a hit, we return the set of associated values
for the variables PK,CK,CN, from which we selected the
ones corresponding to the desired value of PK. In the case
of a miss, we first compute the function’s body with the
additional binding for SK, insert the result in the table T,
and then proceed as before.

The utility of caching

Figure 3 (right) illustrates the utility of caching. For each
node in the figure we compare the average cost of comput-
ing the node in four cases: (1) using a view for one of the
outgoing arcs, (2) using an equivalent cache function and
assuming a hit, (3) similar to (2), but assuming a miss, and
(4) no views or functions. Clearly, the time for case (1) is
the lowest because no checks are needed. Case (2) provides
speedup factors of 25 and 17 compared to case (4). Most
interestingly, the overhead of case (3) compared to case (4)
is relatively low (a slowdown of 2%) due to the extra cache
check and update.

Choosing which functions to cache and how much mem-
ory to allot to each cache is an optimization problem with
two constraints: (1) the size of the cache should be suffi-
ciently large so that the hit rate guarantees better perfor-
mance than no caching at all, and (2) the size of the cache
should be much less than the size of the materialized view
as to make caching the more attractive option.

Given estimates on the costs of evaluating the query in
each of the cases described above, we can use the value
probability distribution to estimate the minimal cache size
that will yield savings. Specifically, suppose we denote the
cost of evaluating a query with no caching by c¢reguiar, the
cost of evaluating a query with a cache hit by cpi:(f), and
the cost of evaluating a query with a cache miss by cmiss (f).
In the first step, we use the following formula to derive the
minimum value of the hit ratio 7(f) that will yield savings
for the cache f:

T(£) X chit(f) + (1 — 7(f)) X cmiss(f) < Cregular (2)

Given the minimum value of 7(f) and the value probabil-
ity distribution (see Section 3), we can derive the minimum
amount of memory M such that if we allot to the cache less
than M we are guaranteed that we cannot achieve the re-
quired hit ratio. We assume that there exists a module
in the system responsible for periodically removing items
from the cache such that the hit ratio is maintained above
the necessary threshold, the size of the cache does not ex-
ceed the limit and the age constraints are satisfied. The
key for such a module is the use of the value probability
distribution.

Up to this point we have only considered caching local to
a particular node, i.e., a cache is updated in the same node
in which it is used. In addition, the cache functions always



concerned one of the queries on the arcs in its entirety. In
the next section we extend the idea of caching to exploit
the structure of the web-site definition. In particular, (1) a
cache function can be updated in one node in the site and
the result can be used in multiple nodes, and (2) a cache
can be defined as a subquery or a superquery of a query
appearing on an arc.

4.4 Lookahead computation

The key idea behind lookahead computation is to modify
the definition of cache functions such that a query com-
puted in a node F can be used later in one or more of F’s
descendants in the site schema. We describe two types
of lookahead computations: conservative and optimistic
lookahead. Intuitively, conservative lookahead represents
the minimal amount of work that would have been done
anyway at F' and can be reused as much as possible in
subsequent requests. In contrast, optimistic lookahead in-
troduces additional computation that would not be needed
at F, but is deemed to be useful for future nodes.

Conservative lookahead

Consider the expansion of an instance of the node Cust-
SuppPart(CK,SK,PK) in our example, where we need to
compute the following query:

Q17(CK,SK,PK,0D) = Order(OK,CK,_,_,OD),
LineItem(OK,_,PK,SK, ), Part(PK,_,_,_,)

In a subsequent click of the same user, we might
have to expand an instance of a node CustSuppPart-
Date(CK,SK,PK,0OD), with the same bindings for the vari-
ables CK,SK,PK. In order to do this, we need to compute
the query Q19:

Q19(CK,SK,PK,0K,0OD) :- Order(OK,CK,_,_,0D),
Lineltem(OK,_,PK,SK, ), Part(PK,_,_,_,_)

Assume we updated a cache function for Q17 with inputs
CK, SK and PK. As we can see, much of the computa-
tion performed for the function for Q17 is also useful for
Q19. However, if we simply cache the result of Q17, we
cannot use it unchanged for Q19 because Q17 projected
out the attribute OK. Conservative lookahead would de-
fine a function with the same subgoals (since the subgoals
of Q17 and Q19 are identical) and whose head includes all
the attributes needed for both Q17 and Q19.

More generally, consider two consecutive arcs in the site
schema, F1(X1) — F(X3) — F3(X3), where the arcs
are labeled with the queries ¢ and ¢', respectively. We
want to define a function in the first node and use it in the
second. We want to update a cache while expanding the
node Fi1 and use it while expanding F>. The cache f will
have as body the intersection: body(f) = body(q)Nbody(q').
The distinguished variables of f include (1) all variables in
f which are distinguished in g or ¢, and (2) all variables in
f which also occur in g— f or in ¢’ — f, where the difference
denotes the set difference of the subgoals of the respective
queries. input(f) are defined to be those variables of f that
occur in X;. The cache f will be updated while expanding
Fi(X1). It can be used at node F2(X2) only if input(f) C
Xo; otherwise we cannot use it (because of the constraint
we imposed on cache usability in Section 4.3).
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The previous technique can be extended to a set of arcs
that form a tree in the site schema. In this way, a cache up-
dated at the root of the tree can be used in its descendants.
By applying this technique to the set of nodes CustSupp,
CustSuppType, CustSuppPart and CustSuppDate, we obtain
the following cache function, updated in the node CustSupp
and used in all the others.

F(CK,SK,PK,0D,0K,PN,PT) :- Order(OK,CK,_,_,OD),
Lineltem(OK,_,PK,SK,_), Part(PK,PN,_,PT,_)

Optimistic lookahead

Optimistic lookahead performs while expanding a certain
node an additional computation that may be usable for ex-
panding later nodes. For example, consider the expansion
of an instance of a node Customer(CK), where we need to
compute the following query:

QQ(CK,SK,SN) = Supplier(SK,SN,_,_,_), Order(OK,CK,_,_,OD),
Lineltem(OK,_,PK,SK,_)

In a subsequent request, we might need to expand an in-
stance of the node CustSupp(CK,SK). In order to do so, we
need to compute the query:

Q12(CK,SK,PK,PN) - Part(PK,PN,_,_,_), Order(OK,CK,__,_),
Lineltem(OK,_,PK,SK,.)

Suppose we want to use a cache function for Q9 that also
performs all the necessary computation for query Q12. To
do this, we define a function that includes the common
subgoals of Q9 and Q12, but also performs an outerjoin
with the other subgoals of Q9 and Q12 that are not in the
intersection. Specifically, we would define a cache function
as follows:

F(CK,SK,PK,PN,SN) :- ((Order(OK,CK,_,_,_) M
Lineltem(OK,_,PK,SK,)) X_ Part(PK,PN,_,_,_)) &_
Supplier(SK,SN,_,_,_)

This cache is defined in the node Customer but can also
be used in the rewriting of one of the queries of the node
CustSupp. Note that in node Customer we do a join with
Part that is not necessary there, but that will drastically
reduce the cost of computing CustSupp.

More generally, consider two consecutive arcs in the site
schema, Fi(X1) — F>(X2) — F3(X3), where the arcs
are labeled with the queries q and ¢’, respectively. We want
to update a cache in the first node that also performs the
computation necessary for the second node. Let go be the
intersection of the bodies of ¢ and ¢'. The cache f will have
as body the expression (qod (¢ — qo))XC(¢" — qo), where
the difference denotes the set difference of the subgoals of
the respective queries.. The distinguished variables are the
union of the distinguished variables of ¢ and ¢'. input(f)
are defined to be those variables of f that occur in X;. The
cache f will be updated at node F1(X1). It can be used at
node F>(X>) only if input(f) C X»: otherwise we cannot
use it.

As with conservative lookahead, we can generalize opti-
mistic lookahead to trees in the site schema. For example,
the cache function shown above can also be used in the
evaluation of the queries needed for the nodes CustSupp-
Type, CustSuppPartDate, CustSuppPart and CustSupp.
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Figure 4: The left graph shows the benefits of conservative
lookaheads performed in the node CustSupp. The right
graph shows the benefits of optimistic lookahead performed
at the node Customer.

The utility of lookaheads

Figure 4 shows the experimental results concerning looka-
head computations. The first graph shows the speedups
obtained by using conservative lookahead. We observe that
the cost of computing CustSupp was not affected, while the
speedups obtained for its descendants ranged from factors
of 3 to 210. The second graph shows the results for opti-
mistic lookahead. We observe that the node Customer that
has a more expensive computation was slowed down by a
factor of 3.7, while the speedups for its descendants varied
from 5 to 161.

We end this section by noting that lookahead compu-
tations benefit from specific patterns in the structure of
web sites. However, these patterns occur quite frequently
in web sites because they correspond to a natural hierar-
chical organization of data.

5 Run-time management

After the discussion of possible optimizations in the pre-
vious section, we are now in a position to formally define
run-time policies that encompass the different optimiza-
tions that we presented so far. To define run-time policies
we first describe run-time schemas, which are the sets of
views and caches over which the run-time policies are ex-
pressed.

5.1 Run-time schema

The run-time schema consists of a set of precomputed views
V and a set of dynamically maintained functions F, for-
mally defined as follows.

e )V is a set of view specifications, where a view
specification is formally defined as a quadruple
(Nv,Qv,I,agev), where Ny is the name of the
database table storing the view, Qv is a select-project-
join-outerjoin expression defining the view, I is a set of
indices on the view Ny and agey is the maximum al-
lowed difference between a data item in the view and the
raw data.

e F is a set of cache function specifications, where a
function specification is formally defined as a quintu-
ple (Nr, QrF, Inputr, max_sizer, min_hitr, ager),
where Nr is the name of the database table storing
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the function, Qr is a select-project-join-outerjoin ex-
pression defining the function, Inputr is a set of distin-
guished variables of Qr which are inputs to the function,
max_sizer is the maximum allowed size for the dynam-
ically maintained table, ager is the maximum allowed
difference between a data item in the function and the
raw data, and min_hitr is the minimum hit ratio ac-
ceptable for the function.

5.2 Run-time policy

The run-time policy tells the system what to compute at
every page request, i.e., how to use the run-time schema
and data in order to compute the requested HTML page.
There are several points to note about run-time policies.
First, the action that the policy specifies does not depend
only on the origin and destination of the hyperlink being
followed, but may also take into consideration the path (or
parts thereof) used to get to the origin. Hence, the actions
in a run-time policy are parameterized by contexts, which
we define below. The second point to note is that there are
two types of possible actions: query actions, which specify
how to obtain the data needed, and update actions, specify-
ing when to update the dynamically maintained functions,
and with which inputs.

Contexts are used to formalize the dependence of ac-
tions in the run-time policy on the previously visited nodes
in the site graph. Formally, a path [F},..., F,] in the site
schema G is called the context of a request for a node F(a)
if F = F,, and the previously requested nodes of the same
user were of the form [F1(a@1),...,Fn—1(@Gn-1)]. A run-
time policy fixes the maximum length of the contexts that
are maintained at run-time. An action parameterized by a
specific context is called a rule.

A run-time policy Pg for a site schema G is a directed
graph, isomorphic to the graph of G, and whose nodes are
labeled with the same Skolem terms as in G. In addition,
nodes are labeled with set of update rules, and the arcs
are labeled with sets of query rules. An update rule as-
sociated with a node F is a triple (H, f,v), where H is a
possible context for the node F', f is the name of a given
function and ¢ : Input; — X is a mapping from the input
variables of the function to the set of variable X, which
describes how to obtain input values for the function from
the current binding of X. A query rule associated with
an arc Fi(X1) — F2(X») is a pair (H,q), where H is a
possible context for the node F, and q is the parametrized
query to be executed in order to obtain all the outgoing
links of a node of type Fi to nodes of the type Fs.

In order to facilitate inspection and manual construction
of run-time policies in our work, we developed a language
for describing run-time schemas and policies. We illustrate
run-time policies with this language [11] in Figure 5.

5.3 Run-time algorithm

The execution engine of the web-site management system
interprets the run-time policy. Execution proceeds in a
similar fashion to the dynamic approach, with a few no-
table differences. Suppose the user requests an instance
of the node F(X) with a binding X = @ and a context
[F1,..., Fi] where F, = F (k is a constant depending on
the run-time policy). We proceed in two steps:

1. Execute any update action (H, f,%) associated with
the node F' whose history H is a suffix of [Fi,..., F].



/* Run-time schema definition */
define view V as
SELECT o.custkey 1l.suppkey, l.partkey,
FROM LinelItem 1, Order o
WHERE 1.orderkey=o.orderkey
max age = 2 hours
define index on suppkey
define cache function T as
SELECT o.custkey,l.suppkey,p.partkey,p.name,s.name
FROM LineItem 1, Order o, Supplier s
WHERE 1.orderkey=o.orderkey and s.suppkey=1l.suppkey
input custkey
max size = 1M
min hit ratio=0.3
max age = 20min
/* Run-time policy for the node CustSupp */
Node CustSupp(CK, SK)
/* check and (eventually) update the cache */
if context [Customer,CustSupp]
update T with custkey — CK
Link to CustPartType(CK,SK,PT)
if context [Customer,CustSupp] compute
SELECT f.custkey, f.suppkey, p.name, p.type
FROM T £, Part p
WHERE f.custkey=CK and f.suppkey=SK and
f.partkey=p.partkey
else compute
SELECT v.custkey, v.suppkey, p.name, p.type
FROM V v, Part p
WHERE v.custkey=CK and v.suppkey=SK and
v.partkey=p.partkey

Figure 5: Fragments of a run-time schema and policy for
our running example.

Specifically, if 1)(a) is not in the cache of f, we compute
gy with bindings @ o 9 and add the result to the cache.

For each arc ! outgoing from F' we select the rule (H,q)
with the most specific context matching [F1,..., F]
(i.e., for which there is no longer suffix of [Fi, ..., Fj]

matching another rule). We evaluate the query ¢ with
the binding a.

5.4 Correctness of a run-time policy

Clearly, we need to impose constraints on run-time policies
in order for them to be faithful to the declarative site def-
inition. As we discussed earlier, updates to the database
complicate the notion of correctness of a web site. We aim
to formalize a minimal notion of correctness here: given
that the materialized views and cache functions are taken
from the same snapshot of the database, then applying the
dynamic evaluation strategy to that snapshot will produce
the same result as invoking the run-time policy.

The conditions are the following. Consider a link in the

site definition F;(X;) — F»(Xs) labeled with a query q.
Suppose the corresponding link in the run-time policy is
labeled by the pairs (hi,q1),...,(hn,qn), where the h;’s
are contexts. The following conditions have to be satisfied:

For each ¢, 1 < i < n, ¢; is an equivalent rewriting of
q using the views and the functions under the precondi-
tions implied by h; (note that in this definition functions
are used as view definitions).

If one of the ¢;’s uses a cache function f, then the node
F' in the run-time policy includes a update action for
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f. The update action in the node F' does not necessar-
ily imply that the appropriate values are computed at
F. Indeed, they may be computed elsewhere in the site
(e.g., using lookahead computations), but the check is
still necessary.

e For each possible context H for a request for a node of
type Fi and for each outgoing arc from the node Fi,
there it exists a rule (h;,¢;) labeling this arc such that
h; is a suffix of the context H.

Finally, it should be noted that given the probability dis-
tributions on contexts (see Section 3) and estimates on the
cost of evaluating SQL queries, it is possible to compute
the average waiting time for a request for an instance of
a node F in the site schema for a given run-time policy.
Hence, we can now compute the global cost of a run-time
policy according to Formula 1 in Section 3.

6 Compiling site definitions

The ultimate goal of our work is to automatically compile a
declarative site definition into an efficient run-time policy.
‘We have shown that various optimizations can significantly
improve the behavior of a web site. In section 5 we showed
how to formalize the compilation problem as a search in
a space of run-time policies. An important observation
is that, in order to obtain the optimal run-time policy, it
suffices to consider a finite number of policies.*

Given the number of parameters involved and the size
of the resulting search problem, finding a compilation al-
gorithm that is both efficient and produces high quality
run-time policies is a problem in its own right. We now
describe a set of heuristics to partition the search prob-
lem into manageable steps that are each relatively well
understood. The steps that we describe are inspired by
the results of our experiments. In our experiments, apply-
ing these heuristics provided significant improvement over
the naive dynamic evaluation approach. Hence, we argue
that our steps (which can be embodied by a collection of
algorithms) provide a proof of the viability of automatic
compiling of web-site specifications.

The steps are the following:

1. Apply query simplification under preconditions to all the
nodes in the site schema.

2. Detect the set of sensitive nodes in the site schema: (1)
the nodes whose average cost is above the acceptable
limit on waiting time, and (2) the nodes with relatively
high cost and probability of access. Let qi1,...,qn be
the parameterized queries on the arcs outgoing from the
chosen nodes.

3. Apply a view materialization selection algorithm to
qi,-..,qn, with the size and freshness constraints im-
posed by the web site. This step results in a set of views
to materialize. In this step we can apply an exhaustive
transformational algorithm similar to the one described
in [24].

4. If a view V was a good candidate for improving perfor-
mance in the previous step but was not chosen because of
space or freshness constraints, consider including in the

4The crux of the claim is that it suffices to consider only a
finite number of run-time schemas because there are only a finite
number of views or functions that can be maintained and still
be useful in a run-time policy.



run-time schema functions of the form (V, Inp), where
Inp is a subset of the arguments of V.

5. For each such function which is usable for expanding
a node F, consider applying conservative and optimistic
lookahead optimizations, for all the subtrees rooted at F'.
The decision on which subtrees to consider should take
into account the probability of visiting the descendants,
given that the user visited F.

Figure 6 shows the results of applying these steps in
two scenarios. In the upper figure we alloted enough space
for the web site to be able to materialize a sizeable view
(we allowed an additional 1GB to the original size of the
database). In the lower figure we only alloted an additional
10MB. In the first case the run-time schema included the
materialized join between Order and Lineltem with 4 in-
dexed columns. The view is used in almost all the nodes,
and as a result, all the queries in the site ran in less than
8 seconds, and all but three in less than 400 milliseconds.
In the second case the run-time policy includes a conser-
vative lookahead in the node Supplier (which benefits the
node PartSupp), and an optimistic lookahead computation
in the node Customer which benefits the nodes CustSupp,
CustSuppType, CustSuppPart and CustSuppDate. The run-
ning times of all the other nodes are comparable with that
of the previous run-time policy. This example highlights
the savings obtained purely by exploiting the structure of
the web site, with very little memory overhead.

7 Implementation

The STRUDEL-R system[11] is implemented and fully op-
erational, though the compiler from declarative specifica-
tions to run-time policies is relatively simple. The queries
in the site definitions are given in SQL, and are allowed to
contain selections, projections, joins, and outerjoins. Run-
time policies are expressed in the language described in
the previous section [11]. We note that it is also possible
for a web site administrator to directly specify a particular
desired run-time policy, bypassing STRUDEL-R’s compiler.

A browsing session starts with a simple request for a
root of the web site, which is precomputed. In order to em-
ploy our run-time policies, when an HTML page is served
to the browser, the outgoing links (within the same site)
are implemented as calls to a CGI-bin script. The script
take as input the node in the site schema, the bindings for
the variables associated with the node and the browsing
context. It first calls the HTML generator, which in turn
calls STRUDEL-R’s execution engine with the same param-
eters. The execution engine follows the specification of the
run-time policy. In doing so, certain functions can be up-
dated. Finally, the result (the data contained in the page
and information about the outgoing links) is sent back to
the HTML generator which delivers the final page. The
request, as well as all the statistics associated with it (util-
ity of caches, response time, cardinality of resulting data,
etc) are recorded in the web site trace.

In order to perform our experiments we also imple-
mented a browser simulator. The input to this module is
a set of probability distributions, as described in section 3.
The simulator bypasses the HTML generator and calls the
execution engine directly. Given a node in the site graph,
the simulator randomly chooses the next node to request,
according to the given probability distribution.

637

D plan 00 M run-time policy (1GB)
100000

10000 m

1000
100
10

1

O plan 0O M run-time policy (10MB)

OrderDate
Customerreg

100000

10000 m
1000
5 100
10
1

=2 528 £ £

er
P

Si
Cu
CustSuppType
CustSupp!
Custe

al

mat

al

Order
Customer

ppl
1S

S

Customerreg

Figure 6: Results of two run-time policies. The upper
graph shows a run-time policy in which 1GB of additional
memory were provided, and the lower graph shows a policy
when only 10MB was provided.

The system is implemented in Java, and all the database
connections are done through Oracle’s JDBC driver.

8 Conclusions and related work

Commercial products for constructing web sites from large
databases and recent research prototypes are clearly mov-
ing in the direction of declarative specification of the struc-
ture and content of web sites. A critical issue that immedi-
ately arises is when to compute parts of the site. Currently,
web site designers manually optimize site design in order
to achieve reasonable performance, and this is a very labor
intensive activity.

This paper described several techniques for optimizing
the run-time behavior of web sites, and a framework in
which declarative site specifications can be automatically
compiled into run-time policies which incorporate these
optimizations. Broadly speaking, many optimizations are
easy to achieve if we have unlimited space. However, we
have shown that, even with limited additional space, we
can obtain order-of-magnitude speedups by exploiting the
structure of the web site. We described a heuristic based al-
gorithm for compiling a declarative web site definition into
a run-time policy, which already yielded much better per-
formance in our experiments. The problem of developing
compilation algorithms that are both efficient and produce
high-quality run-time policies clearly deserves significant



further research. Finally, another important note about
our framework and implementation is that they were pur-
posely designed to be built on top of an existing database
system and did not require modifying any of its internals.
In fact, our prototype can be deployed on top of any JDBC
compliant database.

To begin our discussion of related work, several other
systems have considered web-site management based on
declarative representations [7, 2, 4, 20, 3, 25] but none con-
sidered the problem of run-time management of the site.
The work of [25] considers the problem of decomposing a
site specification to produce an entire tree of HTML pages
into smaller chunks which are dynamically invoked when
pages are requested. This decomposition can also result
in our version of lookahead computation, though their de-
composition is at the level of HTML pages and not the
underlying data. Furthermore, they do not perform their
decomposition w.r.t. a cost function.

A large body of work is concerned with caching web
documents (e.g., [5]). The work in [19] extends the idea to
prefetching of pages based on statistics on web site brows-
ing patterns. However, this work considers caches at the
level of HTML pages, as opposed to the underlying con-
tent. The performance improvements and the added flexi-
bility achieved in our work were obtained by analyzing the
database queries that produce the content of HTML pages.

In database systems, caching the result of parameterized
computations has also been considered in several contexts
such as data integration [1], nested correlated queries (im-
plemented in commercial databases), caching for expensive
methods [16, 15]. Our work takes the idea of caching fur-
ther into the context of web-site management: our deci-
sions of what to cache are based on cost estimates, and we
do not necessarily cache exactly the computation specified
by the parameterized input, but possibly only parts of it
or larger computations. In addition, our caching decisions
are based on the structure of the web site.

As stated early on, there has been a significant amount
of work that tries to optimize workloads of queries on
DBMS. This work took the form of selecting views to ma-
terialize (and their indexes) (e.g., [24, 13, 12, 14, 6]), multi-
ple query optimization [23] and index selection. All these
techniques are of course applicable to our context, since a
dynamically generated web site can be viewed as a work-
load of parameterized queries. However, in our context we
can perform additional optimizations because of the known
structure of the web site. Also, our application is different
in that it has new age and time limit constraints, and be-
cause queries in the workload are considered in succession,
not in parallel.

Finally, a related body of work uses invariants for query
execution [22] (in the context of nested correlated queries)
and [17] in the context of optimizing recursive trigger calls.
In the latter work, the authors compile the code of the
triggers depending on the context of the calls, which are
similar to our simplification under preconditions.
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