
Unrolling Cycle to Decide Trigger Termination

Sin Yeung LEE & Tok Wang LING
School of Computing,

National University of Singapore,
Lower Kent Ridge, Singapore 0511, Singapore.

email : jlee@comp.nus.edu.sg, lingtw@comp.nus.edu.sg

Abstract

Active databases have gained a substantial interest
in recent years in enforcing database integrity,
however, its current implementations suffer many
problems such as running into an infinite loop.
While deciding termination is an undecidable task,
several works have been proposed to prove
termination under certain situations. However,
most of these algorithms cannot conclude
termination if a cyclic execution actually presents
during run-time. This is rather limited. The
trigger system can still terminate if these cycles
can only be executed a finite number of times.
Adopting the trigger graph approach, we propose a
method to detect if some cycles can only be
executed finitely. We then present a cycle-
unrolling algorithm to remove those cycles that can
only be executed finitely from a trigger graph.
Similarly, we present the concept of finitely-
updatable predicate to further improve most
existing detection methods. Finally, we conclude
with an algorithm to detect if a given trigger
system will terminate.

—————————————————————
Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantages, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

1 Introduction
Recently, there is an increasing interest in providing rule
processing to database systems so that they are capable of
automatic updating as well as enforcing database
integrity. One of the most popular approaches is to make
use of the ECA (Event-Condition-Action) rules [6, 7, 9, 8,
14]. In this active database model, whenever an event
occurs, trigger rules with the matching event
specifications are triggered, and their associated
conditions are checked. For each trigger rule, if its
condition is satisfied, then the associated actions of that
trigger rule will be executed. These actions may in turn
trigger other rules.

While active database systems are very powerful, the
way to specify rules is unstructured and its processing is
difficult to predict. This is especially true when the action
of an ECA rule can falsify the condition of another ECA
rule and thus deactivates the second trigger rule. Clearly,
the final database state can be highly dependent on the
execution order of the set of trigger rules. Furthermore,
the set of rules may be triggering each other indefinitely,
thus preventing the system from terminating. To
illustrate, suppose rule 1 is to increase the salary of an
employee if his allowance is increased; while rule 2 is to
increase the allowance of an employee from the accounts
department if his salary is increased. Intuitively, this pair
of rules can reactivate each other ad infinitum if we
update the salary of an employee from the accounts
department. Such an execution will not terminate.

This non-termination problem makes developing even
a small application system a difficult task. Hence, the rule
programmer must perform some analysis on the set of
trigger rules to predict its behaviour in advance.
Although it is undecidable whether the execution of any
given set of trigger rules will finally terminate, it is
beneficial to have tests to detect the subset of trigger rules

483

which are terminating and those which may not
terminate. This can assist the rule programmers so that
they need only to verify a smaller subset of the trigger
rules.

There are recent works on this termination problem.
[1] proposed a method in the context of the Starburst Rule
System to detect some definite terminating conditions.
This approach makes use of a graph called directed
triggering graph proposed in [5]. If the triggering graph
constructed has no cycle, then the trigger system will
always terminate. This approach is simple but rejects too
many terminating situations. In particular, it does not
make use of the condition-parts of the trigger rules. As
pointed out by later works, many obviously terminating
situations cannot be detected.

In [17], the authors suggested some sufficient
conditions for trigger termination. However, the method
only works for a rather restricted trigger system. For each
ECA rule, the condition is a simple query and the action is
a simple and single attribute assignment. Deletions and
insertions are not considered. This is one of the major
drawbacks. [10] proposed a rather different approach.
The Event-Condition-Action rules are first reduced to
term rewriting systems, then some known analysis
techniques for termination are applied. However, it is
unclear whether a general trigger database system can
always be expressed as a term rewriting system. [4] used
an algebraic approach to attack this termination problem
for expert database systems. Although the method offers
a much stronger solution than [1], the analysis does not
involve much on trigger conditions. Later works such as
[15, 2, 16, 11] make us of the trigger conditions. To
decide if one rule r can actually trigger another rule s, [11]
constructs a conjunct based on the trigger conditions of
the two rules. If the conjunct is not satisfiable, then the
edge between the two rules is removed. On the other
hand, [2, 3] augments a trigger graph with an activation
graph. An edge is removed unless it is in a cycle and can
be re-activated after a self-deactivation [2, 3]. All these
analysis are still based on edges in the trigger graph, [13]
remedied this problem by considering trigger paths
instead of trigger edges so that more terminating
situations can now be detected.

However, all these methods suffer from one common
drawback — if the trigger system, indeed, has a cyclic
execution, none of the previous methods can conclude
termination. This is obviously limited. For example,
consider the following trigger rules:

Rule 1 : ON insert a(X ,Y) IF (X = 1)
DO insert a(Y , 0)

Clearly, it is possible that during run-time, rule 1

successfully activates itself several times. Upon closer
examination, we see that within this trigger session, after
the first insert of the tuple a(X ,Y), the system may trigger
an insertion of a(Y , 0). Thereafter, the insertion of a(0 , 0)
may be triggered. Upon the insertion of a(0 , 0), the
trigger condition is definitely unsatisfied, hence, this
trigger session can at most trigger the same rule for three
times only. In other words, although the rule causes
cyclic execution, the system can still be proven to
terminate.

In this paper, we will discuss in more detail the
termination problem and propose a method to detect more
situations where a given trigger system can be proven to
terminate. In our approach, we first translate a trigger
system into a graph called trigger graph as proposed in
[5]. We then present an algorithm to construct a condition
to verify if a cycle can only be cycled at most a given
finite number. Finally, a graph unrolling method is
proposed to remove a given cycle from a given trigger
graph. If our method answers affirmatively that the given
system always terminates, then the given system can
indeed terminate.

2 Trigger Architecture
We assume a general abstract architecture of the
underlying active databases that does not depend on any
particular architecture. The underlying database can be an
active OODB, or just a simple RDB. Each trigger rule
takes the following form:

rule_name : : event IF condition
DO action 1 , . . . , action n

where rule_name is the name of the trigger rule. The
event and action i in the trigger rules are abstracted to take
the following form,

event_name(variable_list)
event_name can refer a simple update such as
incr_salary, or a complex action such as cascade_delete.
In this paper, we shall use the names e1, e2, etc in most
cases to refer to general events.
condition is a conjunction of positive literals, negative
literals and/or evaluable predicates. Any variable which
appears in the variable list of any action i must either
appear in the event or in the condition. Furthermore, in
order that the evaluation of condition is safe, any variable
that appears in any negative literal or an evaluable
predicate in condition should also appear in either event or
in a positive literal in condition. We shall call those
variables that appear in condition but not in event as local
variables. Throughout this paper, we will also refer to
event as rule_name. EVENT and condition as
rule_name. COND .

484

Example 2.1 The following specifies that an increase in
an employee’s salary should also trigger an increase in the
salary of his/her manager by the same amount:

incr_salary_rule : : incr_salary(EmpID,IncrAmt)
IF emp(EmpID,MgrID,Salary) DO

incr_salary(MgrID,IncrAmt)

As our proposed method is independent of the rule
execution order, we do not need to assume any specific
model of execution. Our method is equally applicable to
trigger systems with rule priority and to those with
deferred execution.

3 Activation Formula
[11] introduces the trigger formula, which is a more
refined condition to decide if a rule r 1 can trigger another
rule r 2 . The trigger formula is constructed by conjuncting
the trigger conditions of trigger rules r 1 and r 2 in a
selective way. If the trigger formula is unsatisfiable, then
the corresponding trigger edge between r 1 and r 2 in the
trigger graph is removed. If the final graph is acyclic,
then the trigger system will terminate. For example,
given the following two trigger rules:

r1 : : e1 (X) IF (X > 1) DO e2 (X)
r2 : : e2 (X) IF (X < 1) DO e1 (X)

[11] constructs the trigger formulae as,
(X > 1) /\ (X < 1)

This formula is unsatisfiable, therefore, the edge < <r1 ,r2> >

is removed from the trigger graph. Since the resultant
graph is acyclic, this trigger system will terminate.

A direct generalization is to consider more than one
edge by conjuncting more conditions together. If the
resultant condition is a contradiction, then the sequence of
rules cannot be executed at all. This guarantees
termination. For example,

r1 : : e1 (X) IF (X > 1) DO e2 (X)
r2 : : e2 (X) IF (X > 5) DO e3 (X)
r3 : : e3 (X) IF (X < 1) DO e1 (X)

The conjunction of conditions of the rules from the
execution sequence < <r1 ,r2 ,r3> > is

(X > 1) /\ (X > 5) /\ (X < 1)
which is clearly unsatisfiable. Hence, r1 cannot trigger r3
via r2 during run time.

However, this generalization of conjuncting
conditions is far from trivial, there are two major
considerations to be handled:

1. Conflict of variables.
The scope of the variables used in a trigger condition
is confined to the rule itself. When the conditions
from several trigger rules are conjuncted together,
conflict of variables may occur. For example, the

variable X of the following two rules belongs to
different scope:

r1 : : e1 (X) IF (X > 1) /\ p(X ,Y) DO e2 (Y)
r2 : : e2 (X) IF (X < 1) DO e1 (X)

Hence, we cannot directly conjunct the trigger
conditions of these two rules together. The solution
adopted by [11] requires that each variable used in
each trigger rule has a different name. This solution
has an obvious problem. The variable conflict still
occurs if the condition from the same rule appears at
least twice in the conjunction. For example, consider
another trigger rule:

r3 : : e3 (X ,Y) IF (X > Y) DO e3 (Y ,X)
A simple conjunction of r3 with r3 gives a wrong
formula:

(X > Y) /\ (X > Y)
2. Process to eliminate trigger edges.

Even if we can prove that a sequence of rules cannot
be executed, it is possible that no edge can be
removed from the trigger graph. For example,
consider the following graph, even if we prove that
rule r1 cannot trigger r4 via r2, no edge can be
immediately removed from the trigger graph without
destroying other cycle. In Section 4, we propose a
method to eliminate a path instead of an edge from a
trigger graph.

r1 r2 r3

r4

3.1 Predicate Selection Procedure

Our method investigates the conjunction of the trigger
conditions in each trigger rule in a given execution
sequence. However, as shown in [11], we cannot include
every predicate in the trigger conditions, we need a
predicate selection procedure to select the correct
predicates to be included in the conjunction of the trigger
conditions. We propose two possible predicate selection
procedures:

1. Non-Updatable predicate selection procedure
2. Finitely updatable predicate selection procedure

The first selection procedure is a simplified version of the
second selection procedure, and is used for the ease of
discussion. The second procedure — finitely updatable
predicate selection procedure, will be used in the final
termination decision algorithm. Section 5 will discuss the
algorithm making use of the latter selection procedure.
The two selection procedures are further elaborated as
follows:

485

3.1.1 Non-Updatable predicate procedure
This selection procedure only selects predicates that
cannot be updated by any trigger execution. Non-
updatable predicates fall into the following categories:

1. Evaluable function
2. Predicate/attribute that is not modified, whether

directly or indirectly, by any action of some trigger
rules.

Example 3.1 Given a bank database which contains the
following relations:

1. acc(Acc # ,Owner ,Bal)
Acc # is the account number owned by Owner with
amount Bal.

2. bankcard(Card # ,Acc #)
The bankcard Card # is associated with the account
Acc #. One account can have many bankcards, but
each bankcard can only be associated with one
account.

In this database, two trigger rules are specified,
// If a bankcard is lost,
// debit into the owner’s account
// a service charge of 10 dollars.

r1 : : replace_lost_card (Card #)
IF bankcard(Card # ,Acc #)

DO debit (Acc # , 10)
// If an account has insufficient fund
// during debit, alert the owner,

// but allow overdraft.

r2 : : debit (Acc # ,Amt) IF acc(Acc # ,Owner ,Bal)
/\ (Bal < Amt) DO

alert (Owner ,Acc # , ’Overdraft’)
The trigger events update the databases in the following
ways:

1. The event replace_lost_card will issue a new
bankcard to its owner. It will not update the relations
acc and bankcard.

2. The event debit is to update the Bal of Owner’s
account in the relation acc.

3. The event alert does not update the database.
Note that all these information can be easily extracted
from the SQL implementation.
Now consider the following formula,

bankcard(Card # ,Acc #) /\ acc(Acc # ,Owner ,Bal)
/\ (Bal < 10)

the predicate (Bal < 10), is a non-updatable predicate
because it is an evaluable function. The predicate
bankcard(Card # ,Acc #) is another non-updatable
predicate as no trigger action updates the relation
bankcard. On the other hand, the predicate
acc(Acc # ,Owner ,Bal) is an updatable predicate as it can
be updated by the action debit in trigger rule r1.

Therefore, using our non-updatable predicate selection
procedure, the formula

bankcard(Card # ,Acc #) /\ acc(Acc # ,Owner ,Bal)
/\ (Bal < 10)

is modified to be,
bankcard(Card # ,Acc #) /\ (Bal < 10)

As the variable Bal appears once in the above condition,
Bal < 10 is trivially satisfiable. Now, the final condition is
simplified to,

bankcard(Card # ,Acc #)

3.1.2 Finitely Updatable predicate procedure
In practice, it is unlikely to include many predicates in the
conjunction of the trigger conditions, as relations/objects
are often targets of update. The finitely-updatable
predicate selection is therefore an improvement on it.
Instead of including only predicates which are not updated
by any trigger action, this predicate selection procedure
includes predicates that are not updated indefinitely by
any trigger action. However, to decide which predicate is
updated only finitely is as hard as the original termination
problem. In this case, we need to incorporate a much
more complex incremental algorithm for termination
detection. We will discuss this further in Section 5.
Meanwhile, to clarify the basic concept, we employ the
non-updatable predicate selection procedure as our default
predicate selection procedure.

3.2 Construction of Activation Formula

Definition 3.1 Given an execution sequence
< <r 1 , . . . , r n > >, an activation formula
F act (< <r 1 , . . . , r n > >) is a necessary condition for rule r 1

to eventually trigger rule r n via rules r 2 , . . . , r n 1 .

Example 3.2 Consider the following trigger rules,
r1 : : e1 (X ,Y) IF X > 3 DO e2 (X ,Y)
r2 : : e2 (X ,Y) IF X < 1 DO e1 (X ,Y)

An activation formula of path < <r1 ,r2> > is
(X > 3) /\ (X < 1). Events such as e1 (4 , 2) cannot trigger
another event e1 via the trigger sequence r1 ,r2. Note that
since an activation formula gives only the necessary
condition, it is not necessarily unique. Another weaker
activation formula is (X < 1).

The following algorithm computes an activation formula
for a given execution sequence < <r 1 , . . . , r n > >:

Algorithm 3.1 Given an execution sequence
< <r 1 , . . . , r n > >, and a predicate selection procedure PSP,
we compute an activation formula, F act (< <r 1 , . . . , r n > >)
as follows,

1. We first compute an intermediate condition C as
follows, This C will be transformed into

486

F act (< <r 1 , . . . , r n > >) at the final step.
2. When n = 1, C is set to r 1 . COND

3. Otherwise, let C be F act (< <r 2 , . . . , r n > >) subject to
the selection procedure PSP, and let be the
substitution unifier between the event of rule r 2 and
the triggering action of rule r 1 . We perform the
following steps,

i) Rename any local variable in C that also
appears in r 1 to another name to avoid name
conflict.

ii) C is set to r 1 . COND /\ C
4. To compute the final F act (< <r 1 , . . . , r n > >), apply

the predicate selection procedure PSP to remove any
unwanted predicates in the formula C.

Example 3.3 Consider the following three trigger rules,
r1 : : e1 (X ,Y) IF (X > 1) DO {e2 (X , 0) ,e3 (1 ,Y) }
r2 : : e2 (X ,Y) IF TRUE DO e1 (Y ,X)
r3 : : e3 (X ,Y) IF X Y DO e2 (X ,Y)

The trigger graph of these rules is as follows,

r1 r2

r3

Subject to the non-updatable predicate selection
procedure, the activation formula for F act (< <r 1 ,r 2 ,r 1 > >)
can be computed as follows,

1. First, we compute F act (< <r 2 ,r 1 > >), which requires
to compute F act (< <r 1 > >).

2. Now, F act (< <r 1 > >) is actually the condition of rule
r1 after removing any updatable predicate. This gives
the formula (X > 1).

3. To compute F act (< <r 2 ,r 1 > >), we first observe that
{X / Y ,Y / X} is the substitution between the event of
r 1 , e1 (X ,Y), and the matching action of r 2 ,
e1 (Y ,X). Applying the algorithm, we have

TRUE /\ (X > 1){X / Y ,Y / X}
After simplification and elimination of any updatable
predicate, we have (Y > 1).

4. Finally, to compute F act (< <r 1 ,r 2 ,r 1 > >), {X / X ,Y /0}
is the substitution between the e2 (X ,Y), and the
matching action e2 (X , 0). We compute C to be,

(X > 1) /\ ((Y > 1){X / X ,Y /0})
It can be simplified to FALSE. In other words, the
activation formula of the execution sequence from
r 1 , to r 2 , and then back to r 1 is not possible.

Definition 3.2 An execution sequence < <r 1 , . . . , r n > >

where r i’s are trigger rules which are not necessarily
distinct, is an activable path subject to a predicate

selection procedure PSP if the activation formulae
F act (< <r 1 , . . . , r n > >) subject to PSP is satisfiable.

Otherwise, the sequence is a non-activable path.

Example 3.4 From Example 3.3, the path < <r2 ,r1> > is an
activable path. The path < <r1 ,r2 ,r1> > is a non-activable
path.

Definition 3.3 A cycle is denoted by [[r 1 , . . . , r n]] where
r i’s are not necessarily distinct. It indicates the cyclic
execution that rule r 1 triggers r 2 , which then triggers r 3

and so on until r n , which triggers back r 1 .

Example 3.5 In Example 3.3, [[r1 ,r2]], [[r1 ,r3 ,r2]] and
[[r1 ,r2 ,r1 ,r3 ,r2]] are three different cycles.

Definition 3.4 The k-execution sequence (k 1) of a cycle
[[r 1 , . . . , r n]] is denoted as [[r 1 , . . . , r n]]

k . It is the
execution sequence if the cycle loops itself for k times. It
can be represented by an execution sequence which is
defined recursively as follows,

1. [[r 1 , . . . , r n]]
1 is the execution sequence

< <r 1 , . . . , r n ,r 1 > >.
2. [[r 1 , . . . , r n]]

k is the concatenation of the execution
sequence < <r 1 , . . . , r n > > with [[r 1 , . . . , r n]]

k 1 .

Example 3.6 [[r 1]]
1 represents the execution sequence

< <r 1 ,r 1 > >. [[r 1 ,r 2]]
2 represents the execution sequence

< <r 1 ,r 2 ,r 1 ,r 2 ,r 1 > >.

Definition 3.5 A cycle [[r 1 , . . . , r m]] contains another
cycle [[s 1 , . . . , s n]] if and only if the execution sequence
[[r 1 , . . . , r m]]

1 contains the execution sequence
[[s 1 , . . . , s n]]

1 .

Example 3.7 The cycle [[r 1 ,r 2 ,r 1 ,r 3]] contains the cycle
[[r 1 ,r 2]]. However, the cycle [[r 1 ,r 2]] does not contain
the cycle [[r 1]] as the execution sequence < <r 1 ,r 2 ,r 1 > >

does not contain the execution sequence < <r 1 ,r 1 > >.

Definition 3.6 A cycle in a graph is a prime cycle if it
does not contain any other cycle.

Example 3.8 The cycle [[r 1 ,r 2 ,r 1 ,r 3]] contains the
cycles [[r 1 ,r 2]] as well as [[r 1 ,r 3]], hence, it is not a prime
cycle. On the other hand, both [[r 1 ,r 2]] and [[r 1 ,r 3]] are
prime cycles.

Definition 3.7 A cycle [[r 1 , . . . , r n]] is a k-cycle (k 0) if
1. [[r 1 , . . . , r n]]

k + 1 is not an activable path, and
2. if k 1, then [[r 1 , . . . , r n]]

k is an activable path.

Note that if [[r 1 , . . . , r n]] is a 0-cycle, it simply means
that < <r 1 , . . . , r n ,r 1 > > is a non-activable path. If a cycle
is a k-cycle, then it can only be repeated at most k times.

487

Using this definition, the following algorithm can decide
if a given cycle is a k-cycle.

Algorithm 3.2 Given a cycle in a trigger graph G, and
an integer k, we decide if is a k-cycle by the following
steps:

1. Construct the k-execution sequence k of the cycle
and the (k + 1)-execution sequence (k + 1) of the
cycle .

2. Apply Algorithm 3.1 to construct F act (k) and
F act ((k + 1)).

3. If F act (k) is satisfiable but F act ((k + 1)) is not
satisfiable, then return " is a k-cycle."

4. Otherwise, return that " is not a k-cycle."

Theorem 3.1 Given a trigger graph G, and if each prime
cycle is a 0-cycle, then the trigger system can terminate.

Example 3.9 Consider the following five rules:
r1 : : e1 (X ,Y) IF X > 1 DO {e2 (X ,Y) ,e3 (X ,Y) }
r2 : : e2 (X ,Y) IF Y < 1 DO e1 (Y ,X)
r3 : : e2 (X ,Y) IF X < 2 DO e3 (X ,Y)
r4 : : e3 (X ,Y) IF X < Y DO e4 (Y + 1 ,X)
r5 : : e4 (X ,Y) IF X < Y DO e1 (X ,Y)

Its trigger graph can be described as:

r5 r1

r4 r3

r2

From the graph, we can see that there are three prime
cycles: 1 : [[r1 ,r2]], 2 : [[r1 ,r4 ,r5]] and 3 : [[r1 ,r3 ,r4 ,r5]].
Note that there are many different cycles such as
[[r1 ,r2 ,r1 ,r2 ,r1 ,r4 ,r5]], but it is not a prime-cycle. It
contains three prime cycles: 1 , 1 and 2 .
Each of the three prime cycles contains at least one non-
activable path. For instance, the cycle [[r1 ,r2]] contains a
path < <r1 ,r2 ,r1> >. This path is non-activable because its
activation formula F act (< <r1 ,r2 ,r1> >), which can be
computed by Algorithm 3.1 to be

(X > 1) /\ (Y < 1) /\ (Y > 1)
is clearly not satisfiable. Since each of the three prime
cycles contains at least one non-activable path, all the
three cycles are 0-cycle. From Theorem 3.1, this trigger
system can always terminate.

Theorem 3.1 covers many terminating cases detected by
previous methods. A natural extension is to ask if every
prime cycle is a k-cycle for some finite k, does it imply
that the system can always terminate? Unfortunately, the
answer is only partially true, as stated in the followings:

Definition 3.8 Given a trigger graph G, its cycles can be
partitioned hierarchically, if and only if for any two
different cycles 1 and 2 in G, whenever 1 can reach

2 , it implies that 2 cannot reach 1 .

Theorem 3.2 Given a trigger system, if its prime cycles
can be partitioned hierarchically, and all of its prime cycle
is a k-cycle for some finite k, then the trigger system can
terminate.

In general, however, the above theorem is false if cycles
cannot be partitioned hierarchically. Every prime cycle is
some k-cycle for some finite k alone does not imply that
the system can always terminate, even if k is as small as 1.
This can be illustrated by the following example:

Example 3.10 Consider the following trigger system:
r1 : : e1 (X ,Y) IF X < Y DO {e1 (Y ,X) ,e2 (Y ,X) }
r2 : : e2 (X ,Y) IF X > Y DO e1 (Y ,X)

There are two prime cycles — [[r1]] and [[r1 ,r2]]. Note
that these two cycles cannot be partitioned hierarchically.
The first cycle can reach the second cycle, and the second
cycle can also reach the first cycle. Now, both prime
cycles are only 1-cycles, however, the trigger system may
not necessarily terminate. The non-prime cycle [[r1 ,r1 ,r2]]

can be executed without termination.

To handle this problem, we propose a new method which
attempts to remove any k-cycle found in the trigger graph.
If every cycle can be removed, then the trigger system can
terminate. This differs from all the previous works [1, 17,
2, 11, 18, 3, 13] in that they are aiming to prove that no
cycle actually exists in the trigger graph. Our method,
however, aims to prove that every cycle in the trigger
graph is only finitely executable.

4 Cycle removal by cycle-unrolling method
To prove that every cycle in the trigger graph is only
finitely executable, we propose to remove each finitely
executable cycle from a given trigger graph. If all finitely
executable cycles can be removed from the graph, then we
can conclude that the trigger system can terminate.

In order to remove a finitely executable cycle from a
trigger graph, we propose a cycle unrolling method. The
main idea of this method is to unroll the given cycle by
multiplicating the nodes inside the given cycle and break
the cycle. For example, if a cycle [[r 1 ,r 2 ,r 3]] is proven to
be a 2-cycle, then the very definition of a 2-cycle implies
that the path P, < <r 1 ,r 2 ,r 3 ,r 1 ,r 2 ,r 3 ,r 1 ,r 2 ,r 3 ,r 1 > > is not
an activable path. In this case, we can unroll the cycle by
replacing it with a path that does not contain the non-
activable path P. This idea is summarized in the
following diagram:

488

r 1 r 2 r 3

The above 2-cycle [[r1 ,r2 ,r3]] is unrolled to

r 2 r 3

r 1 r 2 r 3

r 1 r 2 r 3

r 1 r 2 r 3

Figure 4.1

There are some points about figure 4.1 that we would like
to mention:

1. There are extra duplicated copies of r 2 and r 3 at the
front. This is so because the execution sequence
< <r 2 ,r 3 ,r 1 ,r 2 ,r 3 ,r 1 ,r 2 ,r 3 ,r 1 ,r 2 ,r 3 > > may be an
activable path as it does not contain the non-
activable path P. As no activable path should be lost
during the unroll operation, we need to include an
extra copy of the cyclic nodes except the first node
(r 1).

2. After the unroll operation, the cycle [[r 1 ,r 2 ,r 3]] is
allowed to loop twice as the execution sequence
< <r 1 ,r 2 ,r 3 ,r 1 ,r 2 ,r 3 ,r 1 > > is in the modified graph.
Furthermore, this cycle is correctly denied to loop
thrice as the non-activable path P is missing from the
modified graph.

We call the above mentioned operation, which replaces a
k-cycle in a trigger graph G with a non-cyclic path, the
unroll operation unroll(G , ,k). This operation can be
defined formally as follows,

Definition 4.1 The operation unroll(G , ,k) where G is a
trigger graph, is a cycle in G and k is a positive integer
generates a new graph G such that

1. The k-execution sequence k can be represented in
the new graph G , but

2. k + 1 cannot be represented in the new graph G , and
3. all other paths in G which do not contain the

sequence k + 1 are represented in G .

The following gives a formal algorithm on how the
operation unroll(G , ,k) can be implemented:

Algorithm 4.1 (Cycle unroll algorithm) Consider a
trigger graph G and a k-cycle [[r 1 , . . . , r n]] where n 1
The operation unroll(G , ,k) is done as follows,

1. (Duplicate the cyclic path) Duplicate the path
< <r 1 , . . . , r n > > for k + 1 times, we denote ri

(0) as the
original node r i , and we denote ri

(j) (1 j k + 1) as
the j th copy of the node r i . Furthermore, for each j
from 0 to k, add the edge < <rn

(j) ,r1
(j + 1) > >.

2. (Allow any iteration of the cycle to exit.) For each
outgoing edge < <ri

(0) ,t> > of node ri
(0) , except the edge

< <rn
(0) ,r1

(0) > > and the edges < <ri
(0) ,ri + 1

(0) > > where
1 i n 1, insert the edge < <ri

(j) ,t> > in the graph for
each j from 1 to k + 1.

3. (Allow any incoming edge to go into the cycle.) For
each in-coming edge < <t ,r1

(0) > > of node r1
(0) , insert

the edge < <t ,r1
(1) > > in the graph.

4. (remove the node r1
(0) to break the cycle.) Remove

the node r1
(0) from the graph, and its attached edges

from the graph.

Example 4.1 Given the trigger graph in Figure 4.2,
assume that we have proven that the cycle [[r1 ,r2]] is a 1-
cycle, in another words, the execution sequence
< <r1 ,r2 ,r1> > is activable, but the sequence
< <r1 ,r2 ,r1 ,r2 ,r1> > is not. We can remove this cycle by
our unroll algorithm, Algorithm 4.1.

r1 r2 r3

Figure 4.2
In the first step of the algorithm, we duplicate the path
< <r1 ,r2> >: < <r1(1) ,r2(1) > > and < <r1(2) ,r2(2) > >. We also
denote the original r1 as r1(0) and original r2 as r2(0) .
Furthermore, the algorithm connects the last node of each
cyclic path duplication to the first node of the next
duplication. In this example, we add the edge
< <r2(0) ,r1(1) > > and < <r2(1) ,r1(2) > >. The resultant graph is
in figure 4.3(i).

r1(0) r2(0)

r1(1) r2(1)

r1(2) r2(2)

r3

Figure 4.3(i)

In step 2, we add all the outgoing edges to provide exit
from the cycle. In this example, since < <r2 ,r3> > was an
edge in the original graph, we insert two new edges:
< <r2(1) ,r3> > and < <r2(2) ,r3> >. The resultant graph will be

489

in Figure 4.3(ii).

r1(0) r2(0)

r1(1) r2(1)

r1(2) r2(2)

r3

Figure 4.3(ii)

In step 3, all the incoming edges which were originally to
r1(0) are now duplicated to point also to r1(1) . In this
example, since < <r3 ,r1(0) > > is the only incoming edge to
r1(0) , we add the edge < <r3 ,r1(1) > > to the graph. This
gives Figure 4.3(iii).

r1(0) r2(0)

r1(1) r2(1)

r1(2) r2(2)

r3

Figure 4.3(iii)

The final step of the algorithm requires us to remove the
node r1(0) . The resultant graph is as in Figure 4.3(iv).

r2(0)

r1(1) r2(1)

r1(2) r2(2)

r3

Figure 4.3(iv)

Now there remains only two prime cycles —
[[r1(1) ,r2(1) ,r3]] and [[r1(1) ,r2(1) ,r1(2) ,r2(2) ,r3]]. The
original cycle [[r1 ,r2]] has been successfully removed.

Repeatedly of applying Algorithm 4.1 to remove cycles
from a trigger graph, if it terminates, can decide trigger
termination. However, this repetition process, per se,
does not necessarily terminate for two different reasons:

1. After application of Algorithm 4.1, we can generate
new prime cycle of longer cyclic length. In the

previous example, when the prime cycle [[r1 ,r2]] of
length 2 is removed, a new prime cycle
[[r1(1) ,r2(1) ,r1(2) ,r2(2) ,r3]] of length 5 is introduced.
In theory, this process may not terminate. Longer
and longer cycle can be found when some smaller
cycles are merged. In the previous example, the
node r2 of the 1-cycle [[r1 ,r2]] is duplicated and
merged into the cycle [[r1 ,r2 ,r3]] to generate a new
longer cycle [[r1(1) ,r2(1) ,r1(2) ,r2(2) ,r3]]. In practical
systems, this merging process is unlikely to be too
complex. For a terminating system, it is unlikely
that a longer prime cycle is still an activable path.
Hence, we propose to set up a threshold value,
D MAX , which denotes the maximum number of times
a node can be duplicated. If termination cannot be
proven after a node has participated in Algorithm 4.1
for D MAX times, then we stop without drawing any
conclusion.

2. To decide if a cycle is a k-cycle for a finite value of k
is itself also undecidable. To make our algorithm
terminate, we need another threshold, K MAX , to limit
the value of k.

With these two thresholds in mind, we can now apply
Algorithm 4.1 to construct a new termination decision
algorithm as follows,

Algorithm 4.2 Given a trigger system TS, and two
threshold values D MAX and K MAX , we decide if TS
terminates by the following steps,

1. Construct a trigger graph G for TS.
2. Remove any node which is not inside any cycle in

the current trigger graph.
3. Remove any edge < <s ,t> > if its activation formula is

unsatisfiable.
4. If the graph is acyclic, then conclude "Terminate"

and exit the algorithm.
5. Pick up one of the smallest prime cycles in the

current trigger graph. If this cycle contains a node
that has been duplicated for D MAX times, then return
"May not terminate" and exit the algorithm.

6. Apply Algorithm 3.2 to decide if the chosen cycle is
a k-cycle where 0 k K MAX . If not, then return
"May not terminate" and exit the algorithm.

7. Otherwise, remove this cycle according to
Algorithm 4.1. The new graph is now the current
trigger graph. Repeat step 2.

Example 4.2 Given the following trigger sets,
r1 : : e1 (X ,Y) IF (X > Y) DO e2 (Y , 1)
r2 : : e2 (X ,Y) IF b(X ,Y)

DO {e3 (X ,Y) ,e1 (X ,Y) }
r3 : : e3 (X ,Y) IF X < 1 DO e1 (X ,Y)

490

We assume no event updates the relation b. In addition,
we assume K MAX to be 4, and D MAX to be 4. We now
apply Algorithm 4.2 to decide if the set of rules will
terminate. The first step is to construct a trigger graph as
in Figure 4.4(i).
In step 2, we eliminate any node which is not inside any
cycle. No such node is found from the current graph.
Similarly, no edge can be removed at step 3.
In step 5 of Algorithm 4.2, we pick one of the smallest
cycles — [[r1 ,r2]] in the graph. It is not a 0-cycle. The
activation formula of the path < <r1 ,r2 ,r1> > is

(X > Y) /\ b(Y , 1) /\ (1 > Y)
It is satisfiable. However, it is a 1-cycle. The activation
formula of the path < <r1 ,r2 ,r1 ,r2 ,r1> > is

(X > Y) /\ b(Y , 1) /\ (Y > 1) /\ b(1 , 1) /\ (1 > 1)
and it is unsatisfiable. Therefore, we have proven that the
cycle [[r1 ,r2]] is a 1-cycle. From step 7, we apply
Algorithm 4.1 to remove this cycle. The new graph is
shown in figure 4.4(ii):

r1 r2 r3

Figure 4.4(i)

r2(0)

r1(1) r2(1)

r1(2) r2(2)

r3

Figure 4.4(ii)

r1(1) r2(1)

r1(2) r2(2)

r3

Figure 4.4(iii)

r2(1 , 0)

r1(2) r2(2)

r3(0)

r1(1 , 1)r2(1 , 1)r3(1)

Figure 4.4(iv)

We now repeat step 2. Since the node r2(0) is not inside
any cycle in the current trigger graph, it can be removed.
The new graph is shown in Figure 4.4(iii). Next, we
consider the cycle [[r1(1) ,r2(1) ,r3]]. Without much
difficulty, we can prove that it is a 0-cycle, for its
activation formula is

(X > Y) /\ b(Y , 1) /\ (Y < 1) /\ (Y > 1)
is unsatisfiable. This cycle is unroll. The new graph is
shown in Figure 4.4(iv). Clearly, r3(1) and r2(1 , 0) can be
removed. Now, there remains only one last cycle:
[[r1(1 , 1) ,r2(1 , 1) ,r1(2) ,r2(2) ,r3(0)

]]. This cycle is another
0-cycle that can be removed after unrolling. Since there is

no more cycle in the transformed graph, we have proven
that this system can always terminate. Note that existing
works [2, 11, 13] cannot draw the same conclusion.

5 Complexity of Algorithm 4.2
In this section, we will discuss the complexity of our
method.

Theorem 5.1 For any trigger system, if its termination
can be detected using existing methods such as [11], then
Algorithm 4.2 can also detect termination with the same
time complexity at step 4 without any cycle unrolling.

Lemma 5.1 For a k-cycle in a trigger graph G, assume
it shares nodes with p other cycles, then the number of
cycles after unroll(,G ,k) increases at most by
p(k + 2) 1.

Putting p to be zero, we arrive the following lemma,

Lemma 5.2 For any trigger system such that the cycles in
the corresponding trigger graph can be partitioned
hierarchically, i.e., for any two different cycles 1 and 2

in the corresponding trigger graph, if 1 can reach 2

implies that 2 cannot reach 1 , each unroll operation
will decrease the number of cycles in the trigger graph by
one.

Theorem 5.2 Given a trigger system of n nodes that can
be partitioned hierarchically, Algorithm 4.2 determines its
termination with only O(nK MAX) evaluations of trigger
conditions.

Theorem 5.3 Given a trigger system such that all its
cycle is a 0-cycle, the unroll operation is similar to the
path-splitting operation in [13]. Hence, our method can
cover the cases detected by [13] with the same time
complexity. Note that as stated in [13], considering path
(and thus cycle) instead of edge to detect termination is
NP-complete.

Finally, we have an analysis for the general cases as
follows,

Theorem 5.4 Given a trigger graph G with p prime
cycles, the number of times that operation unroll needed
to be done before its termination is at most

(K MAX + 2) DMAX p

Although our method can decide much more terminating
cases which cannot be detected using existing methods,
the worst case run-time complexity of this method is
exponential. Despite that, our method, in practice, is still
an effective method for the following reasons:

1. Any termination case that can be detected by
methods [1, 11] can also be detected within the first

491

four steps of Algorithm 4.1 with the same time
complexity.

2. For any method that detects all our termination cases,
it is unavoidable that it must be at least NP-complete
as stated in [13].

3. Worst case performance only appears in some
artificially designed cases. In practice, our method
still performs reasonably well.

6 Finitely-updatable predicate
One of the limitations of using non-updatable predicates
is that usually very few predicates can be used in an
activation formula. To include more predicates in the
activation formula, and thus detect more termination
conditions, we propose to use a more powerful predicate
selection procedure during the computation of activation
formula. The idea is to take not only non-updatable
predicate, but also finitely updatable predicate. As
described in Section 3.1.2, a finitely-updatable predicate
is a predicate which can be updated only finitely during a
trigger session. Since to decide exactly the set of
finitely-updatable predicates is as hard as to prove trigger
termination, we can only approximate this set by
maintaining a set of predicates which are definitely
finitely-updatable, but we have no conclusion on those
predicates that are not in the set. The following algorithm
describes how to incorporate finitely-updatable predicates
in our termination decision algorithm, as well as other
existing methods.

Algorithm 6.1 Given a trigger graph, we detect
termination by the following steps,

1. Initialize the set of finitely updatable predicates S to
be the set of predicates that are not updated by any
action of any trigger rule.

2. Treat every element in S as if it is not updated by the
trigger system, apply any existing termination
detection method to decide termination.

3. If termination is proven, report "termination" and
exit.

4. Otherwise, we mark the following rules as possibly
infinitely execution rules:

i) Rules that are in any unresolved cycle, i.e.,
cycle which has not been proven to terminate,
and

ii) rules that are reachable from some unresolved
cycles in the trigger graph.

Let T be the set of predicates that are updated by
some actions of some possibly infinitely execution
rules. We update S to contain all other predicates

used in the databases except those in T.
5. If any new element is introduced into S, then repeat

the process from step 2.
6. Otherwise, S is unchanged. Exit the process and

report "no conclusion".

The following example demonstrates how [11] can be
improved with the finitely-updatable predicate concept:

Example 6.1 Given the following three trigger rules in an
OODB environment:

r1 : : incr_salary(EMP1) IF EMP1 me
DO incr_salary(me)

r2 : : e2 (EMP2) IF EMP2.salary > 1000
DO e3 (EMP2)

r3 : : e3 (EMP3) IF EMP3.salary < 1000
DO e2 (EMP3)

Since the salary property of an EMPLOYEE class can be
updated by rule r1, [11] will not make use of any
predicate that used the attribute "salary". The "qualified
connecting formula" of the edge < <r2 ,r3> > is therefore a
simple TRUE. Hence, [11] can only conclude that the rules
set may not terminate.

On the other hand, our concept of finitely-updatable
predicate improves this situation. Using the activation
formula, < <r1 ,r1> > is not an activable path, and hence it
can only be finitely executed. The salary is only updated
finitely. After the set of finitely updatable set is
incrementally refined, we return to step 2 of
Algorithm 6.1 and apply [11]. We improve [11] to
construct a more useful formula,

(EMP2.salary > 1000) /\ (EMP2 = EMP3) /\
(EMP3.salary < 1000)

As this formula is unsatisfiable, termination therefore is
detected.

7 Conclusion
We have proposed a new method to detect more
termination situations for an ECA-rule active database
model. Although our algorithm cannot find the exact
answer for all cases, it gives much stronger sufficient
conditions than previous works. Our methods can isolate
rules that might give rise to non-terminating execution.
This means that our methods can be incorporated into an
interactive tool for the specification of active database
rules.

In comparison with other existing methods, we have
shown that we can cover most of the termination
situations which other existing methods have covered. For
example, if recent works such as [11] conclude that there
is no cycle in a trigger graph, then our methods can also
conclude the same result with the same efficiency.

492

Furthermore, our methods detect far more terminating
cases. Once a cyclic execution actually exists in a trigger
system, existing methods will conclude that an infinite
loop may occur. No other attempt is done to further
examine the cycle. Our method, however, introduces the
concept of k-cycle and allows a finite looping of the given
set of trigger rules.

In future, we would also like to investigate any other
possible means to detect more terminating situations. So
far, our method does not assume any execution model.
We would therefore like to extend the analysis techniques
to incorporate additional features of active databases such
as rule priorities, different execution mode of the actions
as well as more complex events augmented with temporal
elements.

REFERENCE

[1] A.Aiken, J.Widom and J.M.Hellerstein, "Behaviour
of database production rules: Termination,
confluence, and observable determinism", Proc ACM
SIGMOD International Conf on the Management of
Data, 59-68, 1992.

[2] E.Baralis, S.Ceri and S.Paraboschi, "Run-Time
Detection of Non-Terminating Active Rule
Systems", DOOD, 38-54, 1995.

[3] E.Baralis, S.Ceri and S.Paraboschi, "Compile-time
and runtime analysis of Active Behaviors", IEEE
Transactions on Knowledge and Data Engineering,
Vol 10, No. 3, May/June 1998, pp 353-370.

[4] E.Baralis and J.Widom, "An Algebraic Approach to
Rule Analysis in Expert Database Systems", 20th
VLDB Conf, 475-486, Sept 12-15, 1994.

[5] S.Ceri and J.Widom, "Deriving Production Rules for
Constraint Maintenance", Proc 16th VLDB Conf,
566-577, Brisbane, 1990.

[6] U.Dayal, "Active Database Systems", Proc 3rd
International Conf on Data and Knowledge Bases,
Jerusalem Israel, June 1988.

[7] Dennis R.McCarthy and U.Dayal, "The Architecture
of An Active Database Management System", Proc
ACM SIGMOD International Conf on the
Management of Data Vol 18, Number 2, 215-224,
June 1989.

[8] O.Diaz, N.Paton and P.Gray, "Rule management in
object-oriented databases: A uniform approach",
Proc 17th International Conf on VLDB, Barcelona,

Spain, September 1991.

[9] S.Gatzin, A.Geppert and K.R.Dittrich, "Integrating
Active Concepts into an Object-Oriented Database
System", Proc 3rd International Workshop on
database programming languages, Nafplion, 1991.

[10] A.P.Karadimce and S.D.Urban, "Conditional term
rewriting as a formal basis for analysis of active
database rules", 4th International Workshop on
Research Issues in Data Engineering (RIDE-
ADS’94), February 1994.

[11] A.P.Karadimce and S.D.Urban, "Refined Trigger
Graphs: A Logic-Based Approach to Termination
Analysis in an Active Object-Oriented Database",
ICDE’96, 384-391.

[12] T.W.Ling, "The Prolog Not-Predicate and Negation
as Failure Rule", New Generation Computing, 8, 5-
31, 1990.

[13] S.Y.Lee and T.W.Ling, "A Path Removing
Technique for Detecting Trigger Termination",
EDBT, 341-355, 1998.

[14] M.Stonebraker and G.Kemnitz, "The POSTGRES
Next-Generation Database Management System",
CACM, 34(10), 78-93, Oct 1991.

[15] H.Tsai and A.M.K.Cheng, "Termination Analysis of
OPS5 Expert Systems", Proc of the AAAI National
Conference on Artificial Intelligence, Seattle,
Washington, 1994.

[16] T.Weik and A.Heuer. "An algorithm for the analysis
of Termination of Large Trigger Sets in an
OODBMS", Proceedings of the International
Workshop on Active and Real-Time Databases
Systems, Skovde, Sweden, June 1995.

[17] L.Voort and A.Siebes, "Termination and confluence
of rule execution", Proc 2nd International Conf on
Information and Knowledge Management, Nov
1993.

[18] D.Zimmer, A.Meckenstock and Rainer Unland,
"Using Petri Nets for Rule Termination Analysis",
Proc of Workshop on Databases: Active and Real-
Time, Rockville, Maryland, November 1996.

493

