
Combining Histograms and Parametric Curve Fitting for

Feedback-Driven Query Result-Size Estimation

Arnd Christian K�onig and Gerhard Weikum
Department of Computer Science,University of the Saarland

P.O. Box 151150, 66041 Saarbr�ucken, Germany
E-Mail: fkoenig,weikumg@cs.uni-sb.de

Abstract

This paper aims to improve the accuracy of
query result-size estimations in query opti-
mizers by leveraging the dynamic feedback
obtained from observations on the executed
query workload. To this end, an approximate
\synopsis" of data-value distributions is de-
vised that combines histograms with paramet-
ric curve �tting, leading to a speci�c class of
linear splines. The approach reconciles the
bene�ts of histograms, simplicity and versa-
tility, with those of parametric techniques es-
pecially the adaptivity to statistically biased
and dynamically evolving query workloads.

The paper presents e�cient algorithms for
constructing the linear-spline synopsis for
data-value distributions from a moving win-
dow of the most recent observations on (the
most critical) query executions. The approach
is worked out in full detail for capturing fre-
quency as well as density distributions of data
values, and it is shown how result size estima-
tions are inferred for exact-match and range
queries as well as projections and grouping.
To a large extent, the developed methods can
be generalized to multi-dimensional distribu-
tions, thus bearing the ability to capture cor-
relations among attributes as well. Experi-
mental studies underline the accuracy of the
developed estimation methods, outperforming
the best known classes of histograms.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,

Edinburgh, Scotland, 1999.

1 Introduction

1.1 De�ciencies in the State of the Art

The e�ectivity of query optimization in database sys-
tems critically depends on the system's ability to es-
timate the costs of di�erent query execution plans as
accurately as possible. In most cases, the cost of a
plan is dependent on the sizes of intermediate results
produced by the query execution. Therefore, accurate
estimation of these sizes is crucial to choosing a good
plan and properly allocating the necessary resources,
especially working memory.

A number of techniques for dealing with this prob-
lem have been studied in the literature, almost all
of which can be categorized into three major classes:
histogram-based techniques that capture statistical in-
formation about data-value distributions by means of
counters for a speci�ed number of data-value buckets,
parametric techniques that approximate data-value
distributions by �tting the parameters of a given type
of function (e.g., polynomials of a given maximum de-
gree), and query-speci�c sampling that take samples
from the database to statistically estimate the inter-
mediate result sizes for the query at hand (for survey
material see [20, 1, 24, 2]). From a generalized per-
spective, all these approaches can be viewed as con-
structing an approximate representation, or synopsis
[11, 9], of the data for the purpose of estimation (or
even giving approximative query answers, which is not
considered in this paper, however).

With modern OLAP tools and other forms of
decision-support query generators, the query optimiza-
tion takes place within the critical path of the query
execution itself (i.e., there is no longer a distinction be-
tween the compile-time and run-time of a query). This
rules out the relatively expensive sampling on a per
query basis. Sampling is still very useful and, in fact,
the method of choice for constructing histograms as
a query-independent synopsis of the database's data-
value distributions [3].

Histograms are traditionally a relatively static rep-
resentation in that they do not easily adapt themselves
to dynamically evolving value distributions (the only
exceptional work being the methods for incremental

423

histograms proposed by [10], which, however, need to
maintain a \backing sample" in addition to the his-
togram itself and are thus not exactly light-weight ei-
ther). Furthermore, a histogram is a statistically un-
biased representation in that it is not oriented towards
a speci�c mix of queries and query-input parameters
(e.g., the actual parameters used in �lter conditions).
In practice, however, it is often the case that the cur-
rent workload bears a statistical bias in the sense that
most queries, or the most important or performance-
critical queries, refer to speci�c (ranges of) data val-
ues as input parameters. Therefore, it is desirable to
express the same bias in the value-distribution rep-
resentations and to maintain these in a form that can
be dynamically adapted to evolving workload patterns
with acceptable e�ort. For example, the representa-
tion should be more accurate for value ranges that are
frequently referred to by current queries, and may tol-
erate inaccuracies for the other ranges.

With regard to the mentioned forms of adaptiv-
ity, parametric techniques appear to be an intriguing
representation of data-value distributions, as they are
based on �tting a parameterized curve with observa-
tions on data-values frequencies. Thus, these tech-
niques can naturally accommodate biased observations
from the actually executed queries, and can be adapted
to dynamic shifts in the query patterns relatively eas-
ily by recomputing the curve �tting [4]. However, this
does not mean that parametric techniques are an ad-
equate representation in the �rst place. In fact, they
seem to be suitable only for data-value distributions
that resemble a closed-form distribution such as Zipf or
Pareto distributions, whereas they would lead to poor
estimations for highly irregular distributions, e.g., with
multiple modes (i.e., non-adjacent, very frequent data
values such as the top selling product numbers in a
table of purchases). Unfortunately, such irregular dis-
tributions are typical for many real-life applications.
It is only in conjunction with appropriate data-value
permutations that many real-life distributions would
resemble a closed-form distribution. Capturing the in-
formation on the necessary permutation is, however,
out of the question from a system's viewpoint, as this
would entail the same storage and lookup costs as a
full-
edged index. Note in passing that for the same
reason, various advanced forms of histograms, most
notably, the family of V-optimal histograms that use
attribute frequency as sort parameter [24], are not
practically viable either.

1.2 Our Approach

So neither histograms nor parametric techniques are
satisfactory in all regards; therefore, novel techniques
are needed for adaptive result-size estimation in highly
dynamic query-processing environments such as mod-
ern OLAP applications. In this paper we develop a
new approach that combines histogramswith paramet-

ric �tting into a speci�c class of spline-based synopses
of data-value distributions. Such a synopsis is con-
structed in two steps:

First the active domain of an attribute (or multi-
dimensional attribute combination) is divided into a
number of buckets each of which represents a contigu-
ous range of data values (multi-dimensional rectan-
gle); a bucket is identi�ed by its lower and upper value
bounds (left lower and right upper corner). In contrast
to the most simple type of so-called equi-width his-
tograms, we allow the width of the value ranges to vary
across buckets; these widths are one of the tunable de-
grees of freedom. In contrast to the advanced type of
V-optimal histograms with attribute frequency as sort
parameter, we restrict ourselves to buckets that repre-
sent contiguous values (rather than non-adjacent val-
ues with similar frequencies) to avoid having to build
a full-
edged index for histogram lookups.

Second we represent the value distribution within
a bucket as a spline function rather than a
at value.
Thus we do not rely on a uniform distribution within
a bucket but can capture trends within certain value
ranges (e.g., increasing sales �gures within a particu-
lar time period that corresponds to one bucket of the
corresponding date attribute). For tractability, we will
restrict ourselves to linear splines for each bucket. In
contrast to the kind of representation that is referred
to as \spline histograms" in [24], we do not require
the splines to be continuous across all buckets. This
way we can easily capture \jumps" in attribute value
frequencies, for example. As our experimental results
will show, this generalization is crucial for high accu-
racy. So in the one-dimensional case, we need to keep
one additional value for each bucket (compared to his-
tograms): in addition to the lower value bound and the
frequency (i.e., average frequency in a histogram, and
frequency of the lower value bound in our approach),
we also store the slope of the linear spline function.
The ratio in the memory demand between histograms
and spline-based synopses will be taken into account
in our experimental comparisons (Section 8).

For adaptivity, the basic idea is to record observa-
tions, or feedbacks, from a moving window of recent
queries and construct a statistically biased representa-
tion from these recordings, possibly with focus on par-
ticularly important or critical queries (e.g., those that
exhibit a large di�erence between the cost estimation
by the optimizer and the actual execution cost). With
n recorded observations of say the frequency of an at-
tribute value and a continuous parametric representa-
tion with m buckets (m < n, and often even m � n)
and k parameters to be �tted for each bucket, this
leads to the so-called \knot placement problem" [6]
which has been intensively studied in numerical math-
ematics and is known to have intractable complexity
in full generality. Our restriction to linear splines and
the relaxation to allow discontinuities at bucket bor-

424

ders render the problem tractable. We will present
both optimal �tting algorithms and very e�cient, sub-
optimal heuristics that allow us to construct the entire
synopsis on-the-
y as we obtain new observations from
recent queries.

The adaptive representation sketched above is the
core of our approach. The actual estimation proce-
dures for the intermediate result sizes of simple selec-
tion queries are relatively straightforward. In addition,
our representation is also suitable to capture not just
the frequencies of data values but also the density of
values within the data ranges of the buckets. This way
we can represent the sparsity of values (e.g., price val-
ues in a �xed-point number domain from $ 0.99 to $
10,000.00), which is important for estimating the re-
sult size of projections and especially grouping opera-
tions. Note that this aspect of selectivity estimation
has been vastly neglected in the literature. Most prior
work, including [24], makes rather simplistic assump-
tions about data-value densities within buckets, for
example, assuming perfectly equi-distant data values.
Further note that the data-value density has also a sig-
ni�cant impact on the result sizes of range queries and
equi-joins over sparsely populated domains. To this
end, we will enhance the initial �tting of the bucket-
speci�c values by an additional �tting step that takes
into account feedback from range queries. So our ap-
proach of spline-based synopses that we pursue in this
paper proves to be useful and, in fact, superior to prior
methods, for a broad class of estimation problems.

The rest of the paper is organized as follows. Sec-
tion 2 brie
y reviews the state-of-the-art techniques for
approximate data synopses and the estimation meth-
ods in query optimization. Section 3 introduces archi-
tectural assumptions and notation, setting the stage
for Section 4, the paper's key section on the construc-
tion of spline-based synopses from exact-match query
feedback. Section 5 shows how selectivity estimations
for range queries are carried based on the spline-based
synopses. Section 6 then introduces an additional �t-
ting step to adjust the density values (i.e., number
of distinct attribute values) that are kept in the syn-
opses, taking into account additional feedback from
range queries and leading to more accurate estimations
for range queries. Section 7 shows presents the estima-
tion procedures for projections and grouping queries.
Finally, we present experimental results in Section 8
to demonstrate the practical bene�ts of the developed
spline-based synopses. We conclude the paper with a
brief discussion of various further extensions, including
the treatment of multidimensional distributions and
equi-join result sizes.

2 Related Work

Several techniques for dealing with the described
problems have been proposed in literature, almost
all of which can be categorized in three major

classes: Histogram-based techniques, parametric tech-
niques and sampling (for surveys, see [20, 1, 24]):

Histogram-based Techniques.
Histograms approximate value distributions by
grouping attribute values into buckets, and esti-
mating true attribute values and their frequencies
based on assuming a uniform distribution within
a bucket. Histograms are the most common form
of data synopsis in practice and can be found in
systems such as DB2, Informix, Ingres, Oracle,
Microsoft SQL Server, Sybase and Teradata. The
histogram accuracy depends on the type of his-
togram used: While V-optimal(F,F) histograms
have been proven optimal for equi-joins and se-
lections [15, 13, 16], they require a list of all at-
tribute values in a bucket, which is impractical in
real systems. A good compromise between accu-
racy and practicability is made by MaxDi�(V,A)
histograms [24] or V-optimal using Sort Parame-
ters other than Frequency [17] . Histograms can
be e�ciently constructed by sampling-based tech-
niques [25, 10].

Another promising approach are Wavelet-based
histograms [21], which so far have only been ex-
amined in the context of range queries, however.

Parametric Techniques. Parametric
techniques (also known as curve-�tting or regres-
sion techniques) approximate value distributions
using a mathematical distribution function with
a limited number of free parameters. Values for
these parameters are then chosen to �t the actual
distribution. If the model is a good �t for the
distribution, this provides an accurate and com-
pact approximation; however, since the shape of
the distribution is usually not known beforehand,
this is often not the case.

To overcome this in
exibility, [28, 4] use a gen-
eral polynomial function and apply least-squares
�tting to choose its coe�cients. [4] additionally
uses query feedback; hereby, the approximation
is able to adapt to changes in the value distri-
bution as well as to locality in the actual query
parameters, so as to be geared for more accurate
estimations for frequently queried values or value
ranges.

Sampling. These techniques compute their estimates
by collecting and processing random samples of
the data. Sampling techniques [12, 3, 7, 19] of-
fer high accuracy and probabilistic guarantees on
the quality of the estimation. However, since the
sampling itself is typically carried out at the time
of the approximation, the resulting overhead pro-
hibits the use of sampling for query optimization.
Therefore, in recent works [10, 8] techniques for
incremental maintenance of random samples have
been developed.

425

Since our main concern is a compact representation
of data, and not its acquisition, we will now concen-
trate on the properties of parametric and histogram-
based techniques, which both o�er di�erent advan-
tages. While histograms o�er accurate approximation
for a wide range of data distributions, parametric tech-
niques are quite limited in the distributions they ap-
proximate well. Even when polynomials [4] or rational
functions [28] are used, approximation of distributions
that exhibit large changes in the frequencies of adja-
cent attribute values and therefore are not well suited
to approximation by means of a continuous function,
lead to a degeneration of the approximation (see [4],
for example, for the pathological e�ect of falsely esti-
mating negative selectivities).

However, parametric techniques do have the impor-
tant advantage of being adaptive, i.e. they can adapt
to query locality, changes in the data distribution and
{ by assigning di�erent weights to query feedbacks {
to the importance of di�erent estimations. While a
certain adaptivity to changes in data distribution can
be achieved in histograms, too, using techniques for
incremental sampling [10, 8], the other forms of adap-
tivity, to our knowledge, have so far been restricted to
parametric techniques.

3 Architectural Assumptions and No-
tation

3.1 Feedback-driven Architecture

Following the earlier proposals by [4] and, especially,
[18] for adaptive selectivity estimation and dynamic
re-optimization of query execution plans, we assume
that the database system monitors the sizes (i.e., car-
dinalities in the sense of bags) of intermediate results
of the executed queries. Like [18], we do not assume
that we can observe all data values in an intermedi-
ate result, nor their frequency or density distribution.
The rationale for this limitation is that such more in-
sightful observations incur additional run-time over-
head that could slow down the underlying database
engine. For example, recording the size of a range
selection is more or less a byproduct of the query exe-
cution with negligible overhead, whereas observing the
density of the queried range (i.e., the number of dis-
tinct values) or the frequencies of the occurring values
may require sorting or, at least, hash tables, and such
additional resource consumption would often be out of
the question.

Run-time observations, or feedbacks, are collected
on-the-
y and captured in a suitable form of on-line
statistics. In principle, each node in a query's opera-
tor tree can provide such feedback. However, we are
mostly interested in leaf nodes, which are typically se-
lections, or nodes close to the leaves, including joins
that are performed early in the overall execution (e.g.,
the �rst join in a many-way join pipeline). The ra-

tionale for this consideration is that estimation errors
for the early operators are the most troublesome in
that they are the biggest factors in the error propaga-
tion for the entire execution plan [14]. In this paper,
we will focus on feedback from exact-match selections
(typically from index lookups, i.e., not necessarily ta-
ble scans) and range selections. More general notions
of feedback are the subject of future work.

Our approach separates the statistical feedback ob-
tained from the executed queries from the approxima-
tive synopsis of value distributions that we maintain
for selectivity estimations. This allows us to enforce
certain �ltering and aggregation steps in between the
statistics collection and the actual estimations, accord-
ing to the desired policies and resource allocations. For
example, we may want to keep a relatively large num-
ber of observations from a moving window of the most
recent queries for statistical con�dence, but the syn-
opsis should be much more compact. Then we could
periodically reconstruct or incrementally maintain the
synopsis from the observation window. In both cases
the separation of observations and the synopsis serves
to smooth out
uctuations.

As mentioned in the introduction, the pursued kind
of statistics collection is inherently biased in that it is
fed only by the actually executed queries. Sometimes,
we may wish to incorporate an additional bias into
an approximative synopsis, by focusing on expensive
queries (e.g., those whose actually measured run-time
costs exceed a certain limit), queries that are espe-
cially susceptible to large estimation errors (e.g., those
where the di�erence between estimated and measured
run-time costs exceed a certain limit), or simply those
queries that are considered particularly important by
a human expert (e.g., those which are expected to have
a response time below a certain tolerated limit of say
10 seconds). All these forms of bias are readily taken
into account by enforcing appropriate �lter conditions
when statistical observations are used for rebuilding or
incrementally updating a synopsis.

3.2 Notation

We adopt the notation used in [24]. Without loss
of generality, we consider only countable value do-
mains (i.e., strings and �xed-point numbers, disregard-
ing real numbers) and assume that these domains can
be encoded as integers. Thus, we can de�ne the do-
main D = f0; 1; 2; : : : ; N � 1g of an attribute X as
the set of all possible values of X , and the value set
V � D;V = fv1; : : : vng is the set of values actually
present in the underlying relation R. In the context
of this paper, V is usually observed through the feed-
back from the executed queries. Therefore, the value
set V may actually be only a subset of the values in
relation R if some value ranges are never touched by
the feedback-relevant queries.

The spread si of vi is de�ned as si = vi+1 � vi

426

(s0 = v1 and sn = 1). The density of attribute X
in a value range from a through b, a; b 2 D, is the
number of unique values v 2 V with a � v < b.
The frequency fi of vi is the number of tuples in
R of value vi in Attribute X . The cumulative fre-
quency ci of vi is the number of tuples t 2 R with
t:X � vi. The data distribution of X is the set of
pairs T = f(v1; f1); (v2; f2); : : : ; (vn; fn)g. The cu-
mulative data distribution of X is the set of pairs
T C = f(v1; c1); (v2; c2); : : : ; (vn; cn)g. The extended

cumulative data distribution of X , denoted by T C+ is
T C extended over the entire domain D by assigning
zero frequency to every value in D � V . For the sake
of a simple, uniform notation, we extend T by an ar-
ti�cial �nal tuple (vn+1; 0) with vn+1 > vn.

4 Linear Splines as an Approximative
Synopsis for Value Frequencies

To approximate a given value-frequency distribution
T , we partition the (observed) value set V into m
disjoint intervals, henceforth called buckets, bi =
[vlowi

; vhighi) in the following manner, where lowi and
highi denote the subscripts of the values from V (i.e.,
not the actual values) that form the left and right
bounds of the (left-side closed and right-side open)
value interval covered by the bucket:

8i 2 f1; 2; : : : ;m� 1g : highi = lowi+1

low1 = 1, highm = n+ 1. (1)

Unlike histograms, we approximate the frequency in an
interval by a linear function, resulting in a linear spline
function [5, 6] over them buckets. Because our interest
is in compact representation of distributions and not
in the features more advanced forms of splines o�er
(smoothness, di�erentiability), we have chosen simple
linear spline functions for this task. In contrast to pre-
vious approaches to spline-based histograms [25] we do

not approximate T C+ ; therefore, we are not faced with
the problem of forming approximation that is contin-
uous over all intervals, thereby simplifying the prob-
lem of �nding the optimal partitioning (see Subsec-
tion 4.2).

Using a linear function f(x) = a1 � x + a0 to ap-
proximate the frequencies for the values x in a bucket
leads to an improvement in accuracy, depending on
the linear correlation [26] of the data within a bucket.

First, we de�ne �v[low;high) := 1
high�low

Phigh�1
l=low vl as

the average attribute value within [vlow; vhigh); analo-
gously, we de�ne the average frequency �f[low;high) :=

1
high�low

Phigh�1
l=low fl. The linear correlation for inter-

val bi is then de�ned as
r[lowi;highi) :=

highi�1P
l=lowi

(vl��v[lowi;highi))(fl�
�f[lowi;highi))vuuthighi�1P

l=lowi

(vl��v[lowi;highi))
2

vuuthighi�1P
l=lowi

(fl� �f[lowi;highi))
2

(2)

For each interval bi, r[lowi;highi) 2 [�1; 1]. In tra-
ditional histograms, the frequency in a bucket bi is
approximated by avg f[lowi;highi). Using the least-
squares �t as an error metric, this results in the overall
error

err[lowi;highi) =

highi�1X
l=lowi

(fl � �f[lowi;highi))
2.

In a spline-based synopsis, this error becomes :

spline err[lowi;highi) = (1� r[lowi;highi)
2) � err[lowi;highi).

(3)

Obviously, spline err[lowi;highi) is always less than or
equal to err[lowi;highi). This increase in accuracy is
paid for by the fact that each bucket in the spline-
based synopsis needs to store one more value than a
bucket in a traditional histogram. This trade-o� will
be further examined by means of experiments in Sec-
tion 8. Summing the error over all buckets in the syn-
opsis, the overall error becomes:

ov spline err =

mX
i=1

�
(1� r[lowi;highi)

2) � err[lowi;highi)

�
.

(4)

In the following subsections we will develop algorithms
for constructing a spline-based synopsis with m buck-
ets for the n observed data-value frequencies in T ,
aiming to minimize the overall error according to for-
mula 4. This goal involves identifying the m� 1 most
suitable boundaries between buckets and the �tting for
the linear approximation within each bucket. We will
present a polynomial but not necessarily highly e�-
cient algorithm for an optimal solution as well as much
faster heuristic and thus suboptimal algorithms. All
algorithms use the least-squares �tting with a bucket
as a basic building block, which is presented in the fol-
lowing Subsection 4.1. The optimal and suboptimal al-
gorithms for the global partitioning are then described
in Subsections 4.2 and 4.3.

4.1 Fitting the Frequency Function within a

Bucket

For the derivation of this basic building block suppose
that the boundaries of a bucket are already �xed. For
each bucket bi = [vlowi

; vhighi) we need to calculate
the linear approximation frqi(x) = a1 � x + a0 of the
attribute frequency that minimizes the squared error

spline err[lowi;highi) =

highi�1X
l=lowi

(frqi(vl)� fl)
2. (5)

This de�nition of the error over a bucket is equivalent
to the de�nition 3 [26]; however, to evaluate formula 3,
the coe�cients a1 and a0, which are the unknowns of
the �tting, do not have to be known. We will use this
property in Section 4.2.

427

Using de�nition 5, �nding frqi becomes a problem
of linear least squares �tting [26]; i.e. we are �tting
the data (vl; fl)l=lowi;::: ;highi�1 via the linear function

frq(x) =
P1

l=0 al � Xl(x) with X1(x) = x;X0(x) = 1
and the optimal a1; a0 to be determined. To do this,
we construct a design matrix A of (highi � lowi) � 2
components, which are de�ned by Al;h = Xl�1(vh),
for l = 1; 2 and h = lowi; : : : ; highi� 1. Furthermore,
we de�ne vector b = (flowi

; : : : ; fhighi�1)
t. Now the

�tting problem can be de�ned as �nding a =
�
a1
a0

�
,

which minimizes
spline erri = jA � a� bj

2
.

This problem can now be solved by Singular Value
Decomposition (SVD) [26, 1] in the following way: Let
the SVD of A be

A = U � �� V t , with � =

2
64
s1

. . .
shighi�lowi

3
75

with s1; : : : ; shighi�lowi
being the singular values of A

(i.e., the Eigenvalues of A � AT). Then a can be ex-
pressed as

a =

2X
l=1

�
U(i) � b

si

�
V(i)

, V(i) and U(i) representing the i-th column of V; U .
While computing the SVD of the design matrix causes
considerable overhead, it is only computed m times,
namely, once for each bucket of the �nal partitioning.
Because of formula 3, we are capable of computing
the optimal partitioning of D without calculating the
exact frqi. In addition to frqi, each bucket bi stores
the number of attribute values contained in bi. We will
refer to this value as the density Di := highi� lowi of
bucket bi.

4.2 Optimal Partitioning of V

We are now interested in a partitioning such that the
overall error (formula 4) is minimized. When arbitrary
partitionings and continuous splines of arbitrary de-
gree are considered, this is known as the optimal knot
placement problem [5], which { due to its complexity
{ is generally solved only approximatively by heuristic
search algorithms (for a detailed discussion, see [6]).

In our case, however, only linear splines are used
and only members of V are candidates for bucket
boundaries. Since the value for each highi is either
lowi+1 or vn+1 (see de�nition 1), we only need to de-
termine the optimal lower bucket boundaries to com-
pute:
opt err := (6)

min
(low2;::: ;lowm)2Vm�1

low1�low2�:::�lowm

mX
l=1

(1� r[lowl;highl)
2) � err[lowl;highl)

Because the resulting spline function is allowed to be
discontinuous over the chosen intervals b1; : : : ; bm, �t-
ting the data in a bucket can be addressed separately

for each bucket bi. The main improvement in e�ciency
does, however, result from the fact that the follow-
ing principle of optimality (also known as the Bellman
principle) holds for our partitioning problem:

Theorem:

If for l � 2: (lowl; lowl+1; : : : ; lowm) 2 Vm�l+1 is an
optimal partitioning of [vlowl�1

; vhighm) usingm� l+2

buckets, then (lowl+1; lowl+2; : : : ; lowm) 2 V
m�l is an

optimal partitioning of [vlowl
; vhighm) using m� l + 1

buckets.

Proof:

Because (lowl; lowl+1; : : : ; lowm) is optimal, it mini-
mizes

E :=
mX

i=l�1

spline err[lowi;highi)

= spline err[lowl�1;highl�1) +

mX
i=l

spline err[lowi;highi).

Now assume that (lowl+1; : : : ; lowm) is not optimal,
i.e. there exists a partitioning (low0

l+1; : : : ; low
0
m) withPm

i=lspline err[low0

i
;high0

i
)<

Pm
i=lspline err[lowi;highi).

But then (lowl; : : : ; lowm) is not optimal either, for the
partitioning (lowl; low

0
l+1; low

0
l+2; : : : ; lowm) results in

the overall error E0 = spline err[lowl�1;highl�1) +Pm

i=l spline err[low0

i
;hig0hi) < E.

Because of this property, the problem of �nding an
optimal partitioning can be seen as a dynamic pro-
gramming problem [27]. This allows us to formulate a
recursive rede�nition of formula 6: De�ne

opt errlow; �m := the optimal overall error for �tting
[vlow; vn) by �m buckets.

err[low;high) := the approximation error spline erri
for bucket bi = [vlow; vhigh).

Trivially, opt erri;1 = err[i;n). Then the overall error
produced by the optimal partitioning is

opt err1;m = min
l2f1;2;::: ;ng

err[1;l] + opt errl;m�1: (7)

By keeping track of the partitioning, this equation
can be used to compute an optimal partitioning in
O(m�n2) time, using O(n2) space. In the experimental
section 8, we will refer to this algorithm as OPTIMAL.

4.3 Greedy Partitioning

Even if a spline-based synopsis were to be recomputed
only occasionally, the cost for computing an optimal
partitioning could be unacceptable when n is large.
Therefore, we have also developed a greedy method of
partitioning of V , which results in a partitioning that is
close to optimal while being much more e�cient. The
key idea is to start out with a large number (e.g., n)
of trivial buckets, (e.g., each interval between two ad-
jacent observed data values leads to one bucket), and

428

then gradually merge appropriately chosen adjacent
buckets until we arrive at the desired number of m
buckets. We will refer to this algorithm as GREEDY-
MERGE .

In assessing the approximation quality of the buck-
ets in each stage of the algorithm, we exploit the
fact that, when merging the data distribution of 2
adjacent buckets b1 = [va; vb) and b2 = [vb; vc) into
one bucket b0 = [va; vc), we can compute the re-
sulting spline err[a;c) (formula 3) in constant time,
if we maintain certain statistics for each bucket bi =
[vlowi

; vhighi). These statistics are:

ff[lowi;highi) :=

highi�1X
l=lowi

f2l , vv[lowi;highi) :=

highi�1X
l=lowi

v2l ,

vf[lowi;highi) :=

highi�1X
l=lowi

vl � fl, f[lowi;highi) :=

highi�1X
l=lowi

fl (8)

v[lowi;highi) :=

highi�1X
l=lowi

vl, �v[lowi;highi) and
�f[lowi;highi).

Now, when merging buckets b1 = [va; vb) and b2 =
[vb; vc) we can recompute these values for the resulting
bucket in constant time:

�v[a;c) =
�v[a;b) � (b� a) + �v[b;c) � (c� b)

(c� a)
,

�f[a;c) is computed analogously, and the summations are
obtained by simply adding the values for each bucket.
These values now allow us to compute a bucket's linear
correlation r[a;c) in constant time:

r[a;c) =

vf[a;c)�f[a;c)�v[a;c)�v[a;c) �f[a;c)+(c�a)�v[a;c) �f[a;c)q
vv[a;c)�2�v[a;c)v[a;c)+(c�a)�v2

[a;c)

q
ff[a;c)�2 �f[a;c)f[a;c)+(c�a) �f2

[a;c)

=

c�1P
l=a

vlfl��v[a;c)
c�1P
l=a

fl� �f[a;c)
c�1P
l=a

vl+
c�1P
l=a

�f[a;c)�v[a;c)s
c�1P
l=a

vl2�2�v[a;c)
c�1P
l=a

vl+
c�1P
l=a

�v2
[a;c)

s
c�1P
l=a

fl
2�2 �f[a;c)

c�1P
l=a

fl+
c�1P
l=a

�f2
[a;c)

=

c�1P
l=a

(vl��v[a;c))(fl� �f[a;c))s
c�1P
l=a

(vl��v[a;c))2

s
c�1P
l=a

(fl� �f[a;c))2

, corresponding to
�
2
�
.

Now, the resulting error can easily be computed as

spline err[a;c) =

(1� r[a;c)
2) � (ff[a;c)�2 � �f[a;c) �f[a;c)+(c�a) � �f2[a;c)).

Based on these equations, we can now compute a
nearly optimal partitioning using a greedy heuristics
in O(n log2 n) time. The algorithm partitions V into
n
2 trivial buckets and merges the ones that lead to
the smallest increase in the overall error, until only m

1: Partition V into n
2 buckets bi = [v2i�1; v2i+1).

2: for l = 0 to n
2 do

3: Compute the error[2l�1;2l+1);[2l+1;2l+3)

resulting from merging the buckets bl
and bl + 1 and insert the value into queue Q.

4: end for

5: repeat
6: Remove the minimal error[a;b);[b;c) from Q.
7: Merge the buckets [a; b) and [b; c).
8: Remove error[a0;a);[a;b), error[b;c);[c;c0) from Q.
9: Calculate the error of joining the new bucket

with it's left and right neighbor (if exist);
insert the resulting error[a0 ;a);[a;c),
error[a;c);[c;c0) into Q.

10: until There are only m buckets left.

Algorithm 1: GREEDY-MERGE
buckets are left (see algorithm 1). The algorithm con-
sists of 2 loops; the for-loop has n

2 iterations in which
the error of merging the trivial buckets is computed,
which can be done in constant time. The repeat-loop
is executed n

2 �m times (each repetition reduces the
number of buckets by one, there are n

2 buckets ini-
tially, and m upon termination), and executes 4 dif-
ferent types of operations:

1. Removing an item from the priority queue Q. We
use an implementation of priority queues based
on Fibonacci heaps [22], allowing the removal of
an item in a queue of size n in O(log2 n) time.

2. Merging two buckets, requiring constant time.

3. Calculating the error resulting from a merge, re-
quiring constant time.

4. Inserting an item into Q, again requiring
O(log2 n) time.

Since each operation is carried out no more than three
times, computing a greedy partitioning is of complex-
ity O(n log2 n).

The initial memory requirement is the space neces-
sary for storing n

2 buckets, each of which contains 8
values (the lowest value stored in the bucket and the
statistics detailed in de�nition 8), resulting in storage
overhead of 4n values. If { due to the size of n { this
overhead were not acceptable, one could further re-
duce the constant by choosing bigger initial buckets;
for large n, this would probably not have any signi�-
cant e�ect on the approximation quality of the parti-
tioning. Choosing initial buckets of size 2h leads to a
storage overhead of 23�h � n values.

Using a similar approach we developed an addi-
tional greedy partitioning-algorithm, which takes the
opposite approach: Initially, all tuples are grouped
in one bucket. Now, we will compute the split that
leads to the greatest reduction in the overall error
(formula 4) and execute it, resulting in an additional
bucket. This is repeated, until (after m � 1 splits)

429

m buckets remain. Due to space constraints we do
not go into more detail here. The algorithm requires
O(m � n log2 n) time and O(n) space. We will refer to
this algorithm as GREEDY-SPLIT .

4.4 Running Times

In order to obtain an idea of the algorithms' e�ciency
in practice, we measured the running times of each
partitioning method for di�erent sizes of m and n
(the vi and fi were choosen randomly, using a uni-
form distribution). The resulting running times for the
partitioning methods OPTIMAL (OPT), GREEDY-
SPLIT (G-S) and GREEDY-MERGE (G-M) for ex-
ecution on a single processor of a SUN UltraSPARC
4000/5000 (168 MHz) are shown in Table 1.

n = 500 1000 4000
m = 10 50 10 50 10 50

OPT 0.59 2.13 2.78 11.04 46.52 191.6
G-S 0.009 0.008 0.019 0.021 0.069 0.068
G-M 0.001 0.007 0.004 0.020 0.042 0.153

Table 1: Running times in seconds

5 Result-Size Estimation for Range
Queries

In this section we demonstrate how the spline-based
synopsis of data-value distributions can be exploited
by the procedure for estimating the intermediate re-
sult sizes of queries. Here we restrict ourselves to the
estimation problem for simple range queries on a single
attribute.

To estimate the result sizes of range queries, it is
necessary to estimate the number of tuples whose at-
tribute values for the range condition fall within an
interval [va; vb), with a; b 2 D being the query-speci�c
actual parameters. The number of result tuples for
such a range query is denoted by S[a;b). In order to
account for skewed frequency distributions within a
bucket, we need to inspect the spline functions of all
buckets that intersect with the query range. This leads
to the following estimation: If the query range hap-
pens to correspond to the boundaries of a bucket bi,
i.e. a = lowi, b = highi, then S[a;b) is estimated by
computing the cumulative frequency over the bucket,
i.e., the sum of the value frequencies of the bucket, un-
der the assumption that the attribute values that occur
in the data and fall into bi are equidistant within the
bucket's spread. The number of values in the bucket,
i.e., the bucket's density, is denoted as Di. This yields
the following expression for Si, which we write instead
of S when limited to a single bucket bi:

Si
[lowi;highi)

:=

Di�1X
l=0

frqi

�
lowi + l � highi�1�lowi

Di

�
(9)

=
�
�i +

�i�(lowi+(highi�1))
2

�
�Di +

�i�(lowi�(highi�1))
2 .

Here the coe�cients of the linear spline for bi are de-
noted as �i and �i rather than a1 and a0, respectively,
to make the dependency on bucket bi more explicit.
It is important to note that, although we assume an
identical spread of the attribute values in bi just like
in histograms, our approach is more powerful since it
allows us to properly capture a skew in the cumulative
tuple distribution within each bucket.

For intervals that do not correspond to bucket
boundaries, the density Di needs to be multiplied with
the fraction of the bucket covered by the query. If the
query interval is completely contained in bucket bi, i.e.
a � lowi; b < highi, we de�ne p[a;b);i :=

b�a
highi�lowi

and

obtain

Si
[a;b) :=

bDj �p[a;b);ic�1X
l=0

frqj

�
a+ l �

highj�1�lowj

Dj �p[a;b);j

�
.

(10)

This equation can be transformed into the form
Si
[a;b] =
 � Di + � with constants
 and � that

can be e�ciently calculated from a, b, lowi, highi,
�i, �i, and Di, but does not involve any sum-
mations over Di. This ensures that the calcula-
tion of a range-query selectivity estimation requires
only constant time for each bucket. Finally, the
result size of range queries for intervals spanning
more than one bucket can easily be estimated by
partitioning [va; vb) into [va; vhighj),[vlowj+1;highj+1),
: : : ,[vlowj+l�1

; vhighj+l�1),[vlowj+l
; vb) and summing

the estimated result sizes obtained by the above for-
mulas:

S[a;b) := Sj

[a;highj)
+
� l�1X
h=1

Sj+h
[lowj+h;highj+h)

�
+ Sj+l

[lowj+l;b)
.

(11)

6 Improved Fitting of Value Densities

So far the density of a bucket, i.e., the number of dis-
tinct values that fall into the bucket's value interval,
is simply based on counting the distinct exact-match
queries in the observed statistics (see Section 4.1).
Once we have formed buckets, we lose the informa-
tion on the value distribution within a bucket and
need to resort to the assumption of equidistant val-
ues. This assumption, however, can lead to signi�-
cant distortions in the result-size estimations for range
queries if there is a skew in the actually occurring val-
ues. To illustrate this kind of estimation error, con-
sider a simple example with a bucket bi ranging from
vlowi

= 10 to vhighi = 20 with actually observed value-
frequency pairs

�
(vl; fl)

�� lowi � l � highi � 1
	
=�

(10; 100); (11; 90); (12; 80); (13; 70); (19; 10)
	
. So

the majority of the observed values lie in the �rst half
of the bucket, and these values are also much more fre-
quent. The spline function that results from the �tting

430

according to Subsection 4.1 is frqi(v) = �10v + 200
(which actually has zero error for the particularly as-
sumed frequencies in this bucket). The density Di of
the bucket simply equals highi � lowi = 5, i.e., the
number of observed values. Now suppose that range
queries mostly refer to intervals in the �rst half of
the bucket, which may not be surprising at all given
that this is where we have observed more data values.
(But note that, in general, the distribution of the data
does not have to be correlated with the distribution
of the actual query parameters.) Then, not taking
into account the skew in the value density within the
bucket would lead to a signi�cant estimation error for
such range queries. For example, the result size of a
range query S[10;16) for an interval from 10 through 16
would be estimated as frq(10) + frq(13) + frq(16) =
100 + 70 + 40 = 210 based on the equidistant-values
assumption and the fact that the query range covers 3

5
of the bucket interval. The actual result size, however,
is 100 + 90 + 80 + 70 = 340, quite a large deviation
from the estimated size.

To rectify the discussed kind of problem, we adjust
the density values Di that are kept for the buckets
of a spline-based synopsis by considering additional
feedback from range queries. This leads to another
�tting problem that aims to minimize the estimation
error for range queries. Note, however, that this is
addressed as a subsidiary issue which leaves the pre-
viously completed �tting of the frequency values (ac-
cording to Section 4) invariant and only aims to ad-
just the density values for reducing the estimation er-
ror. Again, we are driven by adapting our estimations
to the skew in queries, to obtain a more accurate es-
timation for frequently queried intervals, at the ex-
pense of a larger error for less important ones. For
this task, we examine a set of query feedbacks from
range queries F :=

��
[aj ; bj); sizej

�
; j = 1; : : : ; k

	
with sizej =

P
�jaj�v�<bj

f� being the total number

of tuples (i.e., counting duplicates) in interval [aj ; bj).
We are interested in �nding the optimal Di, such that

~E :=
kX

j=1

(sizej � S[aj ;bj))
2

is minimized where the S[aj ;bj) are the estimated re-
sult sizes for the most recent k observed range queries.
Now, S[aj ;bj] can be rewritten as (cf. formula 9):

S[aj ;bj) =
� mX
l=0

j;l �Di

�
+ �j (12)

The problem of �nding the optimalDi values that min-
imize the error ~E can be formulated as a problem of
linear least squares . Here, the design matrix A holds
k �m components. We de�ne

Ajl :=
j;l for j = 1; : : : ; k and l = 1; : : : ;m

and b =

� size1��1
...

sizek��k

�
. Now the �tting problem can

be de�ned as �nding a =

� D1

...
Dm

�
that minimizes

~E := jA � a� bj2.
We can again compute a using an SVD [26], analo-

gously to Section 4.1. One drawback of this approach
is that the space requirement of A and b increase in
proportion to the number of query feedbacks k, re-
sulting in considerable overhead when \�tting" long
series of query feedbacks. However, since the feed-
back arrives incrementally, we can use an iterative �t-
ting technique know as the recursive least squares re-
gression [29]. For this incremental approach, we only
need to maintain two m�m matrices, as opposed to a
k �m matrix. These matrices are updated with each
feedback (for a detailed description of recursive least
squares regression in the context of database-query
feedback, see [4]). Sincem (i.e, the number of buckets)
is a rather small constant, the resulting overhead for
the �tting is a�ordable.

7 Result-Size Estimation for Projec-
tions and Grouping Queries

The density of attribute values, i.e., the number of
distinct values within certain ranges, is the decisive in-
formation for estimating the result sizes of projections
with duplicate elimination. Although such projections
themselves are not among the most critical operators
as far as query optimization is concerned, implicit pro-
jections take place also in grouping and aggregation
operators. The latter are de�nitely among the most
important operators in modern decision-support ap-
plications. In this section we show how the size of pro-
jections in combination with a range-�lter condition
can be estimated from our approximative synopses.

We denote the number of distinct values that fall
into interval [va; vb) by P[a;b). When the query
range corresponds to the boundaries of a bucket bi,
P i
[lowi;highi)

is simply approximated by Di. If [va; vb) is

completely contained in bi, P
i
[a;b) := p[a;b);i �Di, where

p[a;b);i is the fraction of the bucket's interval covered by
the query range (see Section 5). Finally, for intervals
spanning multiple buckets, the result-size estimation
can be obtained using an partitioning similar to the
one employed in formula 11:

P[a;b) := P j

[a;highj)
+
� l�1X
h=1

P j+h
[lowj+h;highj+h)

�
+ P j+l

low[j+l;b)
.

8 Experimental Results

In this section we present experimental results, using
synthetic data sets. In order to illustrate the e�ec-
tiveness of our approach, we compare its accuracy for

431

several estimations problems to histograms proposed
in [24, 25].

8.1 Experimental Comparison of the Estima-
tion for Exact-Match Queries

We have experimentally studied the accuracy of sev-
eral techniques for approximating and estimating the
result size of exact-match queries of type sizei =
ft 2 R j t:A = vig. We compared the spline-based
synopsis developed in Section 4 to the well-studied
equi-depth and equi-width as well asMaxDi�(V,A) [25]
and V-optimal(V,F) [17] histograms.

Because our technique stores four values per bucket
(low value bound, frequency of the low value bound,
slope of the frequency curve, and density), whereas
traditional histograms store only three (low value
bound, average frequency, density), our technique uses
only 3

4 of the buckets of traditional histograms in
the experiments. As error measure we again use the
squared-error norm: with sizei denoting the actual re-
sult size of query i and S0i the size-approximation, we
measure

P
i(sizei � S0i)

2. We have studied a variety

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

0 20 40 60 80 100 120

S
qu

ar
ed

 E
rr

or

Number of values used for storage

Overall Error for Exact-Match Queries

Equi-width
Equi-depth

MAX-DIFF(V,A)
V-OPTIMAL

Spline (optimal)
Spline (greedy-split)

Spline (greedy-merge)

Figure 1: Squared error of various techniques

of data distributions, including the synthetic data sets
from earlier studies on histograms, real-life data sets
like the NBA database [23], and also completely ran-
dom data. All of these produced comparable results
as far as the estimation accuracy of the studied al-
gorithms is concerned. Here we restrict ourselves to
presenting the results for a single synthetic distribu-
tion: The value set size is n = 500, the domain size is
N = 4096, and the relation size is jRj = 105. The data
distribution was generated by assigning the individual
frequencies randomly, using an uniform distribution.
Note that this poses some form of stress test for the
various approximation methods, as the data exhibits
both highly skewed frequencies and high irregularity.
Furthermore, the data distribution exhibits only low
linear correlation, thereby minimizing the gain result-
ing from the use of linear spline approximation. For
this experiment, Figure 1 shows the squared error of

the various methods under comparison as a function
of the number of values that each method can store
with a given amount of memory space. So the num-
ber of buckets is 1=4 of the number of stored values
for the spline-based synopsis, and 1=3 of the num-
ber of stored values for the histograms. As the �g-
ure shows, the optimal spline-based synopsis performs
better than all histograms, while GREEDY-SPLIT
and V-optimal histograms o�er comparable accuracy.
In data distributions of higher linear correlation, the
optimal spline-based synopsis again outperforms all
other methods, however, the GREEDY-SPLIT and
GREEDY-MERGE partitioning also surpass the ac-
curacy of all histogram methods. To illustrate the en-
hanced accuracy of our approach, Figure 2 shows two
examples for the �tting of a completely random dis-
tribution (i.e., uniformly distributed frequencies) with
n = 30 di�erent attribute values. Both MaxDi� his-
tograms and the spline-based synopsis adapt them-
selves to the data in that they choose smaller bucket
widths for ranges with high
uctuations. In addition,
however, the spline-based synopsis enables us to cap-
ture trends within certain ranges of the data, whereas
histograms merely re
ect average frequencies in these
ranges.

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40

A
ttr

ib
ut

e
F

re
qu

en
cy

Attribute Value

Approximation by Spline-based Synopsis (optimal)

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

A
ttr

ib
ut

e
F

re
qu

en
cy

Attribute Value

Approximation by MAX-DIFF(V,A) Histogram

Figure 2: Illustration of approximation quality

432

8.2 Experimental Comparison of the Estima-
tion for Range-Queries

Using the synthetic data set described in Subsec-
tion 8.1, we have also examined the accuracy of the
various techniques for estimating the size of range
queries, using the techniques of Section 4. We consid-
ered the following types:
A :fX<b j b 2 Dg, C : fa�X<b j a; b 2 D; a�bg,
B :fX < b j b 2 Vg, D :fa � X < b j a; b 2 V ; a � bg,
E :fa�X<a+� j a 2 Dg, F :fa�X<a+� j a 2 Vg
with a; b randomly chosen from the underlying value
sets according to a uniform distribution.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 100 120

S
qu

ar
ed

 E
rr

or

Number of values used for storage

Error in Range-Selectivity Estimation

Equi-width
Equi-depth

MAX-DIFF(V,A)
V-OPTIMAL

Spline (optimal)
Spline (greedy-split)

Spline (greedy-merge)

0

100

200

300

400

500

600

700

800

900

1000

1100

0 20 40 60 80 100 120

Li
ne

ar
 E

rr
or

Number of values used for storage

Error in Range-Selectivity Estimation

Equi-width
Equi-depth

MAX-DIFF(V,A)
V-OPTIMAL

Spline (optimal)
Spline (greedy-split)

Spline (greedy-merge)

Figure 3: Squared and linear error for range queries

In Figure 3 we show the experimental results for query
type A; the experiments for the other query types
showed the same qualitative results and are thus omit-
ted here. In order to illustrate that our algorithm {
while geared for the least-squares error metric { also
results in good estimations with respect to other error
metrics, we show the average linear error of a query in
addition to the squared error. The MaxDi�(V,A) his-
togram exhibits the worst accuracy in its estimations
because of the intricacies of the data set: the data con-
tains many large \jumps" in the frequencies of subse-
quent attribute values, thereby producing several very
small buckets. Interestingly, the optimal partitioning
does not always lead to the optimal overall error for
range queries; this is due to the fact that the partition-
ing is initially geared towards minimizing the error for

exact-match queries rather than range queries. How-
ever, the chart shows that all partitioning techniques
for spline-based synopses perform almost equally well,
surpassing the histogram-techniques. Again, when us-
ing data of higher linear correlation, this trend be-
comes more clear.

9 Conclusion and Future Work

In this paper we have developed a novel ap-
proach to query result-size estimation based on a
feedback-driven approximative representation using
linear splines that are allowed to be discontinuous
across buckets. To the best of our knowledge, this is
the �rst approach that combines the adaptivity with
regard to evolving query locality (i.e., actual parame-
ters of the queries) with a very high accuracy of the
estimations even in the presence of highly irregular,
skewed distributions. In fact, our experimental studies
have shown that the spline-based synopses are superior
to histograms in terms of accuracy.

The main issue that we have addressed and solved
is the �tting of the free parameters of a spline-based
synopsis to the observed query feedbacks. This has
involved both �nding appropriate bucket boundaries {
the partitioning problem { and a least-squares regres-
sion for each bucket. We have seen that the initial feed-
back from exact-match queries that we have considered
can be enhanced by additional feedback from range
queries for an improved �tting of the density value
kept in each bucket. However, it has to be noted that
there is the unresolvable tension in �tting these values
for di�erent query types such as range queries versus
projections or grouping/aggregation queries (unless we
wanted to keep di�erent synopses for di�erent query
types at the expense of more memory space). Our
preference for range queries was mostly driven by the
observation that estimation errors in the earliest op-
erators typically have the most severe impact as the
error propagates through the operator tree.

Extending our technique for spline-based syn-
opses to multiple dimensions (i.e., attribute combi-
nations) is relatively straightforward; however, some
open issues remain. When �tting d-dimensional
data

�
(vi;1; : : : ; vi;d); fi

�
i=1;::: ;n

, we partition the data

space into a mesh consisting of md d-dimensional in-
tervals determined m observed data points. While the
approximation of a multidimensional frequency func-
tion for each bucket is straightforward (�tting via SVD
for d+1 coe�cients), we are in the process of studying
good partitioning techniques that can be computed in
acceptable time.

The techniques described in this paper can be fur-
ther extended to the �tting of feedback generated by
equi-join queries. When computing the result size of a
join over an interval bi = [a; b), the decisive factor for
an accurate estimation of the join size is the accuracy
in estimating the number of joining values ti from the

433

two relations whose join-attribute values fall into bi.
While a number of heuristics that estimate ti from the
interval's density (i.e., its number of distinct values)
have been put forth in the literature, to the best of
our knowledge none of these techniques are very accu-
rate for arbitrary distributions of the occurring join-
attribute values. An approach that we are pursuing
is to exploit feedback from equi-join queries by ob-
serving and keeping the number of join tuples within
observable value intervals for each pair of frequently
joined relations (while resorting to simpler heuristics
for infrequent join relations). For a given join with ti
joining values in a join-attribute interval bi = [a; b),
the join result size would be estimated from the value-
frequency synopses of the two relations R1;R2 as fol-
lows:

S[a;b)=

ti�1X
i=0

frqR1

i

�
a+

i

ti
(b� a)

�
� frqR2

i

�
a+

i

ti
(b� a)

�
.

Our approach would then aim to determine a �tting
for the ti values into a compact synopsis (whose num-
ber of buckets is much smaller than that of the ob-
served t values and result sizes). Unfortunately, S[a;b)
can not be rewritten as a function that is linear in
ti, thereby making least-squares �tting infeasible. In-

stead, S[a;b) = � � ti + � +
�

ti
, which can be �t

with adequate accuracy using iterative numerical tech-
niques [26].

References

[1] D. Barbar�a, W. DuMochel, C. Faloutsos, P.J.
Haas, J.M. Hellerstein, Y. Ioannidis, H.V. Jagadish,
T. Johnson, R. Ng, V. Poosala, K.A. Ross, and K.C.
Sevcik. The New Jersey Data Reduction Report.
Technical report, 1997.

[2] S. Chaudhuri. An overview of query optimization in
relational systems. In ACM PODS, pages 34{43, 1998.

[3] S. Chaudhuri, R. Motwani, and V.R. Narasayya. Ran-
dom sampling for histogram construction: How much
is enough? In Proc. of the ACM SIGMOD Confer-
ence, pages 436{447, 1998.

[4] C.M. Chen and N. Roussoploulos. Adaptive selectivity
estimation using query feedback. In Proc. of the ACM
SIGMOD Conference, pages 161{172, May 1994.

[5] C. de Boor. A practical guide to splines. Springer-
Verlag, 1978.

[6] P. Dierckx. Curve and Surface Fitting with Splines.
Monographs on numerical Analysis. Oxford Science
Publications, 1993.

[7] S. Ganguly, P.B. Gibbons, Y. Matias, and A. Silber-
schatz. Bifocal sampling for skew-resistant join-size
estimation. In Proc. of the ACM SIGMOD Conf, 1996.

[8] P.B. Gibbons and Y. Matias. New Sampling-
Based Summary Statistics for Improving Approximate
Query Answers. In Proceedings of the ACM SIGMOD
Conference, 1998.

[9] P.B. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. Tech. report, Bell Labs, 1998.

[10] P.B. Gibbons, Y. Matias, and V. Poosala. Fast Incre-
mental Maintenance of Approximate Histograms. In
Proc. of the 23rd VLDB Conference, 1997.

[11] Phillip B. Gibbons, S. Acharya, Y. Bartal, Y. Ma-
tias, S. Muthukishnan, V. Poosala, S. Ramaswamy,
and T. Suel. AQUA: System and techniques for ap-
proximate query answering. Tech. report, Bell Labs,
1998.

[12] Peter J. Haas. Selectivity and cost estimation for joins
based on random sampling. Journal of Computer and
System Sciences, pages 550{569, 1996.

[13] Y. Ioannidis. Univeratility of Serial Histograms. In
Proceedings of the 19th VLDB Conference, pages 256{
267, December 1993.

[14] Y. Ioannidis and S. Christodoulakis. On the propa-
gation of errors in the size of join results. In Proc. of
ACM SIGMOD Conf., pages 268{277, 1991.

[15] Y. Ioannidis and S. Christodoulakis. Optimal His-
tograms for limiting Worst-Case Error Propagation
in the Size of Join Results. In ACM TODS, 1993.

[16] Y. Ioannidis and V. Poosala. Balancing Histogram
Optimality and Practicality for Query Result Size Es-
timation. In Proceedings of the ACM SIGMOD Con-
ference, pages 233{244, May 1995.

[17] H. V. Jagadish, N. Koudas, S. Mutukrishnan, V. Poos-
ala, K. Sevcik, and T. Suel. Optimal Histograms with
Quality Guarantees. In Proc. of the 24th Int. VLDB
Conf., pages 275{286, August 1998.

[18] N. Kabra and D.J. DeWitt. E�cient mid-query re-
optimization of sub-optimal query execution plans. In
Proceedings of the ACM SIGMOD Conference, 1998.

[19] Y. Ling and W. Sun. An evaluation of sampling-based
size estimation methods for selections in database sys-
tems. In Proc. of the ICDE Conf., 1995.

[20] M.V. Mannino, P. Chu, and T. Sager. Statistical Pro-
�le Estimation in Databbase Systems. In ACM Com-
puting Serveys, 1988.

[21] Y. Matias, J.S. Vitter, and M. Wang. Wavelet-Based
Histograms for Selectivity Estimation. In Proc. of the
ACM SIGMOD Conf., pages 448{459, 1998.

[22] K. Mehlhorn, S. N�aher, and C. Uhrig. LEDA: Library
of E�cient Data types and Algorithms. available via
ftp:mpi-sb.mpg.de, 1997.

[23] NBA Statistics for the 91-92 Season. available under:
ftp:olympos.cs.umd.edu.

[24] V. Poosala. Histogram-based Estimation Techniques
in Database Systems. PhD thesis, University of
Wisconsin-Madison, 1997.

[25] V. Poosala, Y.E. Ioannidis, P.J. Haas, and E.J.
Shekita. Improved Histograms for Selectivity Estima-
tion or Range Predicates. In Proc. of the 1996 ACM
SIGMOD Conference on the Management of Data,
pages 294{305. ACM Press, 1996.

[26] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P
Flannery. Numerical Receipes in C, The Art of Scien-
ti�c Computing. Cambridge University Press, 1996.

[27] M. Sniedovich. Dynamic Programming. Marcel
Dekker, Inc., 1992.

[28] W. Sun, Y. Ling, N. Rishe, and Y. Deng. An instant
and accurate size estimation method for joins and se-
lections in an retrival-intensive environment. In Proc.
of the ACM SIGMOD Conference, pages 79{88, 1993.

[29] P. Young. Recursive Estimation and Time-Series
Analysis. Springer-Verlag, 1984.

434

