Semantic Compression and Pattern Extraction with
Fascicles

H.V. Jagadish
U. Michigan, Ann Arbor
jagQcs.uiuc.edu

Abstract

Often many records in a database share similar
values for several attributes. If one is able to
identify and group together records that share
similar values for some — even if not all — at-
tributes, one can both obtain a more parsimo-
nious representation of the data, and gain useful
insight into the data from a mining perspective.

In this paper, we introduce the notion of fasci-
cles. A fascicle F'(k,t) is a subset of records that
have k compact attributes. An attribute A of a
collection F' of records is compact if the width of
the range of A-values (for numeric attributes) or
the number of distinct A-values (for categorical
attributes) of all the records in F does not ex-
ceed t. We introduce and study two problems re-
lated to fascicles. First, we consider how to find
fascicles such that the total storage of the rela-
tion is minimized. Second, we study how best to
extract fascicles whose sizes exceed a given min-
imum threshold (i.e., support) and that repre-
sent patterns of maximal quality, where quality
is measured by the pair (k,t). We develop al-
gorithms to attack both of the above problems.
We show that these two problems are very hard
to solve optimally. But we demonstrate empiri-
cally that good solutions can be obtained using
our algorithms.

Permission to copy without fee all or part of this material is
granted provided that the copies are mot made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

186

Jason Madar
U. British Columbia
jmadar@cs.ubc.ca

Raymond T. Ng
U. British Columbia
rng@cs.ubc.ca

[Name [Position [Points [Played Mins | Penalty Mins |
Blake defense 43 395 34
Borque defense 77 430 22
Cullimore defense 3 30 18
Gretzky centre 130 458 26
Konstantinov defense 10 560 120
May winger 35 290 180
Odjick winger 9 115 245
Tkachuk centre 82 530 160
Wotton defense 5 38 6

Figure 1: A Fragment of the NHL Players’ Statistics
Table

1 Introduction

Figure 1 shows part of a table of National Hockey League
(NHL) players’ statistics in 1996. For each player, his
record describes the position he played, the number of
points he scored, the number of minutes he was on the ice
and in the penalty box. While there are players of almost
every possible combination, there are numerous subsets
having very similar values for many attributes. In other
words, records in one of these subsets vary considerably
only in the other attributes. For example, (i) Cullimore
and Wotton belong to a group of defensemen who played,
scored and penalized sparingly; and (ii) Borque, Gretzky
and Tkachuk belong to another group who played and
scored a lot. Identification of such subsets can be the
basis for good compression schemes, and can be valuable
for data mining purposes.

To do so, the crucial first step is the identification
of what we call fascicles'. A k-dimensional, or k-
attributed, fascicle F(k,t) of a relation is a subset of
records that have k& compact attributes. An attribute A
of a collection F' of records is compact if the width of
the range of A-values (for numeric attributes), or the
number of distinct A-values (for categorical attributes)
of all the records in F' does not exceed t. We refer to ¢
as the compactness tolerance. For instance, in Figure 1,
suppose the compactness tolerance imposed on the at-
tributes are: tposition = 1 (i-€., exact match is required),
tPoints = 10, tPlayedMins = 60 and tPenaltyMz'ns = 20.

L According to Webster, a fascicle is 1. a small bundle; 2. one
of the installments of a book published in parts.

Then Cullimore and Wotton are in a 4-D fascicle with
Position, Points, Played Mins and Penalty Mins as
the compact attributes. Different fascicles may have dif-
ferent numbers and sets of compact attributes.

Now given a fascicle, we can minimize its storage re-
quirement by projecting out all the compact attributes
and storing their representative values only once sepa-
rately. More precisely, suppose we have N records in
a relation with n attributes, each requiring b bytes of
storage for a total of Nnb bytes. Suppose we are able
to find ¢ fascicles, each with k& compact attributes pro-
jected out, such that they together cover all but Ny of
the records. Then the storage required for a fascicle with
cardinality s is kb+ (n — k)bs. Adding up over all ¢ fas-
cicles, we get keb+ (n — k)(IN — No)b. Thus, in total, we
save (N — Ng — c¢)kb bytes of storage. If we are able to
get small values for Ny and for ¢, at least compared to
N, then the storage savings would be almost Nkb bytes.
Thus, we consider the following problem:

[Storage Minimization with Fascicles] Find
fascicles such that the total storage is minimized.

Note that existing compression techniques are “syntac-
tic” in the sense that they operate at the byte-level.
Compression with fascicles are “semantic” in nature in
that the tolerance ¢ takes into account the meanings and
the dynamic ranges of the attributes. The two styles of
compression are orthogonal and can work in tandem. In
Section 4.2, we will show experimentally that:

¢ (lossless compression mode) First using fasci-
cles only to re-order the tuples, and then applying
normal syntactic compression on the re-ordered re-
lation results in substantially greater compression
than applying syntactic compression alone.

¢ (lossy compression mode) First performing lossy
compression with fascicles by removing compact at-
tributes, and then applying normal syntactic com-
pression on the remaining attributes can reduce the
final compressed size a few times more.

Furthermore, because fascicles are semantic in nature,
the contents of the fascicles constitute patterns with le-
gitimate semantic meanings. Provided that the size of
a k-D fascicle is not small, the fascicle represents a sig-
nificant sub-population that more or less agrees on the
values of the k attributes. For instance, corresponding
to a certain 3-D fascicle, amazingly there are about 25%
of NHL players who had little impact on the game, i.e.,
their Points, Played Mins and Penalty Mins all very
low (e.g., Cullimore and Wotton in Figure 1). Such ob-
servations are clearly of data mining value.

From a data mining perspective, the quality of a fas-
cicle is measured by two components: t, the compact-
ness tolerance, and k, the number of compact attributes.
Given the same compactness tolerance, a fascicle with
more compact attributes is of higher quality than an-
other with fewer compact attributes. Similarly, given

187

the same number of compact attributes, a fascicle with
a smaller compactness tolerance is of higher quality than
another with a larger tolerance. Two fascicles are incom-
parable if one has more compact attributes but the other
has a smaller tolerance. This ordering of fascicles, for-
malized in Section 5.1, is denoted as >;. Now given
fascicles Iy, ..., F, all containing record R, we define:
That is, we are only interested in the fascicles with the
maximal qualities among Fy, ..., F,. Finally, we maxi-
mize the set Fas(R) for each record R. Since Fas(R)
is a set, maximization is conducted with respect to the
well-known Smyth ordering of power sets[20], denoted as
>, which will be detailed in Section 5.1. Thus, we have
the following problem:

[Pattern Extraction with Fascicles] Given a
minimum size m, find fascicles of sizes > m, such that
for all records R, Fas(R) is maximized with respect to

the ordering >.

In this paper, we will develop algorithms to solve both
the storage minimization and pattern extraction prob-
lems. These algorithms are strongly related to one an-
other. We will show that these two problems are hard
to solve optimally. However, we will demonstrate empir-
ically that our algorithms give good solutions. We will
also investigate the effect of various parameter choices.

The outline of the paper is as follows. In Section 2,
we describe the basic model of fascicles. In Section 3, we
develop two algorithms to solve the storage minimization
problem. In Section 4, we present experimental results
on semantic compression and storage minimization. In
Section 5, to solve the pattern extraction problem, we
show how to modify previous algorithms and present em-
pirical results. In Section 6, we discuss related work.

2 Model and Assumptions

Altogether there are three parameters in the fascicle
framework. First, there is the compactness tolerance t.
Strictly speaking, ¢ should be represented as # because,
as shown in the earlier NHL example, each attribute
should have its own compactness tolerance. We simplify
our presentation here by using ¢ instead of . Moreover,
in practice, more elaborate definitions of compactness
are possible. For instance, values of a categorical at-
tribute can be organized in a generalization hierarchy
and the compactness tolerance defined in terms of the
depth of the hierarchy. For numeric attributes, one could
specify compactness based on quantiles rather than ac-
tual values. The specific definition of compactness is
not central to the algorithms developed here. For ease
of discussion, we use the definition given in Section 1.
The second parameter in the fascicle framework is
the minimum size parameter m. For storage minimiza-
tion, the smaller the value of m > 2, the more fascicles

could be found and the larger the potential for minimiza-
tion. Thus, in principle, m is not a key parameter in the
storage minimization problem, although in practice very
small fascicles, with only a few records, do result only
in small incremental savings in storage. For pattern ex-
traction, however, m plays a more critical role. If the
value of m is too small, this indicates that the pattern
applies to too small a sub-population. In this setting, m
plays a role akin to the support threshold in association
rule mining.

Finally, there is the dimensionality parameter k, the
number of compact attributes required of a fascicle. In
both the storage minimization and pattern extraction
problems, k plays a central role. Our algorithms to find
fascicles treat k as the main independent variable.

3 Solving the Storage Minimization
Problem

In this section, we study the storage minimization prob-
lem. We first develop algorithms to find candidate fas-
cicles, and show how to minimize storage by selecting
from amongst these candidates.

3.1 The Single-k Algorithm

Below we develop the Single-k algorithm, which finds
k-D fascicles for a given value k. Later we show how
to extend the Single-k algorithm to form the Multi-k
algorithm, which finds fascicles with dimensionalities >
k.

3.1.1 The Basic Approach: a Lattice-based
Conceptualization

Consider a lattice consisting of all the possible subsets
of records in the given relation. As usual, an edge exists
between two subsets S,T if S D T and |S| = |T| + 1.
At the top of the lattice is a single point/set, denoted as
T, representing the entire relation. At the bottom of the
lattice is a single point L representing the empty set. Let
n be the total number of attributes in the relation, and &
(0 < k < n) be the number of compact attributes desired
in a fascicle. Consider any path (L,S;,S2,...,T) link-
ing the bottom and top points in the lattice. Trivially, L
and set S1, which consists of a single record, are n-D fas-
cicles. By the definition of a fascicle, it is clear that if S
is a superset of T', and if S is a j-D fascicle, then T" must
be an i-D fascicle for some ¢ > j. This monotonicity
property guarantees that for any given value 1 < k <mn,
either T is itself a k-D fascicle?, or there must exist two
successive sets Si, S;y1 on the path such that: (i) S;
is an 4-D fascicle, and (ii) S;y1 is a j-D fascicle, with
j <k <i. Wecall S; a tip set.

21f this rather unlikely corner case applies, our problem is triv-
ially solved. To keep our exposition clean, we assume that this
corner case does not apply in the sequel. That is, T is a 7-D fasci-
cle for some j < k. For all practical purposes, T, consisting of the
entire relation, is almost never a j-D fascicle for any j > 0, and k&
is always chosen to be at least one.

188

To put it in another way, S is a (k-D) tip set if S is
a k-D fascicle, and there is an (immediate) parent T of
S in the lattice such that T is a j-D fascicle with j < k.
Within the class of tip sets, there is a subclass that we
call mazimal sets. S is a (k-D) maximal set if S is a k-D
fascicle, and for all parents T of S in the lattice, T is a
j-D fascicle with j < k.

Our goal is to find maximal sets. Forming the bor-
der analyzed in [16], the set of maximal sets completely
characterizes all k-D fascicles. However, given the huge
size of the lattice space, the entire set of maximal sets is
so large that its computational cost is prohibitive. Fur-
thermore, as we will see, we cannot in any case afford to
select optimally from a given set of candidate fascicles
for the problems we seek to address. It may suffice to
compute some, but not all, maximal sets. Below we de-
scribe how the Single-k algorithm selects “good” initial
tip sets, and eventually grows them to maximal sets.

3.1.2 Choosing Good Initial Tip Sets

Conceptually, to find a tip set, we begin by picking a
random record as the first member of a tip set. We then
add in a second record at random, and then a third,
and so on — until the collection of records is no longer
a k-D fascicle. In essence, we are constructing a path
(L,S51,8s,...,5;:). We can repeat this process as many
times as we wish, each time exploring a different path
up the lattice.

Given a relation that does not fit in main memory,
each record sampled would require one disk access. To
minimize the amount of I/O activity performed, a com-
monly used technique is “block sampling”, where an en-
tire disk page is read into memory and all records on
the page are used. We propose to adopt this approach
as well, but there is an important difference. In tradi-
tional sampling, possible correlations between co-located
records can be compensated for by increasing the sample
size. In our case, the specific ordering of records in the
sample is of critical importance. Increasing the sample
size would be of no help at all. For example, suppose
that the hockey players relation is stored on disk sorted
by Played Mins. When we consider successive records,
they will very likely have Played Mins as a compact
attribute, to the potential detriment of other possible
compact attributes.

To address these concerns, we read into memory some
number b of randomly sampled blocks of the relation.
Now we can work purely with the sample of the rela-
tion in memory, without paying any attention to block
boundaries. From amongst the records in memory, we
can choose records based on a random permutation of
the records (without physically sorting them). When
one tip set is complete, the first record that would ren-
der it non-compact is used to start a second tip set, and
so on. Once all records in the sampled relation have
been considered once, a new random permutation of the
records is established, and more tip sets are generated.

Algorithm Single-k

Input: A dimensionality k, number of fascicles P, a buffer of b pages, and a relation R of r pages

Output: P k-D fascicles

{ 1. Divide R into ¢ disjoint pieces, each comprising upto b randomly chosen pages from R, i.e., ¢ = [r/b].

2. For each piece: /* choosing initial tip sets */
2.1 Read the piece into main memory.

2.2 Read the records in main memory to produce a series of tip sets as discussed in Section 3.1.2.
2.3 Repeat 2.2, each with a different permutation of the records, until P/q tip sets are obtained.

3. /* growing the tip sets */

Grow all P tip sets, as discussed in Sections 3.1.3, with one pass over the relation. Output the grown tip sets. }

Figure 2: A Skeleton of the Single-k Algorithm

This process is repeated as many times as desired. All
operations are in memory and that no (physical) sorting
is required.

Because of the oversampling we perform, it is possible
not to work with just a single sample of the relation.
Instead, we can produce some tip sets working with the
sampled relation described above; when this is done, we
can obtain a fresh sample of b completely different pages
from the relation on disk, and repeat. Proceeding thus,
we can consider the entire relation as ¢ disjoint pieces,
where each piece is a random collection of pages.

3.1.3 Growing a Tip Set to a Maximal Set

Tip sets obtained thus far leave two aspects to be desired.
First, they are confined to records in one piece of the
relation. We seek to “grow” a tip set so that it includes
all qualified records from the remaining pieces of the
relation. Second, with respect to the conceptual lattice
discussed earlier, a tip set may be far from maximal. We
seek to make a tip set maximal.

This turns out to be quite easy to do. A tip set ob-
tained thus far has k compact attributes, corresponding
to k attribute value ranges (for numeric attributes) or
sets of values (for categorical attributes). These in effect
specify a k-D selection predicate on the relation. And
we can simply evaluate a query that returns all records
matching the query, such as by scanning the entire re-
lation one more pass. The newly grown tip set is still
a k-D fascicle. We refer to this process as the tip set
growing phase.

With respect to maximality, the simple scan above is
sufficient for most circumstances. Specifically, if before
the growing phase the k compact attribute ranges and
values of a tip set are already at the maximum “width”
allowed by t, then it is easy to see that after the grow-
ing phase, the newly grown tip set has indeed become
a maximal set, i.e., it is impossible to add any more
record to keep it a k-D fascicle. In the less common
circumstances, where before the growing phase there is
some compact attribute that still has room to reach the
maximum allowable width, maximality can be achieved
by expanding the compact range or set dynamically un-
til the maximum width is reached. For lack of space, we
omit the details here; see [15] for details and an argu-

189

ment why maximality is guaranteed.

In summary, Figure 2 shows a skeleton of the Single-k
algorithm. It is a randomized algorithm that computes
k-D fascicles, all of which are maximal sets. Note that
the algorithm does not compute all k-D fascicles. In
Section 4.6, we will present an alternative algorithm that
computes all k-D fascicles, but will show that such an
alternative is both ineffective and impractical.

3.2 The Multi-k Algorithm

Recall that for both the storage minimization problem
and the pattern extraction problem, we may allow fas-
cicles to vary in their dimensionalities. The Single-k al-
gorithm, however, only produces fascicles with one spec-
ified value k. The problem here is that the algorithm
may miss out on the opportunities offered by the fasci-
cles with higher values of k. For instance, there could be
a fascicle of dimensionality 10 that is a subset of a fas-
cicle (of dimensionality 6) found by the algorithm. The
higher dimensionality fascicle, if known and exploited,
can clearly lead to additional reduction in storage cost.

One simple way to overcome the above problem is
to run the Single-k algorithm repeatedly, each with a
different value of k. But different runs of the algorithm
share many repetitive operations, including the relation
scans. The Multi-k algorithm exploits this sharing to
produce fascicles all having dimensionalities > k.

Recall from the Single-k algorithm how a k-D tip set
corresponds to a path (1,S57,55,...,5;). Observe that
as we move from the beginning of the path to the end
of the path, the dimensionality of the corresponding fas-
cicle decreases monotonically. Thus, while the Single-k
algorithm constructs a path (1,S51,S5s,...,S5;) and ob-
tains S; as a k-D tip set, the Multi-k algorithm uses
exactly the same path to obtain the largest set on the
path with dimensionality 4, for i > k.

Let us illustrate this by an example. Suppose there
are a total of n = 12 attributes in the relation. Sup-
pose k = 6, and the path corresponding to a particu-
lar 6-D tip set computed by the Single-k algorithm is
(L,81,85,...,510). The following table shows the di-
mensionality of each set on the path:

Set L S1 Sy | Ss | Sa | S5 | Se
k 12 | 12 | 12 | 11 | 11 | 11 9

Set S7 | Ss | S | Sio
k 9 8 6 6

The Multi-k algorithm uses the same path to obtain the
tip sets Sa2, S5, S7, Sg and S19 with dimensionalities 12,
11, 9, 8 and 6 respectively.

To complete the description of the Multi-k algorithm,
these tip sets with varying dimensionalities can all go
through the same growing phase together to become
maximal sets, sharing one relation scan. Thus, Figure 2
presents an accurate skeleton of the Multi-k algorithm,
provided that Step 2.2 is modified to implement the pro-
cedure discussed in the previous paragraph.

No matter what the available amount of buffer space
is, both Single-k and Multi-k read each data page from
disk at most twice (i.e., once for Step 2 and once for
Step 3). Furthermore Step 3 is a sequential scan. Step
2 requires random pages to be read, but since the spe-
cific set of random pages is not material, it is conceiv-
able that clever techniques could choose “random” pages
while being aware of disk layout to optimize disk access.
This assumes that P is small enough to fit in memory,
which is easily achievable as will be shown by the results
in Section 4. For a relation R, the main memory com-
putational complexity of both algorithms is O(P|R)).

3.3 Greedy Selection for the Single-k Algorithm

To solve the storage minimization problem, the next step
is to select from amongst the candidate fascicles pro-
duced by either the Single-k or the Multi-k algorithms.
The main complication is that the candidate fascicles
may overlap. To proceed, let us consider briefly the “un-
weighted” version of the above task: find the minimum
number of candidate fascicles that cover the whole data
set. This turns out to correspond to the well-known min-
imum cover problem [12]. That is, given a collection C
of subsets of a finite set S and a positive integer K, is
there a subset C' C C with |C'| < K such that every
element of S belongs to at least one member of C'? The
minimum cover problem is NP-complete. Greedy selec-
tion is among the best heuristics that exist for solving
the minimum cover problem, and is the basis for our se-
lection algorithms. We discuss first greedy selection for
the Single-k algorithm.

To represent the storage savings induced by a fascicle
F, it is weighted by wt(F) = k % |F|, where k is the
dimensionality of F.3 This weight corresponds to the
storage savings induced by F', since there are k fewer
attributes to store for each record contained in F. In a
straightforward implementation of the greedy selection,
we select the candidate fascicle with the highest weight,
subtract from all the remaining fascicles records that
are in the selected fascicle, and adjust the weights of
the remaining fascicles accordingly. Specifically, if A is

3The value k is the same for all fascicles produced by the Single-
k algorithm. As such the multiplication by k& can be dropped.
However, for easier comparison with Equation (3) later, we show
the multiplication explicitly.

190

the selected fascicle, then the adjusted weight of each
remaining fascicle F' is given by:

wt(F/A) = k=x|F — A (2)
Then from among the remaining fascicles, we pick the
one with the highest adjusted weight, and repeat.

In [15], we give a more optimized implementation of
the above greedy selection. The basic idea is not to
do weight re-adjustment and re-sorting of the remaining
fascicles after each fascicle has been selected. Instead,
we pick a “batch” of fascicles F1,..., F, so that none of
them overlap with each other. At the end of each batch,
re-sorting and weight re-adjustment is done only once
based on U}, F;. This saves considerable overhead.

3.4 Greedy Selection for the Multi-k Algorithm

The weight re-adjustment formula is more complicated
for the Multi-k algorithm, because the candidate fas-
cicles may have varying dimensionalities. More impor-
tantly, as described in Section 3.2, the Multi-k algorithm
can generate many pairs of candidates Fj, Fy such that:
(i) F1 C F3, but (ii) k; > k2, where k; and ks are the
dimensionalities of the fascicles. If F5 is selected first,
then according to Equation (2), wt(Fy/F») becomes 0.
However, it is easy to see that even after F» is selected,
F can still be chosen to provide further storage savings,
albeit only to the records contained in Fj. Consider the
following example, where |Fi| = 50, ki1 = 8, |F>| = 100
and ky = 6. F5 is selected because its storage savings is
600, as compared with 400 from F;. However, for the 50
records contained in both F; and F5, they can indeed be
compressed further to 8 compact dimensions using F3.
This means an additional savings of 50 (8 —6) = 100 is
possible. To reflect this additional savings possibility, we
re-adjust the weight of a fascicle in a way more general
than in Equation (2):

kpx |F — A| if kp <kg
wt(F/A) = krx |F — Al+ (3)
(krp — ka) * |[FNA| otherwise

If the selected fascicle A is of the same or higher dimen-
sionality, then the weight of F' is re-adjusted as usual.
However, if A is of a lower dimensionality, then the
weight of F' includes the component (kp — ka) * |[F'NA|,
corresponding to the additional storage reduction of the
records in both 4 and F.

4 Experimental Evaluation for Semantic
Compression

4.1 Data Sets used and Experimental Setup

Since we seek to exploit hidden patterns in the data,
it is hard to perform any meaningful experiments with
synthetic data. We used two very different real data sets
for all our experiments:

| || syntactic only | fascicle re-ordering + syntactic | fascicle lossy + syntactic]

ascii (gzip) 0.45

0.32 0.14

binary (compress) 0.68

0.51 0.20

Figure 3: Relative Storage: Semantic Compression in Tandem with Syntactic Compression

¢ AT&T Data Set: This data set has 13 attributes
describing the behavior of AT&T customers, one
per record. Some attributes are categorical (e.g.,
calling plan subscribed), and others are numeric
(e.g., minutes used per month). This is a large data
set, of which 500,000 records were extracted ran-
domly and used for the bulk of the experiments.

¢ NHL Data Set: We have already seen a sample
of the NHL data set earlier in the paper. For each
of about 850 players, there is one record with 12
categorical and numeric attributes describing the
position the player played, the minutes played, etc.
Among numerous other sites, NHL players statistics
can be found in http://nhlstatistics.hypermart.net.

All experiments described in this section were run with
both data sets, and produced very similar results. For
lack of space, we only show in this section the re-
sults from the larger AT&T data set. All experiments
were run in a time-sharing environment provided by a
225MHz ultrasparc workstation.

As shown below, the behavior of the algorithms may
depend on the choices of values of several parameters:
the dimensionality k, the compactness tolerance ¢, the
number P of tip sets, the minimum size m of a fasci-
cle, and the data set size. Unless otherwise stated, the
default values are: data set containing 500,000 records,
P =500, m = 8, * and t = 1/32, which means that
for a numeric attribute A, t is set to be 1/32 the width
of the range of A-values in the data set, and that for a
categorical attribute A, t is set to be [w/32], where w
is the total number of distinct A-values in the data set.
For most of the categorical attributes in our data sets,
w is indeed < 32, which effectively means that we are
applying lossless compression to categorical attributes
with this ¢ value.

Results of interest are runtime, relative storage, and
coverage. Runtimes are given in seconds of total time
(CPU + 1/0). Relative storage is defined to be the ratio
of the size of the compressed data set to the original size.
Coverage is defined to be the percentage of records that
are contained in some fascicle after the greedy selection.

4.2 The Bottom Line: Semantic Compression
with Syntactic Compression

In this experiment we show how storage minimization
with fascicles can work in tandem with normal syntac-

48trictly speaking, for storage minimization, the minimum size
of a fascicle can be as low as 2. However, to allow some prun-
ing power for the FAP algorithm to be shown in Section 4.6, we
arbitrarily set m to a small integer.

191

tic compression algorithms. We used the unix gzip and
compress to compress the ascii and binary versions of
the data sets respectively. Figure 3 shows the relative
storage figures when (i) fascicles are used only to re-
order tuples for subsequent syntactic compression; and
(ii) fascicles are used to provide lossy compression on
compact attributes, followed by syntactic compression
on the remaining attributes.

For both the binary and ascii versions, Figure 3 shows
that even if we are to use fascicles simply to re-order tu-
ples (i.e., lossless compression here), the additional sav-
ings is considerable (e.g., an additional 30% =~ (0.45-
0.32)/0.45). And when we allow acceptable lossiness (as
governed by ¢t = 1/32 here) in the compact attributes,
the additional savings is substantial (e.g., 0.45 versus
0.14, a factor of 3).

4.3 The Effect of P, the Number of Tip Sets

Next we study the effect of the various parameters on the
Single-k and Multi-k algorithms. For all the results re-
ported below, we focus on the amount of storage savings
produced by fascicles alone. We begin with the internal
parameter P, the number of tip sets generated. Figure 4
shows how P affects the relative storage and runtime of
the two algorithms. We ran with: k = 4, P from 250
to 4000, m from 8 to 8000, and ¢ one of 1/16, 1/32 and
1/48. In terms of storage requirements, we make the
following observations:

e Even for as few as P = 250 tip sets, for a data set
of 500,000 records, both algorithms offer a storage
savings of over 30%. This indicates that both al-
gorithms are effective in generating (at least some)
good quality candidate fascicles.

e The Single-k algorithm is relatively insensitive to P
and gives a relative storage around 0.7 for all values
of P with t = 1/32 and m = 8. With other combi-
nations of ¢ and m, the relative storage changes in a
way to be described in Section 4.5. But in all cases,
we still get a very flat curve, which is not included
in Figure 4(a).

e In contrast, the Multi-k algorithm can be more sen-
sitive to P. For example, with ¢ = 1/32 or 1/16
and m = 8, Multi-k becomes more effective in stor-
age reduction with increasing P values. (Here we
focus on the shape of the curve; the absolute posi-
tion of the curve regarding changes in ¢t and m will
be discussed in Section 4.5.) This is the case be-
cause for the Multi-k algorithm, P corresponds to

runtime

Single-k (1/32,8) ~+-
Multi-k (1/32,8) —<—
Muilti-k (1/16,8000)
Multi-k (1/16,8) -©-
07 ﬁx——————— rrrrr A N
S T
g Te—
S 065 — 1
B e\e
©
= X
= =,
06
B
B
055 -
-
-8
. . . L
1000 2000 3000 4000

P, number of tip sets

(a) Storage Requirement

Multi-k:total —o— L
Single-k:total -+~ //
Multi-k: greedy selection only -x-
Single-k: greedy selection only -& // 7

L L L
1000 2000 3000 4000

P, number of tip sets

(b) Runtime

Figure 4: The Effect of P

the total number of j-D tip sets for all j > k. For
example, among a total of 4,000 tip sets found by
Multi-k, there may only be around 500 4-D tip sets
(there are 13 attributes). Thus, more tip sets are
required for the Multi-k algorithm to stablize in rel-
ative storage. However, with m = 8000, a situation
where there are not many tip sets to begin with,
even Multi-k becomes insensitive.

In terms of runtime, Figure 4(b) shows the total time
and the fraction of the total time spent on greedy selec-
tion for both algorithms with ¢ = 1/32 and m = 8. (The
runtime trends for other combinations are the same.)
The total time increases linearly with P, and there is
little difference between the two algorithms. But Multi-
k takes a lot longer in greedy selection than Single-k
does. This is the overhead in conducting the more so-
phisticated weight re-adjustment shown in Section 3.4.

For the remaining experimentation, because the run-
times of both algorithms increase linearly with P, and
the improvement of storage from using a larger P value
tails off quickly, we consider P = 500 as a reasonable
choice for our data sets. And all comparisons of the two
algorithms are based on the Multi-k algorithm obtaining
exactly the same number P of tip sets as the Single-k al-
gorithm. In previous paragraphs, we have explained how
Multi-k would compare if a larger value of P were used.
We note in passing that the buffer size used, b, has little
effect on the above results, so long as it is not too small
(say, a few percent of the data set size).

4.4 The Effect of k, the (Minimum) Dimension-
ality of Fascicles

Figure 5(a) shows the relative storage provided by both
algorithms as k varies from 2 to 12. For the Single-k
algorithm, we observe that the storage savings is maxi-
mized for an intermediate value of k. When k is small,
only a small amount of savings in storage is achieved

192

through compaction — precisely because k is small. As
k increases, there are two opposing forces: (i) k itself
favors further storage reduction, but (ii) coverage de-
creases, thereby decreasing the number of records that
can be compressed. Figure 5(b) shows the coverage fig-
ures as k varies. Initially the k factor dominates the
coverage factor, giving a minimum relative storage be-
low 0.5. But as k increases past the optimal value, in
this case kope = 8, the drop in coverage dominates.

For the Multi-k algorithm, there is also an optimal
value of k. This is the case because as explained in Sec-
tion 3.4, the greedy selection procedure tends to select
first fascicles of the minimum dimensionality. So in this
sense, it behaves like the Single-k algorithm. But it dif-
fers from the Single-k algorithm in the following ways:

o It isless sensitive to k. This is because even if the in-
put k value is smaller than the actual optimal value,
Multi-k algorithm is able to produce candidate fas-
cicles of dimensionality > k.

e When £ is small, observe from Figure 5(a) and (b)
that despite having a lower coverage, Multi-k pro-
vides better compression than Single-k. This is
again due to the former’s ability to produce can-
didate fascicles of dimensionality > k.

e For larger values of k, however, this ability of Multi-
k becomes less important because there are fewer
fascicles of dimensionality > k. At that point, cov-
erage becomes more correlated with relative stor-
age, and Multi-k lags behind Single-k in effective-
ness. But this is largely a consequence of our forcing
both algorithms to generate the same number P of
tip sets. The effectiveness of Multi-k can be im-
proved by running with a larger value of P — at the
expense of a larger runtime.

As expected, the runtimes of the algorithms were inde-
pendent of k (results not included here).

09 | Multi-k ——
Single-k -—+-

0.8 |

07 F — N

relative storage

06

k, (minimum) dimensionality of fascicles

(a) Storage Requirement

T T T T T T
09 T 1
N Multi-k ->—
08 | 6——;;\;1‘; *\\ Single-k —+- i
T N

07 b \'*‘*‘——ﬂ\\ e 1
S 06f x 1
S osf ~ N _
04 J
03| —
02 N
0.1 o

.

2 4 6 8 10 12

k, (minimum) dimensionality of fascicles

(b) Coverage

Figure 5: Optimal k for Storage Minimization

4.5 Miscellaneous Effects and Practitioners’

Guide

As t, the compactness threshold, increases, more records
qualify to participate in a fascicle, and so there are more
opportunities for storage reduction. The k,p; value that
minimizes storage changes slightly as ¢ varies; for both
algorithms, as t increases, larger values of k are desir-
able. In other words, as we become more forgiving in our
lossy compression, it is fruitful and possible to compact
more dimensions. As for m, the minimum fascicle size,
fewer fascicles can assist in storage minimization when
m increases. And the optimal k,p; value decreases as m
increases. Curves are not presented for lack of space.

Figure 6 shows how the two algorithms scale up with
respect to increasing data set size. Both algorithms scale
up linearly. While the results shown in the figure are
based on k = 4, the results generalize to other values of
k. The reason why Multi-k runs faster than Single-k is
strictly a consequence of our forcing both algorithms to
produce the same number of tip sets (P = 500 as usual).

In sum, we have shown empirically how the two al-
gorithms behave when the various parameters change,
among which P is the most critical. In general, increas-
ing values of P result in both greater computational cost
and better compression. However, even fairly small val-
ues of P give fairly good results. As a “practitioners’
guide”, we recommend starting with P = .001 of the
database size. If one can afford more computational re-
sources, one can pick a larger P. Finally, we recommend
the Multi-k algorithm for small values of k, but recom-
mend the Single-k algorithm otherwise.

4.6 Comparison with The FAP Algorithm for
Finding All k-D Fascicles

Both the Single-k and Multi-k algorithms selectively find
P candidate fascicles for storage minimization. In this

193

Multi-k =
single-k —+
2500

2000

runtime

1500 - e -

1000 | /

500 L

L L L L
100000 300000 500000 700000

number of records

Figure 6: Scalability with respect to Data Set Size

section we consider a non-randomized alternative that
computes all fascicles.

Specifically, we consider an algorithm called FAP or
Fascicles through APriori. As the name suggests, FAP
is an adaptation of the well-known Apriori algorithm
for association rule mining [2, 3, 13]. Apriori basically
performs a bottom-up, level-by-level computation of the
underlying lattice space. In the case of FAP for comput-
ing all k-D fascicles, the underlying lattice space consists
of all possible subsets of attributes. For a given subset of
attributes {A1, ..., Ay}, its “support” is the number of
records that form a fascicle with Aq,..., A, as the com-
pact attributes. This simplified view applies perfectly
to categorical attributes. But for numeric attributes, a
pre-processing step is necessary to divide the attribute
range into bins of width equal to the specified tolerance
t. We call this step pre-binning. Once pre-binning has
been performed, the FAP algorithm computes 1-D fasci-
cles whose support exceed the minimum size parameter
m. Then it proceeds to compute 2-D fascicles and so on.
The usual pruning strategy applies because the set of
records supporting the fascicle monotonically decreases

k Single-k FAP

Runtime | Relative Storage | Coverage || Runtime | Relative Storage | Coverage
2 3.5 0.846 0.999 13.5 0.848 0.992
3 3.5 0.772 0.988 299.8 0.780 0.967
4 3.4 0.700 0.974 1591.0 0.750 0.846
5 3.4 0.640 0.941 || > 2500.0 n/a n/a

Figure 7: Inappropriateness to Compute All Fascicles for Storage Minimization

in size as the set of compact attributes grows.

Figure 7 compares the FAP algorithm with the Single-
k algorithm for computing k-D fascicles, for various val-
ues of k. To ensure that FAP terminates in a reasonable
amount of time, we used a data set of 1,000 records ex-
tracted at random from the AT&T data set.

The difference in runtime performance between
Single-k and FAP is truly astonishing. Even for 1,000
records, the time required for FAP for k > 5 is so large
that we did not find it possible to continue running the
process on our computer. For k < 4, Single-k dominates
FAP by orders of magnitude. There are two explana-
tions. First, for a given value of k, FAP computes all
j-D fascicles for all 1 < j < k. This bottom-up strategy
is not practical except for very small values of k. Second,
particularly for low values of the parameter m, virtually
no pruning occurs in the first few passes, resulting in a
exponential growth in the number of intermediate can-
didates. Specifically, if there are u 1-D fascicles, there
could be O(u?) 2-D fascicles, O(u?) 3-D fascicles, so on,
at least for the first several passes.

The only remaining question is whether FAP gives
better storage and coverage results, possibly justifying
the additional computational cost. Surprisingly, Fig-
ure 7 shows that FAP actually did worse than Single-
k. This is due to the pre-binning step conducted
in a fascicle-independent and on a per-attribute basis.
In contrast, Single-k (and Multi-k) forms the compact
ranges and sets dynamically based on all the attribute
values of the current set of tuples under consideration.

5 Solving the Pattern Extraction Prob-
lem

Pattern extraction is not as well-defined a problem as
storage minimization. There are many different types
of patterns one may wish to extract from a data set,
and many different possible metrics to assess the quality
of the extracted patterns. So we begin this section by
defining our pattern extraction task in precise terms.
Then we develop an algorithm to carry out the task,
which is an extension to the Multi-k algorithm. Finally,
we show some empirical results.

5.1 The Pattern Extraction Problem with Fas-
cicles

By definition, a k-D fascicle contains records that more
or less agree on the values of the k£ compact attributes.

194

Given a minimum size m, like the minimum support in
association rules, we say that a fascicle is frequent if it
contains at least m records. Given two (frequent) fasci-
cles Fy, F, with dimensionality k;, ks and compactness
tolerance t1, to respectively, we say that:

Fl(kl,tl) Zf F2(k2,t2) iff kl Z k‘Q and tl S t2 (4)
The intuition is that for any fascicle Fi(ki,t1), Fi is
automatically a fascicle of the quality pair (ko, t2) where
ke < k1 and t2 > t;. For any record R contained in both
Fy, F, with Fy > F5, we prefer Fi.

For the pattern extraction problem, there is a pre-
defined range of dimensionalities [kmin, kmaz] and a se-
ries of compactness tolerance ¢t < ... < t,. Given these,
the ordering in Equation (4) defines a lattice. Figure 8
gives an instance of the quality lattice for pattern ex-
traction from the NHL data set. In this instance, the
dimensionality k varies from some minimum (not shown
in the figure) to 12, and the compactness tolerance can
be 1/8, 1/16 or 1/32 (cf: Section 4.1). In the figure, a
directed edge indicates the partial ordering relationship,
e.g., (12,1/32) >; (12,1/16).

The ordering > defined on fascicles can be extended
to give an ordering >, on sets of fascicles. To do so,
we rely on the well-known Smyth ordering for power
sets [20]:

S1>:8 iff VFb eS8, dFL €51 F >5 Fy (5)
For the example in Figure 8, the sets & =
{(12,1/8),(10,1/16)} and S» = {(11,1/32)} are mutu-
ally incomparable. But the set Sz = {(12,1/32)} domi-
nates both, i.e., S3 >, 81, S3 >5 Sa.

The Smyth ordering induces equivalence classes of fas-
cicles. Specifically, it is possible to have two sets S; >,
Ss and S >4 S; without having & = S». An example
are the sets {(12,1/32)} and {(12,1/32),(11,1/32)}. In
other words, the equivalence classes induced by >, are
not necessarily minimal in the set inclusion sense. This
is particularly relevant to our task at hand, because a
record R may be contained in many fascicles. To ensure
that the final generated fascicles and patterns are of the
highest quality, we define Flas(R) given in Equation (1)
to ensure that among the set of fascicles all containing R,
only the maximal ones with respect to >; can keep R.
Hence, putting all the pieces together, the pattern ex-
traction problem we are tackling here is one that given
a pre-defined range of dimensionalities [kmin, kmaz] and

increasing
k value

12ff (12,1/8)<+— (12,1/16) -— (12,1/32)

114 (11,1/8) «— (11,1/16) -— (11,1/32)

10} (10,1/8) «— (10,1/16) «— (10,1/32)

> decreasing
-
tolerance

1/8 1/16 1/32

Figure 8: An Example: Pattern Extraction with Fasci-
cles for the NHL data set

a series of compactness tolerance t; < ... < t,, and a
minimum size m, tries to find fascicles of sizes > m, such
that for all records R, Fas(R) is maximized with respect
to the ordering >;.

There are two important details to note. First, a
record R that is contained in both F; and F, with
Fy >; F,, does not contribute to the size of F5. In
other words, for F> to be frequent, there must be at
least m records for which F5 is a maximal fascicle. Sec-
ond, one may wonder why bother to maximize Fas(R)
for each record R, rather than simply find the fascicles
with the maximal qualities. Under this second approach,
if we have fascicles of qualities (11,1/16), (10,1/32) and
(9,1/32), those of qualities either (11,1/16) or (10,1/32)
would be output, but those of quality (9,1/32) would be
discarded. Our definition of the problem is strictly more
informative than this second approach in that while fas-
cicles of qualities either (11,1/16) or (10,1/32) are out-
put, fascicles F' of quality (9,1/32) are also output —
provided that there are at least m records for which F’
is maximal.

5.2 The Multi-Extract Algorithm
5.2.1 Computing Fascicles for all (k,t) Pairs

Like the storage minimization problem, there are two
steps in solving the pattern extraction problem. The
first step is to find the fascicles. We could simply run
the Multi-k algorithm with different values of ¢. How-
ever, it is easy to adapt the Multi-k algorithm to do
better. Recall that there is an initial tip set generation
phase, followed by a phase to grow tip sets into max-
imal sets. Iterating the Multi-k algorithm for multiple
values of ¢ amounts to running both the generation and
the growing phase multiple times. But we can be more
efficient by running the generation phase multiple times,
but only once for the growing phase. Specifically, we
iterate the generation phase (over each piece of the rela-
tion read into memory) to produce tip sets for different
values of ¢. This does not require any additional disk
I/O. Then we grow all tip sets of varying dimensional-
ities and compactness tolerance simultaneously in one

195

Algorithm Multi-Extract

Input: relation R, minimum dimensionality &, minimum size
m, a series of tolerance t; < t» < ... < t,, integer P

Output: fascicles F' with dimensionality > k and containing
at least m records for which F' is maximal

{ 1. ... /* basically the same as in the Single-k algorithm

2. except for the optimization discussed in

3. ... Section 5.2.1 */

4. /* maximize Fas(R) */
For all the tip sets F' obtained above, process in
ascending rank:
4.1 Frepp = F — (UG>F G), where the G’s were frequent

tip sets obtained in previous iterations of this loop.

4.2 If |Frem| > m, output Frem.

Figure 9: A Skeleton of the Multi-Extract Algorithm

final scan of the relation. The I/O and main memory
complexity remain the same as before.

5.2.2 Maximizing Fas(R)

Once candidate fascicles have been generated, the sec-
ond step for pattern extraction is quite different from
that for storage minimization, because for pattern ex-
traction it is fine to have a record put in multiple (fre-
quent) maximal fascicles. To achieve this, we define the
rank of a fascicle, with respect to the partial ordering
given in Equation (4). Given the range of dimension-
ality [kmin, kmaz] and a series of compactness tolerance
t; < ...< ty, we have the following inductive definition
of rank:

e (base case) rank(F (kmqz,t1)) = 1; and

o (inductive case) rank(F(k,t;)) = 1 + min{
rank(F(k + 1,t;)),rank(F(k,t;—1))}

For the example given in Figure 8, the series of compact-
ness tolerances is 1/32, 1/16 and 1/8, and the largest di-
mensionality is 12. Accordingly, all fascicles F'(12,1/32)
are assigned the top rank, i.e., rank = 1. By the in-
ductive case of the definition, all fascicles F(11,1/32)
and F(12,1/16) have rank = 2. Similarly, all fascicles
F(12,1/8), F(11,1/16) and F(10,1/32) have rank = 3.
From Figure &, it is easy to see that the rank of F(k,t)
corresponds to the length of the shortest path to (k,t)
from the root, which is the top pair, e.g., (12,1/32). Also,
for any pair of fascicles Fy, F» assigned the same rank,
it is the case that F} 2; F5> and Fy 2 Fi.

Having defined the notion of rank, we can now solve
the pattern extraction problem by processing fascicles in
ascending order of rank. In our example, we first pro-
cess (12,1/32) fascicles. Then we process all (11,1/32)
fascicles and (12,1/16) fascicles, and so on. This order
of processing fascicles is captured in Step 4 of the Multi-
Extract algorithm shown in Figure 9.

The following formal result ascertains the correctness
of the Multi-Extract algorithm. Proof of this lemma can

Fascicles (12,1/16) | (10,1/12) | (8,1/8)

Population 10% +125% | + 12.5%

Games played [1,82] [1,5] ([1,79]) ([1,82))
Goals Scored [0,50] [0,0] [0,3] [0,3]
Assists [0,80] [0,2] [0,5] [0,5]
Points [0,130] [0,2] [0,7] [0,7]

PlusMinus [-20,40] [2,1] £2,1] | (F13.8)

Penalty Mins [0,400] [0,18] [0,22] | ((0,233])
Power Play Goals [0,20] [0,0] [0,1] [0,1]
Short Handed Goals [0,9] [0,0] [0,0] [0,1]
Game winning Goals [0,12] [0,0] [0,1] 0,1]
Game tying Goals [0,8] [0,0] [0,0] [0,1]
Shots [0,400] [0,8] [0,23] [0,25]
Percentage of Goals Scored [0,20] [0,0] ([0,5]) ([0,5])

Figure 10: Descriptions of Sample Patterns in the NHL Data Set. Each column is a fascicle with the attribute ranges
given. All attributes are compact except the ones in parentheses.

be found in [15]. The lemma basically shows that Step
4 of Multi-Extract is correct in producing Fas(R) and
maximizing Fas(R) for each record R — based on all the
candidate fascicles computed in Steps 1 and 3. But the
algorithm as a whole is not complete because in Steps
1 and 3 we do not seek to compute all fascicles. The
experimental results shown in Section 4.6 convincingly
demonstrates that computing all fascicles is computa-
tionally prohibitive.

Lemma 1 (Correctness of Multi-Extract) Let

S be the set of candidate fascicles generated in Steps
1 and 3 of Algorithm Multi-Extract. For any record R,
let the set of maximal fascicles containing R output by
Step 4 be Sg = {F1,...,F,}. Then: (i) there does not
exist a pair F;, F; such that F; >; F;, 1 <14,j < wu; and
(ii) there does not exist a set S' C S and &’ 2 Sg such
that &' >, Sg. O

5.3 Empirical Results

Below we present the result of applying the Multi-
Extract algorithm to the NHL data set. The results
from the larger AT&T data set were also interesting.
But because we are unable to present these results with-
out divulging proprietary information, we restrict our
discussion only to the NHL data set.

Figure 10 shows three fascicles obtained in the NHL
data set. Each row describes the range of a particular
attribute. The range following the name of the attribute
in the first column gives the range of the attribute of the
entire data set. The first fascicle has all 12 attributes of
the data set as compact attributes and a compactness
tolerance of 1/16 of the attribute range. In spite of the
stringent requirements, 10% of the players are in this fas-
cicle. These are players who have very limited impact on
every aspect of the game. The second fascicle accounts
for an additional 12.5% of the population. Compared
with the first fascicle, the additional players here could
play in a lot more games and have some variations in

196

scoring percentage. Even so, this group still had little
impact on the game. The first two fascicles together
indicate that almost 1 out of 4 players did next to noth-
ing. Finally, on top of the first two fascicles, there are
an additional 12.5% of players whose main contribution
appears to be their penalty minutes, as indicated by the
dramatic expansion of the range of Penalty Mins ([0,22]
to [0,233]). The performance of the Multi-Extract algo-
rithm is very similar to that of the Multi-k algorithm,
and hence not presented here.

6 Related Work

There are numerous studies on partitioning a data space
spanned by a relation or a collection of points, includ-
ing the studies on clustering (e.g., [17, 21, 6, 1, 10]).
Almost all clustering algorithms, with the exception
of CLIQUE [1], operate in the original data space,
corresponding to row partitioning of a relation. Like
CLIQUE, fascicles correspond to both row and column
partitioning. CLIQUE is a density based method that
finds all clusters in the original data space, as well as all
the subspaces. Clusters found by CLIQUE are largest re-
gions of connected dense units, where pre-binning is used
to create a grid of basic units. This notion of clusters
is fundamentally different from fascicles. Furthermore,
the study conducted in [1] does not address the storage
minimization problem and the pattern extraction prob-
lem analyzed here. Despite all the above differences, the
FAP algorithm presented here can be considered a vari-
ant of CLIQUE. As shown in Section 4.6, it suffers from
the same pitfalls of requiring pre-binning and operating
in a bottom-up level-wise computational framework.
One important aspect of fascicles is dimensionality
reduction (which leads to compression). In fact, “fea-
ture reduction”, is a fundamental problem in machine
learning and pattern recognition. There are many well-
known statistical techniques for dimensionality reduc-
tion, including Singular Value Decomposition (SVD) [9]
and Projection Pursuit [8]. The key difference here is

that the dimensionality reduction is applied to the en-
tire data set. In contrast, our techniques handle the
additional complexity of finding different subsets of the
data, all of which may permit a reduction on different
subsets of dimensions. The same comment extends to
FastMap [7], the SVDD technique [14], and the DataS-
phere technique [11].

The rearrangement of columns in a relation has been
shown to affect the compression achieved in previous
studies, such as [19, 18]. With fascicles, this idea is car-
ried further since the columns, as well as the number
of columns, could be arranged differently for different
subsets of tuples.

7 Conclusions and Future Work

Data sets often have approximately repeated values for
many attributes. We have taken a first step towards
identifying and exploiting such repetition in this paper.
We have introduced the notion of a fascicle, which is a
subset of records in a relation that have approximately
matching values for some (but not necessarily all) at-
tributes, categorical or otherwise. We have presented a
family of algorithms to find fascicles in a given relation.
We have evaluated how these algorithms behave under
different choices of parameters, and shown how fascicles
can be used effectively for the tasks of storage reduction
and pattern extraction. Given that optimality is hard
to obtain for both tasks, our algorithms produce good
results.

We believe that the compression aspect of fascicles
can provide good support of approximate query answer-
ing in the style championed in [4]. The dimensionality re-
duction aspect of fascicles can find applications in reduc-
ing indexing complexity, reverse engineering of schema
decomposition, vocabulary-based document classifica-
tion, and other operations that are exponential in the
number of dimensions. Finally, as shown in Section 5,
the pattern extraction aspect of fascicles can find ap-
plications in any data set that has (approximately) re-
peated values for many attributes.

As for future work, we believe that fascicles have
opened the door to conducting data reduction (and anal-
ysis) not on the coarse granularity of the entire data set,
but on the fine granularity of automatically identified
subsets. As such, it would be interesting to see how
the notion of compactness studied here change to other
more sophisticated criteria, such as subsets with strong
correlation, subsets amenable to SVD, etc.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos and P. Ragha-
van. Automatic subspace clustering of high dimensional
data for data mining applications. Proc. 1998 SIG-
MOD, pp 94-105.

[2] R. Agrawal, T. Imielinski and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
Proc. 1998 SIGMOD, pp 207-216.

197

3]

[4]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. Proc. 1994 VLDB,
pp 478-499.

D. Barbard, W. DuMouchel, C. Faloutsos, P. J. Haas,
J. M. Hellerstein, Y. Ioannidis, H. V. Jagadish, T.
Johnson, R. Ng, V. Poosala, K. A. Ross, K. C. Sevcik.
The New Jersey Data Reduction Report. IEEE Data
Engineering Bulletin, 20, 4, Dec. 1997.

S. Brin, R. Motwani, J. Ullman and S. Tsur. Dynamic
itemset counting and implication rules for market bas-
ket data. Proc. 1997 SIGMOD, pp 255-264.

M. Ester, H.P. Kriegel, J. Sander and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noises. Proc. 1996 KDD, pp 226-231.

C. Faloutsos and K. Lin. FastMap: a Fast Algorithm
for Indexing, Data-Mining and Visualization of Tra-
ditional and Multimedia Datasets. Proc. 1995 ACM-
SIGMOD, pp. 163-174.

J.H. Friedman and J.W. Tukey. A Projection Pursuit
Algorithm for Exploratory Data Analysis. IEEE Trans-
actions on Computers, 23, 9, pp 881-889, 1974.

K. Fukunaga. Introduction to Statistical Pattern
Recognition. Academic Press, 1990.

S. Guha, R. Rastogi, K. Shim. CURE: an Efficient
Clustering Algorithm for Large Databases. Proc. 1998
ACM-SIGMOD, pp. 73-84.

T. Johnson and T. Dasu. Comparing massive high-
dimensional data sets. Proc. 1998 KDD, pp 229-233.

R. Karp. Reducibility among combinatorial problems.
Complexity of Computer Computations, Plenum Press,
1972, pp 85-103.

M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivo-
nen, and A.I. Verkamo. Finding interesting rules from
large sets of discovered association rules. CIKM 94, pp
401-408.

F. Korn, H.V. Jagadish, C. Faloutsos. Efficiently Sup-
porting Ad Hoc Queries in Large Datasets of Time Se-
quences. Proc. 1997 ACM-SIGMOD, pp. 289-300.

J. Madar. Fascicles for Semantic Compression and
Pattern Extraction, MSc. Thesis, Department of Com-
puter Science, University of British Columbia, 1999.

H. Mannila and H. Toivonen. Level-Wise search and
borders of theories in knowledge discovery. Data Min-
ing and Knowledge Discovery, 1, 3, pp 241-258.

R. Ng and J. Han. Efficient and effective clustering
methods for spatial data mining. Proc. 1994 VLDB,
pp 144-155.

Ng and Ravishankar. Block-Oriented Compression
Techniques for Relational Databases. TKDE, April
1997, pp 314-328.

Olken and Rotem. Rearranging Data to Maximize the
Efficiency of Compression. Proc. 1986 PODS, pp 78-90.
M. Smyth. Power Domains. Journal of Computer and
System Sciences, 16, 1, pp. 23-36, 1978.

T. Zhang, R. Ramakrishnan and M. Livny. BIRCH:

an efficient data clustering method for very large
databases. Proc. 1996 SIGMOD, pp 103-114.

