
Checkpointing in Oracle

Ashok Joshi, William Bridge, Juan Loaiza, Tirthankar Lahiri
500 Oracle Parkway, Redwood Shores, CA 94065

{ ajoshi, wbridge, jloaiza, tlahiri} @us.oracle.com

Abstract

Checkpointing is an important mechanism for
limiting crash recovery times. This paper
describes a new checkpointing algorithm that
was implemented in Oracle 8.0. This algorithm
efJiciently JWS buffers which need to be written
for checkpointing and easily scales to very large
buffer cache sizes: it has been tested with buffer
caches as large as six million buffers. Based on
this algorithm, we have implemented a new
checkpointing mechanism which we refer to as
the incremental checkpointing mechanism. Incre-
mental checkpoints are continuous, low overhead
checkpoints that wn’te buffers as a background
activity. Incremental checkpointing is able to
continuously advance the database checkpoint,
i.e., the starting position in the redo log for crash
recovery, resulting in dramatic improvements in
recovery time while imposing minimal overhead
during normal processing. The rate of bu$er
writes for incremental checkpointing can be con-
trolled by the user to balance checkpoint writing
overhead with recovery time requirements. In this
paper; we describe the new data structures and
algorithms that have been implemented for
checkpointing and for incremental checkpointing
in Oracle 8.0.

Permission to copy without fee all or part of this mate-
rial is granted provided that the copies are not made or
distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Database Endow-
ment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 24th VLDB conference, New York,
USA, 1998

1 Introduction

Most conventional database systems (including Oracle)
follow the no-force-at-commit policy for data blocks
[Haerder83] because of its significant performance bene-
fits. The use of this policy implies that a page modified in
memory may need recovery if there is a system crash. A
database checkpoint is critical for ensuring quick crash
recovery when the no-force-at-commit policy is employed
since it limits the amount of redo log that needs to be
scanned and applied during recovery.

As the amount of memory available to a database
increases, it is possible to have database buffer caches as
large as several million buffers. A large buffer cache
imposes two requirements on checkpointing. First, it
requires that the algorithms be scalable with the size of the
buffer cache. Second, it requires that the database check-
point advance frequently to limit recovery time, since
infrequent checkpoints and large buffer caches can exacer-
bate crash-recovery times significantly.

In order to address these issues, the checkpointing algo-
rithm has been completely rewritten in Oracle 8.0. Our
objective was to make the algorithm scalable to very large
buffer caches, and to facilitate frequent checkpointing for
fast crash recovery. Scalability is achieved by organizing
all the modified buffers on ordered queues; such queues
increase the efficiency of identifying the precise set of
buffers that need to be written for checkpoints. Frequent
advancement of the database checkpoint is made possible
by the introduction of incremental checkpointing.

The rest of this paper is organized as follows: We begin
with a brief description of the Oracle-specific require-
ments and terminology relating to checkpointing and the
Oracle processes involved in a checkpoint. The next sec-
tion contains a description of the checkpoint data struc-
tures used by the Oracle 8.0 checkpointing algorithm
followed by a description of the incremental checkpoint
mechanism. We conclude with some observations on the
benefits of the new algorithm.

665

Arrows indicate RBA at
first modified. Subseque
corresponding to multiple ates not shown.

I
Instance’s redo log

Checkpoint requested to this RBA

Bu$ers bl, b3 and b4 need to be written in order to complete the checkpoint.
Buffer b6 need not be written. Buffers b,, b, b, are clean buffers.

tail of log

Figure 1: Selecting buffers for advancing checkpoint up to a specified RBA.

2 Oracle Checkpointing Overview

Oracle supports a shared-disk architecture; the shared-
memory and group of Oracle processes that run on each
node in a multi-node shared disk cluster are collectively
known as an instance of Oracle. We briefly describe a con-
ventional (as opposed to an incremental) checkpoint in
Oracle. For the purpose of this discussion, the log may be
thought of as an ever-growing file containing redo records
generated by an instance. An RBA (redo byte address)
indicates a position in the redo log. Oracle uses a set of a
dedicated processes (called the database writers or
DBWRs) for writing data blocks to disk. A dedicated pro-
cess (called the checkpoint process or CKP7) records
checkpoint information to the Control File which repre-
sents stable storage for maintaining bookkeeping informa-
tion (such as checkpoint progress) for an Oracle database.

Each instance in Oracle has its own log. An instance
checkpoint refers to some RBA (called the checkpoint
RBA) within an instance’s log such that all in memory
buffers whose redo appears prior to this RBA have been
written to disk. Hence, recovery for that instance needs to
recover only those data blocks whose redo records occur
between the checkpoint RBA and the end of the log.

A checkpoint operation consists of three distinct phases. In
the first phase, the process initiating the checkpoint “cap-
tures” the checkpoint RBA. This RBA is most often the
current RBA (the RBA of the last change made to a buffer)
at the time the request is initiated. In the second phase, the
DBWR process writes out all required buffers, i.e., all
buffers that have been modified at RBAs less than or equal

to the checkpoint RBA. After all required buffers have
been written, in the third phase, the CKFT process records
the completion of the checkpoint in the control file. Only
when the third phase has completed can we assert that the
instance checkpoint has advanced to the new RBA. Nor-
mal transaction activity is not affected while a checkpoint
request is active. Figure 1 provides an example of how
buffers are selected to be written for checkpoint opera-
tions. [Oracle971 contains further details on the architec-
ture of the buffer manager and the recovery subsystem in
the Oracle8 Universal Server.

3 Oracle Checkpointing Data Structures and
Algorithm

3.1 Buffer Checkpoint Queues (BCQ)

The most significant enhancement to the checkpoint algo-
rithm is the introduction of new data structures that
increase the efficiency of finding the buffers that need to
be written for a checkpoint. The primary data structure is
the Buffer Checkpoint Queue which contains modified
buffers linked in ascending order of their low RBA. The
low RBA is the RBA corresponding to the first (in-mem-
ory) modification of the buffer. Each buffer header con-
tains the value of the low RBA associated with the buffer;
this value is set when the buffer is first modified. Obvi-
ously, a clean buffer does not have any low RBA in its
buffer header and is not linked on the checkpoint queue.

In response to a checkpoint request, buffers are written
from the head of the checkpoint queue i.e., in ascending
order of low RBA values. After a buffer is written, it is

666

BCQ 1

BCQ 2

\
\ \ Dashed arrow indicates

\ \ buffer’s low RBA
\

\
\ \

$
\ \

‘(\
I I
redo log tail of log

=2 c-3
Active checkpoints cl, c2, and c3 on the ACQ

Notes: DBWR always selects buffers in ascending low RBA order. After b4 is written, cl
is completed. After bl and b5 are written, c2 is completed. After b2 is written,
c3 is completed.

Figure 2: Illustration of the organization of two BCQs and the ACQ with 3 entries.

unlinked from its checkpoint queue. Given a checkpoint
RBA, DBWR writes buffers from the head of the queue
until the low RBA of the buffer at the head of the check-
point queue is greater than the checkpoint RBA. At this
point, CKPT can record this checkpoint as having com-
pleted by updating the checkpoint progress record in the
control file (phase 3).

The operations of linking and unlinking a buffer from the
checkpoint queue need to performed in a critical section
under a latch (a lightweight mutual exclusion primitive).
In order to reduce hotspots on this critical section, it is
possible to configure an Oracle instance with multiple
latches, each protecting a different checkpoint queue. Each
buffer is statically associated with a checkpoint queue.
Having multiple checkpoint queues also improves scal-
ability and write-throughput since it is then possible to
also configure the instance with multiple DBWR pro-
cesses which are responsible for writing buffers from dif-
ferent checkpoint queues.

3.2 Active Checkpoint Queue (ACQ)

The ACQ is a single queue that contains active checkpoint
requests. Whenever a checkpoint is requested, a new
active checkpoint entry describing the request is added to
the ACQ. Each such entry on the ACQ contains the RBA
up to which buffers need to be written in order to complete
the checkpoint represented by the entry. The entry also
contains other information specific to the checkpoint

request. Note that it is possible to have several checkpoint
requests active at the same time. Figure 2 illustrates two
BCQs and three active checkpoints.

A checkpoint may be requested for various reasons. A user
can initiate a checkpoint at any time, for instance, by issu-
ing an ALTER SYSTEM CHECKPOINT command.
Whenever an instance switches from one log file to
another, it starts a checkpoint so that it will be possible to
reuse the log file later. In addition, datafiles must be check-
pointed before they can be backed up, therefore, backup
operations initiate checkpoints. For all these reasons it is
possible to have multiple entries on the ACQ.

4 Incremental Checkpoints

The incremental checkpoint technique uses the same data
structures that are used by conventional checkpoints. It
exploits the fact that the dirty buffers in the cache are
linked in low RBA order. If DBWR continually writes
buffers from the head of the checkpoint queue, the instance
checkpoint (lowest low-RBA of the modified buffers) will
keep advancing. Periodically, CKPT can record this lowest
low-RBA to the control file (using a very lightweight con-
trol-file update protocol). This periodically recorded low-
est low RBA is the current position of the incremental
checkpoint for the instance. Since the incremental check-
point is performed continuously, the value of the incre-
mental checkpoint RBA will be much closer to the tail of
the log than the RBA of a “conventional” checkpoint, thus

667

limiting the amount of recovery needed. When incremen-
tal checkpointing is enabled, DBWR keeps writing buffers
from the checkpoint queues in ascending low RBA order
in addition to performing other writing activity. In addi-
tion, the CKPT process periodically records the progress
of the incremental checkpoint in the control file. By con-
trolling the rate at which buffers are written, we can reduce
the overhead for incremental checkpoint. Quite often,
writing buffers in ascending low RBA order also performs
LRU replacement writes and vice versa. Hence, aging
writes and checkpoint writes can complement each other.

Oracle provides tuning parameters which influence the
rate at which incremental checkpoint buffers are written.
Note that a smaller rate will advance the incremental
checkpoint slowly; a higher rate will advance the check-
point rapidly. It should also be noted that there is not nec-
essarily any correlation between the number of buffers
written for checkpoint reasons, and the progress of the
checkpoint, since the sizes of the redo records for different
changes to blocks can vary considerably.

5 Performance benefits

The new checkpoint algorithm improves the performance
of checkpoint operations in two ways:

First, the cost of performing a checkpoint is determined
only by the number of dirty buffers in the buffer cache
with RBAs below the checkpoint RBA, and not by the
total number of buffers in the cache. If the instance check-
point advances quickly (as it does when incremental
checkpointing is enabled), the number of such buffers is
relatively small.

Second, multiple checkpoints can be serviced by servicing
one single checkpoint that subsumes all other checkpoints:
A checkpoint is said to subsume one another checkpoint if
the former checkpoint has a higher RBA than the latter.
For instance, in figure 2, c3 subsumes cl and c2 in that if
DBWR writes buffers in response to checkpoint c3, the cz
and c2 checkpoints are automatically performed along the
way, as a result. This implies that the cost of servicing a set
of concurrent checkpoint requests collapses down to the
cost of servicing the checkpoint with the highest RBA,
instead of being equal to the sum of the costs of perform-
ing each checkpoint individually.

Since checkpoints frequently occur during normal pro-
cessing, both these properties of the new algorithm
improve normal runtime performance.

Incremental checkpointing significantly improves recov-
ery performance. The performance of crash recovery is a
critical (and often overlooked) component of overall sys-
tem availability. We have experimented with various work-
loads, buffer cache sizes ranging from a few hundred to six
million buffers, and various settings of the rate at which
incremental checkpoint buffers are written. When incre-
mental checkpointing is enabled, we have found dramatic
reductions in recovery times. In addition, our measure-
ments indicate that in all but the most demanding of work-
loads, it is possible to advance the incremental checkpoint
at a very high rate without noticeable impact on run-time
performance. These preliminary measurements are very
encouraging; it is possible to have very fast crash recovery
without compromising performance at run-time.

6 Conclusions

Checkpointing modified buffers is a critical aspect of
buffer management because it reduces crash recovery
times. In this paper, we have briefly described a novel
algorithm for checkpointing in version 8.0 of the Oracle
Universal Server. This algorithm uses queues of buffers
ordered by low RBA to facilitate rapid identification of
buffers to be written for checkpoint operations. We have
also implemented a new type of checkpointing which we
refer to as incremental checkpointing, which continuously
advances the database checkpoint RBA as a lightweight
background activity. The new algorithm significantly
improves the performance of checkpoint operations, and
incremental checkpointing greatly improves crash recov-
ery times with negligible impact on normal activity.

7 References

[Haerder83]: Haerder, T., and Reuter, A., Principles of
Transaction-Oriented Database Recovery, ACM Comput-
ing Surveys, 15(4) 287-317

[Oracle97]: Oracle8 Server Concepts Volume I and II:
Oracle Corporation, Part Number A54646-01 and
A54644-O1,June 1997

668

