
DTL’s DataSpot: Database Exploration Using Plain Language

Shaul Dar, Gadi Entin, Shai Geva, Eran Palmon

Data Technologies Ltd.
{dar,gadi,shai,eran@dtl.co.il}

Abstract

DTL’s DataSpot is a database publishing tool that
enables non-technical end users to explore a
database using free-form plain language queries
combined with hypertext navigation. DataSpot is
based on a novel representation of data in the form
of a schema-less semi-structured graph called a
hyperbase. The DataSpot Publisher takes one or
more possibly heterogeneous databases, predefined
knowledge banks such as a thesaurus, and user-
defined associations, and creates the hyperbase. The
DataSpot Search Server performs searches and
navigation against the hyperbase, returning answers
to the user either in HTML pages or through an
object API. The DataSpot product has been
successfilly deployed in diverse application areas
including electronic catalogs, yellow pages,
classified ads, help desks and finance.

I...______........._...............................
ataSpot Hyperbas

Figure 1: The DataSpot Architecture

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title oj
the publication and its date appear, and notice is given that copying
is by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

1. Introduction

Database publishing on the Web is a major issue in today’s
world. The reasons are clear: the vast amounts of important
business information that resides in corporate databases, the
explosion of the Internet and in particular the familiarity of
Web browsers as standard user interfaces. Currently, to
publish databases on the Web, one must often design and
implement forms, screens, and application flow (using
HTML, DHTML, ASP, Java, SQL, etc.). In addition to being
costly such applications present the user with a limited set of
pre-designed queries. This method is often inappropriate for
non-technical users seeking information in complex
databases, a scenario commonly found in Internet and
Intranet applications, e.g. an end user searching for a product
in a large electronic catalog or a support representative
looking for a solution in a corporate help-desk database.
These examples demonstrate the need for a standardized,
intuitive and friendly way for users to search online
databases (see e.g. F96). It is this need that DTL’s DataSpot
seeks to address.

DataSpot introduces a new approach to database query
and retrieval by providing end users with the capability of
exploring databases using free-form queries and navigation.
DataSpot lets lay users locate structured information much in
the same way as they use a Web search engine, such as Alta
Vista, to locate unstructured (textual) information. This
capability is based on a novel, schema-less representation of
data, called a hyperbase (also called a Web View). The
DataSpot Publisher translates the source data into the
hyperbase representation, which in turn may be queried
efficiently by the DataSpot Search Server (see Figure 1). The
hyperbase is a universal representation of data as a graph of
associated elements, tailored to support free-form query
algorithms. This representation lends itself naturally to a
hypertext presentation and navigation via the mapping of
associations to links.

The DataSpot representation and search technology is
the foundation of the DataSpot system, available as a
commercial product on Windows NT/95 platforms.

The paper is organized as follows. In Section 2 we
describe the DataSpot data representation. In Section 0 we
discuss how queries are processed. In Section 4 we describe
the DataSpot system and outline application development. In
Section 5 we review related work.

645

2. The DataSpot Representation

The data representation model used in DataSpot is called a
hyperbase. A hyperbase is a graph structure comprised of
nodes, edges and node labels. Nodes may be related via
directed edges, which can be of two types. A simple edge is
used to indicate inclusion and connects a node called the
parent to a node called the child. The set of children of a
node is ordered. The set of parents of a node is not ordered.
A leaf node is a node with no children. A leaf node must
have a label. An internal (non-leaf) node cannot have a label.
The set of simple edges in a hyperbase cannot include a
cycle:The second type of edge is an identification edge, used
to indicate that one node, called the reference, uniquely
identifies another node, called the subject. A node can have
at most one reference.

Intuitively, nodes in the hyperbase represent data objects
and edges represent associations between these data objects.
For example in a hyperbase corresponding to relational data
internal nodes may represent tables, records and fields, and
leaf nodes may represent via their labels atomic data values,
such as numbers or words. Edges represent the associations
between data elements, such as the association between a
record and its fields and between a field and its name and
value. Identification edges represent a 1: 1 association, such
as the association between the key of a record and the record
itself.

We define an equivalence relation = on nodes in a
hyperbase H recursively as follows. Two nodes A and B in H
are equivalent if one of the following conditions holds:
1. A and B are leaf nodes and have identical node labels.
2. A and B have an equivalent reference, i.e. A has a

reference node A’ and B has a reference node B’, and
A’ E B’.

3. A and B have no reference and have an equivalent list
(ordered set) of children, i.e. let A’s children be A,. . .A,
and let B’s children be B, . ..B., then n = m and for
i= 1 . . .n A, = B,.
A hyperbase H is normalized (is in normal form) if only

leaf nodes have labels and if no two distinct nodes in H are
equivalent.

We now define a normalization of a hyperbase H.
1. For each internal node A that has a label L do the

following.
i. Create a node A’.

ii. Remove the label L from A and attach it to A’.
III. Create an identification edge from A’ to A’

2. While there are equivalent nodes in H repeat the
following steps:

i. Select two equivalent nodes A and B in H. Replace A
and B by a single node AB.

ii. If A and B are leaf nodes with the same label L
(condition 1 above) the new node AB has L as label.

iii. The parent set of AB is the union of the parent sets of
A and B.

iv. If A and B are leaf nodes (condition 1 above) the child
set of AB empty. If A and B have the same set of
children (condition 3 above) the child set of AB is the
same set. If A and B have the same reference
(condition 2 above), the child set of AB is formed by
concatenating the child sets of A and B.

v. Node AB is a reference to any node referenced by A or
B.

We define the integration of two hyperbases H, and H2
(that may or may not be normalized) into a single normalized
hyperbase H as follows:
1. Combine HI and Hz into a single hyperbase H, where the

set of nodes in H is the union of the nodes of H, and H2
and the set of edges in H is the union of the edges of H,
and HZ.

2. Normalize H.
These definitions underlie the process used by the

DataSpot Publisher to create a hyperbase from a set of
heterogeneous data sources, such as relational tables or text
files, and associations, such as stemming and a thesaurus.
The publisher first constructs a hyperbase for each data
object, such as a relational record or a stem, using predefined
translations. It then recursively integrates those hyperbases
using a bottom up traversal in which equivalent nodes at each
level are coalesced, resulting in a single normalized
hyperbase. Note: from here on we use the term hyperbase to
refer to a normalized hyperbase.

As an example, Figure 2a shows a relational database
fragment consisting of two records, a Customers record and
an Orders record, linked by the Customer Id field. In a
relational database the link is “ implied” by the foreign key in
the Orders table having the same value as the key in the
Customers record’. Figure 2b shows the hyperbase
representation of the same database fragment (the figure has
been simplified for sake of clarity). Simple edges are drawn
using solid lines and identification edges are drawn using
dashed lines. The text in internal nodes shows the “role” each
node has in the original data source and the text in leaf nodes
shows the label’s type and value (in particular, the “Key”
label type describes a value that serves as an internal id and
is not retrievable by the user). The left Record node
represents the Orders record, while the right Record node
represents the Customers record. The key and foreign key
fields have been coalesced and the coalesced field node
serves as reference to the Customer record. Also shown is the
integration of linguistic information. A morphological stem
node is referenced by a stem label and has as children a set

’ Foreign key specification is not part of the relational model per se.
Some database products provide such functionality. The DataSpot
Publisher gleans this information from the database if available,
tries to guess it otherwise, and finally lets the user add or delete
links.

646

Customer Id

Customers

(Key)

Customer Id
(Foreign Kevl

Orders

Figure 2a: A Sample Database Figure 2b: A hyperbase

of words sharing that stem (including normalization to lower
case). A thesaurus node is referenced by an internal thesaurus
identifier and has as children a set of stems with similar
meaning. The DataSpot system includes many other built-in
associations, such as concepts, numbers and dates, and
allows for user-defined associations (e.g. geographical
information) to be added in similar fashion.

navigate to related records, or the user may submit
continuation queries from the current record or from a set of
records.

3. A DataSpot Query

A DataSpot query is an associative search over a hyperbase.
The input to a query is a set of nodes, called the query
sources. The result of a query is a list of answers, where
each answer is a connected hyperbase containing the query
sources (a partial answer may contain a subset of the query
sources). An answer hyperbase is represented by a
distinguished answer node selected heuristically according to
the data model. The answers to a query are ordered (ranked)
according to their score with, preferably, the “best” answer
provided first. The score of an answer is based on the size of
the answer hyperbase and the strength of the associations
used to derive it. The query sources are typically specified as
a set of words. However the user may also submit
continuation queries whose input consists of words and of
nodes or sets of nodes arrived at via previous queries or
navigation.

As a simple example consider Microsoft’s Northwind
Traders database, a demo corporate database consisting of
eight tables, namely employees, orders, order details,
customers, products, suppliers, shippers and categories tables
(for the schema and demo queries see
www.dtl.co.il/dtl/sample/nwind/nwind.adb). The wry
“Nancy’s seafood orders” returns (as an HTML page, shown
in Figure 3) several records from the orders table. The first
record, displayed in Figure 4, represents an order for a
customer named QUICK-stop that was processed by the
employee Ms. Nancy Davolio. One of the products in the
order, Boston Crab Meat, is of category Seafood, and is also
supplied by a supplier named New England Seafood
Cannery). Note that finding this answer required five
relational associations (“joins”) that are shown under
Reasoning at the bottom of Figure 4, as well as linguistic
associations used e.g. to connect “Nancy’s” with “Nancy
(linguistic associations may also include related words and
concepts associated via a thesaurus). Note also that the words
“Nancy’s” and “Seafood” relate to values in the database
while the word “orders” is related to a metadata element (the
order table), but the distinction is insignificant in the
DataSpot representation.

Within the relational framework free-form queries can
be understood as follows. The search process finds answer
records that are related to the query words through relational
and linguistic associations. The heuristics that select the
distinguished answer node specify that the node be a record
node from a table designated in the Publisher as an answer
table (e.g. in an electronic catalog application this would
likely be the table of items to be purchased). After receiving
answers the user may view specific answer records in detail,

Given the set of answers to the query the user may
submit a refinement query. For example, typing the word
“Mexico” would get the orders Nancy Davolio processed for
customers located in Mexico. Alternatively, when looking at
an answer record the user may submit a continuation query.
For example, typing the word “Orders” when viewing the
record for QUICK-stop would get all the orders processed
for QUICK-stop by any employee. Further details on the
DataSpot representation and on query semantics and

647

.

Figure 3: The Query “Nancy’s Seafood Orders”

computation can be found in [PAL95].

4. The DataSpot System

The DataSpot representation and search technology is
the foundation of the DataSpot system, first released as a
commercial product in April 1997. The DataSpot system
implements the hyperbase structure on top of a proprietary
scalable lightweight object system. We review briefly the
functionality of the DataSpot system. The two major
components of this system are the DataSpot Publisher and
the DataSpot Search Server (see Figure 1).
Using the DataSpot Publisher the user specifies a set of data
sources to be published, and the associations to be performed
on these data sources. The Publisher then integrates these
heterogeneous data sources into a single unified hyperbase.
Key features of the DataSpot Publisher include:
. Interfaces all major database products via ODBC, DA0

or native drivers, as well as flat files.
l Allows for scheduled batch hyperbase generation as well

as concurrent incremental updates.
. Supports English and many European and (soon) far-

eastern languages.
The DataSpot Search Server performs queries against the
hyperbase. It provides a Web interface to the DataSpot
technology, allowing users to submit queries and receive
replies using a standard browser. DataSpot offers three
modes of application setup (see Figure 1):
. Server applications using default HTML templates

customizable via editors such as FrontPage.
. Standalone applications using Microsoft’s Internet

Explorer’s pluggable protocol (dataspot://).

. ActiveX automation interface invoked programmatically
from another application.
The first commercial release of DataSpot, DataSpot 1.1,

has been available since April 1997 on Windows NT/95
platforms. It supports all major database products as well as
flat files. DataSpot 2.1, released in June 1998, features
several major enhancements: an online update capability to
automatically keep the hyperbase synchronized with the
source databases, an object interface to allow developers to
integrate DataSpot searches into their applications, support
for all major European languages, and major performance
enhancements including a multi-threaded engine. DataSpot
3.0, currently in pre-release state, provides efficient
parametric search, supports application development with
Active Server Pages (ASP) technology and is integrated with
Microsoft‘s Site Server Commerce Edition, a leading
electronic commerce product. The DataSpot Search Server
typically provides response times of few seconds on gigabyte
hyperbases. As of this writing, several dozen DataSpot 1.1
and 2.1 systems have been successfully deployed in diverse
Internet and Intranet application areas including electronic
catalogs, yellow pages, classified ads, help desks and
finance.

More information about DTL and DataSpot can be
found at www.dataspot.com. In particular, see the DataSpot
applications page for examples of applications built using
DataSpot.

5. Related Work

Many products address the problem of providing a friendly
way for users to retrieve information from databases. In
general, these products fall into three categories: text search

648

engines, form-based interfaces and natural language
interfaces.

Text-search engines (E.g. AltaVista, Yahoo!, Excite,
InfoSeek, Lycos, Verity) . These products provide retrieval
of structure-free, text-based information. The criteria for the
search are usually that the requested words appear in the
same proximity in the document. Text-search engines do not
typically capture database semantics (e.g. foreign keys) and
do not support navigation between related data elements.

Form-based interfaces (e.g. Saphire/web, NetDynamics,
Cold Fusion, dbWeb). These products offer a user interface
based on structured forms. This approach requires a
significant programming effort on the part of the data
provider while limiting the user to requesting data via a
particular set of queries. In addition, the input to a query
must be specified exactly, e.g. linguistic associations would
be difficult to incorporate.

Natural language Interfaces (e.g. English Wizard,
Microsoft English Query). These products offer a natural-
language interface to the user and then translate the query
into SQL statements. This approach looks similar to ours in
that it supports free-form queries and it uses an external
index on the published data values (e.g. to guide the
translation of the user’s query), but it passes query evaluation
to the database query processor. The DataSpot hyperbase
representation provides important advantages, such as the
ability to integrate heterogeneous databases, extensibility
(e.g. non relational data, additional languages and
associations), better performance (e.g. joins are “pre-
computed’ and search algorithm is specialized), and ability
to justify answers (as opposed to just showing the generated
SQL).

Representation of unstructured or loosely structured data
has received much attention in the database research
community in recent years (see e.g. BDHS96, GSVG98,
MAGQW97, PGMW95). For lack of space we mention only
a few salient points regarding the relationship of the
DataSpot data model (the hyperbase) to these proposals.
First, the emphasis of the DataSpot representation is to
enable free-form queries, while most of the above mentioned
research work is focused on formal query languages for
semistructured data (with the exception of [GSVG98], which
also emphasizes keyword search). Second, the DataSpot
model is different than the above proposals, and it addresses
some important theoretical and practical questions such as
the representation of cyclic data and the integration of
information from heterogeneous data sources, including
relational and non-relational databases, a thesaurus and user-
defined associations. Third, a lot of attention has been paid in
DataSpot to the efficient implementation of the graph, to the
acceleration of the bulk load process that creates it and to the
tuning of the query process that traverses it, including
support for multi-threaded queries concurrent with updates.

Other work in the database research community
addresses ways to organize and query data on the Web (see
e.g. KS95, LR096, MAGQW97, MM97). These studies are
complementary to our work.

Acknowledgments

Catriel Beeri helped stimulate the early theoretical work
underlying the hyperbase structure. We are also grateful to
Divesh Srivastava and S. Sudarshan for providing us with
valuable feedback on this paper.

References

References to commercial products are omitted. Information
can be found in the respective Web sites.
[BDHS96] P. Buneman, S. Davidson, G. Hillebrand and D.
Suciu. A Query Language and Optimization Techniques for
Unstructured Data. SIGMOD 1996.
[F96] Searching Text and Tables. Maurice Frank, Editor.
Internet Systems (DBMS Magazine supplement), October
1996.
[FFKLS97] System Demonstration - Strudel: A Web-site
Management System. By Mary Fernandez, Daniela Florescu,
Jaewoo Kang, Alon Levy, Dan Suciu. SIGMOD 1997.
[GSVG98] R. Goldman, N. Shivakumar, S.
Venktasubramanian, H. Garcia-Molina, Proximity Search in
Databases, VLDB 1998.
[KS951 D. Konopnicki and 0. Shmueli. W3QS: A Query
System for the World Wide Web. VLDB 1995.
[LR096] Querying Heterogeneous Information Sources
Using Source Descriptions by Alon Y. Levy, Anand
Rajaraman and Joann J. Ordille.VLDB 1996.
[MAGQW97] J. McHugh, S. Abiteboul, R. Goldman, D.
Quass, and J. Widom. Lore: A Database Management
System for Semistructured Data. SIGMOD Record, 26(3):
pgs. 54-66, September 1997.
[MM971 A. Mendelzon, T. Milo. Formal Models of the Web.
PODS 1997.
[PAL951 E. Palmon, Associative Search Method for
Heterogeneous Databases with an Integration Mechanism
Configured to Combine Schema-Free Data Models such as a
hyperbase, United States Patent Number 5,740,42 1, April 14
1998 (tiled April 3, 1995).
[PGMW95] Y. Papakonstantinou, H. Garcia-Molina and J.
Widom. Object Exchange across Heterogeneous Information
Sources. ICDE 1995.

649

