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Abstract 

The processing of spatial joins can be greatly 
improved by the use of filters that reduce the 
need for examining the exact geometry of 
polygons in order to find the intersecting ones. 
Approximations of candidate pairs of polygons 
are examined using such filters. As a result, three 
possible sets of answers are identified: the 
positive one, composed of intersecting polygon 
pairs; the negative one, composed of non- 
intersecting polygon pairs; and the inconclusive 
one, composed of the remaining pairs of 
candidates. To identify all the intersecting pairs 
of polygons with inconclusive answers, it is 
necessary to have access to the representation of 
polygons so that an exact geometry test can take 
place. This article presents a polygon 
approximation for spatial join processing which 
we call four-colors raster signature (4CRS). The 
performance of a filter using this approximation 
was evaluated with real world data sets. The 
results showed that our approach, when 
compared to other approaches presented in the 
related literature, reduced the inconclusive 
answers by a factor of more than two. As a 
result, the need for retrieving the representation 
of polygons and carrying out exact geometry 
tests is reduced by a factor of more than two, as 
well. 

A Raster Approximation for the Processing of Spatial Joins 

1 Introduction 

The field of spatial databases has recently experienced a 
very fast development. Many systems represent data 
having spatial attributes. Such systems, known by the 
denomination of Geographic Information Systems 
(GIS’s), use spatial databases generally constructed upon 
relational databases, and need specially developed 
algorithms to meet their specific requirements. As an 
example, we should mention the efforts that have been 
made to create a SQL standard for spatial queries 
[SQL95, SAI94]. 

Such systems generally allow us to make spatial queries 
using some operators similar to those found in relational 
algebra. Thus, it is extremely important to have an 
efficient algorithm to perform spatial joins, so that an 
effective evaluation of the queries can be suitably done. 
[BRI94] presents the definition of a modular spatial join 
processor. This model has been frequently cited in many 
subsequent works. For that reason this work has been 
developed in such a way to be fully compatible with that 
processor. 
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Thus, our purpose is to present a raster approximation 
for the processing of spatial joins, along with the results 
obtained through it. The work has been divided in 
sections, as follows. Section One is an Introduction. 
Section Two defines the problem itself and shows the 
need of an efficient accomplishment of the spatial joins. 
Section Three surveys the related literature and indicates 
the results on which the present work is based. In Section 
Four, we present the raster approximation in detail, as 
well as the results it has provided. Section Five is 
dedicated to our conclusions and to future developments 
of this work. Finally, Section Six lists the references we 
used. 

2 Defining the Problem 

A significant amount of all the recent research work on 
databases deals with spatial databases. Although several 
questions are still open, there is a consensus about some 
requirements that such databases must meet: for example, 
a spatial database must offer to spatial data at least the 
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same facilities that a relational database offers to 
conventional data. Therefore, a spatial database must give 
support to ad-hoc queries involving the stored spatial 
attributes. As in relational databases, such queries must be 
decomposed in smaller, simpler queries, which can be 
implemented using a small set of spatial operators. 

Two of the most frequent operations performed by 
Geographic Information Systems nowadays are the 
superposition and intersection of maps. An example of a 
simple query that falls into this category is presented in 
[VEE95]: “retrieve all rural areas bellow the sea having 
soil type equal to sand within three miles of polluted 
lakes.” Several spatial joins involving the thematic planes 
of soil destination, soil type, pollution and elevation must 
be made to answer this query. Therefore, we can say that 
the join operation is of great importance to both spatial 
and relational databases. 

In this work, spatial objects are characterized by 
possessing at least one attribute describing its spatial 
extension by means of one or more polygonal lines. It is 
important to note that the only restriction made relatively 
to the shape of a spatial object is that it must be closed, 
although there may be holes in it (for example, lakes) or it 
may be disconnected (for example, islands). 

2.1 Spatial Joins 

Drawing another analogy with relational algebra, we can 
view the spatial join as a subset of the Cartesian product 
of two sets, A and B, not necessarily distinct, containing, 
respectively, m and n elements. This subset is composed 
of the Cartesian product elements that meet a given spatial 
predicate. The overlap of spatial objects is of special 
interest in practical applications. Therefore, this work is 
concerned solely with the join of intersecting polygons. 
Nonetheless, as [BRI94] points out, the results obtained 
considering this predicate can be easily applied to other 
kinds of predicate. 

An initial approach for the processing of spatial joins 
consists in the application of the nested loops algorithm 
that came from relational databases. This algorithm 
consists in confronting each element in set A with every 
element in set B to verify whether the condition is 
satisfied or not. This simple algorithm illustrates the most 
expensive operations performed during the processing of 
spatial joins: the transfer of large objects from disk to 
memory and the polygon intersection test. It is certainly 
possible to minimize both the number of times that an 
object is to be read and the number of intersection tests to 
be performed. This is the aim of our work. 

Another approach for the processing of spatial joins is 
to use indexes previously built on each data set and 
simultaneously traverse these indexes, searching for 
polygon intersections. This approach corresponds to a 
sort-merge approach in relational databases. Typically, an 
index is composed of two parts: the index structure, that 
only stores the data keys, and the data structure, that 
stores the data itself. Thus, a spatial index should store the 
objects in a spatial structure according to a geometric key 

[BRI94]. Due to its simplicity, MBR is the most popular 
geometric key. When we use MBRs, the complexity of a 
spatial object is reduced to four parameters which retain 
the most important characteristics of the object: position 
and extension. Nonetheless, cartographic objects of the 
real world are very poorly approximated by MBRs. 

The current approximation techniques can be divided 
into three classes [BRI93b]: conservative, progressive and 
generalizing. An approximation is said conservative if and 
only if the boundary of the original object is entirely 
contained in the approximation. It is termed a progressive 
approximation when all the points pertaining to the 
approximation are contained in the object. Finally, a 
generalizing approximation aims at simplifying the 
objects’ boundary, for example reducing the number of 
vertices. In general, there is no topological relation 
between the generalizing approximation and the original 
object, that is to say, neither is the object entirely 
contained in the approximation, nor is the approximation 
entirely contained in the object. For that reason, 
generalizing approximations can not be used for deciding 
polygon intersection. Examples of conservative 
approximations are MBRs, and the minimum bounding n- 
corner (n-C, for example, 5C), which is the smallest n- 
corner polygon enclosing an object. Examples of 
progressive approximations are the maximum enclosed 
rectangle (ER) and maximum enclosed rectilinear line 
segments (EL). More examples of approximations can be 
found at [BRI93b]. 

Conservative approximations can identify mainly 
negative and inconclusive answers. Progressive 
approximations can identify mainly positive and 
inconclusive answers. Generalizing approximations can 
not be efficiently used for deciding about polygon 
intersection because it leads to many inconclusive 
answers. So, in order to test polygons’ intersections while 
traversing a spatial index, one should use a progressive 
and a conservative approximation. 

3 Related Works 

In a frequently mentioned reference, [BRI94] presents the 
Multi-step Spatial Query Processor (MSQP), designed to 
perform spatial joins. In such processor, the evaluation of 
a spatial join is divided in three steps. Each step is 
implemented by a module that can be replaced by other 
equivalent module. Our work is fit to this structure so as 
to be able to replace (with advantage) one of the steps of 
MSQP. Next we describe MSQP with more details: 

Step 1 - MBR join: First, the Minimum Bounding 
Rectangle (MBR) is used as an approximation instead of 
the exact representation of the polygons to compute an 
approximate spatial join. This step returns what is called a 
set of candidates, since it contains all the pairs of 
polygons that belong to the answer plus other pairs that 
have only MBR intersection; 

Step 2 - Filter Application: In this step, 
approximations that are more accurate than MBR are used 
for refining the answer, so that some false candidates are 
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eliminated. Moreover, positive answers can also be 
identified by means of such approximations, without 
needing to access the exact geometric representation of 
the spatial objects. Our work deals primarily with this 
step; 

Step 3 -- Exact Geometry Intersection: Eventually, 
all the remaining pairs of candidates are examined at this 
stage. This step requires access to the exact geometric 
representation of the spatial objects, and it is frequently 
the most time-consuming step: it requires CPU time to 
compute the exact intersection test, and I/O time to read 
the spatial objects from disk. Nevertheless, the amount of 
time spent in this step can be reduced using better 
approximations in the previous stage. 

Two great results came from [BRI94]: first, the 
conclusion that the exact intersection test is the most time- 
consuming step in the processing of spatial joins; and 
second, the modular structure proposed for the processor. 
In other words, it shows us research directions to improve 
the processing of spatial joins: the MBR join using R*- 
Tree or other index structure, and the filter step. 
Improvements done in the 3rd step tend to be of little 
impact in the total time spent in the processing of spatial 
joins, since its effects can be canceled by improvements 
done in earlier steps. 

In Figure 1, we summarize other related works that 
describe algorithms that can be used to replace any of the 
steps of the MSQP. Next, we shortly comment some of 
these works and we indicate which step each one of them 
can replace. This is not a comprehensive list of recently 
published papers related to this area, but it includes the 
most important results reached, as far as we know. 

Step 1: In this step, [BRI93a] and [BRI94] use R*-tree 
as spatial index in order to perform a spatial join. 
[PAT961 and [MIN95, MIN96] present hash based 
approaches, while [BRI96] presents parallel algorithms 
for R*-tree based spatial joins. [BER96] suggests another 
tree, the X-tree, that can also be used to implement this 
step. Finally, [HUA97b] proposes a new algorithm to 
traverse the R*-tree. 

Step 2: In this step, [BRI94] uses five-corner polygon 
approximations, and [BRI93b] discusses other 
approximations that can be used to filter the candidate set. 
[VEE95] uses approximations that are constructed by 
rotating two parallel lines around the object. In this work, 
we use raster approximations of polygons as filters. 

Step 3: In this step, [BRI94] uses plane-sweep and sets 
of trapezoids to compute the exact intersection test, and 
[HUA97a] uses an algorithm called Symbolic Intersect 
Detection to reduce the time spent on plane-sweep 
algorithm. 

step31 _._____....,: . . . . . . . . . . . . . . . . . . . . . . 

El Exact geometry 
processor 

Figure 1: State of art in Spatial Join Processing 

Finally, we could mention two other related works: 
[GUN931 presents a general model to estimate the cost of 
spatial joins, and [BRI95] presents a study on complexity 
of polygons. 

4 The Raster Approximation 

In this work, we present another kind of filter: the raster 
approximation of polygons. This approximation combines 
both progressive and conservative approximations in one 
single approximation, and it can be used to test if two 
polygons overlap. Moreover, our approximation can 
replace [BRI94] approximations with performance gains. 
Also, it does not interfere with the other steps: the R*- 
Tree MBR join and the exact geometry intersection test. 

The raster approximation of a polygon is a small bit- 
map of the polygon that uses few colors. This 
approximation can be viewed as a signature of the 
polygon. As any other kind of signature, this one should 
be computed once and stored to be used later. Also, the 
size of this signature must be kept small enough to be 
stored in the spatial indexes (for example, R*-Tree) used 
to provide access to data. In many cases, the bit-maps of 
two polygons can be used to decide if the real polygons 
have (or not) intersection area. As we will see in the 
following sections, there are few cases where the 
comparison of maps of bits does not lead to a conclusion. 
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4.1 Raster Signatures of Polygons 

Among the results obtained by [BRI94], two are 
particularly important for our work. The first result is that 
the step of exact geometric comparison, because of 
requiring the search of several objects in the disk, is the 
most time-consuming of all. Thus, efforts should be made 
to enhance the filters so as to reduce the number of 
polygons that must be brought to memory. Second, about 
two thirds of the candidates selected by the step one are 
pairs of polygons that really intersect each other. 
Although this proportion may vary from set to set, we 
have reasons to suppose that it is maintained invariable 
when we deal with data sets that have no strong 
correlation with each other, since this happened in random 
data sets originated from real world data sets. In case of 
this assumption is confirmed, it would be interesting to 
improve the filters so as to enhance the detection of 
intersections during the second step of spatial query 
processor. 

Therefore, we propose an approximation to replace, 
within the frame of the proposed processor, the 5C 
(conservative) and the ER&EL (progressive) 
approximations (both were used in [BRI94]): namely, the 
four-color raster approximation (4CRS). Such approach 
consists of keeping a raster approximation for each 
polygon, containing mxn cells, each one having two bits 
of information to indicate one of the following 
possibilities (table 1): 

Table 1 - Types of Cell in the 4CRS Approximation 

As an example, we have the polygons in Figure 2. 

0 

In order to compare two candidate polygons, we must 
superimpose their raster approximations in the area where 
their MBRs intersect each other, having first performed 
all the required changes in scale. Analyzing each pair of 
superimposed cells, we have the following possibilities 
(table 2): 

Table 2 - Outcome of cell matching: only three 
inconclusive cases (candidate cells) 

If two superimposed cells have each more than 50% of 
the polygon’s area it is obvious that the polygons intersect 
each other. It is important to notice that if a pair of 
superimposed cells is accepted, this is a sufficient 
condition for the pair of polygons they represent to be 
accepted, too, as depicted in Figure 3 

Legend 

Empty cell 

Cell with Weak 

I Samnle Polvgon intersection 

Cell with Strong 
intersection 

Full cell 

1 Raster Approximation 

Figure 2 - Cells in a Raster Approximation 4CRS 

I) No intersection 

I) Intersection 

Figure 3 - (a) non-intersecting polygons, (b) intersecting 
polygons 

In order to compare two approximations of distinct 
polygons, we must first ensure that their cells have the 
same size and that the intersecting cells have the same 
corner coordinates. The changes of scale are more readily 
performed if we require that length of each cell side 
should be a power of two (2”), and that the beginning of 
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each cell be a multiple of the same power of two (~2”). In 
so doing, we guarantee that, if two cells of the same size 
intersect each other, then they are perfectly superimposed 
to one another (Figure 4). 

have coordinates 

. 
The cell with side 2”+l have coordinates 

(2n+1~,2”+‘d), comprising the following 2” Cells: 
(2X2”C, 2x2”4, (2x2? + 2”, 2x2”& 

(2x2”c, 2x2”d + 2”) and (2x2”~ + 2”, 2x2”d + 2”) 1 

Figure 4 - Line up of Cell corners 

Note that it is not possible to subdivide a cell, that is to 
say, to reduce the length of its side, performing a change 
of scale since, in the cases of Weak or Strong, this would 
lead to the erroneous assumption that the polygon’s area is 
uniformly distributed throughout the cell. Hence, 
whenever a change of scale is necessary (Figure 5), it is 
accomplished through the grouping of 2” cells, having in 
mind that the coordinates of the beginning of each cell are 
proportional to the length of its side. 

annroximation 

/ I 

To perform this scaling, we must use a pessimistic 
approach. It is of great importance to perform the 
conversion directly from the original signature, so as to 
reduce the loss of information. The algorithm for scaling a 
box with a 2” side cell, is the following: 
I. ifall the cells are empty, the result is empty; 
2. ifall them are full, the result is full; 
3. otherwise we must evaluate a sum, attributing to each 

cell a numerical value as follows: 
a) if the cell value is Empty or Weak, we count it as 

0; ifit is Strong, we count it as 0.5; lfit is Full, its 
numerical value is 1. 

b) If the average is less than 0.5, the result is Weak; 
otherwise, it is Strong. 

The raster approximation combines in only one 
approximation the conservative and progressive ones, 
being thus classified as integrated. When we use a 
progressive approximation, we can only be sure of the 
intersections, since the approximation area is totally 
contained within the polygon. On the other hand, a 
conservative approximation contains the whole polygon 
plus some additional area that does not belong to it: in 
fact, it is an improvement of MBR. Obviously, the 
progressive approximation is wholly contained in the 
conservative one. Nevertheless, this dual approach tells us 
nothing about the area that is contained in the 
conservative approximation but not in the progressive 
one. We call this an indecision area (Figure 6), since if the 
approximations for two polygons intersect each other only 
in this area we cannot affirm anything and must postpone 
the decision to the step of exact geometrical comparison 
(3rd step of the processor). It is important to notice that 
our definition of the indecision area is directly related 
with the idea of Approximation Quality, defined in 
[BRI93b]. 

~ RGr Approximation using a 22x27 grid 

Figure 5 - Change of scale 
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The raster approximation, besides combining two 
approximations in one, retains information about the 
fraction of polygonal area contained in the indecision 
area. Thus, it is possible to reduce the extent of the 
approximation indecision area, as the following table 
shows (Figure 7 and Table 3). The indecision level is 
reduced not only because we have a smaller indecision 
area but also because, in some cases, it is possible to come 
to a conclusion, even though we are in the indecision 
area. 

150 250 350 450 550 650 750 950 

Number of cells 

Figure 7 - Average results for 4CRS approximation 
(Approximation area and polygon area ratio) 

Table 3 - Comparison of approximations - average of data 
sets 

n Approximation Area / 1 

As we can see, the Figure 7 presents a distribution that 
seems to be asymptotic. Thereby, to increase the number 
of cells in an approximation will not result in one 
corresponding improvement in the quality of the 
approximation. Here, a trade-off between approximation 
quality and key size must be done. In order to keep the 
key size small, we decided to use approximations with at 
most 750 cells. As we will see in section 4.3, this limit on 
resolution leads to an approximation size in bytes 
comparable to other approximations. Moreover, the 
analysis of our data sets, coming from the real world, has 
shown that the cells present the following approximate 
distribution (considering a resolution of 750 cells): for 
each cell having strong area intersection there is a cell 
with weak intersection, four empty cells, and four full 
cells. Though it is certainly encouraging, we will see that 
this distribution is scale dependent. This means that, when 
we compare polygons whose cells have different sizes, the 
distribution does not hold any more, since it is necessary 
to perform a scale change. Even when the polygons we 

compare are very different in size, in the worst case one of 
them will be reduced to a cell with weak area intersection, 
but the other polygon approximation remains unchanged. 
This means that about 80% of its cells will be full or 
empty (considering a resolution of 750 cells), leading to a 
good result when the comparison is made. 

4.2 Number of Cells 

We have verified experimentally that, as the number of 
cells in the approximation increases, the filter quality 
improves. Intuitively, we can explain this result using the 
argument that, the larger the number of cells, the closer is 
the approximation to the original polygon. In the limit, we 
are no longer comparing approximations, but the polygons 
themselves. This would lead to a rightness of 100%. 
However, this is a theoretical result. In practice, an 
approximation with 10,000 cells would be greater than the 
polygon itself, what would be useless. 

Previously, we said that the distribution area x number 
of points was apparently asymptotic. We will not prove 
this statement here, because that is not the purpose of this 
article. We just provide a schedule to the proof, leaving 
the demonstration to the reader: 
1. When we divide the cell side by two, the number of 

full and the empty cells are multiplied by four, as well 
as the number of some cells (fid or empty) obtained in 
the following case; 

2. Nonetheless, when we divide a cell that has Strong or 
Weak intersection with the polygon, we have the 
following situation: at most, r cells will be 
homogeneously divided, that is, they will give rise to 
four full cells or four empty cells, where r is the 
number of vertices in the polygon. The remaining 
cells, as shown in figure 8, originate at least one full 
cell or one empty cell, and at most three cells having 
weak or strong intersection; 

Hence, for each increment d in scale, we have 
(estimated values): 
a) 3d(W + S) + 4r - remainder: cells with _Weak or 

Strong intersection (at most). 
b) zd (F + E) + remainder: Euff or Empty cells (at least). 

Only in the cases of existing vertices inside the cell it is 
possible to give origin to four cells intercepting edges. 
Otherwise at least one cell will be either Empty or Full. 

Figure 8 - Different cases of cell splitting 

As d increases, the exponential terms dominate and the 
ratio (a)/(b) tends to decrease, being zero when d tends to 
infinity. Well, (a) is just the number of indecision cells: 
cells with weak or strong intersection. If the raster 
approximation is constituted only of full or empty cells, 
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the percentage of rightness is equal to 100%. 
Nevertheless, we can also observe that the filter 
improvement is not linear, reflecting the function that 
dominates the ratio (a)/(b), that is, (3/4)“. 

We can thus develop some criteria to choose the limit p 
to the cells used in the raster approximation. As we have 
seen, this limit influences the average size of each key and 
thus involves a cost/benefit relation. The choice is related 
with the average number of points per polygon, as well as 
with the minimum distance between two points in each 
polygon. Yet, the minimum distance between two points is 
directly related with precision and, thus, with the average 
number of points per polygon. The exceptions to this rule 
are those polygons that have large edges, generally 
defined artificially - an example is given by the case of 
several large American states and counties, as well as by 
large constructions, cities and real estates in general. 

[BRI95] presents a study of the polygon complexity 
and [GAE96] presents a study about the fractal dimension 
of polygons, which can serve as a basis to estimate the 
number of cells necessary to make a good raster 
approximation. Although the preliminary results are 
encouraging, more detailed tests are needed to achieve 
conclusive results. As we have stated before, in this work 
the limit for p is 750 cells, in order to keep approximation 
size competitive. Of course, any other number close to 
750 could be used with similar results. 

4.3 Computing the 4CRS Approximation 

We implemented a straightforward algorithm, that was 
developed using routines that were already written by 
others. We didn’t worry about the optimization of the 
algorithm since it will just be used once to compute the 
approximations, that will be stored and used several times 
later. Although we didn’t measure the exact time spent on 
the calculation of the 4CRS approximations we can affirm 
that it is comparable with the time spent on the calculation 
of the other approximations: 5-C and ER&EL. 

The MBR of the polygon is used to calculate the 2”- 
MBR, that is a MBR whose vertexes are in the form ( 
2”xo, 2”y0 ) and ( 2’xk, 2”yk ), where x0, xk, yo, yk and n are 
integers. Besides, n is chosen in such a way that 
(xk-x0)&-y& N+l, where N is the maximum number of 
cells of the approximation (for example 750). Used 
algorithm (brute force): initially maximum n is chosen so 
that 2” is smaller than the side of original MBR. Then, in 
successive iterations, n is decreased of 1 while the above 
conditions hold. 

The points x0, x1,... xk defines a set of parallel lines to 
the vertical axis that we will call X0, Xl,... Xk. In a similar 
way, we define the horizontal lines Yo, Y,,... Yk . For each 
pair of vertical lines (Xi, Xi+, ) we compute its intersection 
with the original polygon. At this time, we are using a 
simplified version of the algorithm of Sutherland- 
Hodgman [ROG86]. We call each resulting polygon by Pi. 
For each polygon Pi, we perform the clipping process for 
the pairs of horizontal lines ( q, I;+, ). The result of each 
clipping is the intersection of the original polygon with 

the cell ( i,i ). Finally, for each cell, we compute the area 
of the intersection of the original polygon with the cell, 
and we classify the cell: Full, Strong, Weak or Empty. The 
cells Full and Empty can be classified by inspection, 
without need to compute its area. The only optimization 
that is taken place is to store the intersections of the line 
X,+1 that were computed for the pair of lines (X,, X,+,) and 
to use them for the calculation of the pair (X,+,, X,+3. The 
same is done for the horizontal lines. 

4.4 Compression 

The fact that the major part of the cells is either empty or 
full (80% for 750 cells) led us to study the applicability of 
(no loss) compression algorithms to the raster 
approximation. In fact, using patterns of 3x3 cells, we 
have got very good compression levels, the compressed 
approximation having only 40% of its original size. Using 
patterns of 2x2 cells, the compression rate was not so 
good. On the other hand, using patterns of 4x4 cells we 
have gotten a little better compression rate (about 35% of 
original approximation size), but at the expense of 
decompression speed and space requirements for 
decompression structures. Thus, we decided to use the 
3x3 cell patterns. 

The raster approximation compression allows for a 
larger information density and makes it possible to use 
larger number of cells that, as we have seen, improves the 
filtering process and the decision ability in step 2. 
Nevertheless, this approach makes evident a problem that 
we have not faced before: the fact that the approximations 
will be of different sizes. One must have in mind, though, 
that this problem is by no means a result of compression. 
When we say that the approximation should use p cells, 
we are in fact determining the upper limit of cells for such 
approximation. Certainly, there will be approximations 
mxn so that the number of cells is different of p (and 
therefore less than p). Moreover, to increase the number 
of cells in an approximation we must divide each cell size 
in a half, since we have constrained the cells sizes to be 
powers of two. As a result, the total number of cells would 
be multiplied by four. Since we can only affirm that 
2mx2n is less than p if mxn is less than p/4, we have that, 
if mxn is larger thanp/4 then it is not possible to increase 
the number of cells in the approximation. This result 
means that the difference between the larger and the 
smaller approximation can be at most equal to four times. 
Hence, even if we do not use compression, we still have to 
deal with approximations of different sizes. 

4.4.1 The Compression Algorithm 

The compression algorithm used here has been developed 
through statistical tests involving the data. The tests 
clearly demonstrated the predominant occurrence of full 
and empty cells over the cells with weak and strong 
intersection. Moreover, one of the most important 
requirements in the determination of the compression 
algorithm was its simplicity, since compression should by 
no means pose any disadvantage for the query as a whole. 
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Having this in mind, the cells of a particular signature 
have been split in groups of 3x3 cells, and each group was 
attributed a fixed code. Since there are 4’ possibilities for 
the cells, we need 18 bits to code each of them. 
Nevertheless, some kinds of cell are improbable of 
occurring, while some others are very frequent (Figure 9). 
Just to illustrate this fact, we made a statistical study of 
the various data sets having 750 cells’ signatures. The 
results have shown that the full group (the group in which 
all the cells are full) and the empty group (the group in 
which all the cells are empty) taken together represent 
about 40% of all cell groups. 

(1) Groups of improbable occurrence, and (2) groups 
of very frequent occurrence in any data set. 
In practice, it is hardly observed the occurrence of a 
full cell next to an empty cell, as in a “chess table”, 
since the boundaries of spatial objects tend to be 
more complex and irregular, so that their vertices 
hardly match the cells coordinates. 

Figure 9 - Example of cell groups 

Our compression algorithm is an adaptation of 
Huffman’s, in which the set of groups has been partitioned 
in four classes. The compression tree is constructed once, 
and it is based on the analysis of a large set of data. 
Basically, the compression algorithm assigns codes with 
few bits to cell groups of very frequent occurrence, and 
vice-versa. Table 4 shows some of these codes and cell 
groups, It is important to note that code prefix must be 
unique. 

Table 4 - Sample patterns, their codes and frequency 
(Brazil, 550 cells). Prefix 11 is used for coding other 

patterns that use more bits. 

It is then stored as an algorithm parameter, separated 
from the compact data. Hence, the compression, although 
less efficient, can be done more readily and the tree need 
not be stored with the data. Moreover, the unpacker can 
be optimized manually for a particular tree, determined 
before the compilation of the unpacker. In our tests the 
compression tree reached as much as 15 Kbytes and the 
compression rates were about 40% of the original key 
size. The compressed keys’ sizes are smaller than those in 
[BRI94] (Table 5). Moreover, our results cell out to an 
almost total independence between the data set and the 
tree. However, the dependence between the 
approximation quality and the compression rate was 
stronger: the better the approximation quality, the larger 
the compression rate. 

Table 5 - Average size (bytes) of compressed signatures 
(Brazil) 

4.5 Dealing with Approximations of Different Sizes 

As we have already explained, the approximations will be 
part of the polygon keys, and this means that they will be 
stored in the R*-Tree index, in the same way [BRI94] 
does. This is a reasonable approach, since both the 
calculations of a raster approximation and the calculation 
of 5C & ER-EL approximation are relatively slow 
operations. Furthermore, one can expect to compute these 
approximations one time, to store and to use them many 
times later. 

In order to deal with the variable sizes of the 
approximations without spending much space (which 
would increase the number of disk access operations) we 
must group a significant number of raster approximations 
in one bucket. The choice of this number must take into 
account the average key size. We must also pay attention 
to the possible occurrence of an overflow. The average 
compact key size can be determined experimentally for 
each limit p of cells. Adding to it a safety margin can then 
reduce the number of overflows to admissible limits. 
Figure 10 shows the distribution for 4CRS key size when 
the limit p is set to 750. Furthermore, as we can see in 
Figure lob, less than 80% (actually, 77,19%) of the 4CRS 
keys are smaller than 56 bytes, which is the size of 5-C 
plus ER, and 99,88% are smaller than 80 bytes, which is 
the size of 5-C plus ER-EL [BRI94, BRI93bl. 
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Figure 10 - a) Distribution of approximations/key size; b, 
Cumulative distribution. 

The spatial data structure used as an index in the 
processor’s first step must be adapted to deal with buckets 
and overflows, so that we can solve the problem of the 
variable-sized keys. It is important to notice that, in 
general, these structures already work with buckets 
[SAM901 to access the disk efficiently. Moreover, the 
buckets used in the R*-Tree family of data structures 
usually have space utilization rate between 50% and 
100%. This means that the adaptation to be made in such 
structures is not very difficult as we ourselves have been 
able to verify adapting R*-Trees. 

5 Experimental Results 

5.1 Test Data 

Our test data is composed of several sets of polygons 
containing up to forty-five thousand polygons. We have 
used data from various origins such as some 
municipalities in European countries, American counties 
and Brazilian municipalities [IBG96]. Typically, the 
average number of points per polygon in each data set 
ranges from 22 to 96 (Table 6). As suggested in [BRI94] 
we have generated the other data set (named data set’) 
shifting the original polygons by random displacements of 
x and y coordinates, and then performing the spatial join 
using data set x data set’. The only exception to this rule 
is the join Brazil-A x Brazil-B. These data sets were 
generated as follows: data set Brazil was randomly 
expanded, shifted, rotated and replicated 9 times (Brazil- 
A) and 4 times (Brazil-B). 

Table 6 - # of points and vertices in each data set 

5.2 Spatial Join Comparison 

Now we present the average of some results obtained in 
our work, to allow for a comparison with the other 
approximations (Tables 7 and 8). To compute the 
averages, we have discarded the South of the USA results 
because of its unusual polygon uniformity. We compared 
4CRS with two approximations: SC-ER (56 bytes) and 
SC-ER&EL (80 bytes). Also, we have omitted Brazil-A 
and Brazil-B results because these data sets are derived 
from Brazil data set. 

The input data set of this step is the set of candidates, 
which is a set of pairs of polygons. The set of candidates 
was originated as a result of the step one - the step of 
MBRs join (in this case, we have used a R*-Tree). It is 
important to notice that no matters what method we use to 
compute step one, we will always obtain the same set of 
candidates. It is due to fact that we are computing MBR 
joins. 

Table 7a describes the data sets in terms of intersecting 
polygons and MBR pairs of candidates. In the Tables 7b 
and 8, the first three columns show the classification of 
our filter for each pair of candidates. The column 
Accepted shows the percentage of candidate pairs that 
were identified as pairs of polygons that intersects each 
other. It is a true polygon intersection and it was 
discovered without having access to the exact 
representation of the polygons. The column Rejected 
shows the percentage of candidate pairs that were 
identified as pairs of polygons that do not overlaps. 
Again, we do not have to access the exact representation 
of the polygons in the disk in order to decide. The column 
Candidates shows the percentage of candidate pairs that 
our filter could not identify, and it will be the input data 
set of step three. The column Rejected Identified shows 
the percentage of pairs of polygons without intersection 
that were identified, and the column Accepted Identified 
shows the percentage of pairs of polygons with 
intersection that were identified by our filter. 

Table 7a - % of pairs of intersecting polygons/MBR pair 
of candidates 
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Table 7b - Performance of the filters (a) 4CRS-350, (b) 
4CRS-750 and (c) S-C/ER&EL (best results are bold 

face) 

AC- 
Candi- Rejected Accepted 

Rejected dates 
cepted (smaller 

Me;:- Identlltied 

is better) 

57.23% 
59.96% 

25.75% 137.10% 173.69%1 57.10% 

I I I 
12.17% 9.04% 68.41% 95.84% 
13.74% 6.89% 77.01% 96.60% 
16.26% 21.24% 80.22% 77.92% 

20.49% 19.77% 65.33% 87.04% 
23.48% 14.24% 74.85% 90.75% 
22.48% 36.13% 70.36% 60.82% 

21.22% 18.33% 66.02% 89.08% 
24.18% 13.34% 74.88% 92.28% 
24.49% 34.01% 72.58% 62.63% 

Table 8 - Comparison of methods (average rate, without 
south USA) 

4CRS 
(350 points) 

4CRS 
(750 points) 

5-C 8, ER 
(our results) 

5-C & ER-EL 
(our results) 

5-C & ER 
(Europe A) 23% 23% 54% 66% 30% 

[Eml94] 
5-C & ER-EL 
(Europe 4 40.5% 20.8% 40.84% 66.3% 59.2% 

It is important to note that the column Candidates in 
Table 8 is the determinant factor of the problem. These 
numbers show the size of the input data set for the step 3, 
which dominates the total execution time of the query. In 
this way, smaller rates indicate that fewer polygon 
intersection tests must be done. As one can see, our 
average results (13.7% of intersecting MBRs) exhibit a 
shrinking rate of more than 60% when compared with the 
best results previously presented (5-C/ER&EL, 36.4% of 
intersecting MBRs). As we have mentioned early, the 
combination of 5-C plus ER-EL spends more bytes in the 
key than our 4CRS approach. So, one can expect at least 

the same I/O costs for our approach since we are using a 
smaller key. 

Although [BRI94] has neglected the time spent on 5-C 
intersection tests because it does not affect significantly 
the overall time, we decided to show these times in Table 
9 - mainly because it is the only part of our algorithm that 
could result in time increase. As one can see, 4CRS key 
decompression and cell comparison have spent nearly the 
same time that 5-C. This result reflects the fact that 4CRS 
only uses fast integer operations: bit shifting and logical 
operations like AND, XOR and OR. In contrast, SC- 
ER&EL approximation uses some floating point 
operations or double precision integer multiplication and 
division. These times were measured by first measuring 
the execution time spent on performing only step 1 and 
subtracting it from the time spent on performing steps 1 
and 2. We have to adopt this methodology because the 
spatial processor is not sequential: the execution of step 2 
occurs interspersed with step 1. The test machine is a 
SUN Sparc2 with 32 Mb main memory. Although this test 
has been performed with only one of the data sets (the 
largest), the result of this test shows that its impact on the 
total time of the query is very small - less than 0.75% of 
total query time. One should note that the measured time 
includes the time spent on unpacking the approximations 
and comparing them. 

Table 9 - Average time spent on main memory 
approximation comparisons (Brazil data set, 508 1 

polygons and 33.188 intersecting MBRs) 

Only the I/O-time of step three was measured: the CPU- 
time spent on this step was not included in the final 
results. The main reason is that [BRI94] has shown that 
the plane-sweep algorithm, that we used in our tests, can 
be replaced by their TR*-trees algorithm with impressive 
CPU performance gains and little I/O overhead. Also, due 
to modular structure of MSQP, we could use SID 
[HUA97a] in this step. By the way, shrinking the size of 
input data set of this step certainly results in a CPU and 
I/O cost reduction, no matter what algorithm is used for 
detecting polygon intersection. As we have mentioned, 
sometimes our approach leads to 60% of reduction of 
input data set of this step. 

Finally, we have implemented a testbed for complete 
spatial join experiments in C++ on the same machine 
stated before. The testbed includes a MSQP 
implementation as stated in [BRI93a] and [BRI94], and 
we adopt the same methodology they used to measure 
CPU and I/O costs. We used a R*-Tree to implement the 
MBR join of step one, and we have implemented all the 
optimizations suggested in [BRI93a] and [BRI94]. Table 
10 shows our results. Both joins were performed using a 
buffer of 22 pages of 4Kb. The size of data set Brazil is 
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5,081, and this join produces 3 1,998 pairs of intersecting 
MBRs and 20,885 pairs of intersecting polygons. The size 
of data set Brazil-A is 20,324, and the size of Brazil-B is 
45,729. This join produces 108,153 pairs of intersecting 
MBR, and 59,887 pairs of intersecting polygons. 

Table 10 - Total join performance - 4CRS (750 points) 
and 5-C/ER&EL 

The column Number of exact intersection tests shows 
the size of input data set of step three, the most time- 
consuming step. These are the pair of candidates that the 
filter step could not identify as being a true polygon 
intersection or a false-intersection (a MBR intersection 
only). The column Number of disk access includes the 
sum of disk access of all steps. Of course, the size of the 
R*-tree and the size of the input date set of step three have 
a great influence on this number. 

The size of the Brazilian municipalities varies a lot: 
there are municipalities in the Amazonian region that are 
larger than small countries, while other municipalities are 
very small. Moreover, the data sets of second join, Brazil- 
A and Brazil-B, have different average polygon areas, 
which lead to many scale changes. These joins show that 
scale changes have little performance impact in our 
algorithm. The performance gains were about 45% and 
37%, respectively, when compared with the previous 
approach. 

6 Conclusions and Future Works 

This work has proposed a new approximation for the 
filtering of intersecting polygons in the process of making 
spatial joins, We achieved good results with the use of 
this new approach, specially when compared to state-of- 
art techniques. 

The use of a raster approximation has shown to be 
advantageous over other methods used in the filtering step 
in the accomplishment of spatial joins processing. Even in 
the case in which the gain was smaller (using fewer cells, 
or on scale changing), we have obtained a reduction of 
50% in the number of exact comparisons and in the cases 
in which we used a greater number of cells, the amount of 
reduction reached 60%. As we have seen, this is the most 
costly part of the spatial join processing since it requires 
the search and transfer of large objects from the disk to 
the main storage [BRI94, MIN96]. So, for any algorithm 
used in step one or step three , there will be a shrinking on 

size of the input data set of step three, resulting in smaller 
CPU and I/O costs, as our experimental results on Table 
10 have shown. Also, when measuring total time spent on 
performing a spatial join, the 4CRS approximation 
outperforms other filters by up to 45%. 

It is also important to notice that the raster 
approximation proposed here neither interferes in nor 
prevents the use of any approach that employs parallelism 
to process spatial joins. Also, our approximation does not 
interfere with new improvements in R*-Tree joining 
[HUA97b]. 

It should be investigated the use of raster 
approximations involving more colors, for example, eight 
colors. Although we pay the extra cost of having an 
additional bit for color (shape) representation, the relative 
abundance of full and empty cells over those with strong 
and weak intersection seems to indicate that, using the 
compression schedule proposed here, one should not 
expect a noticeable increase in the sizes of the maps. 
Moreover, the use of more colors will certainly decrease 
both the size of the indecision area and the information 
loss during the changes of scale. Promising results were 
obtained in a preliminary work on this [ZIM97]. 

Finally, alternative algorithms for compression of 4CRS 
raster approximation could be investigated: the quadtree 
polygon decomposition, gif methods and lzw encoding. 
Although these algorithms are more complex than the one 
presented here, they could lead even to a better space 
utilization. 
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