
Gerald0 Zimbrao
Systems and Engineering Program
Graduate School of Engineering

Federal University of Rio de Janeiro
PO Box 685 11, ZIP code: 2 1945-970

Rio de Janeiro - Brazil,
zimbrao@cos.ufrj.br

Jano Moreira de Souza
Systems and Engineering Program
Graduate School of Engineering

Federal University of Rio de Janeiro
PO Box 685 11, ZIP code: 2 1945-970

Rio de Janeiro - Brazil,
jano@cos.ufrj.br

Abstract

The processing of spatial joins can be greatly
improved by the use of filters that reduce the
need for examining the exact geometry of
polygons in order to find the intersecting ones.
Approximations of candidate pairs of polygons
are examined using such filters. As a result, three
possible sets of answers are identified: the
positive one, composed of intersecting polygon
pairs; the negative one, composed of non-
intersecting polygon pairs; and the inconclusive
one, composed of the remaining pairs of
candidates. To identify all the intersecting pairs
of polygons with inconclusive answers, it is
necessary to have access to the representation of
polygons so that an exact geometry test can take
place. This article presents a polygon
approximation for spatial join processing which
we call four-colors raster signature (4CRS). The
performance of a filter using this approximation
was evaluated with real world data sets. The
results showed that our approach, when
compared to other approaches presented in the
related literature, reduced the inconclusive
answers by a factor of more than two. As a
result, the need for retrieving the representation
of polygons and carrying out exact geometry
tests is reduced by a factor of more than two, as
well.

A Raster Approximation for the Processing of Spatial Joins

1 Introduction

The field of spatial databases has recently experienced a
very fast development. Many systems represent data
having spatial attributes. Such systems, known by the
denomination of Geographic Information Systems
(GIS’s), use spatial databases generally constructed upon
relational databases, and need specially developed
algorithms to meet their specific requirements. As an
example, we should mention the efforts that have been
made to create a SQL standard for spatial queries
[SQL95, SAI94].

Such systems generally allow us to make spatial queries
using some operators similar to those found in relational
algebra. Thus, it is extremely important to have an
efficient algorithm to perform spatial joins, so that an
effective evaluation of the queries can be suitably done.
[BRI94] presents the definition of a modular spatial join
processor. This model has been frequently cited in many
subsequent works. For that reason this work has been
developed in such a way to be fully compatible with that
processor.

Permission to copy without fee all or part of this material is
grantedprovided that the copies are not made or distributedfor
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires a
fee and / or special permission from the Endowment.
Proceedings of the 24th VLDB Conference
New York, USA, 1998

Thus, our purpose is to present a raster approximation
for the processing of spatial joins, along with the results
obtained through it. The work has been divided in
sections, as follows. Section One is an Introduction.
Section Two defines the problem itself and shows the
need of an efficient accomplishment of the spatial joins.
Section Three surveys the related literature and indicates
the results on which the present work is based. In Section
Four, we present the raster approximation in detail, as
well as the results it has provided. Section Five is
dedicated to our conclusions and to future developments
of this work. Finally, Section Six lists the references we
used.

2 Defining the Problem

A significant amount of all the recent research work on
databases deals with spatial databases. Although several
questions are still open, there is a consensus about some
requirements that such databases must meet: for example,
a spatial database must offer to spatial data at least the

558

same facilities that a relational database offers to
conventional data. Therefore, a spatial database must give
support to ad-hoc queries involving the stored spatial
attributes. As in relational databases, such queries must be
decomposed in smaller, simpler queries, which can be
implemented using a small set of spatial operators.

Two of the most frequent operations performed by
Geographic Information Systems nowadays are the
superposition and intersection of maps. An example of a
simple query that falls into this category is presented in
[VEE95]: “retrieve all rural areas bellow the sea having
soil type equal to sand within three miles of polluted
lakes.” Several spatial joins involving the thematic planes
of soil destination, soil type, pollution and elevation must
be made to answer this query. Therefore, we can say that
the join operation is of great importance to both spatial
and relational databases.

In this work, spatial objects are characterized by
possessing at least one attribute describing its spatial
extension by means of one or more polygonal lines. It is
important to note that the only restriction made relatively
to the shape of a spatial object is that it must be closed,
although there may be holes in it (for example, lakes) or it
may be disconnected (for example, islands).

2.1 Spatial Joins

Drawing another analogy with relational algebra, we can
view the spatial join as a subset of the Cartesian product
of two sets, A and B, not necessarily distinct, containing,
respectively, m and n elements. This subset is composed
of the Cartesian product elements that meet a given spatial
predicate. The overlap of spatial objects is of special
interest in practical applications. Therefore, this work is
concerned solely with the join of intersecting polygons.
Nonetheless, as [BRI94] points out, the results obtained
considering this predicate can be easily applied to other
kinds of predicate.

An initial approach for the processing of spatial joins
consists in the application of the nested loops algorithm
that came from relational databases. This algorithm
consists in confronting each element in set A with every
element in set B to verify whether the condition is
satisfied or not. This simple algorithm illustrates the most
expensive operations performed during the processing of
spatial joins: the transfer of large objects from disk to
memory and the polygon intersection test. It is certainly
possible to minimize both the number of times that an
object is to be read and the number of intersection tests to
be performed. This is the aim of our work.

Another approach for the processing of spatial joins is
to use indexes previously built on each data set and
simultaneously traverse these indexes, searching for
polygon intersections. This approach corresponds to a
sort-merge approach in relational databases. Typically, an
index is composed of two parts: the index structure, that
only stores the data keys, and the data structure, that
stores the data itself. Thus, a spatial index should store the
objects in a spatial structure according to a geometric key

[BRI94]. Due to its simplicity, MBR is the most popular
geometric key. When we use MBRs, the complexity of a
spatial object is reduced to four parameters which retain
the most important characteristics of the object: position
and extension. Nonetheless, cartographic objects of the
real world are very poorly approximated by MBRs.

The current approximation techniques can be divided
into three classes [BRI93b]: conservative, progressive and
generalizing. An approximation is said conservative if and
only if the boundary of the original object is entirely
contained in the approximation. It is termed a progressive
approximation when all the points pertaining to the
approximation are contained in the object. Finally, a
generalizing approximation aims at simplifying the
objects’ boundary, for example reducing the number of
vertices. In general, there is no topological relation
between the generalizing approximation and the original
object, that is to say, neither is the object entirely
contained in the approximation, nor is the approximation
entirely contained in the object. For that reason,
generalizing approximations can not be used for deciding
polygon intersection. Examples of conservative
approximations are MBRs, and the minimum bounding n-
corner (n-C, for example, 5C), which is the smallest n-
corner polygon enclosing an object. Examples of
progressive approximations are the maximum enclosed
rectangle (ER) and maximum enclosed rectilinear line
segments (EL). More examples of approximations can be
found at [BRI93b].

Conservative approximations can identify mainly
negative and inconclusive answers. Progressive
approximations can identify mainly positive and
inconclusive answers. Generalizing approximations can
not be efficiently used for deciding about polygon
intersection because it leads to many inconclusive
answers. So, in order to test polygons’ intersections while
traversing a spatial index, one should use a progressive
and a conservative approximation.

3 Related Works

In a frequently mentioned reference, [BRI94] presents the
Multi-step Spatial Query Processor (MSQP), designed to
perform spatial joins. In such processor, the evaluation of
a spatial join is divided in three steps. Each step is
implemented by a module that can be replaced by other
equivalent module. Our work is fit to this structure so as
to be able to replace (with advantage) one of the steps of
MSQP. Next we describe MSQP with more details:

Step 1 - MBR join: First, the Minimum Bounding
Rectangle (MBR) is used as an approximation instead of
the exact representation of the polygons to compute an
approximate spatial join. This step returns what is called a
set of candidates, since it contains all the pairs of
polygons that belong to the answer plus other pairs that
have only MBR intersection;

Step 2 - Filter Application: In this step,
approximations that are more accurate than MBR are used
for refining the answer, so that some false candidates are

559

eliminated. Moreover, positive answers can also be
identified by means of such approximations, without
needing to access the exact geometric representation of
the spatial objects. Our work deals primarily with this
step;

Step 3 -- Exact Geometry Intersection: Eventually,
all the remaining pairs of candidates are examined at this
stage. This step requires access to the exact geometric
representation of the spatial objects, and it is frequently
the most time-consuming step: it requires CPU time to
compute the exact intersection test, and I/O time to read
the spatial objects from disk. Nevertheless, the amount of
time spent in this step can be reduced using better
approximations in the previous stage.

Two great results came from [BRI94]: first, the
conclusion that the exact intersection test is the most time-
consuming step in the processing of spatial joins; and
second, the modular structure proposed for the processor.
In other words, it shows us research directions to improve
the processing of spatial joins: the MBR join using R*-
Tree or other index structure, and the filter step.
Improvements done in the 3rd step tend to be of little
impact in the total time spent in the processing of spatial
joins, since its effects can be canceled by improvements
done in earlier steps.

In Figure 1, we summarize other related works that
describe algorithms that can be used to replace any of the
steps of the MSQP. Next, we shortly comment some of
these works and we indicate which step each one of them
can replace. This is not a comprehensive list of recently
published papers related to this area, but it includes the
most important results reached, as far as we know.

Step 1: In this step, [BRI93a] and [BRI94] use R*-tree
as spatial index in order to perform a spatial join.
[PAT961 and [MIN95, MIN96] present hash based
approaches, while [BRI96] presents parallel algorithms
for R*-tree based spatial joins. [BER96] suggests another
tree, the X-tree, that can also be used to implement this
step. Finally, [HUA97b] proposes a new algorithm to
traverse the R*-tree.

Step 2: In this step, [BRI94] uses five-corner polygon
approximations, and [BRI93b] discusses other
approximations that can be used to filter the candidate set.
[VEE95] uses approximations that are constructed by
rotating two parallel lines around the object. In this work,
we use raster approximations of polygons as filters.

Step 3: In this step, [BRI94] uses plane-sweep and sets
of trapezoids to compute the exact intersection test, and
[HUA97a] uses an algorithm called Symbolic Intersect
Detection to reduce the time spent on plane-sweep
algorithm.

step31 _._____....,: .

El Exact geometry
processor

Figure 1: State of art in Spatial Join Processing

Finally, we could mention two other related works:
[GUN931 presents a general model to estimate the cost of
spatial joins, and [BRI95] presents a study on complexity
of polygons.

4 The Raster Approximation

In this work, we present another kind of filter: the raster
approximation of polygons. This approximation combines
both progressive and conservative approximations in one
single approximation, and it can be used to test if two
polygons overlap. Moreover, our approximation can
replace [BRI94] approximations with performance gains.
Also, it does not interfere with the other steps: the R*-
Tree MBR join and the exact geometry intersection test.

The raster approximation of a polygon is a small bit-
map of the polygon that uses few colors. This
approximation can be viewed as a signature of the
polygon. As any other kind of signature, this one should
be computed once and stored to be used later. Also, the
size of this signature must be kept small enough to be
stored in the spatial indexes (for example, R*-Tree) used
to provide access to data. In many cases, the bit-maps of
two polygons can be used to decide if the real polygons
have (or not) intersection area. As we will see in the
following sections, there are few cases where the
comparison of maps of bits does not lead to a conclusion.

560

4.1 Raster Signatures of Polygons

Among the results obtained by [BRI94], two are
particularly important for our work. The first result is that
the step of exact geometric comparison, because of
requiring the search of several objects in the disk, is the
most time-consuming of all. Thus, efforts should be made
to enhance the filters so as to reduce the number of
polygons that must be brought to memory. Second, about
two thirds of the candidates selected by the step one are
pairs of polygons that really intersect each other.
Although this proportion may vary from set to set, we
have reasons to suppose that it is maintained invariable
when we deal with data sets that have no strong
correlation with each other, since this happened in random
data sets originated from real world data sets. In case of
this assumption is confirmed, it would be interesting to
improve the filters so as to enhance the detection of
intersections during the second step of spatial query
processor.

Therefore, we propose an approximation to replace,
within the frame of the proposed processor, the 5C
(conservative) and the ER&EL (progressive)
approximations (both were used in [BRI94]): namely, the
four-color raster approximation (4CRS). Such approach
consists of keeping a raster approximation for each
polygon, containing mxn cells, each one having two bits
of information to indicate one of the following
possibilities (table 1):

Table 1 - Types of Cell in the 4CRS Approximation

As an example, we have the polygons in Figure 2.

0

In order to compare two candidate polygons, we must
superimpose their raster approximations in the area where
their MBRs intersect each other, having first performed
all the required changes in scale. Analyzing each pair of
superimposed cells, we have the following possibilities
(table 2):

Table 2 - Outcome of cell matching: only three
inconclusive cases (candidate cells)

If two superimposed cells have each more than 50% of
the polygon’s area it is obvious that the polygons intersect
each other. It is important to notice that if a pair of
superimposed cells is accepted, this is a sufficient
condition for the pair of polygons they represent to be
accepted, too, as depicted in Figure 3

Legend

Empty cell

Cell with Weak

I Samnle Polvgon intersection

Cell with Strong
intersection

Full cell

1 Raster Approximation

Figure 2 - Cells in a Raster Approximation 4CRS

I) No intersection

I) Intersection

Figure 3 - (a) non-intersecting polygons, (b) intersecting
polygons

In order to compare two approximations of distinct
polygons, we must first ensure that their cells have the
same size and that the intersecting cells have the same
corner coordinates. The changes of scale are more readily
performed if we require that length of each cell side
should be a power of two (2”), and that the beginning of

561

each cell be a multiple of the same power of two (~2”). In
so doing, we guarantee that, if two cells of the same size
intersect each other, then they are perfectly superimposed
to one another (Figure 4).

have coordinates

.
The cell with side 2”+l have coordinates

(2n+1~,2”+‘d), comprising the following 2” Cells:
(2X2”C, 2x2”4, (2x2? + 2”, 2x2”&

(2x2”c, 2x2”d + 2”) and (2x2”~ + 2”, 2x2”d + 2”) 1

Figure 4 - Line up of Cell corners

Note that it is not possible to subdivide a cell, that is to
say, to reduce the length of its side, performing a change
of scale since, in the cases of Weak or Strong, this would
lead to the erroneous assumption that the polygon’s area is
uniformly distributed throughout the cell. Hence,
whenever a change of scale is necessary (Figure 5), it is
accomplished through the grouping of 2” cells, having in
mind that the coordinates of the beginning of each cell are
proportional to the length of its side.

annroximation

/ I

To perform this scaling, we must use a pessimistic
approach. It is of great importance to perform the
conversion directly from the original signature, so as to
reduce the loss of information. The algorithm for scaling a
box with a 2” side cell, is the following:
I. ifall the cells are empty, the result is empty;
2. ifall them are full, the result is full;
3. otherwise we must evaluate a sum, attributing to each

cell a numerical value as follows:
a) if the cell value is Empty or Weak, we count it as

0; ifit is Strong, we count it as 0.5; lfit is Full, its
numerical value is 1.

b) If the average is less than 0.5, the result is Weak;
otherwise, it is Strong.

The raster approximation combines in only one
approximation the conservative and progressive ones,
being thus classified as integrated. When we use a
progressive approximation, we can only be sure of the
intersections, since the approximation area is totally
contained within the polygon. On the other hand, a
conservative approximation contains the whole polygon
plus some additional area that does not belong to it: in
fact, it is an improvement of MBR. Obviously, the
progressive approximation is wholly contained in the
conservative one. Nevertheless, this dual approach tells us
nothing about the area that is contained in the
conservative approximation but not in the progressive
one. We call this an indecision area (Figure 6), since if the
approximations for two polygons intersect each other only
in this area we cannot affirm anything and must postpone
the decision to the step of exact geometrical comparison
(3rd step of the processor). It is important to notice that
our definition of the indecision area is directly related
with the idea of Approximation Quality, defined in
[BRI93b].

~ RGr Approximation using a 22x27 grid

Figure 5 - Change of scale

562

Figure 6 - Indecision area relatively to the object’s area

The raster approximation, besides combining two
approximations in one, retains information about the
fraction of polygonal area contained in the indecision
area. Thus, it is possible to reduce the extent of the
approximation indecision area, as the following table
shows (Figure 7 and Table 3). The indecision level is
reduced not only because we have a smaller indecision
area but also because, in some cases, it is possible to come
to a conclusion, even though we are in the indecision
area.

150 250 350 450 550 650 750 950

Number of cells

Figure 7 - Average results for 4CRS approximation
(Approximation area and polygon area ratio)

Table 3 - Comparison of approximations - average of data
sets

n Approximation Area / 1

As we can see, the Figure 7 presents a distribution that
seems to be asymptotic. Thereby, to increase the number
of cells in an approximation will not result in one
corresponding improvement in the quality of the
approximation. Here, a trade-off between approximation
quality and key size must be done. In order to keep the
key size small, we decided to use approximations with at
most 750 cells. As we will see in section 4.3, this limit on
resolution leads to an approximation size in bytes
comparable to other approximations. Moreover, the
analysis of our data sets, coming from the real world, has
shown that the cells present the following approximate
distribution (considering a resolution of 750 cells): for
each cell having strong area intersection there is a cell
with weak intersection, four empty cells, and four full
cells. Though it is certainly encouraging, we will see that
this distribution is scale dependent. This means that, when
we compare polygons whose cells have different sizes, the
distribution does not hold any more, since it is necessary
to perform a scale change. Even when the polygons we

compare are very different in size, in the worst case one of
them will be reduced to a cell with weak area intersection,
but the other polygon approximation remains unchanged.
This means that about 80% of its cells will be full or
empty (considering a resolution of 750 cells), leading to a
good result when the comparison is made.

4.2 Number of Cells

We have verified experimentally that, as the number of
cells in the approximation increases, the filter quality
improves. Intuitively, we can explain this result using the
argument that, the larger the number of cells, the closer is
the approximation to the original polygon. In the limit, we
are no longer comparing approximations, but the polygons
themselves. This would lead to a rightness of 100%.
However, this is a theoretical result. In practice, an
approximation with 10,000 cells would be greater than the
polygon itself, what would be useless.

Previously, we said that the distribution area x number
of points was apparently asymptotic. We will not prove
this statement here, because that is not the purpose of this
article. We just provide a schedule to the proof, leaving
the demonstration to the reader:
1. When we divide the cell side by two, the number of

full and the empty cells are multiplied by four, as well
as the number of some cells (fid or empty) obtained in
the following case;

2. Nonetheless, when we divide a cell that has Strong or
Weak intersection with the polygon, we have the
following situation: at most, r cells will be
homogeneously divided, that is, they will give rise to
four full cells or four empty cells, where r is the
number of vertices in the polygon. The remaining
cells, as shown in figure 8, originate at least one full
cell or one empty cell, and at most three cells having
weak or strong intersection;

Hence, for each increment d in scale, we have
(estimated values):
a) 3d(W + S) + 4r - remainder: cells with _Weak or

Strong intersection (at most).
b) zd (F + E) + remainder: Euff or Empty cells (at least).

Only in the cases of existing vertices inside the cell it is
possible to give origin to four cells intercepting edges.
Otherwise at least one cell will be either Empty or Full.

Figure 8 - Different cases of cell splitting

As d increases, the exponential terms dominate and the
ratio (a)/(b) tends to decrease, being zero when d tends to
infinity. Well, (a) is just the number of indecision cells:
cells with weak or strong intersection. If the raster
approximation is constituted only of full or empty cells,

563

the percentage of rightness is equal to 100%.
Nevertheless, we can also observe that the filter
improvement is not linear, reflecting the function that
dominates the ratio (a)/(b), that is, (3/4)“.

We can thus develop some criteria to choose the limit p
to the cells used in the raster approximation. As we have
seen, this limit influences the average size of each key and
thus involves a cost/benefit relation. The choice is related
with the average number of points per polygon, as well as
with the minimum distance between two points in each
polygon. Yet, the minimum distance between two points is
directly related with precision and, thus, with the average
number of points per polygon. The exceptions to this rule
are those polygons that have large edges, generally
defined artificially - an example is given by the case of
several large American states and counties, as well as by
large constructions, cities and real estates in general.

[BRI95] presents a study of the polygon complexity
and [GAE96] presents a study about the fractal dimension
of polygons, which can serve as a basis to estimate the
number of cells necessary to make a good raster
approximation. Although the preliminary results are
encouraging, more detailed tests are needed to achieve
conclusive results. As we have stated before, in this work
the limit for p is 750 cells, in order to keep approximation
size competitive. Of course, any other number close to
750 could be used with similar results.

4.3 Computing the 4CRS Approximation

We implemented a straightforward algorithm, that was
developed using routines that were already written by
others. We didn’t worry about the optimization of the
algorithm since it will just be used once to compute the
approximations, that will be stored and used several times
later. Although we didn’t measure the exact time spent on
the calculation of the 4CRS approximations we can affirm
that it is comparable with the time spent on the calculation
of the other approximations: 5-C and ER&EL.

The MBR of the polygon is used to calculate the 2”-
MBR, that is a MBR whose vertexes are in the form (
2”xo, 2”y0) and (2’xk, 2”yk), where x0, xk, yo, yk and n are
integers. Besides, n is chosen in such a way that
(xk-x0)&-y& N+l, where N is the maximum number of
cells of the approximation (for example 750). Used
algorithm (brute force): initially maximum n is chosen so
that 2” is smaller than the side of original MBR. Then, in
successive iterations, n is decreased of 1 while the above
conditions hold.

The points x0, x1,... xk defines a set of parallel lines to
the vertical axis that we will call X0, Xl,... Xk. In a similar
way, we define the horizontal lines Yo, Y,,... Yk . For each
pair of vertical lines (Xi, Xi+,) we compute its intersection
with the original polygon. At this time, we are using a
simplified version of the algorithm of Sutherland-
Hodgman [ROG86]. We call each resulting polygon by Pi.
For each polygon Pi, we perform the clipping process for
the pairs of horizontal lines (q, I;+,). The result of each
clipping is the intersection of the original polygon with

the cell (i,i). Finally, for each cell, we compute the area
of the intersection of the original polygon with the cell,
and we classify the cell: Full, Strong, Weak or Empty. The
cells Full and Empty can be classified by inspection,
without need to compute its area. The only optimization
that is taken place is to store the intersections of the line
X,+1 that were computed for the pair of lines (X,, X,+,) and
to use them for the calculation of the pair (X,+,, X,+3. The
same is done for the horizontal lines.

4.4 Compression

The fact that the major part of the cells is either empty or
full (80% for 750 cells) led us to study the applicability of
(no loss) compression algorithms to the raster
approximation. In fact, using patterns of 3x3 cells, we
have got very good compression levels, the compressed
approximation having only 40% of its original size. Using
patterns of 2x2 cells, the compression rate was not so
good. On the other hand, using patterns of 4x4 cells we
have gotten a little better compression rate (about 35% of
original approximation size), but at the expense of
decompression speed and space requirements for
decompression structures. Thus, we decided to use the
3x3 cell patterns.

The raster approximation compression allows for a
larger information density and makes it possible to use
larger number of cells that, as we have seen, improves the
filtering process and the decision ability in step 2.
Nevertheless, this approach makes evident a problem that
we have not faced before: the fact that the approximations
will be of different sizes. One must have in mind, though,
that this problem is by no means a result of compression.
When we say that the approximation should use p cells,
we are in fact determining the upper limit of cells for such
approximation. Certainly, there will be approximations
mxn so that the number of cells is different of p (and
therefore less than p). Moreover, to increase the number
of cells in an approximation we must divide each cell size
in a half, since we have constrained the cells sizes to be
powers of two. As a result, the total number of cells would
be multiplied by four. Since we can only affirm that
2mx2n is less than p if mxn is less than p/4, we have that,
if mxn is larger thanp/4 then it is not possible to increase
the number of cells in the approximation. This result
means that the difference between the larger and the
smaller approximation can be at most equal to four times.
Hence, even if we do not use compression, we still have to
deal with approximations of different sizes.

4.4.1 The Compression Algorithm

The compression algorithm used here has been developed
through statistical tests involving the data. The tests
clearly demonstrated the predominant occurrence of full
and empty cells over the cells with weak and strong
intersection. Moreover, one of the most important
requirements in the determination of the compression
algorithm was its simplicity, since compression should by
no means pose any disadvantage for the query as a whole.

564

Having this in mind, the cells of a particular signature
have been split in groups of 3x3 cells, and each group was
attributed a fixed code. Since there are 4’ possibilities for
the cells, we need 18 bits to code each of them.
Nevertheless, some kinds of cell are improbable of
occurring, while some others are very frequent (Figure 9).
Just to illustrate this fact, we made a statistical study of
the various data sets having 750 cells’ signatures. The
results have shown that the full group (the group in which
all the cells are full) and the empty group (the group in
which all the cells are empty) taken together represent
about 40% of all cell groups.

(1) Groups of improbable occurrence, and (2) groups
of very frequent occurrence in any data set.
In practice, it is hardly observed the occurrence of a
full cell next to an empty cell, as in a “chess table”,
since the boundaries of spatial objects tend to be
more complex and irregular, so that their vertices
hardly match the cells coordinates.

Figure 9 - Example of cell groups

Our compression algorithm is an adaptation of
Huffman’s, in which the set of groups has been partitioned
in four classes. The compression tree is constructed once,
and it is based on the analysis of a large set of data.
Basically, the compression algorithm assigns codes with
few bits to cell groups of very frequent occurrence, and
vice-versa. Table 4 shows some of these codes and cell
groups, It is important to note that code prefix must be
unique.

Table 4 - Sample patterns, their codes and frequency
(Brazil, 550 cells). Prefix 11 is used for coding other

patterns that use more bits.

It is then stored as an algorithm parameter, separated
from the compact data. Hence, the compression, although
less efficient, can be done more readily and the tree need
not be stored with the data. Moreover, the unpacker can
be optimized manually for a particular tree, determined
before the compilation of the unpacker. In our tests the
compression tree reached as much as 15 Kbytes and the
compression rates were about 40% of the original key
size. The compressed keys’ sizes are smaller than those in
[BRI94] (Table 5). Moreover, our results cell out to an
almost total independence between the data set and the
tree. However, the dependence between the
approximation quality and the compression rate was
stronger: the better the approximation quality, the larger
the compression rate.

Table 5 - Average size (bytes) of compressed signatures
(Brazil)

4.5 Dealing with Approximations of Different Sizes

As we have already explained, the approximations will be
part of the polygon keys, and this means that they will be
stored in the R*-Tree index, in the same way [BRI94]
does. This is a reasonable approach, since both the
calculations of a raster approximation and the calculation
of 5C & ER-EL approximation are relatively slow
operations. Furthermore, one can expect to compute these
approximations one time, to store and to use them many
times later.

In order to deal with the variable sizes of the
approximations without spending much space (which
would increase the number of disk access operations) we
must group a significant number of raster approximations
in one bucket. The choice of this number must take into
account the average key size. We must also pay attention
to the possible occurrence of an overflow. The average
compact key size can be determined experimentally for
each limit p of cells. Adding to it a safety margin can then
reduce the number of overflows to admissible limits.
Figure 10 shows the distribution for 4CRS key size when
the limit p is set to 750. Furthermore, as we can see in
Figure lob, less than 80% (actually, 77,19%) of the 4CRS
keys are smaller than 56 bytes, which is the size of 5-C
plus ER, and 99,88% are smaller than 80 bytes, which is
the size of 5-C plus ER-EL [BRI94, BRI93bl.

565

a) Number of approximations

8 fi? % % 0 ul t?Y IG % 2 g
4CRS key size (bytes)

b) % of approximations

/
/

0 Cd
M::::::::::::::::::::::::::,
k! Iu i!i % VI m ol s 0) h) cn 2 F3
4CRS key size (bytes)

Figure 10 - a) Distribution of approximations/key size; b,
Cumulative distribution.

The spatial data structure used as an index in the
processor’s first step must be adapted to deal with buckets
and overflows, so that we can solve the problem of the
variable-sized keys. It is important to notice that, in
general, these structures already work with buckets
[SAM901 to access the disk efficiently. Moreover, the
buckets used in the R*-Tree family of data structures
usually have space utilization rate between 50% and
100%. This means that the adaptation to be made in such
structures is not very difficult as we ourselves have been
able to verify adapting R*-Trees.

5 Experimental Results

5.1 Test Data

Our test data is composed of several sets of polygons
containing up to forty-five thousand polygons. We have
used data from various origins such as some
municipalities in European countries, American counties
and Brazilian municipalities [IBG96]. Typically, the
average number of points per polygon in each data set
ranges from 22 to 96 (Table 6). As suggested in [BRI94]
we have generated the other data set (named data set’)
shifting the original polygons by random displacements of
x and y coordinates, and then performing the spatial join
using data set x data set’. The only exception to this rule
is the join Brazil-A x Brazil-B. These data sets were
generated as follows: data set Brazil was randomly
expanded, shifted, rotated and replicated 9 times (Brazil-
A) and 4 times (Brazil-B).

Table 6 - # of points and vertices in each data set

5.2 Spatial Join Comparison

Now we present the average of some results obtained in
our work, to allow for a comparison with the other
approximations (Tables 7 and 8). To compute the
averages, we have discarded the South of the USA results
because of its unusual polygon uniformity. We compared
4CRS with two approximations: SC-ER (56 bytes) and
SC-ER&EL (80 bytes). Also, we have omitted Brazil-A
and Brazil-B results because these data sets are derived
from Brazil data set.

The input data set of this step is the set of candidates,
which is a set of pairs of polygons. The set of candidates
was originated as a result of the step one - the step of
MBRs join (in this case, we have used a R*-Tree). It is
important to notice that no matters what method we use to
compute step one, we will always obtain the same set of
candidates. It is due to fact that we are computing MBR
joins.

Table 7a describes the data sets in terms of intersecting
polygons and MBR pairs of candidates. In the Tables 7b
and 8, the first three columns show the classification of
our filter for each pair of candidates. The column
Accepted shows the percentage of candidate pairs that
were identified as pairs of polygons that intersects each
other. It is a true polygon intersection and it was
discovered without having access to the exact
representation of the polygons. The column Rejected
shows the percentage of candidate pairs that were
identified as pairs of polygons that do not overlaps.
Again, we do not have to access the exact representation
of the polygons in the disk in order to decide. The column
Candidates shows the percentage of candidate pairs that
our filter could not identify, and it will be the input data
set of step three. The column Rejected Identified shows
the percentage of pairs of polygons without intersection
that were identified, and the column Accepted Identified
shows the percentage of pairs of polygons with
intersection that were identified by our filter.

Table 7a - % of pairs of intersecting polygons/MBR pair
of candidates

566

Table 7b - Performance of the filters (a) 4CRS-350, (b)
4CRS-750 and (c) S-C/ER&EL (best results are bold

face)

AC-
Candi- Rejected Accepted

Rejected dates
cepted (smaller

Me;:- Identlltied

is better)

57.23%
59.96%

25.75% 137.10% 173.69%1 57.10%

I I I
12.17% 9.04% 68.41% 95.84%
13.74% 6.89% 77.01% 96.60%
16.26% 21.24% 80.22% 77.92%

20.49% 19.77% 65.33% 87.04%
23.48% 14.24% 74.85% 90.75%
22.48% 36.13% 70.36% 60.82%

21.22% 18.33% 66.02% 89.08%
24.18% 13.34% 74.88% 92.28%
24.49% 34.01% 72.58% 62.63%

Table 8 - Comparison of methods (average rate, without
south USA)

4CRS
(350 points)

4CRS
(750 points)

5-C 8, ER
(our results)

5-C & ER-EL
(our results)

5-C & ER
(Europe A) 23% 23% 54% 66% 30%

[Eml94]
5-C & ER-EL
(Europe 4 40.5% 20.8% 40.84% 66.3% 59.2%

It is important to note that the column Candidates in
Table 8 is the determinant factor of the problem. These
numbers show the size of the input data set for the step 3,
which dominates the total execution time of the query. In
this way, smaller rates indicate that fewer polygon
intersection tests must be done. As one can see, our
average results (13.7% of intersecting MBRs) exhibit a
shrinking rate of more than 60% when compared with the
best results previously presented (5-C/ER&EL, 36.4% of
intersecting MBRs). As we have mentioned early, the
combination of 5-C plus ER-EL spends more bytes in the
key than our 4CRS approach. So, one can expect at least

the same I/O costs for our approach since we are using a
smaller key.

Although [BRI94] has neglected the time spent on 5-C
intersection tests because it does not affect significantly
the overall time, we decided to show these times in Table
9 - mainly because it is the only part of our algorithm that
could result in time increase. As one can see, 4CRS key
decompression and cell comparison have spent nearly the
same time that 5-C. This result reflects the fact that 4CRS
only uses fast integer operations: bit shifting and logical
operations like AND, XOR and OR. In contrast, SC-
ER&EL approximation uses some floating point
operations or double precision integer multiplication and
division. These times were measured by first measuring
the execution time spent on performing only step 1 and
subtracting it from the time spent on performing steps 1
and 2. We have to adopt this methodology because the
spatial processor is not sequential: the execution of step 2
occurs interspersed with step 1. The test machine is a
SUN Sparc2 with 32 Mb main memory. Although this test
has been performed with only one of the data sets (the
largest), the result of this test shows that its impact on the
total time of the query is very small - less than 0.75% of
total query time. One should note that the measured time
includes the time spent on unpacking the approximations
and comparing them.

Table 9 - Average time spent on main memory
approximation comparisons (Brazil data set, 508 1

polygons and 33.188 intersecting MBRs)

Only the I/O-time of step three was measured: the CPU-
time spent on this step was not included in the final
results. The main reason is that [BRI94] has shown that
the plane-sweep algorithm, that we used in our tests, can
be replaced by their TR*-trees algorithm with impressive
CPU performance gains and little I/O overhead. Also, due
to modular structure of MSQP, we could use SID
[HUA97a] in this step. By the way, shrinking the size of
input data set of this step certainly results in a CPU and
I/O cost reduction, no matter what algorithm is used for
detecting polygon intersection. As we have mentioned,
sometimes our approach leads to 60% of reduction of
input data set of this step.

Finally, we have implemented a testbed for complete
spatial join experiments in C++ on the same machine
stated before. The testbed includes a MSQP
implementation as stated in [BRI93a] and [BRI94], and
we adopt the same methodology they used to measure
CPU and I/O costs. We used a R*-Tree to implement the
MBR join of step one, and we have implemented all the
optimizations suggested in [BRI93a] and [BRI94]. Table
10 shows our results. Both joins were performed using a
buffer of 22 pages of 4Kb. The size of data set Brazil is

567

5,081, and this join produces 3 1,998 pairs of intersecting
MBRs and 20,885 pairs of intersecting polygons. The size
of data set Brazil-A is 20,324, and the size of Brazil-B is
45,729. This join produces 108,153 pairs of intersecting
MBR, and 59,887 pairs of intersecting polygons.

Table 10 - Total join performance - 4CRS (750 points)
and 5-C/ER&EL

The column Number of exact intersection tests shows
the size of input data set of step three, the most time-
consuming step. These are the pair of candidates that the
filter step could not identify as being a true polygon
intersection or a false-intersection (a MBR intersection
only). The column Number of disk access includes the
sum of disk access of all steps. Of course, the size of the
R*-tree and the size of the input date set of step three have
a great influence on this number.

The size of the Brazilian municipalities varies a lot:
there are municipalities in the Amazonian region that are
larger than small countries, while other municipalities are
very small. Moreover, the data sets of second join, Brazil-
A and Brazil-B, have different average polygon areas,
which lead to many scale changes. These joins show that
scale changes have little performance impact in our
algorithm. The performance gains were about 45% and
37%, respectively, when compared with the previous
approach.

6 Conclusions and Future Works

This work has proposed a new approximation for the
filtering of intersecting polygons in the process of making
spatial joins, We achieved good results with the use of
this new approach, specially when compared to state-of-
art techniques.

The use of a raster approximation has shown to be
advantageous over other methods used in the filtering step
in the accomplishment of spatial joins processing. Even in
the case in which the gain was smaller (using fewer cells,
or on scale changing), we have obtained a reduction of
50% in the number of exact comparisons and in the cases
in which we used a greater number of cells, the amount of
reduction reached 60%. As we have seen, this is the most
costly part of the spatial join processing since it requires
the search and transfer of large objects from the disk to
the main storage [BRI94, MIN96]. So, for any algorithm
used in step one or step three , there will be a shrinking on

size of the input data set of step three, resulting in smaller
CPU and I/O costs, as our experimental results on Table
10 have shown. Also, when measuring total time spent on
performing a spatial join, the 4CRS approximation
outperforms other filters by up to 45%.

It is also important to notice that the raster
approximation proposed here neither interferes in nor
prevents the use of any approach that employs parallelism
to process spatial joins. Also, our approximation does not
interfere with new improvements in R*-Tree joining
[HUA97b].

It should be investigated the use of raster
approximations involving more colors, for example, eight
colors. Although we pay the extra cost of having an
additional bit for color (shape) representation, the relative
abundance of full and empty cells over those with strong
and weak intersection seems to indicate that, using the
compression schedule proposed here, one should not
expect a noticeable increase in the sizes of the maps.
Moreover, the use of more colors will certainly decrease
both the size of the indecision area and the information
loss during the changes of scale. Promising results were
obtained in a preliminary work on this [ZIM97].

Finally, alternative algorithms for compression of 4CRS
raster approximation could be investigated: the quadtree
polygon decomposition, gif methods and lzw encoding.
Although these algorithms are more complex than the one
presented here, they could lead even to a better space
utilization.

Acknowledges

We would like to thank to the Brazilian research agencies
CAPES and CNPq for partially financing this work.

References

[BER96]

[BRI93a]

[BRI93b]

S. Berchtold, D. A. Keim, H. P. Kriegel: “The
X-Tree: An Index Structure for High-
Dimensional Data”, In Proceedings of 22th
International Conference on Very Large Data
Bases, Bombay, India, 1996.

T. Brinkhoff, H. P. Kriegel, and B. Seeger:
“Efficient processing of Spatial Joins Using R-
Trees”. In Proceedings of the 1993 ACM-
SIGMOD Conference, Washington, DC, USA,
May 1993.

T. Brinkhoff, H. P. Kriegel, and R. Schneider:
“Comparison of Approximations of Complex
Objects Used for Approximation-based Query
Processing in Spatial Database Systems”. In
Proceedings of 9th International Conference
on Data Engineering, Vienna, Austria, 1993.

[BRI94]

[BRI95]

[BRI96]

[GAE96]

[GUN931

W

T. Brinkhoff, H. P. Kriegel, R. Schneider, and
B. Seeger: “Multi-step Processing of Spatial
Joins”. In Proceedings of the 1994 ACM-
SIGMOD Conference, Minneapolis, USA,
May 1994.

T. Brinkhoff, H. P. Kriegel, R. Schneider, and
A. Braun: “Measuring the Complexity of
Polygonal Objects”. In Proceedings of ACM
International Workshop on Advances in
Geographic Information Systems, Baltimore,
MD, USA, December 1995.

T. Brinkhoff, H. P. Kriegel And B. Seeger:
“Parallel Processing of Spatial Joins Using R-
Trees”, In Proceedings of 12th International
Conference on Data Engineering, New
Orleans, LA, USA, 1996.

V. Gaede and C. Faloutsos: “Analysis of n-
dimensional Quadtrees Using the Hausdorff
Fractal Dimension”. In Proceedings of the
22nd VLDB Conference Mumbai (Bombay),
India, 1996.

0. Gunther: “Efficient Computation of Spatial
Joins”. In Proceedings of 9th International
Conference on Data Engineering, Vienna,
Austria, 1993.

‘A97a] Yun-Wu Huang, Matthew C. Jones, Elke A.
Rundensteiner: “Improving Spatial Intersect
Joins Using Symbolic Intersect Detection”.
Proceedings of the 5th International
Symposium on Advances in Spatial Databases,
SSD’97, Berlin, Germany, July 15-18, 1997.

[HUA97b] Yun-Wu Huang and Ning Jing: “Spatial Joins
Using R-Trees: Breadth-First Traversal with
Global Optimizations”. Proceedings of the
23rd VLDB Conference, Athens, Greece,
1997.

[IBG961 (Brazilian Institute of Geography and
Statistics) Funda@o Instituto Brasileiro de
Geogratia e Estatistica - IBGE: “Malha
Municipal Digital do Brasil - 1994”, Rio de
Janeiro, 1996.

[MIN95] M. L. Lo and C. V. Ravishankar: “Generating
Seeded Trees From Data Sets”. In Proceedings
of 4th International Symposium on Large
Spatial Databases, Portland, ME, USA,
August, 1995.

[MIN96]

[PAT961

[ROG86]

[SAI94]

[SAM901

t SQL951

[VEE95]

[ZIM97]

M. L. Lo and C. V. Ravishankar: “Spatial
Hash-Joins”. In Proceedings of the 1996
ACM-SIGMOD Conference, Montreal,
Canada, June 1996.

J. M. Pate1 and D. J. Dewitt: “Partition Based
Spatial-Merge Join”. In Proceedings of the
1996 ACM-SIGMOD Conference, Montreal,
Canada, June 1996.

David F. Rogers “ Procedural Elements For
Computer Graphics” - McGraw-Hill Book
Company.

MELP Spatial Archive and Interchange
Format (SAIF): Formal Definition Release 3.1
April 1994 Reference Series Volume 1 -
Surveys and Resource Mapping Branch -
Ministry of Environment, Lands and Parks
(MELP) - Province of British Columbia -
Canada.

H. Samet: “The Design and Analysis of Spatial
Data Structures”, Addison-Wesley Publishing
Company, 1990.

X3H2-95-084/DBL:YOW-004, (ISO-ANSI
Working Draft) Database Language SQL
(SQL3), Jim Melton ed., March, 1995.

H. M. Veenhof, Peter M. G. Apers, Maurice
A. W. Houtsma: “Optimization of Spatial Joins
Using Filters”. In Advances in Databases, 13th
British National Conference on Databases,
BNCOD 13, Manchester, United Kingdom,
July 1995.

G. Zimbrao and J. M. Souza: “Using Raster
Approximations For Processing of Spatial
Joins”. COPPEIUFRJ - Brazil - Technical
Report ES-442/97 (in English).

