
Algorithms for Mining Distance-Based Outliers in Large
Datasets

Edwin M. Knox and Raymond T. Ng
Department of Computer Science

University of British Columbia
Vancouver, BC V6T 124 Canada

{knorr,rng}@cs.ubc.ca

Abstract

This paper deals with finding outliers (ex-
ceptions) in large, multidimensional datasets.
The identification of outliers can lead to the
discovery of truly unexpected knowledge in ar-
eas such as electronic commerce, credit card
fraud, and even the analysis of performance
statistics of professional athletes. Existing
methods that we have seen for finding out-
liers in large datasets can only deal efficiently
with two dimensions/attributes of a dataset.
Here, we study the notion of DB- (Distance-
Based) outliers. While we provide formal and
empirical evidence showing the usefulness of
DB-outliers, we focus on the development of
algorithms for computing such outliers.

First, we present two simple algorithms, both
having a complexity of O(k N’), k being the
dimensionality and N being the number of ob-
jects in the dataset. These algorithms read-
ily support datasets with many more than
two attributes. Second, we present an opti-
mized cell-based algorithm that has a com-
plexity that is linear wrt N, but exponential
wrt k. Third, for datasets that are mainly
disk-resident, we present another version of
the cell-based algorithm that guarantees at
most 3 passes over a dataset. We provide

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed fOT

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

experimental results showing that these cell-
based algorithms are by far the best for k 5 4.

1 Introduction

Knowledge discovery tasks can be classified into four
general categories: (a) dependency detection, (b) class
identification, (c) class description, and (d) excep-
tion/outlier detection. The first three categories of
tasks correspond to patterns that apply to many ob-
jects, or to a large percentage of objects, in the dataset.
Most research in data mining (e.g., association rules
[.4IS93, MTV95, MT96], classification [AGIf92], data
clustering [EKSX96, NH94, ZRL96], and concept gen-
eralization [HCC92, KN96]) belongs to these 3 cate-
gories. The fourth category, in contrast, focuses on a
very small percentage of data objects, which are often
ignored or discarded as noise. For example, some ex-
isting algorithms in machine learning and data mining
have considered outliers, but only to the extent of tol-
erating them in whatever the algorithms are supposed
to do [AL88, EKSX96, NH94, ZRL96].

“One person’s noise is another person’s signal.” In-
deed, for some applications, the rare events are of-
ten more interesting than the common ones, from a
knowledge discovery standpoint. Sample applications
include the detection of credit card fraud and the
monitoring of criminal activities in electronic com-
merce [Kno97]. For example, in Internet commerce
or smart card applications, we expect many low-value
transactions to occur. However, it is the exceptional
cases-exceptional perhaps in monetary amount, type
of purchase, timeframe, location, or some combination
thereof-that may interest us, either for fraud detec-
tion or for marketing reasons.

IBM’s Advanced Scout data mining system has
shown that data mining tools can be used to discover
knowledge for strategic advantage in National Basket-
ball Association games [BCP+97]. In Section 2.2, we
give some concrete examples of detecting outliers in
National Hockey League (NHL) data.

392

1.1 Related Work

Most of the existing work on outlier detection lies in
the field of statistics [BL94, Haw80]. While there is
no single, generally accepted, formal definition of an
outlier, Hawkins’ definition captures the spirit: “an
outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was
generated by a different mechanism” [Haw80]. Accord-
ingly, over one hundred discordancy/outlier tests have
been developed for different circumstances, depending
on: (i) the data distribution, (ii) whether or not the
distribution parameters (e.g., mean and variance) are
known, (iii) the number of expected outliers, and even
(iv) the types of expected outliers (e.g., upper or lower
outliers in an ordered sample) [BL94]. However, those
tests suffer from two serious problems. First, almost all
of them are univariate (i.e., single attribute). This re-
striction makes them unsuitable for multidimensional
datasets. Second, all of them are distribution-based.
In numerous situations where we do not know whether
a particular attribute follows a normal distribution, a
gamma distribution, etc., we have to perform extensive
testing to find a distribution that fits the attribute.

To improve the situation, some methods in compu-
tational statistics have been developed, which can be
best described as depth-based. Based on some defi-
nition of depth, data objects are organized in layers
in the data space, with the expectation that shallow
layers are more likely to contain outlying data objects
than the deep layers. Peeling and depth contours are
two notions of depth studied in [PSSS, RR96]. These
depth-based methods avoid the problem of distribu-
tion fitting, and conceptually allow multidimensional
data objects to be processed. However, in practice, the
computation of k-dimensional layers relies on the com-
putation of k-dimensional convex hulls. Because the
lower bound complexity of computing a k-dimensional
convex hull is R(Nrtl), depth-based methods are not
expected to be practical for more than 4 dimensions for
large datasets. In fact, existing depth-based methods
only give acceptable performance for k 5 2 [RR96].

Arning, et al. [AAR96] search a dataset for implicit
redundancies, and extract data objects called sequen-
tial exceptions that maximize the reduction in Kol-
mogorov complexity. This notion of outliers is very dif-
ferent from the aforementioned statistical definitions of
outliers. As will be seen shortly, it is also very different
from the notion of outliers considered here, primarily
because there is not an associated notion of distance
and similarity measure between objects.

Finally, a few clustering algorithms, such as
CLARANS [NH94], DBSCAN [EKSX96] and BIRCH
[ZRL96], are developed with exception-handling capa-
bilities. However, their main objective is to find clus-
ters in a dataset. As such, their notions of outliers are
defined indirectly through the notion of clusters, and
they are developed only to optimize clustering, but not

to optimize outlier detection.

1.2 Distance-Based Outliers and Contribu-
tions of this Paper

The notion of outliers studied here is defined as follows:

An object 0 in a dataset T is a DB(p, D)-outlier if
at least fraction p of the objects in T lies greater than

distance D from 0.

We use the term DB(p, D)-outlier as shorthand nota-
tion for a Distance-Based outlier (detected using pa-
rameters p and 0). This intuitive notion of outliers
is consistent with Hawkins’ definition. It is suitable
for situations where the observed distribution does not
fit any standard distribution. More importantly, it is
well-defined for k-dimensional datasets for any value
of k. Unlike the depth-based methods, DB-outliers
are not restricted computationally to small values of
k. While depth-based methods rely on the computa-
tion of layers in the data space, DB-outliers go beyond
the data space and rely on the computation of distance
values based on a metric distance function.’

We do not claim that DB-outliers can replace all ex-
isting notions of outliers and can be used universally.
Indeed, depth-based outliers would be more applica-
ble than DB-outliers to situations where no reasonable
metric distance function can be used. However, for nu-
merous applications that are not readily supported by
existing methods, defining a distance function is not
hard. Our work builds on the premise that knowledge
discovery is best facilitated by keeping a human user
involved. The choice of p and D, and validity check-
ing (i.e., deciding whether each DB(p, D)-outlier is a
“real” outlier of any significance), is left to a human
expert.2

The specific parts and contributions of this paper
are as follows:

We show that the notion of distance-based out-
liers generalizes the notions of outliers supported
by statistical outlier tests for standard distribu-
tions. Because this material appears in our pre-
liminary work [KN97], Section 2.1 only provides
a brief summary. Algorithms, optimizations, and
disk-residency were not the focus of our previous
work, but are the focus here.

We present two simple algorithms in Section 3
having a complexity of O(k iV2), where k and N
are the dimensionality and size of the dataset, re-
spectively. The detection of DB-outliers, unlike
the depth-based approaches, is computationally
tractable for values of k > 2.

1 Algorithms presented here assume that the distance func-
tion is (weighted) Euclidean.

2The values of p and D do provide indications on how
“strong” an identified outlier is. Many existing approaches for
finding outliers, including the depth-based approaches, do not
provide such indications.

393

l We present a partitioning-based algorithm in Sec-
tion 4 that, for a given dimensionality k, has a
complexity of O(N). The algorithm, however, is
exponential on k. We show that, in some cases,
this algorithm outperforms the two simple algo-
rithms by at least an order of magnitude for k 5 4.

l We present a different version of the partitioning-
based algorithm in Section 5 for large, disk-
resident datasets. We show that the algorithm
guarantees at most 3 passes over the dataset.
Again, experimental results indicate that this al-
gorithm is by far the best for k 5 4.

2 Justification for DB-Outliers

In this section, we provide two justifications for find-
ing DB-outliers. The first is formal, and the second
is empirical. In Section 2.1, we show how DB-outliers
generalize certain statistical outlier tests. In Section
2.2, we show a few sample runs of our DB-outlier de-
tection package using actual NHL data.

2.1 Properties of DB(p, D)-Outliers

Definition 1 DB(p, D) unifies3 or generalizes an-
other definition Def for outliers, if there exist specific
values ~0, DO such that: object 0 is an outlier accord-
ing to Def iff 0 is a DB(po, Do)-outlier. Cl

For a normal distribution, outliers can be consid-
ered to be observations that lie 3 or more standard
deviations (i.e., 2 30) from the mean p [FPP78].

Definition 2 Define DefNormal as follows: t is an out-
lier in a normal distribution with mean 1-1 and standard
deviation ~7 iff 1 %I 1 3. cl

Lemma 1 DB(p, D) unifies DefNormal with p. =
0.9988 and DO = 0.13~7, that is, t is an outlier accord-
ing to DefN o,.mal iff t is a DB(0.9988,0.13a)-outlier.

Proofs of the lemmas in this section have already
been documented [KN97]. Note that if the value 3~ in
DefNormal is changed to some other value, such as 4~,
the above lemma can easily be modified with the corre-
sponding po and DO to show that DB(p, D) still unifies
the new definition of DefNormal. The same general ap-
proach applies to a Student t-distribution, which has
fatter tails than a normal distribution. The principle
of using a tail to identify outliers can also be applied
to a Poisson distribution.

Definition 3 Define Defpoisson as follows: t is an out-
lier in a Poisson distribution with parameter p = 3.0
ifftL8. 0

Lemma 2 DB(p, D) unifies Defpoisson with po =
0.9892 and DO = 1. 0

3DB-outliers are called unified outliers in our preliminary
work [KNS’I].

Finally, for a class of regression models, we can de-
fine an outlier criterion DefRegression, and show that
DB(p, D) unifies DefRegression [KN97].

2.2 Sample Runs Using NHL Statistics

During in-lab experiments on historical NHL data, we
have identified outliers among players having perhaps
“ordinary looking” statistics which suddenly stand out
as being non-ordinary when combined with other at-
tributes. Portions of sample runs of these experiments
are documented in Figure 1.

The first example shows that, in 1994, Wayne
Gretzky and Sergei Fedorov were outliers when 3
attributes-points scored, plus-minus statistiq4 and
number of penalty minutes-were used. Fedorov was
an outlier because his point and plus-minus figures
were much higher than those of almost all other play-
ers. (As a reference note, the “average” NHL player
has fewer than 20 points, a plus-minus statistic of 0,
and fewer than 100 penalty minutes.) Gretzky was an
outlier because of his high point total and low plus-
minus figure. In fact, we were surprised that Gretzky’s
plus-minus figure was so poor, especially since he was
the highest scorer in the league that year, and since
high scorers usually have positive plus-minus values
(as confirmed by Fedorov in the same example).5 Us-
ing the same 3 attributes for 1996 data (see the second
example), we note that Vladimir Konstantinov had an
astonishingly high plus-minus statistic (i.e., +SO) de-
spite having a rather mediocre point total.

Our third example shows that Chris Osgood and
Mario Lemieux were outliers when 3 attributes-
games played, goals scored, and shooting percentage
(i.e., goals scored, divided by shots taken)-were used.
Few NHL players had shooting percentages much be-
yond 20%, but Osgood’s shooting percentage really
stood out. Despite playing 50 games, he only took 1
shot, on which he scored. Osgood’s outlier status is ex-
plained by the fact that he is a goalie, and that goalies
have rarely scored in the history of the NHL. Lemieux
was an outlier, not because he scored on 20.4% of his
shots, but because no other player in the 20% shoot-
ing range had anywhere near the same number of goals
and games played.

Whereas the above 3 examples contain outliers that
are extreme in some dimension, the 4th example is
different. None of Alexander Mogilny’s statistics was
extreme in any of the 5 dimensions. The NHL range

4The plus-minus statistic indicates how many more even-
strength goals were scored by the player’s team-as opposed
to the opposition’s team-when this particular player was on
the ice. For example, a plus-minus statistic of $2 indicates that
this player was on the ice for 2 more goals scored by his team
than against his team.

5The next highest scorer in negative double digits did not
occur until the 23rd position overall. Perhaps Gretzky’s plus-
minus can be explained by the fact that he played for the Los
Angeles Kings that year-a team not known for its strong de-
fensive play.

394

FindOutliers nh194.data p=O.998 D=29.6985 POINTS PLUSMINUS PENALTY-MINUTES
1) Name = WAYNE GRETZKY, POINTS = 130, PLUSMINUS = -25, PENALTY-MINUTES = 20
2) Name = SERGEI FEDOROV, POINTS = 120, PLUSMINUS = 48, PENALTY-MINUTES = 34

FindOutliers nh196.data p=O.998 D=26.3044 POINTS PLUSMINUS PENALTY-MINUTES
1) Name = VLAD KONSTANTINOV, POINTS = 34, PLUSMINUS = 60, PENALTY-MINUTES = 139

FindOutliers nh196.data p=O.997 D=5 GAMES-PLAYED GOALS SHOOTING-PERCENTAGE
1) Name = CHRIS OSGOOD, GAMES-PLAYED = 50, GOALS = 1, SHOOTING-PERCENTAGE = 100.0
2) Name = MARIO LEMIEUX, GAMES-PLAYED = 70, GOALS = 69, SHOOTING-PERCENTAGE = 20.4

FindOutliers nh196.normalized.Otol p=O.996 D=0.447214 GAMES-PLAYED POWER-PLAY-GOALS
SHORTHANDED-GOALS GAME-WINNING-GOALS GAME-TIEING-GOALS
1) Name = ALEXANDER MOGILNY, GAMES-PLAYED = 79, POWER-PLAY-GOALS = 10,

SHORTHANDED-GOALS = 5, GAME-WINNING-GOALS = 6, GAME-TIEING-GOALS = 3
2) Name = MARIO LEMIEUX, GAMES-PLAYED = 70, POWER-PLAY-GOALS = 31,

SHORTHANDED-GOALS = 8, GAME-WINNING-GOALS = 8, GAME-TIEING-GOALS = 0

Figure 1: Sample Output Involving NHL Players’ Statistics

for each of the 5 attributes (with Mogilny’s statistic in
parentheses) was as follows: l-84 games played (79),
O-31 power play goals (lo), O-8 shorthanded goals (5))
O-12 game winning goals (6), and O-4 game tieing goals
(3). In contrast, 3 of 5 statistics for Mario Lemieux
were extreme.

In all of these examples, a user chose suitable val-
ues for p and D to define the “strength” of the outliers
requested. These values depend on the attributes be-
ing analyzed and each attribute’s distribution. The
quest for suitable values for p and D may involve trial
and error and numerous iterations; therefore, in future
work, we will use sampling techniques to estimate a
suitable starting value for D, given some value of p
close to unity (e.g., p = 0.999). We also plan on sup-
porting user-defined distance functions (including sta-
tistical distance functions which account for variability
among attributes [JW92]).

3 Simple Algorithms for Finding All
DB(p, D)-Outliers

3.1 Index-Based Algorithms

Let N be the number of objects in dataset T, and
let F be the underlying distance function that gives
the distance between any pair of objects in T. For
an object 0, the D-neighbourhood of 0 contains the
set of objects Q E T that are within distance D of 0
(i.e., {Q E T] F(O,Q) 5 D}). The fraction p is the
minimum fraction of objects in T that must be outside
the D-neighbourhood of an outlier. For simplicity of
discussion, let M be the maximum number of objects
within the D-neighbourhood of an outlier, i.e., M =
NC1 -P).

From the formulation above, it is obvious that given
p and D, the problem of finding all DB(p, D)-outliers
can be solved by answering a nearest neighbour or
range query centred at each object 0. More specif-
ically, based on a standard multidimensional indexing
structure, we execute a range search with radius D for

each object 0. As soon as (M + 1) neighbours are
found in the D-neighbourhood, the search stops, and
0 is declared a non-outlier; otherwise, 0 is an outlier.

Analyses of multidimensional indexing schemes
[HKP97] reveal that, for variants of R-trees [Gut841
and Ic-d trees [Ben75, SamSO], the lower bound com-
plexity for a range search is R(N’-l/“), where k is the
number of dimensions or attributes and N is the num-
ber of data objects. As k increases, a range search
quickly reduces to O(N), giving at best a constant
time improvement reflecting sequential search. Thus,
the above procedure for finding all DB(p, D)-outliers
has a worst case complexity of O(k N2). Two points
are worth noting:

.

3.2

Compared to the depth-based approaches, which
have a lower bound complexity of S1(Nrsl), DB-
outliers scale much better with dimensionality.
The framework of DB-outliers is applicable and
computationally feasible for datasets that have
many attributes, i.e., k >_ 5. This is a signifi-
cant improvement on the current state-of-the-art,
where existing methods can only realistically deal
with two attributes [RR96].

The above analysis only considers search time.
When it comes to using an index-based algorithm,
most often for the kinds of data mining applica-
tions under consideration, it is a very strong as-
sumption that the right index exists. As will be
shown in Section 6, the index building cost alone,
even without counting the search cost, almost al-
ways renders the index-based algorithms uncom-
petitive.

A Nested-Loop Algorithm

To avoid the cost of building an index for finding all
DB(p, D)-outliers, Algorithm NL shown in Figure 3.2
uses a block-oriented, nested-loop design. Assuming a
total buffer size of B% of the dataset size, the algo-
rithm divides the entire buffer space into two halves,

395

called the first and second arrays. It reads the dataset
into the arrays, and directly computes the distance be-
tween each pair of objects or tuples.6 For each object t
in the first array, a count of its D-neighbours is main-
tained. Counting stops for a particular tuple whenever
the number of D-neighbours exceeds M.

4.

5.

Algorithm NL

Fill the first array (of size f% of the dataset) with a block
of tuples from T.

For each tuple ti in the first array, do:

a. count; + 0

b. For each tuple tj in the first array, if dist(ti, tj) 5 D:

Increment count; by 1. If counti > M, mark t;
as a non-outlier and proceed to next ti.

While blocks remain to be compared to the first array, do:

a. Fill the second array with another block (but save a
block which has never served as the first array, for
last).

b. For each unmarked tuple t; in the first array do:

For each tuple tj in the second array, if dist(t;,
tj) 5 D:

Increment counti by 1. If counti > M,
mark t; as a non-outlier and proceed to
next tj.

For each unmarked tuple ti in the first array, report t; as
an outlier.

If the second array has served as the first array anytime
before, stop; otherwise, swap the names of the first and
second arrays and goto step 2.

Figure 2: Pseudo-Code for Algorithm NL

As an example, consider Algorithm NL with 50%
buffering, and denote the 4 logical blocks of the dataset
by A, B, C, D, with each block/array containing $ of
the dataset. Let us follow the algorithm, filling the
arrays in the following order, and comparing:

1. A with A, then with B, C, D-for a total of 4
block reads;

2. D with D (no read required), then with A (no
read), B, C-for a total of 2 block reads;

3. C with C, then with D,A, B-for a total of 2
blocks reads; and

4. B with B, then with C, A, D-for a total of 2
block reads.
Thus, in this example, a grand total of 10 blocks are
read, amounting to y = 2.5 passes over the entire
dataset. Later, in Section 5.3, we compute the number
of passes required in the general case.

Algorithm NL avoids the explicit construction of
any indexing structure, and its complexity is O(kN2).
Compared to a tuple-by-tuple brute force algorithm
that pays no attention to I/O’s, Algorithm NL is SU-

perior because it tries to minimize I/O’s.

6From here on in, we use the terms object and tuple
interchangeably.

In the following two sections, we present two ver-
sions of a cell-based algorithm that has a complexity
linear with respect to N, but exponential with respect
to k. This algorithm is therefore intended only for
small values of k. The key idea is to gain efficiency by
using cell-by-cell processing instead of tuple-by-tuple
processing, thereby avoiding the N2 complexity term.

4 A Cell-Based Approach

Let us begin with a simplified version of the algorithm,
which assumes that both the multidimensional cell
structure and the entire dataset fit into main memory.
For ease of presentation, we begin with 2-D, and then
proceed to k-D. In Section 5, we give the full version
of the algorithm for handling disk-resident datasets.

4.1 Cell Structure and Properties in 2-D

Suppose our data objects are 2-D. We quantize each
of the data objects into a 2-D space that has been
partitioned into cells or squares of length 1 = &. Let
C,?, denote the cell that is at the intersection of row
z and column y. The Layer 1 (Li) neighbours of C,,,
are the immediately neighbouring cells of CZ,Y, defined
in the usual sense, that is,

b(G,y) =

A

{G,, I u = x f 1, 21 = y f 1, GA,, # G,,}.(l)

typical cell (except for any cell on the boundary of
the cell structure) has 8 Li neighbours.

Property 1 Any pair of objects within the same cell
is at most distance g apart. 0

Property 2 If C,,, is an LI neighbour of CZ,y, then
any object P E C,), and any object Q E C,,, are at
most distance D apart. cl

Property 1 is valid because the length of a cell’s diago-
nal is fil = 4% = g. Property 2 is valid because
the distance between any pair of objects in the two
cells cannot exceed twice the length of a cell’s diago-
nal. We will see that these two properties are useful
in ruling out many objects as outlier candidates. The
Layer 2 (Lz) neighbours of C,,, are those additional
cells within 3 cells of C%,v, i.e.,

Lz(C,,,) = {C,,, 1 u = 5 f 3, v = y f 3,

c,,, 9 Ll(C,,,), c,,, # Cqy}. (2)

A typical cell (except for any cell on or near a bound-
ary) has 72 - 32 = 40 L2 cells. Note that Layer 1 is 1
cell thick and Layer 2 is 2 cells thick. L2 was chosen
in this way to satisfy the following property.

Property 3 If C,,, # C,,, is neither an L1 nor an L:!
neighbour of CZ,Y, then any object P E C,,, and any
object Q E C,,, must be > distance D apart. 0

396

Since the combined thickness of L1 and LQ is 3 cells,
the distance between P and Q must exceed 31= 3 >
D.

Property 4 (a) If there are > M objects in CZ,Y,
none of the objects in C,,, is an outlier.

(b) If there are > M objects in C,,, U LI(C,,,), none
of the objects in C,,, is an outlier.

(c) If there are 5 M objects in C,,, U Ll(C,,,) U

L2(Cz,y), ewenJ object in C,,, is an outlier. 0

Properties 4(a) and 4(b) are direct consequences of
Properties 1 and 2, and 4(c) is due to Property 3.

4.2 Algorithm FindAllOutsM for Memory-
Resident Datasets

Figure 3 presents Algorithm FindAllOutsM to detect
all DB(p, D)-outliers in memory-resident datasets.
Later, in Section 5.2, we present an enhanced algo-
rithm to handle disk-resident datasets.

Algorithm FindAllOutsM

1. Forq+1,2 ,... m, Count, +- 0

2. For each object P, map P to an appropriate cell C,, store
P, and increment Count, by 1.

3. Forq+1,2 ,..., m, if Count, > M, label C, red.

4. For each red cell CT, label each of the L1 neighbours of C,
pink, provided the neighbour has not already been labelled
red.

5. For each non-empty white (i.e., uncoloured) cell C,, do:

a. Cow&Z +- Count, + CiELIcCwj Counti

b. If Count,2 > M, label C, pi&

c. else

1. Countw3 +- Count,2 + CiEL2(C,I COUnti

2. If Count,3 5 M, mark all objects in C, as
outliers.

3. else for each object P E C,, do:
i. Countp + Countw2

ii. For each object Q E L2(C,), if
dist(P, Q) i: D:

Increment Countp by 1. If Countp >
M, P cannot be an outlier, so goto
5(c)(3).

iii. Mark P as an outlier.

Figure 3: Pseudo-Code for Algorithm FindAllOutsM

Step 2 of Algorithm FindAllOutsM quantizes each
tuple to its appropriate cell. Step 3 labels all cells con-
taining > M tuples, red. This corresponds to Property
4(a). Cells that are L1 neighbours of a red cell are
labelled pink in step 4, and cannot contain outliers
because of Property 4(b). Other cells satisfying Prop-
erty 4(b) are labelled pink in step 5(b). Finally, in step
5(c)(2) of the algorithm, cells satisfying Property 4(c)
are identified.

All of the properties mentioned in Section 4.1 are
used to help determine outliers and non-outliers on
a cell-by-cell basis, rather than on an object-by-object
basis. This helps to reduce execution time significantly
because we quickly rule out a large number of objects
that cannot be outliers. For cells not satisfying any of
Properties 4(a)-(c), we resort to object-by-object pro-
cessing. Such cells are denoted as white cells (C,). In
step 5(c)(3) of Algorithm FindAllOutsM, each object
P E C, must be compared with every object Q lying
in a cell that is an Lz neighbour of C, in order to de-
termine how many Q’s are inside the D-neighbourhood
of P. As soon as the number of D-neighbours exceeds
M, P is declared a non-outlier. If, after examining all
Q’S, the count remains 5 M, then P is an outlier.

4.3 Complexity Analysis: The 2-D Case

Let us analyze the complexity of Algorithm FindAll-
OutsM for the 2-D case. Step 1 takes O(m) time,
where m < N is the total number of cells. Steps 2 and
3 take O(N) and O(m) time respectively. Since M + 1
is the minimum number of objects that can appear in
a red cell, there are at most fi red cells. Thus, step
4 takes O(&) time. The time complexity of step 5
is the most complicated. In the worst case, (i) no cell
is labelled red or pink in the previous steps, and (ii)
step 5(c) is necessary for all cells. If no cell is coloured,
then each cell contains at most M objects. Thus, in
step 5(c), each of the objects in a cell can require the
checking of up to M objects in each of the 40 Lz neigh-
bours of the cell; therefore, 0(40M2) time is required
for each cell. Hence, step 5 takes O(mM2) time. Since,
by definition, M = N(1 - p), we equate O(mM2)
to O(mN2(1 - P)~). In practice, we expect p to be
extremely close to 1, especially for large datasets, so
O(mN2(1 -p)“) can be approximated by O(m). Thus,
the time complexity of Algorithm FindAllOutsM in 2-
D is O(m+N). Note that this complexity figure is very
conservative because, in practice, we expect many red
and pink cells. As soon as this happens, there are
fewer object-to-object comparisons. Thus, step 5(c)
becomes less dominant, and the algorithm requires less
time. In Section 6.2, we show experimental results on
the efficiency of Algorithm FindAllOutsM.

4.4 Generalization to Higher Dimensions

When moving from k = 2 dimensions to k > 2, Algo-
rithm FindAllOutsM requires only one change to in-
corporate a general k-D cell structure. That change
involves the cell length 1. Recall that in 2-D, 1 = 3.
Since the length of a diagonal of a k-D hypercube/cell
of length 1 is &l, the length 1 in a k-D setting must
be changed to $ to preserve Properties 1 and 2.

Although the following comments do not change
Algorithm FindAllOutsM, an understanding of which

397

cells appear in Layer 2 is important in correctly apply-
ing the algorithm. First, we note that the Li neigh-
bours of cell CZ1,...,llc are:

L(G,...,l,> = {G,,...,u, I ui = xi f 1

tJ1 I i I k, G, ,..., uk # G, ,..., zk} (3)

which generalizes the definition given in (1). However,
to preserve Property 3, the definition of Lz neighbours
needs to be modified. Specifically, since 1 = 3, Layer
2 needs to be thicker than it is for k = 2. Let x denote
the thickness of Layer 2. Then, the combined thickness
of Layers 1 and 2 is z + 1. So, for Property 3 to hold,
we require that (x + 1)1 > D; consequently, we pick
x as [2& - 11. The Lz neighbours of C,,,...,,, are
therefore:

L2(G,,..+zk) = {G,,...,,, I ui = xi f pdq

V 1 5 i I k, G, ,..., uk # Ll(G, ,..., z,),

C Ul,...) zlk # G, ,..., lk) (4)

which generalizes (2). In this way, Properties 1 to 4
listed in Section 4.1 are preserved.

4.5 Complexity Analysis: The Case for
Higher Dimensions

For k > 2, the complexities of steps 1 to 4 in Algorithm
FindAllOutsM remain the same. However, we note
that m is exponential with respect to k, and may not
necessarily be much less than N. Also, the complexity
of step 5 is no longer O(m), but O(m(2[2&] + 1)“) M
O(ck), where c is some constant depending on & and
on milk (which roughly corresponds to the number of
cells along each dimension). Thus, the complexity of
the entire algorithm is O(c” + N).

While this complexity figure represents a worst case
scenario, the question to ask is how efficient Algorithm
FindAllOutsM is in practice for the general k-D case.
We defer the answer to Section 6.4, but make the fol-
lowing preliminary comments. First, for the identifi-
cation of “strong” outliers, the number of outliers to
be found is intended to be small. This is achieved by
having a relatively large value of D, and a value of p
very close to unity. A large value of D corresponds to
a small number of cells along each dimension. Thus,
the constant c is small, but it is > 1. Second, for val-
ues of p very close to unity, M is small, implying that
there will be numerous red and pink cells. This means
that the savings realized by skipping red and pink cells
is enormous, and that the number of objects requiring
pairwise comparisons is relatively small.

5 DB-Outliers in Large, Disk-Resident
Datasets

In the last section, we presented a cell-based algorithm
that was simplified for memory-resident datasets.

Here, we extend the simplified version to handle disk-
resident datasets. This new version preserves the prop-
erty of being linear with respect to N. It also provides
the guarantee that no more than 3, if not 2, passes
over the dataset are required.

5.1 Handling Large, Disk-Resident Datasets:
An Example

In handling a large, disk-resident dataset, the goal is
to minimize the number of page reads or passes over
the dataset. In the cell-based algorithm, there are two
places where page reads are needed:

l the initial mapping phase
In step 2 of Algorithm FindAllOutsM, each object
is mapped to an appropriate cell. This unavoid-
able step requires one pass over the dataset.

l the object-pairwise phase
In step 5(c)(3), for each object P in a white cell
C,,,, each object Q in a cell that is an L2 neighbour
of C, needs to be read to perform the object-by-
object distance calculation. Since objects mapped
to the same cell, or to nearby cells, are not neces-
sarily physically clustered on disk, each pair of ob-
jects (P, Q) may require a page to be read, thereby
causing a large number of I/O%. The point here is
that if object-by-object distance calculations are
to be done exactly as described in step 5(c)(3),
then a page may be read many times.

The above scenario is an extreme case whereby no
tuples/pages are stored in main memory. A natural
question to ask is if, in the object-pairwise phase, it
is possible to read each page only once. Let Page(C)
denote the set of pages that store at least one tuple
mapped to cell C. Then, for a particular white cell
C we need to read the pages in Page(&). Because
w:‘also need the tuples mapped to a cell C, that is
an L2 neighbour of C,,, (i.e., C, E Lz(C,)), we need
the pages in Pw$L2(C,)) = UcvEL2~c,~ Pqe(G).
Also, if we want to ensure that pages in Page(Ls(C,))
are only read once, we need to read the pages: (i) that
are needed by C,, because C, itself may be a white
cell, and (ii) that use C,,, because C, may be an L2
neighbour of yet another white cell. In general, the
“transitive closure” of this page cascading may include
every page in the dataset. Hence, the only way to
ensure that a page is read at most once in the object-
pairwise phase is to use a buffer the size of the dataset,
which is clearly a strong assumption for large datasets.

Our approach is a “middle ground” scenario
whereby only a selected subset of tuples is kept in main
memory. This subset is the set of all tuples mapped
to white cells. Hereinafter, we refer to such tuples as
white tuples. This is our choice partly because these
are the very tuples that need object-by-object calcu-
lations, and partly because the number of tuples in a

398

white cell, by definition, is bounded above by M. Fur-
thermore, we classify all pages into three categories:

A. Pages that contain some white tuple(s)

B. Pages that do not contain any white tuple, but
contain tuple(s) mapped to a non-white cell which
is an Lz neighbour of some white cell

C. All other pages

To minimize page reads, our algorithm first reads Class
A pages, and then Class B pages. Following this, it suf-
fices to re-read Class A pages to complete the object-
pairwise phase. Class C pages are not needed here.

Consider a simple example where there are 600
pages in a dataset. Suppose pages 1 to 200 are Class A
pages, pages 201 to 400 are Class B pages, and pages
401 to 600 are Class C pages. Suppose tuple P is
mapped to white cell C,, and is stored in (Class A)
page i. For P to complete its object-by-object distance
calculations, these three kinds of tuples are needed:

l white tuples Q mapped to a white Lx neighbour
of c,

l non-white tuples Q mapped to a non-white Lz
neighbour of C,, and stored in page j > i

l non-white tuples Q mapped to a non-white Lz
neighbour of C,, but stored in page j < i

For the first kind of tuple, the pair (P, Q) is kept in
main memory after the first 200 pages have been read,
because both tuples are white. Thus, their separation
can be computed and the appropriate counters (i.e.,
both P’s and Q’s) may be updated after all Class A
pages have been read. For the second kind of tuple,
the distance between the pair (P, Q) can be processed
when page j is read into main memory, because P is
already in main memory by then since i 5 j. The fact
that Q is not kept around afterwards does not affect P
at all. Thus, after the first 400 pages have been read
(i.e., all class A and B pages), the second kind of tuples
for P have been checked. The only problem concerns
the third kind of tuples. In this case, when Q (which
is stored in page j) is in main memory, P (which is
stored in page i > j) has not been read. Since Q is a
non-white tuple and is not kept around, then when P
eventually becomes available, Q is gone. To deal with
this situation, page j needs to be re-read. In general,
all Class A pages (except one) may need to be re-read.
But it should be clear that because all white tuples are
kept in main memory, it is sufficient to read Class A
pages a second time.

Before presenting the formal algorithm, we offer two
generalizations to the above example. First, the exam-
ple assumes that all Class A pages precede all Class B
pages in page numbering, and that pages are read in
ascending order. Our argument above applies equally

well if these assumptions are not made-so long as all
Class A pages are read first, followed by all Class B
pages, and the necessary (re-reading of) Class A pages.
Second, Class A pages can be further divided into two
subclasses: (A.l) pages that do not store any non-
white tuple that is needed, and (A.2) pages that store
some non-white tuple(s) that are needed. If this sub-
division is made, it should be obvious from the above
analysis that in re-reading all Class A pages, it suffices
to re-read only the Class A.2 pages. For simplicity, this
optimization is not described in the algorithm below.

5.2 Algorithm FindAllOutsD
Disk-Resident Datasets

for

Figure 4 presents Algorithm FindAllOutsD for min-
ing outliers in large, disk-resident datasets. Much of
the processing in the first 5 steps of Algorithm Find-
AllOutsD is similar to that described for Algorithm
FindAllOutsM shown in Figure 3. We draw attention
to step 2 of Algorithm FindAllOutsD, which no longer
stores P but makes a note of the fact that P’s page
contains some tuple(s) mapped to C,. This is impor-
tant because (i) we may need to access a given cell’s
tuples later in the algorithm, and (ii) we need to know
which cells have tuples from a particular page.

Step 5(c)(2) 1 co ours a white cell yellow if it has been
determined that every tuple in a given cell is an outlier.
Its tuples will be identified in step 8 after they have
been read from their pages in step 6. Step 6 reads
only those pages containing at least one white or yellow
tuple. With respect to Section 5.1, this corresponds to
reading all Class A pages. The white and yellow tuples
from these pages are stored with the cell C, to which
they have been quantized. C, stores exactly Count,
tuples, and this count is 5 M. To prepare for L2
processing, step 6(b) (1) (ii) initializes the D-neighbour
counter to the number of tuples in C, U L1 (C,).

In step 7, for each non-empty white cell C,, we
determine how many more D-neighbours each tuple
P E C, has, using (as potential neighbours) just the
tuples read and stored in step 6. As soon as we find
that P has > M D-neighbours, we mark P as a non-
outlier. After step 7, it is possible that some (or all) of
the non-empty white cells need no further comparisons,
thereby reducing the number of reads in step 9.

Necessary disk reads for cells that are both non-
white and non-yellow are performed in step 9. With
respect to Section 5.1, this corresponds to reading all
Class B pages, and re-reading (some) Class A pages.
Again, we determine how many more D-neighbours
that each tuple P in each white cell has, using only
the newly read tuples from disk. If P has > A4 D-
neighbours, then P is marked as a non-outlier, and no
further comparisons involving P are necessary.

1.

2.

3.

4.

Algorithm FindAllOutsD

For q +- 1,2,. m, Count, +- 0

For each object P in the dataset, do:

a. Map P to its appropriate cell C, but do not store P.

b. Increment Count, by 1.

c. Note that C, references P’s page.

Forqt1,2 ,..., m, if Count, > M, label C, red.

For each red cell C,, label each of the L1 neighbours of C,
pink, provided the neighbour has not already been labelled
red.

5. For each non-empty white (i.e., uncoloured) cell C,, do:

a. Count,2 + Cour& + CjELl(Cuj Counti

b. If CountW2 > M, label C, pink.

c. else

1. Countwg 6 Count,2 + CiELzcCW) Count;

2. If Count,3 5 M, label C,,, yellow to indicate
that all tuples mapping to C, are outliers.

3. else Sum, +- CountW2

6. For each page i containing at least 1 while or yellow tuple,
do:

a. Read page i.

b. For each while or yellow cell C, having tuples in page
i, do:

1. For each object P in page i mapped to C,, do:
i. Store P in C,.

ii. Kountp +- Sum,

7. For each object P in each non-empty white cell C,, do:

a. For each white or yellow cell CL E Lz(C,), do:

1. For each object Q E CL, if dist(P, Q) < D:
Increment Kountp by 1. If Kountp > M,
mark P as a non-outlier, and goto next P.

8.

9.

For each object Q in each yellow cell, report Q as an outlier.

For each page i containing at least 1 tuple that (i) is both
non-white and non-yellow, and (ii) maps to an L2 neigh-
bour of some white cell C, do:

a. Read page i.

b. For each cell C, E L2(C) that is both non-white and
non-yellow, and has tuples in page i, do:

1. For each object Q in page i mapped to C,, do:
i. For each non-empty white cell C, E

L2(C,h do:
For each object P E C,, if dist(P, Q) <
D:

Increment Kountp by 1. If Kountp >
M, mark P as a non-outlier.

10. For each object P in each non-empty white cell, if P has
not been marked as a non-outlier, then report P as an
outlier.

Figure 4: Pseudo-Code for Algorithm FindAllOutsD

5.3 Analysis of Algorithm FindAllOutsD and
Comparison with Algorithm NL

Algorithm FindAllOutsD has a linear complexity wrt
N for the same reasons explained for Algorithm Find-
AllOutsM (cf: Section 4.3), but by design, Algorithm
FindAllOutsD has the following important advantage
over Algorithm FindAllOutsM wrt I/O performance.

Lemma 3 Algorithm FindAllOutsD requires at most
3 passes over the dataset.

Proof Outline: The initial mapping phase requires
one pass over the dataset. Let n be the total number
of pages in the dataset. Then if nl, n2, n3 denote the
number of pages in Classes A, B, and C respectively
(cf: Section 5.1), it is necessary that n = n1 + n:! + n3.
As shown in Section 5.1, the maximum total number
of pages read in the object-pairwise phase is given by
n1 + 122 + nl , which is obviously 5 2n. Thus, the entire
algorithm requires no more than 3 passes. 0

The above guarantee is conservative for two reasons.
First, the sum n1 + 722 + n1 can be smaller than n. For
example, if nl 5 n3, then the sum is 5 n, implying
that while some page may be read 3 times, the total
number of pages read is equivalent to no more than
2 passes over the dataset. Second, the above guaran-
tee assumes that: (i) there is enough buffer space for
storing the zuhite tuples (as will be shown later, this
is not a strong assumption because typically there are
not too many non-empty white cells), and (ii) there is
only one page remaining in the buffer space for Class
A and B pages. More buffer space can be dedicated
to keep more Class A pages around, thereby reducing
the number of page re-reads for Class A pages.

At this point, let us revisit Algorithm NL, used for
block-oriented, nested-loop processing of disk-resident
datasets (cf: Section 3.2). We will show that Algo-
rithm FindAllOutsD guarantees fewer dataset passes
than Algorithm NL does, for sufficiently large datasets.

Lemma 4 If a dataset is divided into n = 191
blocks (B is the percentage of buffering), then (i) the
total number of block reads required by Algorithm NL
is n + (n - 2) (n - l), and (ii) the number of passes over
the dataset is 2 n - 2.

Proof Outline: (i) Each of the n blocks must be read
exactly once during the first dataset pass. At the end
of each pass, we retain 2 blocks in memory, so only
n - 2 additional blocks need to be read during passes
2, 3, . ..) n. Thus, n + (n - 2)(n - 1) blocks are read.
(ii) The number of dataset passes is: nt(n-i)(n-l) =
n2-T+2 =n-2+$>n-2. 0

In general, Algorithm NL may require many more
passes than Algorithm FindAllOutsD. For example, if
a large dataset is split into n = 10 pieces, Lemma
4 states that Algorithm NL requires n - 2 = 10 -
2 = 8 passes, which is 5 more passes than Algorithm
FindAllOutsD may need.

400

6 Empirical Behaviour of the Algo-
rit hms

6.1 Experimental Setup

Our base dataset is an 855-record dataset consisting
of 1995-96 NHL player performance statistics. These
statistics include numbers of goals, assists, points,
penalty minutes, shots on goal, games played, power
play goals, etc. Since this real-life dataset is quite
small, and since we want to test our algorithms on
large, disk-resident datasets, we created a number of
synthetic datasets mirroring the distribution of statis-
tics within the NHL dataset. More specifically, we de-
termined the distribution of the attributes in the orig-
inal dataset by using lo-partition histograms. Then,
we generated datasets containing between 10,000 and
2,000,OOO tuples, whose distributions mirrored that of
the base dataset. Each page held up to 13 tuples.

All of our tests were run on a Sun Microsystems
UltraSPARC-1 machine having 128 MB of main mem-
ory. Unless otherwise indicated, all times shown in this
paper are CPU times plus I/O times.7 Our code was
written in C++ and was processed by an optimizing
compiler. The modes of operation that we used, and
their acronyms, are as follows:

1. CS is a multidimensional cell structure implemen-
tation as described by either Algorithm FindAll-
OutsM or FindAllOutsD. The context makes it
clear which algorithm is being evaluated.

2. NL is an implementation of Algorithm NL. The
amount of memory permitted for buffering in each
NL case is the same amount of memory required
by CS. For example, if CS uses 10 MB of main
memory, then 10 MB is also available for NL.

3. KD is a memory-based k-d tree implementation.

4. RT is a disk-based R-tree implementation.

Range query processing in KD and RT modes has been
optimized to terminate as soon as the number of D-
neighbours exceeds M.

6.2 Varying the Dataset Size

Figure 5 shows results for various modes and various
dataset sizes for 3-D, using p = 0.9999. Specifically, it
shows how CPU + I/O time is affected by the num-
ber of tuples. (The z-axis is measured in millions of
tuples.) For example, CS takes 256.00 seconds in to-
tal time to find all the appropriate DB-outliers in a 2
million tuple dataset. In contrast, NL takes 2332.10
seconds, about 9 times as long. RT mode is even less

70~r CPU timer wraps around after 2147 seconds; hence,
times beyond this are unreliable. Where we have quoted a CPU
+ I/O figure > 2147, it is because the CPU time was < 2147,
but the I/O time actually caused the sum to exceed 2147. (CPU
time and I/O time were measured separately.)

Figure 5: How CPU + I/O Time Scales with N for
3-D Disk-Resident Datasets, Using p = 0.9999

Table 1: CPU Times (in Seconds) for 3-D, Memory-
Resident Datasets, using p = 0.9995

1 N 11 CS 1 NL 1 KD
1 20000 11 0.32 1 1.02 1 3.14

J

competitive. Unlike CS, RT is not linear wrt N. In
fact, just building the R-tree can take at least 10 times
as long as CS, let alone searching the tree.

While the preceding paragraph concerns disk-
resident datasets, Table 1 summarizes the results for
memory-resident datasets in 3-D, using p = 0.9995.
Again, CS can outperform NL by an order of magni-
tude, and the index-based algorithm-a k-d tree (KD)
in this case--takes much longer, even if we just con-
sider the time it takes to build the index.

6.3 Varying the Value of p

Figure 6 shows how the percentages of white, pink,
red, and non-empty white cells vary with p.* The total
number of cells is simply the sum of the red, pink,
and white cells. Processing time is less when there is a
greater percentage of red and pink cells because we can
quickly eliminate a larger number of tuples from being
considered as outliers. The success of the cell-based
algorithms is largely due to the fact that many of the
cells may be red or pink (and there may be relatively
few non-empty white cells). Recall that non-empty

8We include yellow cells with the while cell population since
yellow cells are just a special type of white cell.

401

zvhite cells require the most computational effort.

Figure 6: 3-D Cell Colouring Statistics for Variable p,
for 500,000 Tuples

6.4 Varying the Number of Dimensions and
Cells

In this section, we see how the number of dimensions
and cells affects performance. We omit the trivial 1-D
and 2-D results, but show results for 3-D, 4-D, and
5-D. Beyond 5-D, we believe that NL will be the clear
winner. Table 2 shows how CS and NL compare in dif-
ferent dimensions for disk-resident datasets of various
sizes, using p = 0.9999.

For CS mode in 5-D, we varied the number of par-
titions rni in a given dimension i. We chose mi = 10,
8, and 6 for each dimension. The columns CS(105),
CS(85), and CS(65) stand for cases where the cell
structure contains m = IIt=imi = 105, S5, and 65
cells, respectively. The table shows that (i) CS out-
performs NL in 3-D by almost an order of magnitude,
(ii) CS clearly t ou performs NL in 4-D, and (iii) NL is
the clear winner in 5-D. Due to the exponential growth
in the number of cells, CS is uncompetitive with NL
in 5-D.

Even when the number of cells is greatly reduced in
5-D, CS generally cannot beat NL. In fact, of all the
5-D tests we ran (in addition to those shown in Table
2), there was only one case where CS actually beat NL.
Perhaps surprisingly, the table shows that a reduction
in the number of cells in 5-D does not necessarily re-
sult in a reduction in total time. This is due to an
I/O optimization that we included in our implementa-
tion, whereby dramatic savings are achieved for larger
numbers of cells (for values of p close to unity).g With-

gin particular, for a non-empty white cell C,, as soon as the
number of D-neighbours exceeds A4 for all of G’s tuples, we
explicitly search through L2(CW)‘s cells looking for red or pink
cells. For each such red or pink cell, we determine the block ID’s
(pages) that contain tuples mapped to it, and then we subtract
1 from the respective block ID counters. Later in the program,

out the optimization, however, it is true that reducing
the number of cells normally results in a reduction in
total time. Our implementation uses a hybrid strat-
egy whereby we turn off the optimization at certain
thresholds of p and m.

Finally, because we made CS and NL use the same
amount of memory for fair comparison, the amount of
buffer space available to NL increased as k increased.
This explains why the execution time of NL shown in
Table 2 often dropped with increasing dimensions.

7 Conclusions

We believe that identifying DB-outliers is an impor-
tant and useful data mining activity. In this paper, we
proposed and analyzed several algorithms for finding
DB-outliers. In addition to two simple O(k N2) al-
gorithms, we developed cell-based algorithms that are
linear with respect to N and are suitable for k 5 4.
The cell-based algorithm developed for large, disk-
resident datasets also guarantees that no data page is
read more than 3 times, if not once or twice. Our em-
pirical results suggest that (i) the cell-based algorithms
are far superior to the other algorithms for k 5 4 (in
some cases, by at least an order of magnitude), (ii) the
nested-loop algorithm is the choice for k 2 5 dimen-
sions, and (iii) finding all DB-outliers is computation-
ally very feasible for large, multidimensional datasets
(e.g., 2.5 minutes total time for 500,000 tuples in 5-D).
Using Algorithm NL, there is no practical limit on the
size of the dataset or on the number of dimensions.

In ongoing work, we are developing incremental
techniques that allow the user to freely experiment
with p and D, but do not require the cell structure
to be recomputed from scratch for every change of the
parameters. We are also looking for ways to incor-
porate user-defined distance functions, and to provide
incremental support for changing distance functions.

Acknowledgements

This research has been partially sponsored by NSERC
Grant OGP0138055 and IRIS-2 Grants HMI-5 & IC-5.

References

[AAR96] A. A rning, R. Agrawal, and P. Raghavan.
A linear method for deviation detection in
large databases. In Proc. KDD, pages 164-
169, 1996.

[AGI+92] R. Agrawal, S. Ghosh, T. Imielinski,
B. Iyer, and A. Swami. An interval clas-

when it comes time to read the block, if the block ID counter
is no longer positive, we avoid reading and processing the page
because we know that this page is no longer needed. Thus, for
the additional expense of searching Ls(C,) cells, we may realize
substantial savings; however, this advantage is lost as p becomes
smaller or as the overall number of cells becomes fewer.

402

Table 2: CPU + I/O Times (in Seconds) for a Variable Number of Tuples, Dimensions, and Cells-for p = 0.9999.

3-D 4-D 5-D
N CS(10”) NL CS(104) NL CS(105) CS(85) CS(65) NL

100,000 10.77 93.96 23.32 45.79 93.40 217.04 205.63 17.30
500,000 57.10 490.62 114.00 223.51 695.37 997.11 1061.33 148.44

2,000,000 253.90 2332.10 606.56 1421.16 >2147 >2147 >2147 1555.78

sifier for database mining applications. In
PTOC. 18th VLDB, pages 560-573, 1992.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of
items in large databases. In PTOC. ACM
SIGMOD, pages 207-216,1993.

[AL881 D. Angluin and P. Laird. Learning
from noisy examples. Machine Learning,
2(4):343-370, 1988.

[BCP+97] I. S. Bhandari, E. Colet, J. Parker,
Z. Pines, R. Pratap, and K. Ramanujam.
Advanced scout: Data mining and knowl-
edge discovery in NBA data. Data Min-
ing and Knowledge Discovery, 1(1):121-
125, 1997.

[Ben751 J. L. Bentley. Multidimensional binary
search trees used for associative searching.
CACM, 18(9):509-517, 1975.

[BL94] V. Barnett and T. Lewis. Outliers in Sta-
tistical Data. John Wiley, 3rd edition, 1994.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and
X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases
with noise. In PTOC. KDD, pages 226-231,
1996.

[FPP78] D. Freedman, R. Pisani, and R. Purves.
Statistics. W.W. Norton, New York, 1978.

[Gut841 R. Guttmann. A dynamic index structure
for spatial searching. In PTOC. ACM SIG-
MOD, pages 47-57, 1984.

[Haw80] D. Hawkins. Identijcation of Outliers.
Chapman and Hall, London, 1980.

[HCC92] J. H an, Y. Cai, and N. Cercone. Knowl-
edge discovery in databases: An attribute-
oriented approach. In PTOC. 18th VLDB,
pages 547-559,1992.

[HKP97] J. Hellerstein, E. Koutsoupias, and C. Pa-
padimitriou. On the analysis of indexing
schemes. In Proc. PODS, pages 249-256,
1997.

[JW92]

[KN96]

[KN97]

[Kno97]

[MT961

[MTV95]

[NH941

[PS88]

[RR961

[SamSO]

[ZRL96]

R. A. Johnson and D. W. Wichern. Applied
Multivariate Statistical Analysis. Prentice-
Hall, 3rd edition, 1992.

E. M. Knorr and R. T. Ng. Finding aggre-
gate proximity relationships and common-
alities in spatial data mining. IEEE Trans-
actions on Knowledge and Data Engineer-
ing, 8(6):884-897, 1996.

E. M. Knorr and R. T. Ng. A unified no-
tion of outliers: Properties and computa-
tion. In PTOC. KDD, pages 219-222, 1997.
An extended version of this paper appears
as: E. M. Knorr and R.T. Ng. A Unified
Approach for Mining Outliers. In PTOC. 7th
CASCON, pages 236-248, 1997.

E. M. Knorr. On digital money and card
technologies. Technical Report 97-02, Uni-
versity of British Columbia, 1997.

H. Mannila and H. Toivonen. Discovering
generalized episodes using minimal occur-
rences. In Proc. KDD, pages 146-151,1996.

H. Mannila, H. Toivonen, and A. Verkamo.
Discovering frequent episodes in sequences.
In Proc. KDD, pages 210-215, 1995.

R. Ng and J. Han. Efficient and effective
clustering methods for spatial data mining.
In PTOC. 20th VLDB, pages 144-155, 1994.

F. Preparata and M. Shamos. Com-
putational Geometry: an Introduction.
Springer-Verlag, 1988.

I. Ruts and P. Rousseeuw. Computing
depth contours of bivariate point clouds.
Computational Statistics and Data Analy-
sis, 23:153-168, 1996.

H. Samet. The Design and Analysis of
Spatial Data Structures. Addison-Wesley,
1990.

T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH: An efficient data clustering
method for very large databases. In PTOC.
ACM SIGMOD, pages 103-114,1996.

403

