
Algorithms for Mining Association Rules for Binary
Segmentations of Huge Categorical Databases

Yasuhiko Morimoto Takeshi Fukuda Hirofumi Matsuzawa
Takeshi Tokuyama Kunikazu Yoda

IBM Tokyo Research Laboratory
1623-14, Shimetsuruma, Yamato, Kanagawa 242-0001, Japan

{morimoto,fukudat,matuzawa,ttoku,yoda}0trl.ibm.co.jp

Abstract

We consider the problem of finding association
rules that make nearly optimal binary segmen-
tations of huge categorical databases. The op-
timality of segmentation is defined by an ob-
jective function suitable for the user’s objec-
tive. An objective function is usually defined
in terms of the distribution of a given target
attribute. Our goal is to find association rules
that split databases into two subsets, optimiz-
ing the value of an objective function.

The problem is intractable for general ob-
jective functions, because letting N be the
number of records of a given database, there
are 2N possible binary segmentations, and
we may have to exhaustively examine all of
them. However, when the objective function
is convex, there are feasible algorithms for
finding nearly optimal binary segmentations,
and we prove that typical criteria, such as
“entropy (mutual information),” “x2 (correla-
tion) ,” and “gini index (mean squared error) ,”
are actually convex.

We propose practical algorithms that use
computational geometry techniques to handle

Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

cases where a target attribute is not binary,
in which conventional approaches cannot be
used directly.

1 Introduction

In recent years, data mining has made it possible to
discover unexpected and valuable rules by analyzing
huge databases. Efficient algorithms for finding asso-
ciation rules [AIS93, AS94, HF95, PS91, FMMT96c,
FMMT96b] and classification and regression trees that
use these rules as branching tests [BFOS84, Qui86,
Qui93, MFMT97] have been widely studied in both
database and machine learning literature.

In this paper, we focus on finding association rules
that can be used for classifiers such as decision trees.
Association rules, which make binary segmentations
for classifying a target attribute, themselves provide us
with valuable information for understanding the tar-
get attribute, and can therefore be used for various
analytical purposes.

Optimal Binary Segmentation Problem

In this paper, we consider only databases, which we
call categorical databases, whose attributes are all cat-
egorical. When we want to deal with a database with
numeric attributes, we include a preprocess to dis-
cretize numeric attributes into categorical ones.

Let R be a database relation. We treat one attribute
of the relation as special, and call it a target attribute.
Other attributes of the relation are called conditional
attributes. Let A be the target attribute, dam(A) =
{3,a2,.*. , ak} be the domain of A, and k be the target
domain size (the number of distinct values). Let Xi(S)
denote the number of records in S C R for which the
value of the target attribute A is ai.

380

Table 1: mRNA Sequence

Nl N2 N3 ..a Amino Acid
u u u .*a Phe
C A C a.. His
G G C e.. GUY
G G A ..a GUY
A C A .-.
G A A a..
u u c **.

.

Thr
Glu
Phe
. . .

Let Cl,&,..., CM be the conditional attributes.
We treat these attributes as a single attribute C
whose domain is the Cartesian product of their do-
mains (dom(C1) x dom(&) x ... x dom(CM)). If Ci
(i = 1, . ..) M) has ni distinct values, the conditional
domain size of C is n = ni ni for 1 5 i 5 M.

To make a binary segmentation of R, we use a test
on the conditional attribute C. T g dam(C) is a test
that divides the database relation R into two segments
S={tERJt[C]ET}andS={tERJt[C]$T}. We
say “T splits R into (S; s)“. Our ideal goal is to find,
among all possible tests, a test T that maximizes (or
minimizes) an objective criterion f(S; s).

The objective function should be an information-
theoretic function such as the “gini index,” “entropy,”
or rr~2,” which can be calculated from the distribution
of values of the target attribute.

We call the following rule “the optimal association
rule for a binary segmentation”

IF (T is satisfied)
THEN (Segmentl) ELSE (Segment2),

where Segment2 is the complement of Segmentl.
We remark that, in the data mining litera-

ture [AIS93, AS94, PCY95, FMMT96c, FMMT96b],
association rules that are collected on the basis of
“support” and “confidence” values are also popular.
However, we focus on association rules that optimize
an information-theoretic function, since they are eas-
ier to use as parts of decision systems such as decision
trees [BFOS84, Qui86, Qui93].

A Naive Approach

An important problem in data mining is how to find
the optimal association rule for binary segmentations
of a database. If the conditional domain size is large,
this problem is highly challenging.

Table 1 shows an example of a categorical database.
The table shows the first three substances in an
“mRNA” sequence and its corresponding amino acid.

Finding the optimal rule for classifying the amino
acid gives us a clue to understand the relationship be-

tween RNA patterns and amino acids. In this exam-
ple, we can finally find rules such as “if Nl=U and
N2=U then Phe," “if Nl=G and N2=G then Gly,”
and SO forth. (Note that these rules are just examples.
The relationship between RNA patterns and amino
acids has already been investigated in the biology lit-
erature.) The “mRNA” sequence is known to consist
of four types of substance, denoted “U,” “C,” “A,” and
“G.” Even if we only consider the first three substances,
there are 43 permutations. Therefore, we have to ex-
amine 264-1 possible binary segmentations in this case
to find the optimal rule with respect to the types of
amino acid.

In general, if the conditional domain size is n, there
are 2”-l - 1 possible binary segmentations. Hence,
a naive exhaustive search for the optimal binary seg-
mentation requires O(2n) time, which is not practical.

Related Work

For the case where the target domain size is two, i.e.,
k = 2, we can order the n values so that the optimal
splitting is one “cut” of the ordered sequence, if we can
assume convexity of the objective criterion [BFOS84]
(and all of the mentioned criteria have such a prop-
erty). Consequently, we have an O(n log n) algorithm.
However, this algorithm is not applicable to cases in
which the target domain size is greater than two.

For huge categorical databases, in which the con-
ditional domain size is large and k > 2 , there is no
practical existing algorithm that can find the optimal
association rule. Despite the difficulty, there are some
heuristics for handling the problem [BFOS84, MP91,
Cen92, Qui93] that are used in practice for construct-
ing decision trees.

A heuristics called “two-ing” [BFOS84] divides the
target domain into two classes (called superclasses),
and applies the O(n log n) algorithm for k = 2 to cre-
ate the optimal subdivision for each of the 2”-l possi-
ble divisions into superclasses, and finds the best one
among them. This runs in 0(2”-‘n log n) time, which
is efficient for a small k.

Another heuristic called “value groups” [Qui93]
greedily merges two conditional values from the con-
ditional domain to reduce the conditional domain size
to n - 1, so that the objective function is maximized
(or minimized). It repeats this greedy merging process
until n = 2 and finally returns the final two groups.
This O(n3) heuristic can be used even if k is large.

The above heuristics are known to be practical for
constructing decision trees. However, neither of them
has a guarantee on the optimality of the result. From
the data mining point of view, our interest is not bi-
nary segmentation itself but unexpected and impor-
tant rules that significantly affect the value of a tar-

381

get attribute. In this sense, we want to find more,
hopefully the most, significant rules. Therefore, it is
important to generate the optimal or near-optimal as-
sociation rules of the form “itemset V itemset V . . -”
that affect a target attribute.

Main Results

In this paper, we propose two algorithms named the
Random Algorithm and the Probing Algorithm, that
we designed by using computational geometry tech-
niques. The algorithms have the following features:

l Both of the algorithms can feasibly compute
nearly optimal tests for cases in which k is a small
constant. The domain size n is allowed to be huge.

l The Random Algorithm finds nearly optimal
tests, using random sampling. The time complex-
ity becomes O(S”-~~), where s(<< n) is the sam-
ple size. Moreover, this algorithm can run with
a small working space even if the target domain
size becomes larger.

l We can use the same geometrical interpretation of
all possible tests as we presented in [FMMT96a,
MFMT97], and translate those tests into points
in a k-dimensional space. Then, we consider how
to find a point on convex hull of all points in the
k-dimensional space. We used the guided branch-
and-bound search algorithm for finding the opti-
mal region in [FMMT96a, MFMT97]. The total
cost of the incremental convex hull maintenance
and probing of the convex hull in the algorithm is
O((n+mWI>~ f i we have m points and IPI facets
on the convex hull. Although m and P can be
asymptotically as large as nk-’ and ml*] respec-
tively, in a pathological input, they are known to
be much smaller in a normal input. Even so, the
convex hull searching algorithm itself cannot be
used within a working space of the size available
in ordinary workstations, if k > 4. If we con-
sider the binary segmentation problem for huge
categorical databases, k often becomes larger and
the number of possible tests may become huge.
Therefore, we need significant improvement with
respect to time and working space to make the
algorithm feasible for the problem.

The Probing Algorithm improves the hull main-
tenance so that it works within a limited work-
ing space, and we improve the searching strate-
gies so that we can find nearly optimal tests in
an earlier step of the algorithm. We can report
the current best solution found so far at every in-
cremental step of the algorithm, so that the solu-
tion gradually converges to the optimal. In cases

where a quick response is required, the Probing
Algorithm can return the best test found in the’
required time, and is suitable for online applica-
tions.

We experimentally compare the performance of
these algorithms.

2 Optimization Problem of Binary
Segment at ion

2.1 Stamp Point

For a segment S, let z;(S) be the number of data
records in 5’ for which the value of the target attribute
is ai. Thus, each segment S of the relation R can be
mappedtoapointx(S) = (~l(S),z,(S),...,zk(S)) in
the k-dimensional Euclidean space, which is referred to
as a stamp point of S. A stamp point represents the
distribution of the target attribute of interest, and our
objective functions of binary segmentations, f(S; S),
are defined in terms of x(S) or x(S). If a test T splits
R into (S; S), we also refer to the stamp point of S as
the stamp point of T (i.e., x(T) = x(S)).

2.2 Criteria for Segmentation

The significance of discovered rules depends on the
user’s objective, and hence there is no universal crite-
rion for measuring the significance of rules. A useful
segmentation should divide data into segments whose
target distribution is more skewed than that of the
data as a whole. Therefore, we often use criteria such
as the “gini index,” “entropy gain,” and “x2,” which
indicate the extent to which the divided data distribu-
tions differ from the original data distribution.

In this subsection, we describe objective criteria
commonly used for evaluating data segmentation and
their corresponding functions, which are defined in
terms of a stamp point of a binary segmentation.

Gini Index (Mean Squared Error)

The implication of this criterion is “how much the
mean squared error of target values is decreased.” The
optimal segmentation according to this criterion mini-
mizes the mean squared error. It is defined as follows,

where pi(S) = si(S)/lSl.

Gini(x(S)) = Gini(S; s)

= (1 - CLzm2)
-/gj (1 - zL1Pi(s)2)
-/y (1 - ce,Pi(5)2)

382

Entropy (Mutual Information)

The entropy gain function compares the mutual infor-
mation gained by a rule.

x2 (Correlation)

A segmentation with a high x2 value is significant,
since the statistical hypothesis that “5’ and 3 are not
different from R” is strongly denied.

Chi(x(S)) = Chi(S; S)

= 2 ISIMS) - Pow2 + ImPm - Pi(R))2

i=l pi(R)

Example 2.1 To illustrate our optimal rule, we con-
sider binary segmentations of the following data using
the “gini index.” In these data, a target attribute has
three values, say al, a2, and as, and each value has 40,
30, and 30 records, respectively.

s al a2 a3

100 40 30 30

The gini index, Gini(of a certain dataset S with
respect to a target attribute is defined as

Gini = 1 - &$,
j

where pj is the relative frequency of the j-th target
value in S. In this example, the gini index value is

1 - (232 - (30)2 - (30)2 = 0 66
100 100 100 . *

Let us consider a binary segmentation that divides S
into S1 and S2, containing nl and n2 records, respec-
tively. The gini index value of the binary segmentation
is defined as

where

Gini(S1; S2) = Gini
- $$$WSl) - nl”;n2 Gi74S2)

If we assume the following segmentation for the above
example, the stamp point for the test is a point
(40,10,10) in three-dimensional space, and the gini
index value of the segmentation is 0.16.

Let A = (61,&, &), Y = (A,x) = C,“=, &xi.

383

SI al a2 a3 S2 al a2 a3

60 40 10 10 40 0 20 20

Let us consider another segmentation:

31 al a2 a3 S2 al a2 a3

60 20 20 20 40 20 10 10

In this case, the value of the gini function of the stamp
point (20,20,20) is only 0.01.

The optimal association rule for binary segmenta-
tion with respect to the gini index is the one that splits
data into two segments, say “Sl” and “S2,” such that
Gini(S,; SZ) is maximized among all possible segmen-
tations.

2.3 Convexity of the objective functions

If we consider objective functions that are defined in
terms of a stamp point in k-dimensional Euclidean
space, the following property can be used in search-
ing for nearly optimal points and their corresponding
tests.

Definition 2.1 f(x) is convex if

for 0 5 y 5 1 and arbitrary points x1 and x2 in the
domain of f.

Lemma 2.1 The gini index, entropy gain, and x2 are
all convex functions on x.

Proof: For any vector A # 0, the second derivative
of the functions along with A is non-negative.

We have shown this for Ent(x) in [MFMT97]. So let
us first focus on proving inequality for Chi(S; S). Let
s = (Sl , . ..sk) be the set of all records to be split, and
let llxll = Cf=, Q. Let pi(R) = s~/~~s~~ and pi(S) =
z;/llxll; then Chi(S; 3) is transformed as follows:

Chi(S; ??) = C(x(S)) + C(x(R) - x(S)),

and

C”(X)

where t = (S;‘, . . . , S,‘). Therefore Chi”(S; 3) 2 0.
Next, for Gini(S;S), let pi(S) = ~i/llxll. It is

transformed as follows:

Gini(S; s) = Constant

where

G”(x) = & Cl”=,(f$ - $,” 2 0.

Therefore, Gini”(S; 3) 2 0. 0

Thanks to this property, the optimal point that
gives the maximum value of an objective criterion must
be on the convex hull of all stamp points in the Ic-
dimensional space. The problem now becomes how to
find the optimal points on the convex hull.

In [FMMT96a, MFMT97], we used the guided
branch-and-bound search for finding the optimal two-
dimensional numeric association rule. The proposed
algorithm efficiently finds the optimal point and its,
corresponding rule. However, k may become larger, so
that k > 4, when we consider the problem for huge cat-
egorical databases like that in the “mRNA” sequence
example. The space limitation does not permit use of
the algorithm on ordinary workstations; we therefore
present two feasible algorithms for finding nearly opti-
mal rules for huge categorical databases, which present
such a challenging problem in data mining.

3 Algorithms

3.1 Preparation

Changing T, we will frequently compute stamp points
x(T). If we scan the database relation R to find each

stamp point, it will take 0(/R/) every time. To speed
up this process, we preprocess the relation as follows.

Among all possible tests, we call tests that consist
of only one element finest tests and denote a finest
test Tcnest. We can construct an arbitrary test for the
categorical conditional attribute by making a union of
the finest tests.

We compute a stamp point x(T~,,,~) for each
finest test beforehand. To find the stamp point of
T, we simply need to sum up the points x(T) =
c TfinestET x(T~,,,~), which will take O((TI) time, i.e.,
O(n). We also compute the stamp point of the entire
relation x(R), since the stamp point of ,!? = R\S (com-
plement of S) can be easily computed from x(S) =
x(R) - x(S).

Example 3.1 Suppose we are given a relation R with
categorical attributes A and C. Let A be a target at-
tribute, and C be a conditional attribute. The fol-
lowing SQL query will count the number of tuples for
each distinct value of A and value of C to generate the
stamp points of finest tests:

SELECT A, C, COUNT(*) FROM R
GROUP BY A, C.

-L--J 17 = zk({cn})

3.2 Random Algorithm

To simplify explanation of the Random Algorithm, we
assume that the target domain size k is 3. Let us
consider the following data whose conditional domain
size n is 4:

1 Zg(A = as)] 40 10 0 40 1

For each stamp point x({ci}) = (x1, x2, 2s) of the
finest tests in three-dimensional space, we consider a
projected point in two-dimensional space y = (~1 =
Z~/(XI + x2 + zs), y2 = x2/(21 + x2 + x3)). Figure 1
illustrates the two-dimensional space. A straight line
L in this space splits the projected points y into two
groups. Let us consider a test defined as the union of
the finest tests that corresponds to the points in one
of the two groups.

384

5 b :

24
:=

3
: I I

‘;; I I
Y
z c2:
II d

w : l c3

h 0 I
c4 :

d
cl:

I I I I .
’ y2 = x2/(x1+x2+x3)

Figure 1: A segmentation in projected space

Theorem 3.1 Tests defined by a straight line in the
projected two-dimensional space correspond to stamp
points that lie on the convex hull of all the stamp
points in the original three-dimensional space. More-
over, the optimal test is one of those tests.

Proof: A straight line L : ayl + byz = c corresponds
to a plane S : (a-c)zi +(b-c)zz -cc53 = 0 in the orig-
inal three-dimensional space, which contains the ori-
gin (O,O, 0). S splits the finest tests into two subsets.
One subset contains finest tests whose inner products
with the normal vector of S are non-negative, while
the other subset contains negative finest tests. Let X
be the set of all stamp points of tests. Summing up
the finest tests with non-negative products generates
a tangential point of the convex hull of X with a plane
whose normal vector is the same as S’s normal vec-
tor, i.e., 0 = (a - c, b - c, -c). Therefore, any line
L has a corresponding point on the convex hull of X.
Conversely, any point on the convex hull of X has a
tangential plane S, and hence we can have a corre-
sponding line L in the projected space.

A broken line L in the Figure 1, which is 0 .
yi + 1 . ys = 0.25, corresponds to a plane, say S,
-0.25~1 + 0.7522 - 0.2523 = 0 in the original three-
dimensional space. The plane S splits finest tests into
two groups, {cl, cz, cs} that are non-negative and {cq}
that is negative. (See also table in Section 3.3.1.)
Stamp points, (60,50,50) and (30,10,40), that cor-
respond to these groups are tangential points of the
convex hull of all stamp points with a plane whose
normal vector is 0 = (-0.25,0.75, -0.25).

Theorem 2.1 proves that one of the points on the
convex hull gives the optimal test. •I

Therefore, we can concentrate on enumerating all
the pairs of the projected points in order to find the
optimal test.

Algorithm 3.1

(1) Project all points of finest tests to the two-
dimensional space x I+ y

(2) For each pair of projected points (y,, ya),

(4

(b)
(cl

(4

Draw a line L = yayb corresponding to x,
and xb.

Initialize a stamp point of a test, p = 0

For each projected point yi, let p = p + xi if
xi I+ y; is in the upper halfplane associated
with L.

Evaluate p by means of an objective func-
tion.

Let n be a conditional domain size of C. Since one
splitting is defined by two projected points of finest
tests, and we have n points in this 2D space, there are
O(n”) different pairs, and it will take O(n) time to ob-
tain the coordinates of a stamp point of a test. There-
fore, the time complexity of Algorithm 3.1 is O(n3).
There is a way to improve this complexity to O(n2)
by using a sophisticated computational geometry al-
gorithm [AT94].

We can extend this approach to cases where the
stamp points are in space with more than three di-
mensions. Let lc be the target domain size, i.e., the di-
mension of stamp points. We project the stamp points
of finest tests in k-dimensional space to points y =
h/IIxII~~2/llxIl~ . . . , xk-r/]]x]]) in (Ic-1)-dimensional
space. The optimal segmentation will then be one of
the splittings with a (Ic - 2)-dimensional plane in the
(Ic - 1)-dimensional space. Since Ic - 1 points define one
splitting and corresponding test, there are O(n”-‘)
possible tests, and it takes O(n) time to compute a
stamp point of a test. Hence the overall time com-
plexity is O(n”), which is too costly for large li’s.

To reduce the complexity, (1) we take s-sized ran-
dom sample from n finest tests, (2) project those sam-
ple stamp points to (Ic - 1)-dimensional space, and
(3) apply the same algorithm on the sample. Thus,
the time complexity of this randomized algorithm be-
comes to O(&‘n), and can be further improved to
O(ske2n).

Performance Guarantee for the Random Algo-
rithm

As we have shown above, the optimal solution is given
as a subdivision of stamp points by a hyperplane cut
in (k - 1)-dimensional space. From the PAC learning
theory, such a subdivision can be closely approximated
by using a small number of samples. Let Y be the set of
points in (k - 1)-dimensional space and 2 be a random
sample from Y. We say that 2 is an e-net for a region

385

family if] V n Y] /]Y] 5 e holds for every region V of
the family satisfying V r-12 = 0.

Suppose that the optimal subdivision S,,t is given
by a hyperplane H,,,,. Let us consider the family
of wedges bounded by Hopt and another hyperplane.
This family of wedges defines at most O(n”) differ-
ent subdivisions of n points (roughly speaking, the
Vapnik-Chervonenkis dimension is k), and hence it is
known [HW87, BEHW89] that a random sample of
size

s(e) = e-l max{6klog(16ke-1),410g(26-1)}

is an c-net with a probability of at least 1 - 6. Note
that S(E) is independent of n =]Y].

Let us take a sample that is an c-net for our
wedges, and let Ssample be the segmentation obtained
by a sample maximizing the objective function (e.g.,
gini) F. There exists a subdivision SL,,,+, obtained
by the sample such that the edge bounded by HOpt
and xwnple (the hyperplane associated with S&&
contains no sample point. Since our sample is an
c-net, the set difference between the segmentations

Kwnple and swt contains at most en points. By def-
inition, F(x(Ssample)) 2 F(x(S~,,,,,)), and hence
F(~(Ssam~te)) has a guaranteed performance. For ex-
ample, we can show that

Gini(x(S,,,)) - Gini(x(S,,+,)) 5 26 + ae2

where Q: =]R](]SOrt]-’ +]$,,t]-‘). Since we do not
want to find a subdivision with a very large a’, this is
a good approximation if e is small. We can use the
theory on e-approximation for k-labeled space given
by Hasegawa et al [HI1951 to avoid introducing cr into
the analysis. Theoretically, if we want to make c =
0.01, ~(0.01) = 600klog(1600k), which is very large.
However, the theoretical bound is very pessimistic, and
a much smaller sample is sufficient, as we will show by
experiment later.

3.3 Probing Algorithm

3.3.1 Hand Probing for Categorical Tests

The Probing Algorithm also searches for stamp points
(tests) that lie on a convex hull. A method of com-
puting a point on a convex hull and its corresponding
test without knowing the coordinates of the point is
called hand probing in the field of computational ge-
ometry [DEY86]. Geometrically, hand probing in a k-
dimensional space means computing a tangential point
of a (k- 1)-dimensional hyperplane and the convex hull
of all stamp points.

A (k- 1)-dimensional hyperplane in a k-dimensional
space can be characterized by using a normal vector
0 = (t&,65,.. .,O,) as (0,x) = a, where (0,x) =

Figure 2: Hand Probing in 3D Space

4x1 +e2x2 +-.. + 8kxk and a is a constant. A hy-
perplane with the 0 touches to the convex hull of all
stamp points. We can compute the tangential point p
of the hyperplane and the convex hull by maximizing
(or minimizing) the inner product (0, p).

Let us consider once again the example used in Sec-
tion 3.2. The tangential point of a hyperplane with
a normal vector 0 = (-0.25,0.75, -0.25) maximizes
(or minimizes) the inner product (0,x) = -0.25~~ +
0.7522 - 0.25~3. We compute the inner product (0, x)
for each value of cl, . . . , Q.

The test corresponding to the hand probing is the
union of those terms whose inner product is non-
negative (resp. negative). The coordinates of the
test (tangential point) can be obtained by summing
up the coordinates of those terms. In this example,
C = cl V c2 V c3 (resp. C = cd) is the test, and the
tangential point is (60,50,50) (resp. (30,10,40)). Fig-
ure 2 illustrates the hand probing.

The time complexity of the hand probing used to
compute the stamp point that maximizes (0,~) is
O(n), where n is the conditional domain size.

3.3.2 Convex Hull Searching

We can compute stamp points on the convex hull by
hand probing. Now, let us consider how to find nearly
optimal points by hand probing.

First of all, we compute k different tests and 2k
corresponding stamp points by hand probing using
several vectors. Empirically, a vector Oi,,it satisfy-
ing (&it, x(R)) = 0 finds a decent point with respect
to a convex criterion. (The line containing the origin

386

and x(R) is the central line of the convex hull, and
a hyperplane whose normal vector is Oinit is parallel
to the line.) Therefore, we include such vectors in the
initial set of vectors. We can make an initial convex
polygon, which consists of 2” facets using the initial
2k points, inside the convex hull of all stamp points.
(Strictly speaking, we may not be able to find k inde-
pendent points in a k-dimensional space by any hand
probing. In this case, we have to projects all points
into a (k - 1)-dimensional space.)

The guided branch-and-bound search method
[FMMT96a, MFMT97] efficiently finds the optimal
point on the hull from the initial convex polygon inside
the hull by repeating the following polygon expansion
procedure, when k is small enough to allow sufficient
working space.

Algorithm 3.2

for each facet in set of valid facets
on convex polygon

do {
(1) Compute a normal vector 0 of the facet.

(21 Compute a new point x
by hand probing with 0.

if(new point x is found outside the facet)
then{

if(the new point exceeds the best)

;.i;
then Update the best point.

Construct new facets by using x.

(5) Input those new facets
to the set of valid facets.

} else {

(6) Invalidate the facet.

1
)

Throughout the above recursions, we use the
“beneath-beyond” method [PS85] introduced by
Kallay, to maintain the convexity of the polygon.

If we maintain all the tangent planes of each hand
probing, we can compute the value of the upper bound
of each facet if the objective criterion is convex. In
the guided branch-and-bound search, we use the up-
per bound value to prune facets and also to maintain
a priority queue of facets to be expanded. The priority
queue only maintains facets that have not been pruned
and we call them valid facets. The authors applied this
strategy to find two-dimensional numeric association
rules for which the cost of each hand probing is expen-
sive [MFMT97] and the target domain size is small
such that lc = 2,3,4. However, the cost, with respect
to both time and working space, of maintaining facets
with the priority queue is not affordable for the prob-
lem of huge categorical databases in which the cost of

Figure 3: Initial Facets in 3D Space

each hand probing is low and the target domain size
may not be small. Therefore, we need to eliminate a
significant quantity of facets and use another heuristic
for ordering them.

In the Probing Algorithm, we predefine the size of
the working space that is used to maintain facets with
a queue, and the algorithm maintains only facets that
can be stored by the limited working space. For the ini-
tial convex polygon, we maintain only the facets that
contain the best of k points. Figure 3 shows an ex-
ample of an initial set of facets in a three-dimensional
space. If x1 is the best point, four facets, ~1~2x3,

s, m, and ~1~2x3, are selected as an ini-
tial set. If the working space does not allow these
initial facets to be maintained, we randomly choose
facets to be maintained.

After obtaining an initial set of facets, the Prob-
ing Algorithm maintains a facet queue with a skip list
structure. The skip list is maintained by using the
following heuristics.

l Facets that contain the best point so far are ex-
amined earlier.

. Facets that contain points that have nearly
best value so far are also examined earlier.

the

We empirically find that stamp points
whose value of an objective criterion
exceed the best value tend to lie near
the best point or near the points that
have nearly the best value. The above
heuristics contribute to find (nearly)
optimal result in an earlier step of the
algorithm.

b If the working space available in which to add new
facets is running out, only facets that satisfy the
above conditions are added.

387

The Probing Algorithm can run with
much smaller working space com-
pared with the guided branch-and-
bound search by giving up the main-
tenance of the tangent planes of each
hand probing. However, for the prob-
lem of larger target domain size, we
need some limitations of the working
space to make the Probing Algorithm
feasible. Therefore, we prefer facets
that lie near the best point or near the
points that have nearly the best value,
where stamp points that exceed the cur-
rent best value tend to lie.

l If the distance between a facet and a new point
that has been hand probed by the normal vector
of the facet is smaller than a certain threshold,
the facet is pruned away.

For the problem of large target domain
size, we sometimes suffer from overflow
and underflow error caused by floating
point operations. To prevent the prob-
lem, we should avoid too fine expan-
sion of the convex polygon using the
threshold value. This heuristics also
contribute to speed up the searching.

Though the running time of the Probing Algorithm
is still substantial, it can find nearly optimal points
in a period much shorter than the expected running
time, and can return the intermediate (but optimal or
nearly optimal) test interactively.

Both of the Random and the Probing Algorithm
search for points on the convex hull of all stamp points.
The Random Algorithm searches points on the hull
using sample points corrected at random from stamp
points of finest tests, while the Probing Algorithm
maintains facets and points that have been found so
far and makes the most of those for finding new points.

4 Experiments

We implemented the proposed algorithms and per-
formed several experiments to evaluate their perfor-
mance. All experiments were performed on an IBM
RS/SOOO workstation consisting of a POWER2 pro-
cessor running at 66 MHz with 2 MB of L2 cache and
256 MB of real memory.

In this experiment, we generated synthetic data
with n = 1000 (conditional domain size) and various
values of k: (target domain size) to simulate a huge
categorical database. Each type of dataset has 10,000
tuples and two categorical attributes, C and A. The
conditional attribute C takes cl, . . . , cn distinct val-
ues. The target attribute A takes al,. . . , ok distinct

k-4

0.025

0.005 1 ‘. ‘.‘.“’ “.“‘I .‘....’ -J
0.01 0.1

Execution :ime [Sec.]
10 100

k=6

0.025
t

57
4% 0.02 -
+
‘E
E 0.015 -
E

E 8 0.01 -

p 0.005 -
Random -

0’ “I .m ” “8 I
0.01 0.1

ExecJtion TimJt)Sec.]
100 1000

Figure 4: Performance of the Random Algorithm
(n = 1000)

values. For each tuple of the synthetic data, we ran-
domly and independently assign a value of C and a
value of A. For the purposes of comparison, we use
the “two-ing” method, in addition to our methods, to
compute a binary segmentation.

Random Algorithm

To support our claim that the Random Algorithm can
find a nearly optimal test by using a small sample, we
performed the following experiments.

Figure 4 shows relationship between the execution
time for a single run and the improvement in the gini
index gained by a test obtained by the Random Al-
gorithm for various sample sizes. The conditional do-
main size n is 1,000, and the target domain size k is 4
and 6. The numbers in the graph represent the sam-
ple sizes. Each error-bar (vertical line) indicates the
range between the best and worst result of 32 runs for
each sample size. The results of the 32 runs distribute
in the range, and each point on the range shows the
average value of these results.

The “two-ing” method deterministically computes

388

k-8

57
2 0.0185
.-
5 0.018

E 0.0175

iE g 0.017

g
E

0.0165

0.016

0.0155

F 0.015

3
2 0.0145

5
E 0.014

E
$f 0.0136

g 0.013

k=lO

0.0125 1 ..."I .J
1 10 Executionl %e 1000 10000

[Sec.]

Figure 5: Performance of the Random Algorithm
(n = 1000)

a test for each problem. Each diamond mark in the
figures indicates the time taken to compute the test
and the improvement in the gini index by the “two
ing” method. We draw a horizontal broken line for
each diamond mark to compare our algorithms with
the “two-ing” method easily. Though the “two-ing”
gives the optimal test of a certain superclass obtained
by grouping k classes, the heuristic is known to find a
relatively good approximated test.

From this experiment, we can see that the Random
Algorithm generates a result of satisfactory quality
within a practical time when the sample size is around
20. And notice that the best result of the 32 runs is
better than the result of the “two-ing” method even if
we use a small sample size. The CPU time taken for

a single run is almost proportional to
(> kL .

When k: becomes larger, we have to use a small sam-
ple size s so that the algorithm can terminate in a prac-
tical amount of time. However, a small sample often
gives low-quality results. To overcome this problem,
we run this algorithm with a small sample a number

of times, and take the best result. Figure 5 shows the
relationship between the execution time for 32 runs
and the best improvement in the gini index of 32 runs
when k = 8 and 10.

The Random Algorithm achieved better or compa-
rable results with small sample by 32 runs. Those
multiple trials can be executed independently. There-
fore, we can expect more better results if we can use
parallel environment.

Probing Algorithm

To examine the Probing Algorithm, we performed sev-
eral experiments using the same synthetic data that
was used for the Random Algorithm.

Figures 6 show the extent to which the gini index
value is improved by the Probing Algorithm, along
with the time taken in seconds. Thanks to the heuris-
tics for maintaining the skip list, we can observe that
when the Probing Algorithm find a better result, it
often find more better result within a short period of
time. As a result, the Probing Algorithm can find
nearly optimal tests much earlier than the time of
its termination. Such nearly optimal tests, which are
much more better than the result of the “two-ing”
method’s, are satisfactory for most of applications. So
the Probing Algorithm returns the intermediate re-
sults in practical time.

One defect of the Probing Algorithm is its required
working space when k becomes large. However, it can
find satisfactory results by the time when its working
space becomes large. In the experiment for k = 10,
working space of the Probing Algorithm is less than 64
MB when the best result in the graph was obtained.
In these experiments, we limited the working space of
the Probing Algorithm to 130 MB.

The results of the experiments show that both the
Random Algorithm and the Probing Algorithm find
a better test than the “two-ing” method in a practical
time and feasible.

We consider the binary segmentation problem for
cases in which the target domain size, A, is a small
constant. However, k may become large. Both the
Random and the Probing Algorithm will suffer from
large k. In such cases, we have to group k values into
smaller distinct values.

5 Concluding Remarks

We propose two geometric algorithms for finding asso-
ciation rules that make nearly optimal binary segmen-
tations of a huge categorical database. We can use the
“gini index,” “entropy,” or “x2” as an objective crite-
rion, which indicates the extent to which the values of

389

0.031
T 0.0305 -
45 0.03 -
5 0.0295 -

5 0.029 -
E 0.0285 -
E 0.028 -
z 0.0275 -
Q 0.027 -
' 0.0265 -

0.026
0.01

k=4
I ' - - -=--'I ' ' - -'-

Probing - -
Two-ing -e--. _

/

I . * * I . . . *..cL.

Ex&hion Time [iec.]
10

k=6
0.026 ,s..u..m.

-z 0.0255 Probing - - _
43 -e--.
5 0.025

Two-ing
-

'E a 0.0245 -
; 0.024 - -.-I-

E - 9 0.0235

E 0.023 -

P
o--------------------------~

0.0225 -

0.01 0.1 1 10 100
Execution Time[Sec.]

0.02

g 0.0195
G
.e 0.019
9
E 0.0185
if
tz 0.018
2
g 0.0175 -

k=8

0.017 1 ' 'a*~*d ' U*nsCd ' '*ss~aJ ' '*~Cd ' *J
0.01 0.1 10

Execudn Time [Sec.]
100

k=lO
0.016 , ..a. . . +

Probing -
Two-ing -+-. -

0.01 0.1
Execudn Time'$ec.]

100

Figure 6: Performance of the Probing Algorithm
(n = 1000)

a target attribute are skewed from the original distri-
bution. Rules that indicate nearly optimal values of
these criteria provide us with a clue to understanding
the target attribute.

Though complexities are O(S”-~~) for the Random
Algorithm and O((n + m)]P]) for the Probing Algo-
rithm, we make them practical by randomization and
strategic facet maintenance. Diverse experiments con-
firmed that the algorithms could find nearly optimal
tests within a practical computation time. The quality
of the results obtained for various samples by the Ran-
dom Algorithm differs dramatically if we use a smaller
sample size. Therefore, multiple trials are needed to
obtain better rules. Those trials are executed indepen-
dently and in parallel; thus, the Random Algorithm is
suitable for a parallel environment. On the other hand,
the quality of the Probing Algorithm becomes stable
after a certain amount of execution time. However,
it requires a large working space. Since the available
memory size is becoming larger and larger, the applica-
bility of the Probing Algorithm seems to be promising.

Let us consider once again the “RNA” example, and
assume that we do not know which subset of the RNA
sequence most strongly affects a target character of in-
terest. We can project several subsets of the sequence
as categorical databases and examine the impact of
each subset by using the presented algorithms. Then,
we can find a subset of the sequence that significantly
affects the target character, and carry out a further
investigation of the RNA sequence, using the subset.
In the further investigation, the presented algorithms
can also be used as powerful mining tools.

Acknowledgements

This research is partially supported by the Advanced
Software Enrichment Project of the Information-
Technology Promotion Agency, Japan.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of
items in large databases. In Proceed-
ings of the ACM SIGMOD Conference
on Managernent of Data, pages 207-216,
May 1993.

[AS941 R. Agrawal and R. Srikant. Fast algo
rithms for mining association rules. In
Proceedings of the 20th VLDB Confer-
ence, pages 487-499, 1994.

[AT941 T. Asano and T. Tokuyama. Topological
walk revisited. In Proceedings of the 6th
CCCG, 1994.

390

[BEHW89]

[BFOS84]

[Cen92]

[DEY86]

[FMMT96a]

[FMMT96b]

[FMMT96c]

[HF95]

[HI1951

[HW87]

[MFMT97]

A. Blumer, A. Ehrenfeucht, D. Haussler,
and M. Warmuth. Learnability and the
vapnik-chervonenkis dimension. Journal
of the ACM, 36:929-965, 1989.

L. Breiman, J. H. Friedman, R. A. Ol-
shen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

NASA Ames Research Center. Introduc-
tion to IND Version 2.1. GA23-2475-02,
1992.

D. Dobkin, H. Edelsbrunner, and C. Yap.
Probing convex polytopes. In Proc. 18th
ACM Symposium on Theory of Comput-
ing, pages 387-392, 1986.

T. Fukuda, Y. Morimoto, S. Morishita,
and T. Tokuyama. Constructing efficient
decision trees by using optimized associ-
ation rules. In Proceedings of the 22nd
VLDB Conference, pages 146-155, 1996.

T. Fukuda, Y. Morimoto, S. Morishita,
and T. Tokuyama. Data mining us-
ing two-dimensional optimized associa-
tion rules: Scheme, algorithms, and vi-
sualization. In Proceedings of the ACM
SIGMOD Conference on Management of
Data, pages 13-23, June 1996.

T. Fukuda, Y. Morimoto, S. Mor-
ishita, and T. Tokuyama. Mining opti-
mized association rules for numeric at-
tributes. In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Sys-
tems, pages 182-191, June 1996.

J. Han and Y. I%. Discovery of
multiple-level association rules from
large databases. In Proceedings of the
2lst VLDB Conference, pages 420-431,
1995.

S. Hasegawa, H. Imai, and M. Ishiguro.
c-approximations of k-label spaces. The-
oretical Computer Science, 137:145-157,
1995.

D. Haussler and E. Welzl. Epsilon-
nets and simplex range queries. Discrete
and Computational Geometry, 2:127-
151, 1987.

Y. Morimoto, T. Fukuda, S. Morishita,
and T. Tokuyama. Implementation

[MP91]

[PCY95]

[PS85]

[PS91]

[Qui86]

[Qui93]

and evaluation of decision trees with
range and region splitting. Constraint,
2(3/4):163-189, December 1997.

P. M. Murphy and M. J. Pazzani. Id2-
of-3: Constructive induction of m-of-n
concepts for discriminators in decision
trees. In Proceedings of the 8th Intl.
Wrokshop on Machine Learning, pages
183-187, 1991.

J. S. Park, M. Chen, and P. S. Yu. An ef-
fective hash-based algorithm for mining
association rules. In Proceedings of the
ACM SIGMOD Conference on Manage-
ment of Data, pages 175-186, May 1995.

F. P. Preparata and M. I. Shamos. Com-
putational Geometry, An Introduction.
Springer-Verlag, 1985.

G. Piatetsky-Shapiro. Discovery, anai-
ysis, and presentation of strong rules.
In Knowledge Discovery in Databases,
pages 229248, 1991.

J. Ross Quinlan. Induction of decision
trees. Machine Learning, 1:81-106, 1986.

J. Ross Quinlan. C4.5: Programs for
Machine Learning. Morgan Kaufmann,
1993.

391

