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Abstract 

Compensation-based query processing has 
been proposed in order to avoid lock con- 
tention between updating transactions and 
ad-hoc queries. This paper presents an algo- 
rithm based on undo /no-redo compensation. 
A query will read an inconsistent version of 
the database, but updates made by concur- 
rent transactions are later undone to make the 
query result transaction-consistent. By pro- 
cessing the database internal log to obtain in- 
formation on concurrent updates, queries im- 
pose no extra work on updating transactions. 
A simulation study shows that response times 
for query execution is significantly improved 
compared to the earlier compensation-based 
algorithms. Compared to executing queries 
with no consistency requirements, the algo- 
rithm gives only a small increase in query re- 
sponse times, while the effects on transaction 
response times are negligible. 

1 Introduction 

A current trend in database management is increased 
demand for large and complex queries performed on 
near real-time data. Such applications often access 
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data produced by business-critical real-time transac- 
tions. Introducing ad-hoc queries in such systems 
present several unsolved problems. One problem is 
that long-lived transactions tend to acquire many locks 
and hold them for a relatively long time. This prevents 
concurrent updates by real-time transactions [6]. 

In order to avoid that ad-hoc queries slow down 
real-time transactions, many organizations keep a sep- 
arate copy of the database (e.g., a data warehouse) for 
query processing. Maintenance of the copy will have 
to be done during low-activity hours (e.g., each night) 
in order to avoid lock contention with on-line trans- 
actions and with queries [14]. Hence, a problem with 
this approach will be data staleness. In addition, due 
to increased globalization, many organizations have no 
off-peak hours. 

Another approach is to run the ad-hoc queries with 
reduced degree of consistency. One example is cursor 
stability [7], where queries only lock a tuple while it 
is actually being read. However, many applications 
require that queries see data that is consistent. 

This paper proposes a method for running trans- 
action-consistent queries’ in an OLTP system with- 
out delaying the OLTP transactions. That is, queries 
should not hold locks for which transactions would 
have to wait. At the same time, the method should 
also ensure that all queries get a transaction-consistent 
view of the database. 

1.1 Compensation-Based Query Processing 

Compensation-based query processing has been pro- 
posed by Srinivasan and Carey in order to reduce 
lock contention when running queries in an OLTP sys- 
tern [16]. In the first phase of their two-phased ap- 
proach, queries scan the base relations using cursor- 
stability locking, and a set of temporary relations is 
created. Concurrently, transactions that update the 
base relations, append a compensation record for each 

‘The term query will in this paper refer to a long-running 
read-only transaction. 
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update to an update-list. In the second phase, the com- 
pensation records are applied to the temporary rela- 
tions making the final result reflect updates made by 
concurrent transactions. The information entered in 
the update-list can be tailored to each specific query. 

The two-phased approach proposed by Srinivasan 
and Carey has some drawbacks with respect to query 
efficiency. Intermediate storage, possibly on disk, is re- 
quired to store the result of the first phase. Also, the 
two-phased approach prevents efficient pipelining of 
relational algebra operations. No tuples can be emit- 
ted from the query before the entire base relations have 
been scanned. In addition, the method requires that 
the query process must either execute under cursor 
stability or wait for the termination of all transactions 
that have updated the update-list. This may signif- 
icantly increase the response times of queries in the 
presence of long transactions. 

Another drawback of the method is that it adds 
extra work to transactions in order to maintain the 
update-list. This could possibly increase transaction 
response times. In addition, the method is not appli- 
cable to transaction-consistent execution of read-only 
transactions that consist of several queries [2]. 

This paper presents a more efficient method for 
compensation-based query processing. In Section 2, 
it, is described how the query can use the database 
internal log to obtain information about concurrent 
updates. Section 3 presents the new method for 
compensation-based query processing, and a simula- 
tion experiment that evaluates the performance of the 
method is presented in Section 4. Related work is dis- 
cussed in Section 5, and Section 6 concludes the paper. 

2 Log-Oriented Compensation 

Compensation-based query processing reduces lock 
contention between a query and concurrent transac- 
tions without compromising on consistency require- 
ments. A query reads inconsistent versions of its 
base relations, but returns a transaction-consistent re- 
sult by compensating for updates made by concurrent 
transactions. 

The compensation-based query-processing method 
presented in this paper, bases its compensation on the 
database internal log. In this way, no extra work is 
imposed on transactions in order to inform queries 
about concurrent updates. In order to achieve non- 
blocking execution of queries with respect to transac- 
tions, queries will not set any locks on the tuples they 
access. This will give a query an inconsistent view of 
the database. However, the log will be used to bring 
the query result to a transaction-consistent state. This 
is done by redoing and undoing operations recorded in 
the log. 

A query process performs three main operations: It 
(1) scans the base relation(s) of the query, (2) pro- 
cesses the log and extracts relevant information from 
log records, and (3) performs the necessary undo/redo- 
operations before emitting the tuples. 

The scan is performed by reading the relation(s) 
tuple-by-tuple without setting any read locks. Thus, a 
query will not have to wait for transactions to commit 
before reading a tuple, and transactions will not have 
to wait for the query to finish before updating a tuple. 
The equivalent of a latch will be set on each tuple only 
while it is being read to protect the read operation 
from other operations. The scan does not necessarily 
need to be a sequential file-scan; other access methods 
(e.g., an index) may be used. 

Concurrently with the scan, transactions that up- 
date the relations being queried will have entered their 
updates into the log. The query process will extract 
relevant information from these log records. 

For each query, the set of all concurrent transactions 
is divided into two disjoint subsets, the BEFORE set 
and the AFTER set. The query result will reflect all 
updates by transactions in the BEFORE set and no 
updates by transactions in the AFTER set. In order 
to achieve transaction-consistency, no transaction in 
the BEFORE set may be dependent on a transaction in 
the AFTER set. The task of the compensation activity 
will be to redo operations of members of the BEF0R.E 
set and to undo operations performed by members of 
the AFTER set.2 

Approaches to compensation-based query process- 
ing may be classified into three categories based on 
which crit,eria is used when establishing the BEFORE 
set and the AFTER set: 

Undo/No-Redo Transactions that are active during 
the scan are included in the AFTER set. Thus, 
the query’s view of the database will only include 
updates by transactions that committed before 
the start of the query. 

No-Undo/Redo Transactions that are active during 
the scan are included in the BEFORE set. In 
addition, transactions that are started after the 
end of the scan, may have to be included in the 
BEFORE set because other members of the BE- 
FORE set may depend on them. Using this ap- 
proach, the query’s view will be more up-to-date 
than for undo/no-redo compensation. However, 
the query process will have to wait for all trans- 
actions that are active during the scan to termi- 

“Note that the undo and redo-operations are not applied to 
the database but to the query result. Hence, the compensation 
will not affect the correctness of concurrent transactions and 
queries. 
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nate. The method proposed by Srinivasan and 
Carey [16] uses this approach. 

Undo/Redo The only restriction on the establish- 
ment of the BEFORE set and the AFTER set is 
that that no transaction in the BEFORE set may 
depend on any transaction in the AFTER set. 
One way to ensure this is to include all transac- 
tions that have committed before a certain point 
in time in the BEFORE set, while all transac- 
tions committed after that point are included in 
the AFTER set. 

In this paper, we present an algorithm for trans- 
action-consistent execution of queries using undo/no- 
redo compensation. It is assumed that the state- 
changing operations performed by transactions are re- 
stricted to update, insert, and delete. Transactions ex- 
ecute using strict two-phase locking (2PL), and log 
their state-changing operations using a tuple logging 
policy [9]. That is, all log records contain the primary 
key and the relation identifier of the corresponding tu- 
ple. This is necessary in order to be able to relate 
the log records to the tuples read by the scan thread. 
Compensation oriented logging is assumed (i.e., undo 
operations are logged using compensation log records). 
Both partial and complete tuple logging may be used, 
however, where not otherwise stated, partial tuple log- 
ging can be assumed. 3 It is also assumed that a tuple 
is contained within a single data block, and that each 
block includes a state identifier that contains the log 
sequence number (LSN) of the log record for the most 
recent update to the block. Each tuple may also have 
its own state identifier. 

3 Undo/No-Redo Compensation 

One of the main advantages of undo/no-redo compen- 
sation is that all log records needed for performing the 
compensation on a tuple are already available when 
the tuple is read. For each tuple read during scan, the 
log records for this tuple can be fetched and the neces- 
sary operations undone before the next tuple is read. 
By interleaving scanning and compensation in such a 
manner, intermediate storage of the scanned tuples, 
possibly on disk, is avoided. 

This interleaved execution requires direct access to 
the log records of a tuple. In order to support such ac- 
cess, the log processing activity will enter the relevant 
information found in the log records in an update-table 
for later use. This update-table will support direct 
access (hash-based) on primary key. Relevant infor- 
mation from all log records created by members of the 
AFTER set (i.e., all transactions that are active after 

3That is, only before-images and after-images of attributes 
that are modified are recorded in a log record. 
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Figure 1: Undo/no-redo compensation. 

the start of the query) must be entered in the update- 
table. It will in this paper be assumed that a separate 
update-table is maintained for each query, and that 
the update-tables are entirely stored in main memory. 
Efficient methods for storing update-tables on disk are 
presented in [8]. 

A query process executing using undo/no-redo com- 
pensation consists of one scan thread and two log pro- 
cessing threads (Figure 1). The scan thread will also 
perform the compensation since this will be interleaved 
with the scanning. In addition to the log processing 
thread that processes log records created during the 
scan, a separate thread will be used to process the log 
records that have been created by transactions in the 
AFTER set before the start of the query. 

3.1 The Log Processing Threads 

The log processing threads process all log records4 pro- 
duced before the end of the scan by transactions in 
the AFTER set. When a query starts, its forward log 
processing thread (FLP) start processing all new log 
records. In order to avoid reading the log records from 
disk, FLP should process log records before t,hey are 
removed from main memory. 

The log records produced by members of the AF- 
TER set before the start of the query, must also be 
processed. This is done by a backward log processing 
thread (BLP). At the start of the query, BLP will insert 
into its AFTER set all transactions that are recorded 
as active. It will then go backwards in the log process- 
ing all log records created by members of this set. The 
shaded log records in Figure 2 represent the records 
that are processed by the log processing threads. 

When a log processing thread processes a log record, 

*All log records referring to relations that are accessed by 
the query. 
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Figure 2: Backward and forward log processing. 

it does a hash-based lookup into the update-table us- 
ing the primary key found in the log record. BLP will 
enter the before-images of all attributes found in a log 
record into the update-table, substituting possible pre- 
vious values. FLP will only enter a before-image into 
the update-table if no previous value exists for this at- 
tribute. BLP and FLP will be executed in parallel. 
When BLP is finished, the update-table will contain 
the committed values at the start of the query for all 
attributes that have so far been changed by members 
of the AFTER set. 

The entries in the update-table could be of three 
different types: write, insert, or delete. Write en- 
tries only contain before-images of attributes that have 
been changed by members of the AFTER set. During 
compensation, these before-images will be substituted 
for the attributes read by the scan thread. For delete 
entries, the before-images of all relevant5 at,tributes of 
the deleted tuple are included in the entry. Delete 
entries represent tuples that must be included in the 
query result even if they are not read by the scan 
thread. Insert entries contain no before-images and 
represent tuples that should be ignored by the scan 
thread. Details on rules for determining the type of 
an entry can be found in [8]. 

3.2 The Scan Thread 

When BLP is finished, the scan thread can start scan- 
ning the base relation(s) of the query. How the scan 
thread is executed depends on the operations of the 
query. Figure 3 shows the basic algorithm for produc- 
ing a snapshot of a relation. The scan thread scans 
the entire relation, and checks for each tuple the cor- 
responding state identifier.6 If the state identifier is 
smaller than the LSN of the oldest log record processed 
by BLP, the tuple can be emitted as it is since it could 
not possibly have been changed by members of the 
AFTER. set. 

5An attribute is relevant if it is either part of the query’s 
projection or is needed for processing the query (e.g., used in 
the selection predicate). 

GA state identifier could be maintained for each tuple or just 
for each block. 

SCAN-THREAD(R) 

1 for each tuple t in base relation R do 
2 Read t 
3 if state-identifier[t] < LSN of oldest log rec. 

processed by BLP then 
4 emit t 
5 else 
6 Wait for necessary log processing 
7 k t UPDATE-TABLE-ENTRY(primkey[t]) 
8 if k = NIL then 
9 emit t 

10 else 
11 if type[k] # INSERT then 
12 t^ t COMPENSATE(t, k) 
13 emit t^ 

Figure 3: Basic algorithm for the scan thread. 

Before checking the update-table, the scan thread 
must make sure that the necessary log records have 
been processed by FLP. This synchronization between 
the scan thread and FLP is further described in Sec- 
tion 3.3. When the scan thread has made sure that 
the necessary information for the current tuple has 
been entered in the update-table, it does a hash-based 
lookup in the update-table on the primary key of the 
current tuple. If an insert entry is found, the tuple 
is not emitted. If an update or delete entry is found, 
compensation is performed. That is, the values of each 
attribute found in the update-table are substituted for 
the corresponding attribute values of the tuple. If no 
entry is found in the update-table, the tuple is emitted 
in the form it was read. 

When the entire relation has been read by the scan 
thread using the algorithm of Figure 3, the result will 
include all tuples of a transaction-consistent snapshot, 
except possibly some tuples that have been deleted 
during the scan. These tuples could be emitted at 
the end of the scan by searching the update-table for 
delete entries that have not been visited by the scan 
thread. However, query evaluation algorithms often 
exploit that the scan sequence is sorted on a combina- 
tion of attributes. In Section 3.4 it will be discussed 
how the scan order can be preserved in the output of 
the query. 

In general, queries could be executed by first ob- 
taining a transaction-consistent snapshot as described 
above, and then run the queries on this copy. However, 
queries could be more efficiently executed by integrat- 
ing them with the scan thread and the log processing 
threads. For example, selection predicates can be eval- 
uated by the scan thread after the compensation has 
been performed. Aggregation can be performed by 
letting the scan thread and the log processing threads 
directly update the aggregated result. An in depth 
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discussion on this topic can be found in [8]. smaller sort key than the current tuple have been en- 
tered in the priority queue.8 

3.3 Synchronizing the Scan Thread and the 
Forward Log Processing Thread 

Before the scan thread performs compensation, all log 
records of operations that are reflected in the current 
tuple must have been processed by FLP. If not, the 
scan thread will wait for the FLP thread to process 
more log records.7 

3.5 Space Optimization of the Update-Table 

In order to minimize memory usage, the update-table 
should be kept as small as possible. The following 
optimizations will reduce the size of the update-table: 

One way to ensure that sufficient log has been pro- 
cessed, is to process all new log records before compen- 
sation is performed. However, a less eager strategy can 
be used by taking advantage of the state identifiers in- 
cluded in each tuple/block. If the state identifier of the 
current tuple/block is smaller than the LSN of the last 
log record processed by FLP, all operations needed for 
doing the compensation are already entered into the 
update-table. Thus, no more log records need to be 
processed before the compensation is performed. Oth- 
erwise, the scan thread is suspended until the neces- 
sary log records have been processed. In other words, 
line 6 of the algorithm in Figure 3 should be changed 
to: 

l Only before-images of relevant attributes are en- 
tered into the update-table. 

l If the scan order is predefined, FLP should, if pos- 
sible, check whether the tuple referred in the cur- 
rent log record has already been read by the scan 
thread. If so, it is not necessary to enter informa- 
tion from this log record into the update-table. 
In order to be able to decide whether a tuple lies 
behind or ahead of the scan thread, the log record 
must contain the attributes determining scan or- 
der. 

while state-ident$er[t] > LSN of last log rec. 

Wait 
processed by FLP do 

Using the synchronization described above instead 
of processing all new log records, the amount of log 
processing could normally be reduced. However, FLP 
should still make sure to process all log records before 
they are removed from main memory. 

l When the scan thread has finished processing a 
tuple, the entry for this tuple in the update-table 
can be removed. However, if it is not guaranteed 
that FLP will be able to decide whether the tuple 
of a later log record lies behind or ahead of the 
scan thread, a new entry may be made for this 
tuple later. In order to avoid this, only the at- 
tribute values are deleted, while the primary key 
is kept and the entry is marked processed. 

3.6 Complete Tuple Logging 

3.4 Preserving Scan Order in the Query Out- 

put 

Query evaluation algorithms often exploit that the 
scan sequence is sorted on a combination of attributes, 
the sort key. In order to be able to preserve the scan 
order, the log processing threads will also insert the 
sort key of deleted tuples into a priority queue to- 
gether with a reference to the corresponding entry in 
t,he update-table. For each tuple it reads, the scan 
thread will check the priority queue for tuples that 
should be emitted before the current tuple. If it is 
not necessary to preserve the scan order, tuples in the 
queue could be emitted at any time during the scan. 

So far, it has been assumed that partial tuple logging 
is used. If, on the other hand, complete tuple logging 
is used, the before-image of the entire tuple is stored in 
a log record. This way, the log processing threads will 
have access to all attributes of the tuple, and this can 
be exploited to optimize query execution. Moreover, 
FLP will always be able to decide whether the tuple 
of a log record lies behind or ahead of the scan thread 
when base relations are scanned in a predefined order. 

Complete tuple logging also simplifies the mainte- 
nance of the update-table. All attributes of a tuple 
will be available in the first log record processed by 
one of the log processing threads. Hence, only BLP 
needs to process more log records for this tuple. 

4 Performance Study 
When synchronizing the scan thread and FLP, the This section presents an evaluation of the performance 

state identifier of the current block can be used to of compensation-based query processing. The evalu- 
check whether all possible deletions of tuples with a ation is based on simulation experiments. The sim- 

7Note that if before-images of all relevant attributes are avail- 
able in the update-table, the compensation can be done without 
synchronizing with the FLP. Processing more log records will in 
this caSe never change the entry in the update-table. 

sIf a relation is scanned using a secondary index, the state 
identifiers of the index blocks must be used. In addition, an 
update of the index key must be treated as a delete/insert pair 
by the log processing threads. 
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ulation model was implemented in the C-t-t-based 
CSIM18 simulation language [ll]. The performance 
of the algorithm presented in Section 3 was compared 
to the performance of other query algorithms. The 
simulation model is briefly described before presenting 
experiments and results. A more detailed description 
of the model and the experiments can be found in [8]. 

4.1 Simulation Model 

The simulation model presented below is divided into 
two main parts, the system model and the applica- 
tion model. The first part models the behavior of the 
DBMS and its resources, while the latter part models 
the database and transaction and query workloads. A 
separate section presents the part of the system model 
that is related to query execution. 

4.1.1 System Model 

The system model encapsulates the logical and physi- 
cal resources of a DBMS and its underlying operating 
system and hardware. The system model consists of 
a single CPU, a single disk manager which adminis- 
ters several disks, a buffer manager, a checkpoint man- 
ager, a lock manager, and a log manager. In addition, 
the system has several transaction managers and query 
managers, each executing a single transaction or query, 
respectively, at a time. 

The CPU module models the behavior of the CPU 
scheduler. The scheduler is priority-based and non- 
preemptive. It is assumed that the DBMS is run as 
a collection of light-weight threads in a single process. 
The CPU scheduler will assign the CPU to the request- 
ing thread with the highest priority. In case of ties in 
priorities, the scheduler uses a first-come, first-served 
(FCFS) policy. Threads executing queries are given 
lower priority than threads executing transactions. 

The disk manager will receive requests from the 
buffer manager to transfer a certain number of blocks 
starting with a given block ID between the disk and 
the database buffer. Asynchronous I/O towards raw 
disk devices is assumed. The model for the service time 
of a disk request is based on [15], and the settings of 
the disk parameters are based on the data sheet for 
the Seagate Cheetah 4LP disks and on measurements 
presented in [18]. 

The buffer manager handles the database buffer us- 
ing an LRU replacement policy. A data page can be 
accessed either through the buffer hash table, or the 
page holding a particular tuple can be found using a 
B-tree index. For simplicity, it is assumed that the 
B-tree has a fixed size, and that index pages are never 
updated. To avoid that pages from large sequential 
scans fill the entire buffer, such pages are inserted at 
the front of the LRU list. All flushing of dirty pages to 

Table 1: Para 
Parameter 

1 CPURate 
BufSize 
DiskBlockSize 
DiskMaxLatency 
Disk’Fransfer 
MaxSeqIO 

LogBufSize 

DiskPollCPU 

TransCommitCPU 

eters for the system model. 
Description 

Instruction rate of CPU 
Number of pages in the DB buffer 
Disk block size 
Maximum rotational delay 
Disk transfer rate 
Max. number of pages in a se- 
quential read/write 
Number of pages in log buffer 
Max. lifetime for transactions 
Overhead for thread switching 
Cost for a lookup in the DB buffer 
Extra cost for an unsuccessful 
lookup in the DB buffer 
Cost for an asynch. disk request 
Cost to poll for a disk request 
Cost to request a lock 
Cost to release a lock 
Cost to create a log record 
Cost to initiate a transaction 
Cost to commit a transaction 
Cost to abort a transaction 
Cost for a read operation 
Cost for a write operation 
Cost for a delete operation 
Cost for an insert operation 

disk is normally done by the checkpoint manager which 
is activated when the number of dirty pages gets high. 

The lock manager implements key range locking in 
addition to ordinary tuple-level locking. Transactions 
are executed using strict 2PL. No deadlock detection 
is implemented. Deadlocks are resolved by the trans- 
action managers which abort transactions that have 
not terminated within a given time limit. 

The log manager maintains a buffer of the most re- 
cent log pages. Complete tuple redo/undo logging is 
used, and it is assumed that a log record uses twice as 
much space as the corresponding tuple. Log records 
are flushed to disk either upon request by the check- 
point manager or when transactions are committed. 
In order to reduce the work associated with log flush- 
ing, a group commit policy similar to the method used 
by the Oracle DBMS [13] is applied. 

The main parameters of the system model are pre- 
sented in Table 1. 

4.1.2 Query Execution Model 

Each query manager runs a single query at a time. 
The query manager can use four different algorithms 
to execute a query: 

UNDO compensation. The algorithm presented in 
Section 3. The update-table is assumed to be 
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stored as a hash table in a temporary main mem- 
ory buffer separate from the database buffer. 
Thus, the size of the update-table will not affect 
the hit ratio of the database buffer. Since the sim- 
ulation model assumes complete tuple logging, in- 
formation is never entered into the update-table 
more than once for each tuple during forward log 
processing. Where not otherwise stated, the space 
optimization techniques presented in Section 3.5 
are not applied. A priority queue is used to pre- 
serve the scan order for deleted tuples. The pri- 
ority queue is implemented as a partially ordered 
binary tree. 

The implementation of UNDO compensation re- 
quires that log records are processed before they 
are removed from the log buffer. If a large part of 
the log buffer has not been processed, forward log 
processing is given transaction priority until the 
entire log buffer has been processed. A query is 
aborted if an unprocessed log record is removed 
from the log buffer. Only backward log processing 
will may log records from disk. 

REDO Compensation. A slight modification of the 
algorithm by Srinivasan and Carey. The update- 
list is implemented as a hash table instead of as 
a sequential list. This way, sorting the update- 
list between the scan phase and the compensa- 
tion phase is not necessary. The hash-table will 
contain maximum one entry per tuple. In order 
to avoid reading uncommitted data, a read lock 
is acquired before a tuple is read. The lock is 
released before locking the next tuple. Informa- 
t,ion on updates made by a transaction is entered 
into the update-list at commit time. The only 
extra CPU cost, modeled for transactions is the 
cost associated with inserting an entry into the 
update-list. Neither the cost to access informa- 
tion on concurrent queries nor the cost to keep 
a list of all updates of transactions until commit 
time are modeled. 

Two-phased locking. All tuple accesses by queries 
are covered by primary-key range locks. Before 
accessing a new page, a query extends its key 
range lock to cover all tuples of the page. When 
the query is finished, the range lock is released. 

GO-processing. No locks are waited for or set by the 
query, and all tuples are emitted in the form they 
are read. In other words, the query result will 
not be transaction-consistent. The performance 
of GO-processing will be used as a reference to 
how much query performance must be sacrificed 
in order to achieve transaction-consistency. 

Table 2: Query execution parameters. 
I Parameter 1 Descrbtion 1 

~~ 

Cost for an insertion into the update- 

UpTabOutCPlJ Cost for a lookup in the update-table 

The execution of a query involves at least three sep- 
arate threads. In addition to the scan thread, a query 
will have a read and a write thread. The read thread 
reads one batch of pages at a time from disk. When 
the scan thread starts processing such a batch, the 
read thread will request a new batch from the buffer 
manager. The query result is stored in a temporary 
buffer, and the write thread writes batches of pages 
from the temporary buffer to disk. If UNDO compen- 
sation is used, a query process will also contain a for- 
ward log processing thread. Backward log processing 
is performed by the scan thread. In order to minimize 
the effects on transaction processing, a scan thread or 
a log processing thread will only process a single tuple 
or log record, respectively, each time it is scheduled 
for the CPU. The CPU cost parameters used to model 
query execution are presented in Table 2. 

4.1.3 Application Model 

The application model is based on the TPC-B speci- 
fication [17], modeling a bank with branches, tellers, 
and accounts and reflecting the history of recent trans- 
actions. Each transaction contains three updates, one 
for each of the Account, Teller, and Branch rela- 
tions, and one insert in the History relat,ion. In the 
experiments, the database size is fixed (1 million ac- 
counts) and not scaled to the transaction load as re- 
quired by the TPC-B specification. In order to be able 
to support a higher number of concurrent transactions 
without scaling the database, the number accounts per 
branch was set to 2000. For each transaction, the teller 
and account is chosen by a uniform distribution. Each 
relation is stored as a clustered B+-tree indexed on 
primary key. A sequence number is used as primary 
key in the History relation. Thus, the tuples will be 
inserted in physical order. 

Tuples in the History relation is 50 bytes, all other 
tuples are 100 bytes. NumDisks disks is used to store 
the Account relation. One disk is used for each of the 
other relations, and three additional disks are used for 
indexes, temporary tables, and the log. 

The workload of the system is modeled as a fixed 
set of terminals, each either requesting the execution 
of transactions or queries. Each terminal only submits 
one job at a time, and a new job is submitted at once 
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Table 3: Application model parameters 

Number of disks for the Account relation 
Number of transaction terminals 

91 
Selectivity factor for queries 

its previous job has terminated. Queries are executed 
by scanning a given fraction, a specified primary key 
range, of the Account relation in primary key order. 
The selectivity factor of the query determines the size 
of the key range. 

The parameters of the application model are listed 
in Table 3. 

4.2 Experiments and Results 

Below, the results of the simulation experiments are 
presented. The main performance metrics of the ex- 
periments are query response time and transaction 
throughput.g In addition, the storage needed for the 
update-table and the time used for backward log pro- 
cessing are studied. 

For all measurements, statistical validity was en- 
sured by verifying that size of the 90% confidence in- 
tervals were, if not otherwise stated, within 1% of its 
mean. The confidence intervals were computed using 
the replication method for steady-state simulations [l]. 

The settings of the simulation model parameters for 
the experiments are shown in Table 4. The values 
for the CPU cost parameters are based on measure- 
ments done on the ClustRa DBMS [lo]. The exper- 
iments were run over a range of multiprogramming 
levels (MPL) and query selectivity factors (SeZ). 

4.2.1 Query Response Time 

Figure 4 compares the query response times for the dif- 
ferent query algorithms used in the experiments. Ex- 
ecuting the query using 2PL gives the lowest response 
times. However, as will be shown below, using 2PL 
also results in a significant lower transaction through- 
put. In fact, the reason for the good query perfor- 
mance is that the system utilization by transactions is 
reduced due to lock contention. 

The experiments show that UNDO compensation 
only gives a slight increase in response times com- 
pared to GO-processing. This increase represent the 
work associated with processing the log, maintaining 
the update-table, and compensating for concurrent up- 
dates. REDO compensation give more than twice as 

‘Since for each simulation run transactions are generated by 
a constant number of terminals, transaction throughput is re- 
ally a meaSure of average transaction response time. The only 
difference is that throughput is affected by the abort rate. 

Table 4: Parameters settings. 
Parameter Setting 

CP URate 300 MIPS 
BufSize 4096 pages 
DiskBlockSize 4 kBytes 
DiskMaxLatency 6.0 msec 
DiskTransfer 13.7 MBytes/set 
MaxSeqIO 32 pages 
LogBujSize 40 pages 
7bansMaxTime 5 sets 
SchedCPU I 150 instr. 
BufCPU 1500 instr. 
BuffMiss CP U 6000 instr. 
DiskXferCPU 50000 instr. 
DiskPollCPU 1500 instr. 
LockReqCPU 2000 instr. 
LockRelCPU 300 instr. 
LogCreRecCPU 7000 instr. 
TransInitCPU 35000 instr. 
TransCommitCPU 40000 instr. 
TransAbortCPU 40000 instr. 
ReadCP U 8000 instr. 
UpdateCPU 15000 instr. 
DeleteCPU 6000 instr. 
InsertCPU 12000 instr. 

VpTabOutCPU 

NumDisks 
1, 3, 6, 10, 15, 21, 28 

2%, 5%, lo%, 25%, 50%, 100% 

L 

high query response times as UNDO compensation. 
This is as expected since the two-phased approach re- 
quires intermediate storage of data on disk. For the 
compensation-based algorithms, the ratios of their av- 
erage query response times to that of GO-processing, 
were independent of the selectivity of the query. 

Figure 5 compares the performance of UNDO com- 
pensation and GO-processing. At low system utiliza- 
tion by transactions, the compensation overhead is 
small. At higher utilization, the overhead increases up 
to about 30% when A4PL is 21 (about 80% CPU uti- 
lization by transactions). When MPL was increased 
to 28 (about 87% CPU utilization), all queries were 
aborted because the log processing thread was not 
given enough CPU time to process all log records be- 
fore they were removed from the log buffer. 

Note that the starvation of the log processing thread 
does not imply that UNDO compensation is only prac- 
tical for a small number of concurrent transactions. 
The limiting factor for log processing is CPU time. 
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Figure 4: Query response times for various MPL. Figure 6: Transaction throughput when running que- 
(Sel = 10%) ries. (Sel = 10%) 

There is no limitation on the number of concurrent 
transactions as long as the CPU has spare capacity 
for log processing. 

4.2.2 Transaction Throughput 

The reduction in transaction throughput caused by 
concurrent execution of queries is small except when 
two-phase locking is used (Figure 6). Transaction 
throughput is slightly higher for UNDO compensa- 
tion than for REDO compensation and GO-processing. 
This is mainly a consequence of the non-preemptive 
CPU scheduling. Since the log processing thread holds 
the CPU for a shorter time period than the scan 
thread, the average time transactions have to wait for 
the CPU is reduced by introducing the log processing 
t,hread. 

experiments response times were dominated by disk 
access time. In addition, during the compensation 
phase queries only access disks holding temporary ta- 
bles. Thus, transactions do only have to wait for disk 
requests made by queries during the scan phase. Also 
note that the transaction throughput of REDO pro- 
cessing will be actually somewhat lower since not all 
the cost of maintaining the update-list has been mod- 
eled. 

The extra work imposed on transactions by REDO 
compensation did not significantly increase transac- 
tion response times. The main reason is that in the 

When running queries using UNDO compensation, 
the distribution of transaction response times is not 
significantly changed. For MPL = 10 and Se1 = 
lo%, the response times of transactions in the 90th 
percentile increased with only 3%. In other words, 
transaction-consistent query execution can be achieved 
without any significant effect on concurrent transac- 
tion processing. 

4.2.3 Size of Update-Table 

In order to apply UNDO compensation, the main 
memory requirements for the update-table should not 
be too large. The storage needed is dependent on both 
MPL and the length of the query. Figure 7 shows the 
storage requirement for the update-table both when 
using and not using the space optimization techniques 
presented in Section 3.5. The figure shows that for a 
given MPL, the maximum size of the update-table is 
proportional to the selectivity (length) of the query. 
As long as MPL is low, only a small fraction of the 
tuples have entries in the update-table. When MPL 
increases, the storage needed for the update-table in- 
creases both due to increased update rates and longer 
query execution times. 
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Figure 5: Relative performance of UNDO compensa- 
tion compared to GO-processing. (Sel = 10%) 
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Figure 7 also shows that the space requirements for 
the update-table could be significantly reduced if space 
optimization is applied. Assuming uniform tuple ac- 
cess and constant scan rate, avoiding insertions of en- 
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Figure 7: Non-optimized and optimized (OPT) space Figure 8: Comparing the overhead of UNDO com- 
requirements for the update-table. (Logarithmic scale pensation relative to GO-processing in the two exper- 
on the vertical axis.) iments. (Sel = 10%) 

tries for already processed tuples and deleting entries 
of processed tuples, reduce the space requirements to 
one fourth of the non-optimized case.” In addition, 
entries need only be made for tuples within the se- 
lectivity range of the query. Thus, optimization may 
reduce the space requirements to Se114 of the non- 
optimized case, where Se1 is the selectivity factor of 
the query. However, in order to apply the optimiza- 
tion, the log processing thread need to be able to deter- 
mine whether a tuple lies behind or ahead of the scan. 
Thus, for partial tuple logging, the non-optimized and 
the optimized results in Figure 7 can be viewed as the 
upper and lower limits, respectively, for the space re- 
quirements of the update-table. 

The optimizations also lead to increased query per- 
formance due to reduced work for the log processing 
thread. For long running queries at high MPL, the 
query response times were reduced by 10%. Transac- 
tion throughput was not significantly affected. 

4.2.4 Transaction-Mix Experiment 

While TPC-B transactions reflect a simple update- 
intensive OLTP application, an OLTP system is often 
characterized by multiple transaction types of vary- 
ing complexities. Therefore, another experiment was 
performed where transactions of various lengths and 
operations were used. The number of operations of a 
transaction were Poisson distributed with an average 
of five operations, and the mix of operations used was 
40% reads, 30% updates, and 15% each of inserts and 
deletes. The same database was used for this exper- 
iment, and for each operation the relation was ran- 

loThe update-table will reach its maximum half way through 
the scan. At that time, half of the entries have not yet been 
made, and the update-table will only contain entries for unread 
tuples. 
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domly determined. Within each relation an uniform 
access pattern was used. 

Figure 8 compares the relative query performance 
with respect to GO-processing of this experiment to 
that of the TPC-B experiment. The overhead of 
UNDO compensation for a given CPU utilization by 
t,ransactions were lower than in the TPC-B experi- 
ment. This is because TPC-B transactions have a 
higher frequency of modifying operations than the 
transactions used in the second experiment. In other 
words, more log processing and compensation are 
needed for running queries concurrently with TPC-B 
transactions. 

The reduction in transaction throughput when run- 
ning queries was similar to the TPC-B experiment. 
The space requirements for the update-table were 
smaller due to the lower update-rate. 

4.2.5 Time Used for Backward Log Processing 

For the TPC-B experiment, the time used for back- 
ward log processing (BLP) seldom exceeded 1 ms. 
The reason for this is the profile of TPC-B transac- 
tions. Most transactions will only have to fetch one 
page from disk, the page for the Account tuple. Since 
the Account relation is accessed by the first operation, 
most of the active TPC-B transactions will not have 
performed any operations at the start of the query, 
and these transactions need not be handled by BLP. 

The execution time of BLP for the transaction-mix 
experiment is shown in Figure 9. As expected, the time 
is dependent on the multiprogramming level (MPL) 
since this directly determines the size of the AFTER. 
set. The reason for the more than linear growth in exe- 
cution time with increasing MPL, is that an increasing 
update rate will increase the probability of having to 
access log pages that is no longer in main memory. By 
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Figure 9: Time to perform backward log processing. 
(Sel = 2%) 

using a larger buffer for log pages, less pages would 
have to be fetched from disk by BLP. Accessing log 
records on disk, may potentially slow down transac- 
tions. However, no significant effects on transaction 
throughput was observed in this experiment. 

4.3 Discussion 

The simulation experiments show that it is possible to 
efficiently perform compensation-based query process- 
ing without significantly affecting the performance of 
transactions. As expected, UNDO compensation out- 
performs REDO compensation with respect to query 
response times and 2PL with respect to transaction 
throughput. 

The extra work required to achieve transaction- 
consistency only slightly increases the response times 
for queries in a system with low to medium CPU 
ut,ilization by transactions. The maximum overhead 
compared to GO-processing was 30% when running a 
query concurrently with TPC-B transactions. For less 
update-intensive transactions, the overhead to achieve 
transaction-consistency will be smaller. At very high 
CPU utilization by transactions, the log processing 
thread was not able to keep up with the production 
of new log records. The starvation of the log process- 
ing thread can be avoided by letting it process all new 
log records each time it is scheduled. However, this 
may potentially increase transction response times. 

The increase in transaction response time by intro- 
ducing queries is negligible as long as threads executing 
the query are given lower priority than other threads. 
The experiments also showed that the extra work re- 
quired by transactions when doing REDO compensa- 
tion is not significant as long as transactions need to 
read pages from disk. For transactions which do not 
need to access disk, this extra work may possibly af- 
fect transaction response times, especially for queries 

that require more complex processing of concurrent 
updates. 

The experiments show that the critical part for 
when using UNDO compensation is the size of the 
update-table. For short queries or low to medium up- 
date rates, the size will not represent a problem. For 
long queries and very high update rates, the space re- 
quirements for the update-table may exceed the avail- 
able main memory even when using the space opti- 
mization techniques. 

In all experiments, the time needed to perform 
backward log processing (BLP) was negligible com- 
pared to the entire execution time of the query. The 
BLP time is generally dependent on the length and 
number of concurrent transactions. For most queries 
the BLP time will be a small fraction of the execution 
time even for much longer transactions than those used 
in these simulation experiments. 

5 Related Work 

Transient versioning is an alternative approach to 
avoid lock contention while still achieving transaction- 
consistency for queries in an OLTP system [5, 3, 12, 
191. In transient versioning algorithms, transactions 
create a new physical version of a data item when 
performing an update. Queries may access an older 
version in order to get a transaction-consistent view. 

In order to maintain data clustering, transient ver- 
sioning algorithms should perform in-place updates. 
Hence, the previous version of a data item will be 
copied before the data item is updated. Hence, tran- 
sient, versioning will increase the response times of 
transactions. In the original transient versioning algo- 
rithms, prior versions are stored in a separate version 
pool [5]. This will potentially reduce query perfor- 
mance since the data clustering is disrupted with re- 
spect to queries. In addition, several disk accesses may 
be needed in order to locate the correct version of a 
data item. To reduce this problem, on-page caching of 
prior version has been proposed [3]. However, on-page 
caching will decrease the buffer hit ratio for transac- 
tions since the database will occupy more pages. 

Unlike transient versioning, compensation-based 
query processing will only materialize versions that are 
actually needed by queries in the system. This means 
that there will be no overhead when there is no active 
queries. On the other hand, transient versioning will 
never maintain more than one instance of a prior ver- 
sion while update-tables for concurrent queries may 
each contain a copy of the same version of a tuple. 
However, this can also be achieved with compensation- 
based query processing by letting a single forward log 
processing thread and a single update-table serve mul- 
tiple concurrent queries. The update-table may then 
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contain several versions of the same tuple, and each 
version will be tagged with the query IDS of the queries 
that should access this particular version. 

Compensation-based query processing also has the 
advantage of being able to tailor the content of the 
update-table to specific queries [8]. In addition, if the 
update-table is (partly) stored on disk, its organization 
could be optimized on I/O cost given the access pat- 
tern of the query. This is not possible for the general 
version pool used in transient versioning. 

Transient versioning has been implemented in the 
Oracle DBMS which uses its rollback segments as the 
version pool 141. 

6 Conclusions 

This paper has presented a novel method for compen- 
sation-based query processing that overcomes most of 
the disadvantages of the method presented by Srini- 
vasan and Carey [16]. By using the log to communicate 
updates, negligible extra load is put on updating trans- 
actions. Hence, all work related to the compensation- 
based execution of a query could be performed by a 
separate query process. A two-phased approach is 
avoided by using undo/no-redo compensation. Thus, 
there is no need for temporary storage of base rela- 
tions. In addition, queries can emit tuples at once they 
are read, making it possible to exploit efficient pipelin- 
ing of relational operations. Several queries may also 
see the same transaction-consistent state by using a 
common update-table. 

The simulation experiments show that compensa- 
tion-based query processing can be efficiently per- 
formed without significantly affecting response times 
of concurrent transactions. This is achieved by giv- 
ing higher priority to transactions than to query pro- 
cesses. A minimum of spare capacity must be available 
for query execution in order to keep the update-table 
at a moderate size. The main-memory requirements 
for the update-table could be reduced by storing parts 
of the update-table on disk. Efficient methods for a 
disk-based update-table are presented in [8]. 

The method has already been extended to dis- 
tributed execution of queries [8]. The plan is to imple- 
ment the distributed version in the ClustRa DBMS. 
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