
Reducing the Braking Distance of an SQL Query Engine

Michael J. Carey Donald Kossmann
IBM Almaden Research Center University of Passau

San Jose, CA 95 120 94030 Passau, Germany
carey@almaden. ibm. corn kossmann@db,fmi.uni-passau.de

Abstract

In a recentpaper, we proposed adding a STOP AFTER clause to
SQL to permit the cardinalig of a query result to be explicitly lim-
ited by query writers and query tools. We demonstrated the use-
fulness of having this clause, showed how to extend a traditional
cost-based query optimizer to accommodate it, and demonstrated
via DBd-basedsimulations that largeperformancegains arepos-
sible when STOP AFTER queries are explicitly supported by the
database engine. In this paper. we present several new strategies
for eficiently processing STOP AFTER queries. These strate-
gies, based largely on the use of range partitioning techniques,
o$er signtjicant additional savings for handling STOP AFTER
queries that yield sizeable result sets. We describe classes of
queries where such savings would indeed arise and present ex-
perimental measurements that show the benefits and tradeo$s as-
sociated with the new processing strategies.

1 Introduction

In decision support applications, it is not uncommon to
wish to pose a query and then to examine and process
at most some number (N) of the result tuples. In most
database systems, until recently, applications could only do
this by using a cursor, i.e., by submitting the entire query
and fetching only the first N results. Obviously, this can be
very inefficient, leading to a significant amount of wasted
query processing. In a recent paper [CK97], we proposed
adding a STOP AFTER clause to SQL to enable query
writers to limit the size of a query’s result set to a specified
number of tuples; related SQL extensions have been pro-
posed in [KS95, CG96]. The STOP AFTER clause essen-
tially provides a declarative way for a user to say “enough
already!” in the context of an SQL query, enabling the sys-
tem to avoid computing unwanted results in many cases.
In our previous work we showed the usefulness of the new

Permission to copy withoutfee all orpart of this material is grantedpro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appeas and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwtie, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

clause, discussed how a cost-based query optimizer can be
extended to exploit it, and used DBZbased simulations to
demonstrate the large performance gains that are possible
when STOP AFTER query support is explicitly added to
the database engine.

In this paper, we build upon our previous work by
presenting several new strategies for efficiently process-
ing STOP AFTER queries. Although we discussed STOP
AFTER query processing in general in [CK97], the ma-
jor focus of our initial attention was on optimizing queries
where N is relatively small (e.g., “top ten” queries). An
example of a typical query that our previously proposed
processing schemes will handle well is:

SELECT e.name, e.salary
FROM Ernp e
WHERE e.age > 50
ORDER BY e.salary DESC
STOP AFTER 10;

This query asks for the names and salaries of the ten most
highly-paid older employees in the company. Our previous
schemes will also work well for primary-key/foreign-key
join queries such as:

SELECT e.name, e.salary, d.name
FROM Emp e, Dept d
WHERE e.age > 50
AND e.works-in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

This query asks for the employees’ department names as
well as their names and salaries. For queries such as
these, it is possible for the query processor to manage
its sorted, cardinal@-reduced intermediate results using a
main memory heap structure, thereby avoiding large vol-
umes of wasted sorting I/O as compared to processing the
query without a STOP AFTER clause and then discarding
the unwanted employee information.

In cases where the stopping cardinality N is large, our
original approaches would each end up sorting and then
discarding a significant amount of data-albeit early (i.e.,
before the join in the example above), which still leads
to a significant savings compared to the naive approach.
The strategies presented in this paper seek to avoid this
wasted effort as well. Our new strategies are based upon
borrowing ideas from existing query processing techniques

158

such as range partitioning (commonly used in parallel sort-
ing and parallel join computations), RID-list processing
(commonly used in text processing and set query process-
ing), and semi-joins (commonly used in distributed envi-
ronments to reduce join processing costs). As we will
show, adapting these techniques for use in STOP AFTER
query processing can provide significant additional savings
for certain important classes of queries. We have imple-
mented the techniques in the context of an experimental
query processing system at the University of Passau, and
we will demonstrate the efficacy of our techniques by pre-
senting measurements of query plans running there.

Before proceeding, it is worth noting that proprietary
SQL extensions closely related to our proposed STOP
AFTER clause can be found in current products from
a number of major database system vendors. In addi-
tion, most of them include some degree of optimizer sup-
port for getting the first query results back quickly (e.g.,
heuristically favoring pipelined query plans over otherwise
cheaper, but blocking, non-pipelined plans). For exam-
ple, Informix includes a FIRST-ROWS optimizer hint and
a FIRST n clause for truncating an SQL query’s result
set. Similarly, Microsoft SQL Server provides an OPTION
FAST n clause and a session-level SET ROWCOUNT n
statement for these purposes. IBM’s DB2 UDB system al-
lows users to include OPTIMIZE FOR n ROWS and/or
FETCH FIRST n ROWS ONLY clauses when entering
an SQL query. Oracle Rdb (originally a DEC product)
added a LIMIT TO n ROWS clause to SQL, while Or-
acle Server makes a virtual ROWNUM attribute part of its
query results to support cardinality limits; including the
predicate ROWNUM <= n in the WHERE clause of an
SQL query tells Oracle Server to stop returning result rows
after n rows have been produced. RedBrick supports a
SET ROWCOUNT n command as well as an SQL exten-
sion called RANK (co1) which both imposes a result or-
der and allows processing to be stopped early; adding the
clause WHEN RANK (co1) c n to a query tells RedBrick
to return the result rows that rank among the first n column
values with respect to the indicated column. (In the event
of a tie, RedBrick permits multiple result rows to have the
same rank value.) Finally, several of these systems appar-
ently pass stopping information to operations such as Sort
so that they can optimize for the desired number of results
when merging sorted runs. Unfortunately, to the best of
our knowledge, there is no published information available
that describes how any of these systems’ SQL extensions
are implemented.

The remainder of this paper is organized as follows: We
present background material in Section 2, where we briefly
summarize the query operators and kinds of query plans
introduced in our previous work, review the basic idea of
range partitioning as a query processing step, and provide
an overview of the experimental environment used to pro-
duce the performance results presented in later sections
of the paper. In Section 3 we introduce our new range-
based techniques for processing STOP AFTER queries and

present experimental results that demonstrate their bene-
fits and highlight their associated performance issues and
tradeoffs. We focus on basic top N selection queries in
Section 3, while in Section 4 we explain how range tech-
niques can be utilized for processing queries such as top N
percentage selections, selections involving STOP AFTER
subqueries, and joins. In Section 5 we show how RID-list
and semi-join techniques can be applied to STOP AFTER
queries. Finally, we present our conclusions and our plans
for future work in Section 6.

2 Background
The general structure proposed for STOP AFTER queries
(and subqueries) in [CK97] is as follows:

SELECT
GROUP Si':..

FROM WHERE . . .
HAviIz . . .

ORDER BY (sort specification list)
STOP AFTER (value expression)

The STOP AFTER clause’s <value expression>
evaluates to a scalar integer value to indicate the number
of result tuples desired; it may be a constant, an arithmetic
expression, or even an uncorrelated scalar subquery. The
semantics of the STOP AFTER clause are straightforward
to explain: Let N be the integer stopping cardinality that
<value expression> evaluates to. After computing
the rest of the query, the system is to return only the first
N tuples of the result (in the specified ORDER BY order,
if any) to the requesting user or application program. Note
that this produces the same results as the cursor-based ap-
proach used by application programs today, but the pres-
ence of the STOP AFTER clause provides the query op-
timizer and runtime query processing system with cardi-
nality information that can be exploited to reduce (or even
eliminate, in some cases) wasted work.

2.1 STOP AFTER Query Processing

To process STOP AFTER queries, we proposed extending
the database system’s collection of algebraic query opera-
tors with a new logical query operator, the Stop operator.
This operator produces the top or bottom N tuples of its in-
put stream in a specified order and discards the remainder
of the stream. Like other logical query operators (such as
Join), Stop has several alternative physical operators that
can implement it in the context of query plans.

We defined two physical Stop operators in [CK97]:
Scan-Stop, for use when the Stop operator’s stream of input
tuples is already ordered appropriately, and Sort-Stop, for
use when the Stop operator’s input stream is not yet rank-
ordered. Scan-Stop is extremely simple; it is a pipelined
operator that simply requests and then passes each of the
lirst N tuples of its input stream along to its consumer (i.e.,
to the operator above it in the query plan). In contrast, the
Sort-Stop operator handles the case where the input stream
is not already sorted; it must therefore consume its whole
input stream in order to produce the top (or bottom) N out-
put tuples. When N is relatively small, Sort-Stop can op-
erate in main memory using a priority heap [Knu73]. The

159

sort-stop(N)
scan-stop(N)

scan-stop(N)

sort(shy) ridscan(age>50)
tbscan(Emp,age>50)

tbscan(Emp,age>50) idxscan(Emp.salary)

Classic Sort-Stop Conventional Sort Trad. Index-Scan

Figure 1: Traditional Plans for Query 1

first N tuples of its input are inserted into the heap, and
each remaining tuple is then incrementally tested against
the heap’s current membership bound to determine whether
or not it warrants insertion into the heap of the top (or bot-
tom) N tuples. For larger values of N, external sorting is
required to compute the desired Sort-Stop results; we sim-
ply used an ordinary external Sort operator followed by a
Scan-Stop operator in such cases in [CK97].

For illustration purposes, consider a slightly more gen-
eral version of the first example query from the Introduc-
tion (we will call this Query 1 in the following):

Query]: SELECT *
FROM EmP
WHERE age > 50
ORDER BY salary DESC
STOP AFTER N;

Figure 1 depicts three of the possible execution plans that
can be constructed for this query by combining one of our
physical Stop operators with other, pre-existing query oper-
ators. The first plan, the CZassic Sort-Stop plan, uses a table
scan (tbs can) operator to find employees in the appropri-
ate age range followed by a heap-based sort - stop (N)
operator to limit the results to the N highest paid older em-
ployees. This plan is viable as long as N is small enough
for the heap to indeed be a main memory structure. The
second plan, Conventional Sort, instead uses an external
sort on salary followedby a scan-stop(N) to ob-
tain the desired result. This would be the preferred plan for
large N in the absence of a salary index. Of course,
plans similar to these two, but with an Emp . age index
scan used to produce the inputs to the Stop-related oper-
ators, are possible as well. The third plan in Figure 1, the
Traditional Index-Scan plan, would also become viable in
the presence of an index on Emp . salary. This plan per-
forms an index scan (in descending order) on the salary
index, uses the resulting record ids (RIDS) to fetch high-
salaried employees and applies the age predicate to them,
and then uses a scan - stop operator to select the top N
results since the index scan produces its output in the de-
sired s a 1 a ry order. This third plan does very well if the
salary index is a clustered index or N is small. If N is
large and the index is unclustered, however, it would do
too many random I/OS to be cost-effective, especially if the
age predicate is highly selective (in which case many of
the high-salaried employees found using the index would
subsequently be eliminated).

We introduced two policies to govern the placement of
Stop operators in query plans in [CK97]. One was a Con-
servative policy, which inserts Stop operators as early as
possible in a query plan subject to the constraint that no

tuple that might end up participating in the final N-tuple
query result can be discarded by a Stop operation. We also
proposed an Aggressive policy that seeks to introduce Stop
operators in a query plan even earlier, placing a Stop op-
erator wherever it can first provide a beneficial cardinality
reduction. The Aggressive policy uses result size estima-
tion to choose the stopping cardinality for the Stop oper-
ator; at runtime, if the stopping cardinality estimate turns
out to have been too low, the query is restarted in order to
get the missing tuples. This is accomplished by placing a
restart operator in the query plan; this operator’s job is
to ensure that, above its point in the plan, all N tuples will
be generated. Thus, if its input stream runs out before all
N tuples are received, it will “restart” the query subplan
beneath it to obtain the missing results.

2.2 Range Partitioning

Range partitioning is a well-known technique that has been
applied with much success to numerous problems in the
parallel database algorithm area [DG92]. One success-
ful example is parallel sorting [DNS9lb], while another is
load-balanced parallel join computation [DNSS92]; yet an-
other example is the computation of so-called band joins
[DNS9la]. The basic idea of range partitioning is ex-
tremely simple---the data is divided into separately pro-
cessable buckets by placing tuples with attribute values in
one range into bucket #l, tuples with attribute values in
the next range into bucket #2, and so on. In the case of
parallel sorting, each node in a k-node database machine
partitions its data into k buckets in parallel, based on the
sorting attribute(s), streaming each bucket’s contents to that
bucket’s designated receiver node while the data is being
partitioned. At the end of this process, the individual buck-
ets can be sorted in parallel with no further inter-node in-
teraction. Figure 2 illustrates this process. Successful par-
titioning in this manner produces virtually linear sorting
speedup, and sampling (or histogram) techniques can aid
in the determination of a good set of partition boundary
values [DNSSl b] at relatively low cost.

In Section 3, we will propose and analyze the use of
several possible partitioning-based approaches for improv-
ing the efficiency of STOP AFTER query processing. We
will cover the details later, but the basic idea is simple-
the relevant data can be range-partitioned on the query’s
ORDER BY attribute into a number of buckets. The buck-
ets can then be processed one at a time until N results have
been output; buckets that are not accessed in this process
need never be sorted at all. This provides a way to imple-
ment a Stop(N) operation that scales beyond main memory
sizes without requiring full sorting of the input stream. In
addition, we will see that in certain contexts, additional sig-
nificant savings are possible, e.g., cases involving uses of a
STOP AFTER clause in a subquery.

2.3 Experimental Environment

As we work our way through the presentation of the
proposed new approaches for executing STOP AFTER

160

5,8,... 13,... 20,37,...

partitioning

base table

Figure 2: Sorting by Range Partitioning

queries, we will be presenting results from performance
experiments that demonstrate the tradeoffs related to the
approaches and that quantitatively explore the extent to
which they are able to reduce the costs of STOP AFTER
queries. Like Query 1 above, our test queries will be
queries over a simple employee database with the following
self-explanatory schema:

Emp(a, work-sin, age, salary, address)
Dept(m, budget, description)

Our instance of this employee database is fairly small, with
a 50 h4B Emp table and a 10 MB Dept table. We kept
the database small in order to achieve acceptable running
times and because we had somewhat limited disk space
available for performing our experiments. The Emp ta-
ble has 500,000 tuples which are generated as follows:
eno is set by counting the tuples from 1 to 500,000,
while works-in, age, and salaryare set randomly
using a uniform distribution on their particular domains;
address simply pads the tuples with “garbage” charac-
ters to ensure that each Emp tuple is 100 bytes long. The
domain of works-in is, of course, the same as that of
Dept. dno (described below), the domain of age is inte-
gers in the range from 10 to 60 so that about 100,000 Emps
(20%) are older than 50, and the domain of salary is in-
tegers in the range of 1 to 500,000. Our test database has
no correlations; as an example relevant to our experiments,
a young Emp is just as likely to have a high salary as an
old Emp is.

The Dep t table has 100,000 tuples which are generated
as follows: dno is set by counting the Dept tuples from
1 to 100,000; budget is set to 10,000 for all Depts, and
description pads the Dept tuples out to 100 bytes.

In terms of indexes, our test database has clustered Bt
tree indexes on the primary key attributes of the tables
(i.e., eno and dno) because clustered indexes on primary
keys are relatively common. To study plans such as the
Traditional Index-Scan plan of Figure 1, we also have an
Emp . s a 1 ary B+ tree; naturally, this index is unclustered.

Our experiments have been performed on an experimen-
tal database system called AODB [WKHM98]. AODB
is essentially a textbook relational database system that
uses standard implementations for sorting, various kinds of
joins, group-by operations, and so on. We extended AODB

with implementations for the scan - stop, sort - stop
(using 2-3 trees to organize the heap [AHU83]), and
res tart operators described above; we also added sup-
port for the forms of range partitioning described in the
next section. We ran AODB on a Sun workstation 10 with
a 33 MHz SPARC processor, 64 MB of main memory, and
a 4 GB disk drive that is used to store code, the database,
and temporary results of queries. The operating system is
Solaris 2.6, and we used Solaris’ direct I/O feature; this dis-
ables operating system caching in a manner similar to raw
disk devices. Since our database is small, we limited the
size of the database buffer pool proportionally, to 4 MB, in
those cases where we do not explicitly say otherwise. Of
these 4 MB, we always gave at least 100 KB to each opera-
tor that reads or writes data to disk in order to enable large
block I/O operations and avoid excessive disk seeks.

3 Range-Based Braking Algorithms

We now turn our attention to the development of new
techniques for processing STOP AFTER queries with less
effort-i.e., techniques for reducing the “stopping dis-
tance” of an SQL query engine. The primary tool that
we will be using is range partitioning. In this section,
we present several algorithms that use this tool to help the
engine to limit wasted work, thereby finishing sooner for
STOP AFTER queries; we refer to these as “range-based
braking” algorithms. We start by describing query plan
components that can realize the algorithms and illustrating
them using a typical example query. We then study their
performance, and we close this section by explaining how
to choose an appropriate number of partitions and an effec-
tive set of partition sizes.

3.1 Range-Based Braking

As mentioned earlier, the problem of extracting the top (or
bottom) N elements from a large data set, where iV is large
as well, can be dealt with by tirst range-partitioning the
data into a number of buckets on the query’s ranking at-
tribute(s) and then processing the resulting buckets one at
a time until all N elements have been output. As an ex-
ample, consider again Query 1 of Section 2.1, which se-
lects the names and salaries of the iV highest paid employ-
ees over 50 years old. Let us suppose we have a corpora-
tion with 100,000 older employees (as in our test database)
and that N is 10,000. We could, for instance, partition the
company’s old employees into three buckets-those with
salaries over $250,000 per year, those who earn between
$50,000 to $250,000 annually, and those who earn less than
$50,000. Suppose that we do this and find that the first
(highest salary) partition ends up with 1,000 tuples, the sec-
ond with 12,000 tuples, and the third with 87,000 tuples. If
this is the case, we need not sort the tuples in the last parti-
tion, as the 10,000 employees in the answer set clearly lie
in the first two partitions.

While the basic idea of range-based braking is simple,
there are several possible variations on this theme with
costs and benefits that depend on the nature of the query

161

being processed and the data being accessed. One impor-
tant option has to do with how the partitions are handled:
they can either be materialized (i.e., stored as temporary
tables), or they can be recomputed on demand from the in-
put data. In addition, these two options can be combined
to produce a hybrid approach that materializes some of the
partitions (those that are likely to be accessed, e.g., the first
two partitions above) and recomputes the rest on demand
(the ones that are unlikely to be accessed).

To provide for these different options, we propose
adding several new query operators to the execution en-
gine. The first is a part -mat operator, which takes a
partitioning vector as a parameter and uses it to scan its
input data and write it to disk in a specified number of par-
titions based on the splitting values given in the partition-
ing vector. The second is a part - scan operator that is
used to scan the resulting partitions one-by-one. The third
new operator is a part-reread operator, which takes a
set of predicates that describe the membership criteria for
every partition(e.g., {salary > 250,000, 50,000
< salary 5 250,000,salary < 50,000)) and
materializes a partition’s tuples by read&g (or re-reading)
its input stream from the beginning. The final new query
operator is a part - hybrid operator, which materializes
a specified number of its highest (or lowest) ranked parti-
tions and computes the contents of the other partitions only
on demand. We will turther illustrate how each of these op-
erators works, and discuss their performance tradeoffs, by
using the example plans presented in the next subsection.

3.2 Range-Based “Top N” Query Plans

To demonstrate how the different variations of range-based
braking actually work, let us turn once again to Query 1,
our favorite STOP AFTER query example. Figure 3 shows
three possible partitioning plans for processing Query 1 in
the absence of any useful indexes. (We will discuss STOP
AFTER query processing with indexes in Section 5.1.) The
first plan, labeled Materialize, takes the approach of ma-
terializing all of the employee partitions and then sorting
(only) those needed to yield N results. The execution of
this plan is demand-driven and best explained by looking
at what happens as result tuples are requested from the
scan - s top (N) operator at the top of the plan. When the
first result tuple is requested, the scan - stop (N) opera-
tor attempts to obtain and produce its first result, so it asks
the re s tart (N) operator for a tuple, which in turn asks
the sort operator underneath it for a tuple. The sort op-
erator responds by consuming and sorting all of the tuples it
can get before getting an “end-of-input” indication from the
part - scan operator beneath it. The part - scan oper-
ator obtains tuples by scanning the first partition produced
by its child, the part - mat operator, which materializes a
full set of partitions with all of the old employees by par-
titioning the result of its input (coming from the employee
table scan) before allowing the part - scan to proceed.
When the part - scan finishes scanning the first partition,
it returns an “end-of-input” signal to the sort, which sorts

scan-stop(N) scan-stop(N)

rest$(N)
scan-stop(N)

rest&(N)
restart(N)

sort(salary) ,
I

SON=w
sort(salary)

Part;=J part-SWl

par&mat
part-reread I

part-hybrid
I tbscan(Emp,age>50) /

tbscan(Emp,age>50) tbsoan(Emp,age>50)

Materialize Reread Hybrid

Figure 3 : Range Partitioning Plans for Query 1

the partition and then incrementally passes the results for
the first partition to the scan - stop (NJ operator through
the restart (NJ operator. When the restart (N) op-
erator receives “end-of-input,” it sends a restart signal back
down the tuple pipeline; when this signal is received by
the part - scan operator, it responds by moving on to the
next partition, and so on. The result is that the partitions
created by the part -mat operator are sorted, one by one,
until the scan - stop (N) at the top has produced N re-
sults. Partitions not needed to achieve that goal remain un-
sorted, thereby saving on sorting cost as compared to the
Conventional Sort plan of Figure 1.

The second partitioning plan shown in Figure 3, the
one labeled Reread, does not materialize its partitions as
temporary files. Instead, it computes and sorts the parti-
tions on demand by feeding a sort operator one parti-
tion at a time from a part - reread operator. Again, the
plan is controlled at the top by a scan - stop (NJ and a
restart (N) operator. In this case, each time a parti-
tion is computed and sorted, the employee table scan will
be repeated; this happens because the part - reread op-
erator responds to a restart signal by re-initializing its in-
put operator (i.e., the table scan in the example) or its in-
put operator tree (for more complex query plans), which
then starts over from the beginning. The execution of this
query plan is otherwise similar to that described above, so
hopefully its control and data flow details are now clear.
The advantage of the Reread plan for our favorite query is
that it saves the cost of writing and re-reading the materi-
alized partitions; note that this can include partitions, like
the large third partition in our earlier example, that are not
needed at all to obtain an N-tuple result set. On the other
hand, it has to re-scan the employee table for each partition
that it does use, so there is a read cost associated with the
write/read savings that this approach involves. The final
partitioning plan which is shown in Figure 3, labeled Hy-
brid, attempts to combine the advantages of the other two
plans while avoiding their disadvantages. In particular, it
is structured in such a way that it materializes its first few
partitions but recomputes the remaining ones.

3.3 “Top N” Select Queries

At this point, we have a collection of five query plans
that all could be used to process our favorite query in
the absence of indexes: the Classic Sort-Stop and Con-
ventional Sort approaches of [CK97], shown in Figure 1,

162

80
60

40

20

Figure 4: Resp. Time r sets), Query 1 Figure 5: $$!?{f%$??Part.
4 MB Buffer, Perf. Part. 600 KB Buffer, N = 20,000, Perf. Cut

and the partition-based Materialize, Reread, and Hybrid ap-
proaches, which we just introduced, and which are shown
in Figure 3. To investigate the quantitative tradeoffs be-
tween the five approaches, we constructed each of the query
plans and conducted a series of experiments using our
test employee database and the AODB system, which are
both described in Section 2.3. Figure 4 shows the overall
Query 1 response time results that we obtained by experi-
menting with stopping cardinality values ranging from 1 to
100,000 (i.e., from one up to all of the “old” empioyees).

terializes any excess data in this case, and no excess scans
occur, either. These two partitioningplans even outperform
the Classic Sort-Stop plan for small N; they use quicksort
to sort their first (and only) partition, which makes them
slightly less costly here than Classic Sort-Stop, which uses
its heap to order the results. Finally, as N increases, the dif-
ferences between the different approaches diminishes be-
cause all of them end up sorting the same amount of data
when N reaches 100,000.

The Conventional Sort plan has the worst performance
throughout most of Figure 4 because it sorts all of the data
before it is able to identify the top N results. The per-
formance figures for this plan thus always include the cost
of a two-phase sort of 10 MB, which takes approximately
two minutes in our test environment. The cost increase for
larger values of N are due to the N-dependence of the final
merge phase of the sort; for N = 1, only the first page
of each run is read, while for N = 100,000 all pages
of all runs are read and merged. The Classic Sort-Stop
plan provides much better performance than the Conven-
tional Sort plan as long as it is applicable; its curve stops
at N = 10,000 because its sorted heap structure no longer
fits in the buffer pool beyond that point. The relative per-
formance seen for these approaches is essentially just as
predicted in [CK97].

3.4 Partitioning and Safety Padding

The preceding experiment provides quite a bit of insight
into the relative performance of our old and new Sort-Stop
processing schemes for a basic top N query; however, it
assumed perfect partitioning. Before we accept its results,
we need to explore the sensitivity of the partitioned plans
to the number and sizes of partitions used. We need to do
so for two reasons. First, we need to understand how to
choose the partitioning parameters for each type of plan.
Second, we need to fmd out how costly partitioning errors
are so we know how to pad the partition sizes for safety; in
practice these values will be selected based on a combina-
tion of database statistics and optimizer estimates, and they
will therefore be imperfectly chosen.

We now turn to the three partition-based approaches in
Figure 4. In this experiment, we assume that the opti-
mizer’s selectivity estimator has access to accurate distri-
bution data; this means that we assume that partitions are
“ideally” sized (a notion that we will examine more closely
in the next subsection). As a result, all partition-based plans
end up with just over N tuples in their first partition. Look-
ing at the performance results for Query 1, we see that the
Materialize plan ends up being the worst performer among
the three partitioning plans because it always materializes
10 MB of temporary partition data, much of which is sub-
sequently not needed. Despite this cost, though, it outper-
forms the Conventional Sort plan for all values of N except
N = 100,000 (where their performance becomes essen-
tially the same). The other two partitioning approaches end
up providing the best overall performance for this query;
both sort only the required amount of data here, neither ma-

Figure 5 shows the results of a series of experiments that
differ in two ways from the ones we just looked at. Here,
we have fixed N at 20,000 and decreased the buffer pool
size by a factor of about seven to 600KB (i.e., 150 pages
of 4 KB). We use an even smaller buffer pool here so as
to stress the need for partitioning; this is similar to scaling
up the size of the employee table, but keeps the cost of the
experiments within reason. The x-axis in Figure 5 is the
number of partitions utilized, and the y-axis is the overall
query response time (as before). In this graph, the number
of partitions is varied with a “perfect cut”, meaning for P
partitions and a query stopping cardinality setting of N, we
have P - 1 “winner” partitions with N/(P - 1) tuples in
each one plus one “loser” partition with the leftover tuples
in it. For comparison and baseline-setting purposes, in ad-
dition to showing the performance of the three partition-
based plans, the graph also shows the timing results for
the Conventional Sort plan (which do not vary since N is
fixed); the Classic Sort-Stop is not applicable here since its

Figure 6: Queryc~~~$&t-point
600 KB Buffer, N = 20,000, Perf. Part.

163

heap will not fit in the available buffer memory.
The results shown in Figure 5 provide clear insights into

how each of the partition-based plans should be dealt with
with respect to choosing the number of partitions. The
Reread approach, as one would obviously expect, is very
sensitive to the number of partitions used; to avoid costly
re-reads, two partitions (one winner, one loser) is the opti-
mal choice. The Materialize approach performs best when
the winner tuples are partitioned into memory-sized pieces
so that each partition can be sorted in memory in a single
pass; this is the case in the figure with five (or more) par-
titions. The Hybrid approach has a similar optimal point,
for the same reason; it outperforms Materialize by about 20
seconds’ worth of response time since it does not material-
ize the 80,000 loser tuples.

Figure 6 shows the results of a series of experiments that
explores the question of what happens to the different par-
titioning plans when the winner/loser cut-point (which is
the x-axis in the figure) has been incorrectly estimated; let
us call this cut-point C from now on. The goal of this ex-
periment is to obtain insights that we can use to guide the
sizing of partitions (e.g., so we know which direction it is
better to err in). As before, the query used for the exper-
iments here is Query 1, the buffer pool size is 150 pages,
and iV = 20,000. Learning from the results of Figure 5,
Reread has one winner and one loser partition in this ex-
periment, whereas Materialize and Hybrid further partition
the winner tuples into memory-sized pieces.

When C is set too low, Figure 6 shows that all of the
algorithms get into fairly big trouble. This is because some
of the winner tuples, which belong in the query result, end
up being placed into the large loser partition. In this case,
Reread and Hybrid both have to re-scan the entire 50 MB
employee table to get at these tuples, while Materialize
must sort even the large loser partition. Under these cir-
cumstances, the Conventional Sort plan is able to beat all
three of the partitioning plans. Materialize performs the
worst here because it does a great deal of expensive read-
ing and writing, and this ends up actually being more costly
than a second sequential scan of the employee table.

When C is set too high, Figure 6 shows that the parti-
tioning algorithms still manage to do quite well for Query
1. Materialize has roughly constant cost in this region, as
it always materializes all of the “old” employees (indepen-
dent of C). Hybrid grows slowly more expensive as C in-
creases because it materializes C but not all “old” tuples.
Reread grows costly much faster with an increasing cut-
point over-estimate. To see why, we need to look at the
amount of sorting carried out in the three plans: Reread,
which has only one winner partition (with C tuples), must
sort this whole winner partition in order to find the top IV
tuples. On the other hand, Materialize and Hybrid partition
their C winner tuples into several small winner partitions
so that they need not sort all of these winner partitions in
cases in which C is set too high. In any case, the bottom
line of this experiment is that all of the partition-based algo-
rithms suffer quite strongly if the number of tuples placed

into winner partitions ends up being too small, and suffer
much less if too many tuples are classified as likely win-
ners. Thus, it is better to err on the high side, placing too
few tuples into the loser partition (i.e., too many into win-
ner partitions), to avoid potential performance instabilities.

3.5 Choosing a Partitioning Vector

Before moving on to other queries, it is worth discussing
the issue of how the partitioning vector-i.e., the splitting
values that control which attribute value ranges are associ-
ated with which partitions-can be chosen for the partition-
based plans. The preceding subsection showed us how to
choose the partition cardinalities, so the remaining open
problem is one of successfully mapping these desired car-
dinalities back into attribute ranges for the ORDER BY at-
tribute(s) of a STOP AFTER query. This is essentially the
dual of the selectivity estimation problem, which takes a
query’s attribute value ranges and attempts to estimate car-
dinalities from those ranges; moreover, it is amenable to
the same techniques.

There are essentially two potential answers here. The
first is histograms, which have already been thoroughly
studied (e.g., [PIHS96]) and are available in most database
systems today. In particular, equi-depth histograms that
provide good accuracy even in the presence of skewed data
are well understood [Koo80, PSC84, MD88], and in the
case of correlated attributes, multi-dimensional histograms
will help [PI97]. Thus, if histograms are available, they can
be used to determine partition vectors at query compilation
time. If no histograms are available, or it is known that the
available histograms provide insufficient accuracy (e.g., for
complex queries with many ‘unpredictable” joins or group-
ing operations), then sampling at run time can be used.
Sampling has also been thoroughly studied in the database
context (e.g., [LNS90, HS92]), and it has also been shown
to be quite cheap [DNS9lb]. To conclude, at this point, we
rely on existing technology, and the new partition-based ap-
proaches we propose in this paper can directly take advan-
tage of any improvements made in this field in the future.

4 Other Examples

Thus far we have seen experimental results (involving our
favorite query) that demonstrated the basic tradeoffs re-
lated to the alternative range partitioning techniques and
that showed some of the advantages of using range par-
titioning for STOP AFTER queries. In this section, we
present three additional examples with experimental re-
sults that highlight several other advantages of range par-
titioning. These example queries include a percent query, a
nested query, and a join query. Since the tradeoffs between
the three alternative partitioning approaches are very simi-
lar for all STOP AFTER queries, we will focus on Hybrid
plans, which use our preferred partitioning method, in this
section.

164

20 - Conv.son +
sortstop ---)f---

Part/Hybrid -.-m-

0 ' ,' ,' . . .' ' .' . c
1 10 100 1000 10000 1omo

PamHybrid ---B--

Figure 7: Resp. Timit@ecs) Query 2
4 MB Buffer, Perfect Partitioning

Figure 8: Resp. TimeN(secs), Query3
4 MB Buffer, Perfect Partitioning

Figure 9: Query’3, Vary L
4 MB Buffer, N = 20,000, C = 25,000

4.1 Percent Queries

Our fist additional example (Query 2) is a so-called per-
cent query. The query asks for the 2% highest paid Emps
that are more than 50 years old.

Query 2: 3CT

WHERE age > 50
ORDER BY salary DESC
STOP AFTER x%;

Percent queries are interesting because an additional
counting step is required in order to fmd out how many
tuples are to be returned. That is, we need to count the
number of Emps that are over 50 before we can actually
start STOPping (so to speak). Looking back at the plans
studied in the previous section, we see that we can directly
apply the Conventional Sort plan (Figure 1) to this per-
cent query: the counting step can be carried out as part
of the tb scan (Emp , age> 5 0) operator, and the result
of this counting step times c% can be propagated to the
scan- stop (N) operator before the scan- stop (N)
operator starts to produce tuples; this is possible because
the sort in between is a pipeline-breaking operator. Like-
wise, all three partitioning plans of Figure 3 can be applied
to our percent query: again, counting can be carried out as
part of the tbs can (Emp , age> 5 0) operators and prop-
agated to the scan - stop (N) operators because there ex-
ists a pipeline-breaking operator in between (sort and/or
part-mat or part-hybrid). The Classic Sort-Stop
plan of Figure 1, however, cannot be directly applied in this
case. To use a sort - stop operator, we can either read
the whole Emp table twice (once to carry out the counting
step and once to find the top z%), or we can read the whole
Emp table thereby carrying out the counting step and ma-
terializing the Emps with age > 5 0 as a temporary table
and then read the temporary table in order to find the top
2%. Which one of these two plans is better depends on the
selectivity of the age predicate; in our particular example,
the second plan is better because only one out of five Emps
is older than 50 in our test database. In any case, both of
these adjusted Classic-Sort-Stop plans are more expensive
than the (inapplicable) Classic Sort-Stop plan of Figure 1.

Figure 7 shows the running times of the Conventional
Sort, the adjusted Classic Sort-Stop (with a materialization

step), and the partition-based Hybrid plans for this percent
query. As described above, the Conventional Sort and Hy-
brid plans have almost the same running times here as for
Query 1 in Section 3, whereas the Classic Sort-Stop plan
has a higher cost due to writing and reading temporary re-
sults from disk. As a result, the Hybrid plan is the clear
winner for all z 5 50% for this percent query. Note that
the Classic Sort-Stop plan cannot be applied for x > 50%
because its memory requirements then exceed 4 MB.

To find the proper partitioning vector for the Hybrid
plan for this query, the observations of Section 3.4 es-
sentially still apply. That is, we should partition the data
into memory-sized portions and “play it safe” by mate-
rializing too many rather than too few Emp tuples in the
part-hybridoperator.

4.2 STOP in a Subquery

In the second example of this section (Query 3), we con-
sider a query that has a STOP in a subquery. Our example
query asks for the average salary of the N best paid Emps
withage > 50.

Query3: ;;X2;CT g;iJ6;alary)
salary

FROM Ew WHERE age > 50
ORDER BY salary DESC
STOP AFTER N) e;

Both the Conventional Sort and the Classic Sort-Stop plan
of Figure 1 can be applied to this query; they simply need
an aggregate operator at the top in order to compute
the average. These traditional plans, however, perform a
great deal of wasted work since they produce their output in
salary order and this ordering is not needed to compute
the average. With a partition-based plan, most of this sort-
ing can be avoided by partitioning the Emps into three par-
titions: one partition containing the top L Emps (L slightly
smaller than N), one partition containing the next M Emps
such that it4 is small and L + M 1 N, and one partition
with the all of the other loser Emps. In this case, only the
M Emps in the second partition need to be sorted in order
to find the N - L highest paid Emps in that partition.

Figure 8 shows the running times of the three alternative
plans for this query. We can see that the Conventional Sort
plan again has the highest cost because it sorts all 100,000

165

Emps with age > 5 0, independent of N. Also, as in the
previous experiments, the cost of the Classic Sort-Stop plan
increases with N and is in between the Hybrid and Conven-
tional Sort plans. What makes Query 3 and this experiment
special is that the cost of the Hybrid plan is almost constant
here because Hybrid sorts very few Emps, independent of
N; only for very large N does the cost of the Hybrid plan
slightly increase, due to materializing many Emp tnples. As
a result, the differences in cost between the Classic Sort-
Stop and Hybrid plans increase sharply with N, and the
Hybrid plan outperforms the Conventional Sort plan even
for N = 100,000. It should be noted that the cost of the
Conventional Sort plan is lower for this query than in all
previous experiments because this query can be evaluated
using only the salary colnmn of Emps (i.e., the other
columns are projected out after the tbscan), permitting
the sort to be carried out in one pass in memory. Simi-
larly, the Classic Sort-Stop plan can be used for all N for
this query without exhausting the buffer space.

It is somewhat trickier to find a perfect partitioning vec-
tor for this query than for Queries 1 and 2. If we set
C = L + M (C is the “cut-point” between winners and
losers as in Section 3.4), then we need to make sure that
L < N in addition to C 1 N and C as small as possi-
ble. In other words, here we need to find a good left cut-
ting point, L, in addition to a good right cutting point, C,
whereas we only needed to find a good right cutting point
for Queries 1 and 2. Figure 9 shows the sensitivity of the
cost of the Hybrid plan towards cases in which L is set im-
perfectly for N = 20,000 and C = 25,000. Obviously,
the Hybrid plan performs best if L is close to N. However,
the figure shows that the penalty for a poor setting of L is
not severe (20% at most) due to the fact that the additional
work is proportional to the number of misclassified tuples
(i.e., errors here don’t cause entire additional partitions to
become involved in the query plan); in any case the Hybrid
plan outperforms both traditional plans. (Figure 9 shows
the cost of the Classic Sort-Stop plan, the better of the two
traditional plans, as a baseline.)

4.3 Join Queries

The last example query of this section involves a join; this
example shows that partitioning becomes even more attrac-
tive for more complex queries. The query asks for the N
highest paid Emps that have age > 50 and that work in
aDept withbudget > 1,000.

Query 4: ;;;iCT
iimp e, Dept a

WHERE
E% i.Edget > 1000
AND e.works-in = d.dno

ORDER BY salary DESC
STOP AFTER N;

Figure 11 shows two traditional plans for this query. The
first plan is based on (conventionally) sorting the Emp table
into sa 1 ary order and then probing the top Emps one by
one in order to find out whether they work in a Dep t with a
high budget (i.e., it uses an index nested-loop join). The

second plan carries out the join first, in order to find all
Emps that work in a Dept with a high budget (Grace-
hash join is best for this purpose in our test database), and
then it finds the N highest paid of these Emps using a
sort - stop operator. As an alternative to these two tradi-
tional plans, Figure 12 shows two partitioning-based plans
for this query. The idea here is to partition the Emp table
before the join, and then to join one Emp partition at a time
with the Dep t table until at least N Emps that survive the
join have been found. Thus, just as partitioning was used in
the previous examples to avoid unnecessary sorting work,
partitioning is utilized in these two join plans to avoid tm-
necessary sorting and join work. The difference between
these two plans is that the first one uses index nested-loops
for the join, whereas the second one uses hashing. Note
that for small N, the hash join of the Part+HJ plan can be
carried out in one pass if the part - hybrid operator par-
titions the data into memory-sized portions.

Figure 10 shows the running times of the four plans,
varying N and using our test database in which all Dep t s
actually have a budget > 1,O 0 0. We see immediately
that the partitioning plans clearly outperform the two tra-
ditional plans. The Sort+NLJ plan has the highest cost,
independent of N, because it always sorts all 10 MB of
Emps with age > 50. For N > 1000, it has extremely
high costs because, in addition to the expensive sort, the
NLJ becomes very costly because many Emp tuples gen-
erate probes, resulting in an excessive amount of random
disk I/O. The GHJ+Sort-Stop plan has low sorting costs
for small N, but it has poor performance because it per-
forms a full-fledged Grace-hash join. For N 2 50,000,
the GHJ+Sort-Stop plan is again inapplicable because the
buffer requirements of the sort - stop (NJ operator ex-
ceed the limit of 4 MB. (Replacing the sort - stop (N)
operator by a conventional sort and a scan- stop (N)
operator would yield an execution time of about 250 sets
here.) Both partitioning variants avoid unnecessary sort-
ing and joining of Emp tnples. The Part+NLJ plan per-
forms best for small N, but its performance deteriorates
for N > 1,000 due to the high cost of the NLJ, just as
in the Sort+NLJ plan. The Part+HJ plan shows better per-
formance in these cases because hash joins are better than
index nested-loop joins when both input tables are large.

In terms of sensitivity, the points mentioned for
Queries 1 and 2 still basically apply; we should make sure
that the first partition contains all of the Emp tuples needed
to answer the query. We must keep in mind, however,
that for the Part+HJ plan, the penalty for setting the “cut-
point” too low is higher than for the partitioning plans for
the simple sort queries because a restart involves not only
re-scanning the Emp table, but also re-scanning the Dep t
table in the Part+HJ plan. Since the Part+NLJ plan never
actually scans the Dep t table, the Part+NLJ plan does not
pay this additional penalty for restarts.

166

scan-?op(N) sort-stop(N)

I
Grace Hash Join

sort(salary) ridscan(b>1000)
/ I

/ \

lbscan(Emp.agw50) idxscan(Dept.dno)
tbscan(Emp,age>50) tbs~(Dept,b~lOOO)

Sort + NW GHJ + Sort-Stop
Figure 11: Traditional Plans for Query 4

scan-stop(N)

sort(T’ary)
rest&t(N)

scan-stop(N)
I

sort(salaty)
I

restart(N)

Index Nested-Loop Join
10 100 1000 10000 100000

/ \

(Classic) Hash Join
1 / \

Figure 10: Resp. Timc!(secs), Query 4 part-&an ridsc&b=4000) tbscan(De/pl,b>lOOO) par&an

4 MB Buffer, Perfect Partitioning ,
part-:ybrid

idxscan(Dept.dno) part-hybrid

tbscan(Ekp,age>50) tbscan(Emp,ageSO)

Part + NW Part + HJ

Figure 12: Range Partitioning Plans for Query 4

5 Other Techniques
We have seen that range partitioning can be very help-
ful to improve the response time of several different types
of STOP AFTER queries. In this section, we will show
how two other techniques can be applied to evaluate STOP
AFTER queries. The first technique is also based on parti-
tioning, but it is based on using ordered indexes (e.g., B+
trees) to partition the data. The second technique is based
on using semi-joins to reduce the size of temporary results.

5.1 Partitioning with Indexes

Let us return to Query 1, which asks for the N Emps with
the highest salary and age > 50, and see what hap-
pens when we have a B+ tree on Emp. salary. The
Traditional Index-Scan plan that executes this query using
the Emp . salary index was shown in Figure 1 and dis-
cussed in Section 2.1; it reads the RIDS of the Emps one
at a time in salary order from the index, then fetches
the age, address, etc. fields and applies the age pred-
icate, until the top N old Emps have been found. In Sec-
tion 2.1, we noted that this plan would be very good if the
Emp . salary index is clustered or N is very small, but
that it would have a high cost if N is large and/or the age
predicate filters out many high paid Emps because, in this
case, the ridscan operator would lead to a great deal of
random I/O and many page faults for rereading pages of
the Emp table if the buffer is too small to hold all of the
relevant pages of the Emp table.

For large N and unclustered indexes, we can do better
by using, of course, partitioning. The idea is to read the
RIDS of the top N’ Emps from the index, sort these N’
RIDS inpage id order, do the ridscan with the predicate,
re-sort into salary order, and cut off the top N tuples or
repeat if less than N of the top IV' Emps have age > 5 0,

Similar RID sorting ideas are known as RID-list process-
ing and have been commonly exploited in text databases
(e.g., [BCC94]) and set query processing (e.g., [Yao79]),
but they can only be applied in the STOP AFTER con-
text if they are combined with partitioning. The beauty of
this Part-Index approach is that the ridscan operator be-
comes quite cheap since it reads the Emp pages sequentially
and reads no Emp page more than once from disk. On the
negative side, this approach involves two sorting steps. If
N and N’ are small, however, these sorts are fairly cheap
because they can be carried out in one pass in memory.

Figure 13 shows the running times of the Traditional
Index-Scan plan and a Part-Index plan for Query 1, varying
N. As baselines, the figure also shows the running times
of the Hybrid plan that does not use the Emp . salary
index (as in Figure 4) and the “ideal” running time for
Query 1 generated by running the Traditional Index-Scan
plan on a special version of our test database in which the
Emp . salary index is clustered. We see that the Part-
Index plan clearly outperforms the Traditional Index-Scan
plan for a large range of N. While the Traditional Index-
Scan plan is only attractive for N 5 100, the Part-Index
plan shows almost “ideal” performance up to N = 10,000.
(After that its sorts become too expensive.) Only for
N = 10 does the Traditional Index-Scan plan slightly out-
perform the Part-Index plan (0.9 sets vs. 1 set).

The right setting of N’, of course, depends upon both N
and the selectivity of the age predicate. In this example,
N’ should be set to 5 * N because every fifth Emp is older
than 50 in our test database and the values of the salary
and age columns are not correlated. It should be noted,
however, that the penalty for restarts in the Part-Index plan
is very low: rather than re-scanning the entire Emp table, a
restart simply involves continuing the Emp . salary index
scan and fetching the next N’ Emp tnples.

167

200 , . , . . , . , .

Trad-Index . ..$$$c--.
pafi-,ndex .-.. 4"

i
!

I :t~::-:i:l
-.- .-.-. I, ._,_._ *-.i.~ _._.-. -a;

1 10 100 1000 10000 ,OOOOO

N

Figure 13: Resp. Time (sets), Query 1
4 MB Buffer, Unclustered Emp . salary Index

5.2 A Semi-Join-Like Technique

The idea of semi-joins is to reduce the cost of I/O intensive
operations, such as sorts, joins, and group-by operations,
by projecting out all but those columns actually needed for
an operation; doing so reduces the size of the temporary re-
sults that need to be read and/or written to disk or shipped
through a network. The disadvantage of semi-joins is that
columns that were projected out must be re-fetched (us-
ing a r idscan operator) after the operation in order to
carry out subsequent operations or because they are part
of the query result. Semi-join techniques have been exten-
sively used in the early distributed database systems (e.g.,
[BGW+81]), but they have not been widely used in cen-
tralized database systems. One reason for this is the po-
tentially prohibitively high and unpredictable costs of re-
fetches, though the cost of the re-fetches can be reduced
with the same RID sorting trick described in the previous
subsection. What makes semi-join-like techniques attrac-
tive for STOP AFTER queries is that the costs of the re-
fetches are limited and can be predicted accurately during
query optimization if the re-fetches are always carried out
at the end of query execution: if a query asks for the top N
tuples, then at most N re-fetches are required at the end.

We studied two different semi-join-like plans for
Query 1. In both plans, the sorting of the Emp tuples can
be carried out in one pass in main memory because only
the RIDS and the salary fields of the Emp tuples are kept.
The difference between the two plans is that the first plan
which we call the Standard 53 Plan does not apply the
RID sorting trick described in the previous subsection in
order to improve the re-fetches, whereas the second plan,
the SJ+Ridsort Plan, does apply this trick. We ran both
plans with varying N, and Figure 14 shows the results of
these experiments. The figure also shows the results of the
Conventional Sort and Hybrid plans of Section 3 as base-
lines. First, we see that the impact of the RID sorting trick
is less pronounced than in the previous experiments with
the Part-Index plan. The reason is that in both semi-join
plans, the Emp table has already been read once, and the
old Emps have already been filtered out, so the ri dscan
gets more hits in the buffer pool and is applied to fewer
tuples. Second, we observe that for small N, the two semi-

./
60 -

,B -.-.-._. m _.__. a____. *-.-.-.-i

40 - Conv.Son +
Part-Hybrid --)-

20 - Standard SJ .--+---
SJ+RlDSORT - +

0 .' . .' ,' .' -
1 10 100 1000 10000 100000

N

Figure 14: Resp. Time (sets), Query1
4 MB Buffer, Semi-join Plans

join plans indeed outperform the Conventional Sort plan,
while for N 2 1000, the performance of the semi-join
plans deteriorates due to their high re-fetching costs. Fi-
nally, we see that the semi-join plans are clearly outper-
formed for all N by the partition-based Hybrid plan; like
the semi-join plans, the Hybrid plan of Section 3 carries
out its sort (salary) in one pass (for N 5 lO,OOO),
and the Hybrid plan has the additional advantage of sorting
slightly more than N rather than all 100,000 Emps with
age > 5 0. We note that it is not too difficult to find other
example queries where a semi-join plan would actually out-
perform a partitioning plan (e.g., for very large and highly
selective joins with small N); sometimes the best plan to
execute a query may be a combination of partitioning and
semi-joins.

6 Conclusions

In this paper, we presented several new strategies for ef-
ficiently processing STOP AFTER queries. These strate-
gies, based largely on the use of range partitioning tech-
niques, were shown to provide significant savings for han-
dling important classes of STOP AFTER queries. We pre-
sented examples including basic “top IV’ queries, percent
queries, subqueries, and joins; we saw benefits from the
use of the new partitioning-based techniques in each case
due to the reduction in wasted sorting and/or joining effort
that they offer. We showed that range partitioning can be
useful for indexed as well as non-indexed plans, and we
also showed that semi-join-like techniques can provide an
additional savings in some cases.

There are several areas that appear fruitful for future
work. One area of interest is STOP AFTER query pro-
cessing for parallel database systems. Our techniques
should be immediately applicable there, and they may of-
fer even greater benefits by reducing the amount of data
communication required to process such queries. Another
avenue for future investigation would be experimentation
with the effectiveness of histogram and/or sampling tech-
niques for determining the partitioning vector entries for
STOP AFTER queries on real data sets.

168

Acknowledgments

We would like to thank Paul Brown of Informix, Jim Gray
of Microsoft, Anil Nori of Oracle (and DEC, in a previous
job), and Donovan Schneider of RedBrick Systems for in-
forming us about the support for top N query processing in
their respective companies’ current database products.

References
[AHU83]

[BCC94]

[BGW+ 811

[CG96]

[CK97 J

[DG92]

[DNSgla]

[DNS9 1 b]

[DNSS92]

[HS92]

[Knu73]

[KooSO]

A. Aho, J. Hopcroft, and J. Ullman. Data Struc-
tures and Algorithms. Addison-Wesley, Reading,
MA, USA, 1983.

E. Brown, J. Callan, and B. Croft. Fast incre-
mental indexing for full-text information retrieval.
In Proc. of the ConJ on Very Large Data Bases
(VLDB), pages 192-202, Santiago, Chile, Septem-
ber 1994.

P. Bernstein, N. Goodman, E. Wong, C. Reeve,
and J. Rothnie. Query processing in a system for
distributed databases (SDD-I). ACM Trans. on
Database Systems, 6(4), December 198 1.

S. Chaudhuri and L. Gravano. Optimizing queries
over mulitmedia repositories. In Proc. ofthe ACM
SIGMOD Conf on Managementof Data, pages 91-
102, Montreal, Canada, June 1996.

M. Carey and D. Kossmann. On saying “enough
already!” in SQL. In Proc. of the ACM SIG-
MOD Conj on Management of Data, pages 219-
230, Tucson, AZ, USA, May 1997.

D. Dewitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Communications of the ACM, 35(6):8S-98, June
1992.

D. Dewitt, J. Naughton, and D. Schneider. An
evaluation of non-equijoin algorithms. In Proc. of
the Conj on Very Large Data Bases (VLDB), pages
443-$52, Barcelona, Spain, September 1991.

D. Dewitt, J. Naughton, and D. Schneider. Paral-
lel sorting on a shared-nothing architecture using
probabilistic splitting. In Proc. of the Intl. IEEE
Conf: on Parallel and Distn’buted Information Sys-
tems, pages 280-29 1, Miami, Fl, USA, December
1991.

D. Dewitt, J. Naughton, D. Schneider, and S. Se-
shadri. Practical skew handling in parallel joins.
In Proc. of the ConJr on Very Large Data Buses
(VLDB), pages 27-40, Vancouver, Canada, August
1992.

P. Haas and A. Swami. Sequential sampling proce-
dures for query size estimation. In Proc. of the ACM
SIGMOD Conf on Management of Data, pages
341-350, June 1992.

D. Knuth. The Art of Computer Programming -
Sorting and Searching, volume 3. Addison-Wesley,
Reading, MA, USA, 1973.

R. Kooi. The optimization of queries in relational
databases. PhD thesis, Case Western Reserve Uni-
versity, September 1980.

[KS951

[LNS90]

[MD881

[PI971

[PIHS96]

[PSC84]

[WKHM98]

[Yao79]

R. Kimball and K. Strehlo. Why decision support
fails and how to fix it. ACM SIGMOD Record,
24(3):92-97, September 1995.
R. Lipton, J. Naughton, and D. Schneider. Prac-
tical selectivity estimation through adaptive sam-
pling. In Proc. of the ACMSIGMOD Conf: on Man-
agement of Data, pages l-l 1, Atlantic City, USA,
April 1990.

M. Muralikrishna and D. Dewitt. Equi-depth his-
tograms for estimating selectivity factors for multi-
dimensional queries. In Proc. of the ACM SIG-
MOD Conf on Management of Data, pages 28-36,
Chicago, IL, USA, May 1988.

V. Poosala and Y. Ioannidis. Selectivity estimation
without the attribute value independence assump-
tion. In Proc. of the Conf on Very Large Data Bases
(VLDB), pages 486-495, Athens, Greece, August
1997.

V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita.
Improved histograms for selectivity estimation of
range predicates. In Proc. of the ACM SIGMOD
Conf: on Management of Data, pages 294-305,
Montreal, Canada, June 1996.

G. Piatetsky-Shapiro and C. Connell. Accurate es-
timation of the number of tuples satisfying a condi-
tion. In Proc. of the ACM SIGMOD Conf on Man-
agement of Data, pages 256-276, Boston, USA,
June 1984.

T. Westmann, D. Kossmann, S. Helmer, and G. Mo-
erkotte. The implementation and performance of
compressed databases. 1998. Submitted for publi-
cation.

S. Yao. Optimization of query evaluation al-
gorithms. ACM Trans. on Database Systems,
4(2):133-l%, 1979.

169

