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Abstract 

In a recentpaper, we proposed adding a STOP AFTER clause to 
SQL to permit the cardinalig of a query result to be explicitly lim- 
ited by query writers and query tools. We demonstrated the use- 
fulness of having this clause, showed how to extend a traditional 
cost-based query optimizer to accommodate it, and demonstrated 
via DBd-basedsimulations that largeperformancegains arepos- 
sible when STOP AFTER queries are explicitly supported by the 
database engine. In this paper. we present several new strategies 
for eficiently processing STOP AFTER queries. These strate- 
gies, based largely on the use of range partitioning techniques, 
o$er signtjicant additional savings for handling STOP AFTER 
queries that yield sizeable result sets. We describe classes of 
queries where such savings would indeed arise and present ex- 
perimental measurements that show the benefits and tradeo$s as- 
sociated with the new processing strategies. 

1 Introduction 

In decision support applications, it is not uncommon to 
wish to pose a query and then to examine and process 
at most some number (N) of the result tuples. In most 
database systems, until recently, applications could only do 
this by using a cursor, i.e., by submitting the entire query 
and fetching only the first N results. Obviously, this can be 
very inefficient, leading to a significant amount of wasted 
query processing. In a recent paper [CK97], we proposed 
adding a STOP AFTER clause to SQL to enable query 
writers to limit the size of a query’s result set to a specified 
number of tuples; related SQL extensions have been pro- 
posed in [KS95, CG96]. The STOP AFTER clause essen- 
tially provides a declarative way for a user to say “enough 
already!” in the context of an SQL query, enabling the sys- 
tem to avoid computing unwanted results in many cases. 
In our previous work we showed the usefulness of the new 
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clause, discussed how a cost-based query optimizer can be 
extended to exploit it, and used DBZbased simulations to 
demonstrate the large performance gains that are possible 
when STOP AFTER query support is explicitly added to 
the database engine. 

In this paper, we build upon our previous work by 
presenting several new strategies for efficiently process- 
ing STOP AFTER queries. Although we discussed STOP 
AFTER query processing in general in [CK97], the ma- 
jor focus of our initial attention was on optimizing queries 
where N is relatively small (e.g., “top ten” queries). An 
example of a typical query that our previously proposed 
processing schemes will handle well is: 

SELECT e.name, e.salary 
FROM Ernp e 
WHERE e.age > 50 
ORDER BY e.salary DESC 
STOP AFTER 10; 

This query asks for the names and salaries of the ten most 
highly-paid older employees in the company. Our previous 
schemes will also work well for primary-key/foreign-key 
join queries such as: 

SELECT e.name, e.salary, d.name 
FROM Emp e, Dept d 
WHERE e.age > 50 
AND e.works-in = d.dno 
ORDER BY e.salary DESC 
STOP AFTER 10; 

This query asks for the employees’ department names as 
well as their names and salaries. For queries such as 
these, it is possible for the query processor to manage 
its sorted, cardinal@-reduced intermediate results using a 
main memory heap structure, thereby avoiding large vol- 
umes of wasted sorting I/O as compared to processing the 
query without a STOP AFTER clause and then discarding 
the unwanted employee information. 

In cases where the stopping cardinality N is large, our 
original approaches would each end up sorting and then 
discarding a significant amount of data-albeit early (i.e., 
before the join in the example above), which still leads 
to a significant savings compared to the naive approach. 
The strategies presented in this paper seek to avoid this 
wasted effort as well. Our new strategies are based upon 
borrowing ideas from existing query processing techniques 
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such as range partitioning (commonly used in parallel sort- 
ing and parallel join computations), RID-list processing 
(commonly used in text processing and set query process- 
ing), and semi-joins (commonly used in distributed envi- 
ronments to reduce join processing costs). As we will 
show, adapting these techniques for use in STOP AFTER 
query processing can provide significant additional savings 
for certain important classes of queries. We have imple- 
mented the techniques in the context of an experimental 
query processing system at the University of Passau, and 
we will demonstrate the efficacy of our techniques by pre- 
senting measurements of query plans running there. 

Before proceeding, it is worth noting that proprietary 
SQL extensions closely related to our proposed STOP 
AFTER clause can be found in current products from 
a number of major database system vendors. In addi- 
tion, most of them include some degree of optimizer sup- 
port for getting the first query results back quickly (e.g., 
heuristically favoring pipelined query plans over otherwise 
cheaper, but blocking, non-pipelined plans). For exam- 
ple, Informix includes a FIRST-ROWS optimizer hint and 
a FIRST n clause for truncating an SQL query’s result 
set. Similarly, Microsoft SQL Server provides an OPTION 
FAST n clause and a session-level SET ROWCOUNT n 
statement for these purposes. IBM’s DB2 UDB system al- 
lows users to include OPTIMIZE FOR n ROWS and/or 
FETCH FIRST n ROWS ONLY clauses when entering 
an SQL query. Oracle Rdb (originally a DEC product) 
added a LIMIT TO n ROWS clause to SQL, while Or- 
acle Server makes a virtual ROWNUM attribute part of its 
query results to support cardinality limits; including the 
predicate ROWNUM <= n in the WHERE clause of an 
SQL query tells Oracle Server to stop returning result rows 
after n rows have been produced. RedBrick supports a 
SET ROWCOUNT n command as well as an SQL exten- 
sion called RANK ( co1 ) which both imposes a result or- 
der and allows processing to be stopped early; adding the 
clause WHEN RANK ( co1 ) c n to a query tells RedBrick 
to return the result rows that rank among the first n column 
values with respect to the indicated column. (In the event 
of a tie, RedBrick permits multiple result rows to have the 
same rank value.) Finally, several of these systems appar- 
ently pass stopping information to operations such as Sort 
so that they can optimize for the desired number of results 
when merging sorted runs. Unfortunately, to the best of 
our knowledge, there is no published information available 
that describes how any of these systems’ SQL extensions 
are implemented. 

The remainder of this paper is organized as follows: We 
present background material in Section 2, where we briefly 
summarize the query operators and kinds of query plans 
introduced in our previous work, review the basic idea of 
range partitioning as a query processing step, and provide 
an overview of the experimental environment used to pro- 
duce the performance results presented in later sections 
of the paper. In Section 3 we introduce our new range- 
based techniques for processing STOP AFTER queries and 

present experimental results that demonstrate their bene- 
fits and highlight their associated performance issues and 
tradeoffs. We focus on basic top N selection queries in 
Section 3, while in Section 4 we explain how range tech- 
niques can be utilized for processing queries such as top N 
percentage selections, selections involving STOP AFTER 
subqueries, and joins. In Section 5 we show how RID-list 
and semi-join techniques can be applied to STOP AFTER 
queries. Finally, we present our conclusions and our plans 
for future work in Section 6. 

2 Background 
The general structure proposed for STOP AFTER queries 
(and subqueries) in [CK97] is as follows: 

SELECT 
GROUP Si':.. 

FROM WHERE . . . 
HAviIz . . . 

ORDER BY (sort specification list) 
STOP AFTER (value expression) 

The STOP AFTER clause’s <value expression> 
evaluates to a scalar integer value to indicate the number 
of result tuples desired; it may be a constant, an arithmetic 
expression, or even an uncorrelated scalar subquery. The 
semantics of the STOP AFTER clause are straightforward 
to explain: Let N be the integer stopping cardinality that 
<value expression> evaluates to. After computing 
the rest of the query, the system is to return only the first 
N tuples of the result (in the specified ORDER BY order, 
if any) to the requesting user or application program. Note 
that this produces the same results as the cursor-based ap- 
proach used by application programs today, but the pres- 
ence of the STOP AFTER clause provides the query op- 
timizer and runtime query processing system with cardi- 
nality information that can be exploited to reduce (or even 
eliminate, in some cases) wasted work. 

2.1 STOP AFTER Query Processing 

To process STOP AFTER queries, we proposed extending 
the database system’s collection of algebraic query opera- 
tors with a new logical query operator, the Stop operator. 
This operator produces the top or bottom N tuples of its in- 
put stream in a specified order and discards the remainder 
of the stream. Like other logical query operators (such as 
Join), Stop has several alternative physical operators that 
can implement it in the context of query plans. 

We defined two physical Stop operators in [CK97]: 
Scan-Stop, for use when the Stop operator’s stream of input 
tuples is already ordered appropriately, and Sort-Stop, for 
use when the Stop operator’s input stream is not yet rank- 
ordered. Scan-Stop is extremely simple; it is a pipelined 
operator that simply requests and then passes each of the 
lirst N tuples of its input stream along to its consumer (i.e., 
to the operator above it in the query plan). In contrast, the 
Sort-Stop operator handles the case where the input stream 
is not already sorted; it must therefore consume its whole 
input stream in order to produce the top (or bottom) N out- 
put tuples. When N is relatively small, Sort-Stop can op- 
erate in main memory using a priority heap [Knu73]. The 
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sort-stop(N) 
scan-stop(N) 

scan-stop(N) 

sort(shy) ridscan(age>50) 
tbscan(Emp,age>50) 

tbscan(Emp,age>50) idxscan(Emp.salary) 

Classic Sort-Stop Conventional Sort Trad. Index-Scan 

Figure 1: Traditional Plans for Query 1 

first N tuples of its input are inserted into the heap, and 
each remaining tuple is then incrementally tested against 
the heap’s current membership bound to determine whether 
or not it warrants insertion into the heap of the top (or bot- 
tom) N tuples. For larger values of N, external sorting is 
required to compute the desired Sort-Stop results; we sim- 
ply used an ordinary external Sort operator followed by a 
Scan-Stop operator in such cases in [CK97]. 

For illustration purposes, consider a slightly more gen- 
eral version of the first example query from the Introduc- 
tion (we will call this Query 1 in the following): 

Query]: SELECT * 
FROM EmP 
WHERE age > 50 
ORDER BY salary DESC 
STOP AFTER N; 

Figure 1 depicts three of the possible execution plans that 
can be constructed for this query by combining one of our 
physical Stop operators with other, pre-existing query oper- 
ators. The first plan, the CZassic Sort-Stop plan, uses a table 
scan (tbs can) operator to find employees in the appropri- 
ate age range followed by a heap-based sort - stop (N) 
operator to limit the results to the N highest paid older em- 
ployees. This plan is viable as long as N is small enough 
for the heap to indeed be a main memory structure. The 
second plan, Conventional Sort, instead uses an external 
sort on salary followedby a scan-stop(N) to ob- 
tain the desired result. This would be the preferred plan for 
large N in the absence of a salary index. Of course, 
plans similar to these two, but with an Emp . age index 
scan used to produce the inputs to the Stop-related oper- 
ators, are possible as well. The third plan in Figure 1, the 
Traditional Index-Scan plan, would also become viable in 
the presence of an index on Emp . salary. This plan per- 
forms an index scan (in descending order) on the salary 
index, uses the resulting record ids (RIDS) to fetch high- 
salaried employees and applies the age predicate to them, 
and then uses a scan - stop operator to select the top N 
results since the index scan produces its output in the de- 
sired s a 1 a ry order. This third plan does very well if the 
salary index is a clustered index or N is small. If N is 
large and the index is unclustered, however, it would do 
too many random I/OS to be cost-effective, especially if the 
age predicate is highly selective (in which case many of 
the high-salaried employees found using the index would 
subsequently be eliminated). 

We introduced two policies to govern the placement of 
Stop operators in query plans in [CK97]. One was a Con- 
servative policy, which inserts Stop operators as early as 
possible in a query plan subject to the constraint that no 

tuple that might end up participating in the final N-tuple 
query result can be discarded by a Stop operation. We also 
proposed an Aggressive policy that seeks to introduce Stop 
operators in a query plan even earlier, placing a Stop op- 
erator wherever it can first provide a beneficial cardinality 
reduction. The Aggressive policy uses result size estima- 
tion to choose the stopping cardinality for the Stop oper- 
ator; at runtime, if the stopping cardinality estimate turns 
out to have been too low, the query is restarted in order to 
get the missing tuples. This is accomplished by placing a 
restart operator in the query plan; this operator’s job is 
to ensure that, above its point in the plan, all N tuples will 
be generated. Thus, if its input stream runs out before all 
N tuples are received, it will “restart” the query subplan 
beneath it to obtain the missing results. 

2.2 Range Partitioning 

Range partitioning is a well-known technique that has been 
applied with much success to numerous problems in the 
parallel database algorithm area [DG92]. One success- 
ful example is parallel sorting [DNS9lb], while another is 
load-balanced parallel join computation [DNSS92]; yet an- 
other example is the computation of so-called band joins 
[DNS9la]. The basic idea of range partitioning is ex- 
tremely simple---the data is divided into separately pro- 
cessable buckets by placing tuples with attribute values in 
one range into bucket #l, tuples with attribute values in 
the next range into bucket #2, and so on. In the case of 
parallel sorting, each node in a k-node database machine 
partitions its data into k buckets in parallel, based on the 
sorting attribute(s), streaming each bucket’s contents to that 
bucket’s designated receiver node while the data is being 
partitioned. At the end of this process, the individual buck- 
ets can be sorted in parallel with no further inter-node in- 
teraction. Figure 2 illustrates this process. Successful par- 
titioning in this manner produces virtually linear sorting 
speedup, and sampling (or histogram) techniques can aid 
in the determination of a good set of partition boundary 
values [DNSSl b] at relatively low cost. 

In Section 3, we will propose and analyze the use of 
several possible partitioning-based approaches for improv- 
ing the efficiency of STOP AFTER query processing. We 
will cover the details later, but the basic idea is simple- 
the relevant data can be range-partitioned on the query’s 
ORDER BY attribute into a number of buckets. The buck- 
ets can then be processed one at a time until N results have 
been output; buckets that are not accessed in this process 
need never be sorted at all. This provides a way to imple- 
ment a Stop(N) operation that scales beyond main memory 
sizes without requiring full sorting of the input stream. In 
addition, we will see that in certain contexts, additional sig- 
nificant savings are possible, e.g., cases involving uses of a 
STOP AFTER clause in a subquery. 

2.3 Experimental Environment 

As we work our way through the presentation of the 
proposed new approaches for executing STOP AFTER 
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Figure 2: Sorting by Range Partitioning 

queries, we will be presenting results from performance 
experiments that demonstrate the tradeoffs related to the 
approaches and that quantitatively explore the extent to 
which they are able to reduce the costs of STOP AFTER 
queries. Like Query 1 above, our test queries will be 
queries over a simple employee database with the following 
self-explanatory schema: 

Emp(a, work-sin, age, salary, address) 
Dept(m, budget, description) 

Our instance of this employee database is fairly small, with 
a 50 h4B Emp table and a 10 MB Dept table. We kept 
the database small in order to achieve acceptable running 
times and because we had somewhat limited disk space 
available for performing our experiments. The Emp ta- 
ble has 500,000 tuples which are generated as follows: 
eno is set by counting the tuples from 1 to 500,000, 
while works-in, age, and salaryare set randomly 
using a uniform distribution on their particular domains; 
address simply pads the tuples with “garbage” charac- 
ters to ensure that each Emp tuple is 100 bytes long. The 
domain of works-in is, of course, the same as that of 
Dept. dno (described below), the domain of age is inte- 
gers in the range from 10 to 60 so that about 100,000 Emps 
(20%) are older than 50, and the domain of salary is in- 
tegers in the range of 1 to 500,000. Our test database has 
no correlations; as an example relevant to our experiments, 
a young Emp is just as likely to have a high salary as an 
old Emp is. 

The Dep t table has 100,000 tuples which are generated 
as follows: dno is set by counting the Dept tuples from 
1 to 100,000; budget is set to 10,000 for all Depts, and 
description pads the Dept tuples out to 100 bytes. 

In terms of indexes, our test database has clustered Bt 
tree indexes on the primary key attributes of the tables 
(i.e., eno and dno) because clustered indexes on primary 
keys are relatively common. To study plans such as the 
Traditional Index-Scan plan of Figure 1, we also have an 
Emp . s a 1 ary B+ tree; naturally, this index is unclustered. 

Our experiments have been performed on an experimen- 
tal database system called AODB [WKHM98]. AODB 
is essentially a textbook relational database system that 
uses standard implementations for sorting, various kinds of 
joins, group-by operations, and so on. We extended AODB 

with implementations for the scan - stop, sort - stop 
(using 2-3 trees to organize the heap [AHU83]), and 
res tart operators described above; we also added sup- 
port for the forms of range partitioning described in the 
next section. We ran AODB on a Sun workstation 10 with 
a 33 MHz SPARC processor, 64 MB of main memory, and 
a 4 GB disk drive that is used to store code, the database, 
and temporary results of queries. The operating system is 
Solaris 2.6, and we used Solaris’ direct I/O feature; this dis- 
ables operating system caching in a manner similar to raw 
disk devices. Since our database is small, we limited the 
size of the database buffer pool proportionally, to 4 MB, in 
those cases where we do not explicitly say otherwise. Of 
these 4 MB, we always gave at least 100 KB to each opera- 
tor that reads or writes data to disk in order to enable large 
block I/O operations and avoid excessive disk seeks. 

3 Range-Based Braking Algorithms 

We now turn our attention to the development of new 
techniques for processing STOP AFTER queries with less 
effort-i.e., techniques for reducing the “stopping dis- 
tance” of an SQL query engine. The primary tool that 
we will be using is range partitioning. In this section, 
we present several algorithms that use this tool to help the 
engine to limit wasted work, thereby finishing sooner for 
STOP AFTER queries; we refer to these as “range-based 
braking” algorithms. We start by describing query plan 
components that can realize the algorithms and illustrating 
them using a typical example query. We then study their 
performance, and we close this section by explaining how 
to choose an appropriate number of partitions and an effec- 
tive set of partition sizes. 

3.1 Range-Based Braking 

As mentioned earlier, the problem of extracting the top (or 
bottom) N elements from a large data set, where iV is large 
as well, can be dealt with by tirst range-partitioning the 
data into a number of buckets on the query’s ranking at- 
tribute(s) and then processing the resulting buckets one at 
a time until all N elements have been output. As an ex- 
ample, consider again Query 1 of Section 2.1, which se- 
lects the names and salaries of the iV highest paid employ- 
ees over 50 years old. Let us suppose we have a corpora- 
tion with 100,000 older employees (as in our test database) 
and that N is 10,000. We could, for instance, partition the 
company’s old employees into three buckets-those with 
salaries over $250,000 per year, those who earn between 
$50,000 to $250,000 annually, and those who earn less than 
$50,000. Suppose that we do this and find that the first 
(highest salary) partition ends up with 1,000 tuples, the sec- 
ond with 12,000 tuples, and the third with 87,000 tuples. If 
this is the case, we need not sort the tuples in the last parti- 
tion, as the 10,000 employees in the answer set clearly lie 
in the first two partitions. 

While the basic idea of range-based braking is simple, 
there are several possible variations on this theme with 
costs and benefits that depend on the nature of the query 
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being processed and the data being accessed. One impor- 
tant option has to do with how the partitions are handled: 
they can either be materialized (i.e., stored as temporary 
tables), or they can be recomputed on demand from the in- 
put data. In addition, these two options can be combined 
to produce a hybrid approach that materializes some of the 
partitions (those that are likely to be accessed, e.g., the first 
two partitions above) and recomputes the rest on demand 
(the ones that are unlikely to be accessed). 

To provide for these different options, we propose 
adding several new query operators to the execution en- 
gine. The first is a part -mat operator, which takes a 
partitioning vector as a parameter and uses it to scan its 
input data and write it to disk in a specified number of par- 
titions based on the splitting values given in the partition- 
ing vector. The second is a part - scan operator that is 
used to scan the resulting partitions one-by-one. The third 
new operator is a part-reread operator, which takes a 
set of predicates that describe the membership criteria for 
every partition(e.g., {salary > 250,000, 50,000 
< salary 5 250,000,salary < 50,000)) and 
materializes a partition’s tuples by read&g (or re-reading) 
its input stream from the beginning. The final new query 
operator is a part - hybrid operator, which materializes 
a specified number of its highest (or lowest) ranked parti- 
tions and computes the contents of the other partitions only 
on demand. We will turther illustrate how each of these op- 
erators works, and discuss their performance tradeoffs, by 
using the example plans presented in the next subsection. 

3.2 Range-Based “Top N” Query Plans 

To demonstrate how the different variations of range-based 
braking actually work, let us turn once again to Query 1, 
our favorite STOP AFTER query example. Figure 3 shows 
three possible partitioning plans for processing Query 1 in 
the absence of any useful indexes. (We will discuss STOP 
AFTER query processing with indexes in Section 5.1.) The 
first plan, labeled Materialize, takes the approach of ma- 
terializing all of the employee partitions and then sorting 
(only) those needed to yield N results. The execution of 
this plan is demand-driven and best explained by looking 
at what happens as result tuples are requested from the 
scan - s top (N) operator at the top of the plan. When the 
first result tuple is requested, the scan - stop (N) opera- 
tor attempts to obtain and produce its first result, so it asks 
the re s tart ( N ) operator for a tuple, which in turn asks 
the sort operator underneath it for a tuple. The sort op- 
erator responds by consuming and sorting all of the tuples it 
can get before getting an “end-of-input” indication from the 
part - scan operator beneath it. The part - scan oper- 
ator obtains tuples by scanning the first partition produced 
by its child, the part - mat operator, which materializes a 
full set of partitions with all of the old employees by par- 
titioning the result of its input (coming from the employee 
table scan) before allowing the part - scan to proceed. 
When the part - scan finishes scanning the first partition, 
it returns an “end-of-input” signal to the sort, which sorts 

scan-stop(N) scan-stop(N) 

rest$(N) 
scan-stop(N) 

rest&(N) 
restart(N) 

sort(salary) , 
I 

SON=w 
sort(salary) 

Part;=J part-SWl 

par&mat 
part-reread I 

part-hybrid 
I tbscan(Emp,age>50) / 

tbscan(Emp,age>50) tbsoan(Emp,age>50) 

Materialize Reread Hybrid 

Figure 3 : Range Partitioning Plans for Query 1 

the partition and then incrementally passes the results for 
the first partition to the scan - stop (NJ operator through 
the restart (NJ operator. When the restart (N) op- 
erator receives “end-of-input,” it sends a restart signal back 
down the tuple pipeline; when this signal is received by 
the part - scan operator, it responds by moving on to the 
next partition, and so on. The result is that the partitions 
created by the part -mat operator are sorted, one by one, 
until the scan - stop (N) at the top has produced N re- 
sults. Partitions not needed to achieve that goal remain un- 
sorted, thereby saving on sorting cost as compared to the 
Conventional Sort plan of Figure 1. 

The second partitioning plan shown in Figure 3, the 
one labeled Reread, does not materialize its partitions as 
temporary files. Instead, it computes and sorts the parti- 
tions on demand by feeding a sort operator one parti- 
tion at a time from a part - reread operator. Again, the 
plan is controlled at the top by a scan - stop (NJ and a 
restart (N) operator. In this case, each time a parti- 
tion is computed and sorted, the employee table scan will 
be repeated; this happens because the part - reread op- 
erator responds to a restart signal by re-initializing its in- 
put operator (i.e., the table scan in the example) or its in- 
put operator tree (for more complex query plans), which 
then starts over from the beginning. The execution of this 
query plan is otherwise similar to that described above, so 
hopefully its control and data flow details are now clear. 
The advantage of the Reread plan for our favorite query is 
that it saves the cost of writing and re-reading the materi- 
alized partitions; note that this can include partitions, like 
the large third partition in our earlier example, that are not 
needed at all to obtain an N-tuple result set. On the other 
hand, it has to re-scan the employee table for each partition 
that it does use, so there is a read cost associated with the 
write/read savings that this approach involves. The final 
partitioning plan which is shown in Figure 3, labeled Hy- 
brid, attempts to combine the advantages of the other two 
plans while avoiding their disadvantages. In particular, it 
is structured in such a way that it materializes its first few 
partitions but recomputes the remaining ones. 

3.3 “Top N” Select Queries 

At this point, we have a collection of five query plans 
that all could be used to process our favorite query in 
the absence of indexes: the Classic Sort-Stop and Con- 
ventional Sort approaches of [CK97], shown in Figure 1, 
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and the partition-based Materialize, Reread, and Hybrid ap- 
proaches, which we just introduced, and which are shown 
in Figure 3. To investigate the quantitative tradeoffs be- 
tween the five approaches, we constructed each of the query 
plans and conducted a series of experiments using our 
test employee database and the AODB system, which are 
both described in Section 2.3. Figure 4 shows the overall 
Query 1 response time results that we obtained by experi- 
menting with stopping cardinality values ranging from 1 to 
100,000 (i.e., from one up to all of the “old” empioyees). 

terializes any excess data in this case, and no excess scans 
occur, either. These two partitioningplans even outperform 
the Classic Sort-Stop plan for small N; they use quicksort 
to sort their first (and only) partition, which makes them 
slightly less costly here than Classic Sort-Stop, which uses 
its heap to order the results. Finally, as N increases, the dif- 
ferences between the different approaches diminishes be- 
cause all of them end up sorting the same amount of data 
when N reaches 100,000. 

The Conventional Sort plan has the worst performance 
throughout most of Figure 4 because it sorts all of the data 
before it is able to identify the top N results. The per- 
formance figures for this plan thus always include the cost 
of a two-phase sort of 10 MB, which takes approximately 
two minutes in our test environment. The cost increase for 
larger values of N are due to the N-dependence of the final 
merge phase of the sort; for N = 1, only the first page 
of each run is read, while for N = 100,000 all pages 
of all runs are read and merged. The Classic Sort-Stop 
plan provides much better performance than the Conven- 
tional Sort plan as long as it is applicable; its curve stops 
at N = 10,000 because its sorted heap structure no longer 
fits in the buffer pool beyond that point. The relative per- 
formance seen for these approaches is essentially just as 
predicted in [CK97]. 

3.4 Partitioning and Safety Padding 

The preceding experiment provides quite a bit of insight 
into the relative performance of our old and new Sort-Stop 
processing schemes for a basic top N query; however, it 
assumed perfect partitioning. Before we accept its results, 
we need to explore the sensitivity of the partitioned plans 
to the number and sizes of partitions used. We need to do 
so for two reasons. First, we need to understand how to 
choose the partitioning parameters for each type of plan. 
Second, we need to fmd out how costly partitioning errors 
are so we know how to pad the partition sizes for safety; in 
practice these values will be selected based on a combina- 
tion of database statistics and optimizer estimates, and they 
will therefore be imperfectly chosen. 

We now turn to the three partition-based approaches in 
Figure 4. In this experiment, we assume that the opti- 
mizer’s selectivity estimator has access to accurate distri- 
bution data; this means that we assume that partitions are 
“ideally” sized (a notion that we will examine more closely 
in the next subsection). As a result, all partition-based plans 
end up with just over N tuples in their first partition. Look- 
ing at the performance results for Query 1, we see that the 
Materialize plan ends up being the worst performer among 
the three partitioning plans because it always materializes 
10 MB of temporary partition data, much of which is sub- 
sequently not needed. Despite this cost, though, it outper- 
forms the Conventional Sort plan for all values of N except 
N = 100,000 (where their performance becomes essen- 
tially the same). The other two partitioning approaches end 
up providing the best overall performance for this query; 
both sort only the required amount of data here, neither ma- 

Figure 5 shows the results of a series of experiments that 
differ in two ways from the ones we just looked at. Here, 
we have fixed N at 20,000 and decreased the buffer pool 
size by a factor of about seven to 600KB (i.e., 150 pages 
of 4 KB). We use an even smaller buffer pool here so as 
to stress the need for partitioning; this is similar to scaling 
up the size of the employee table, but keeps the cost of the 
experiments within reason. The x-axis in Figure 5 is the 
number of partitions utilized, and the y-axis is the overall 
query response time (as before). In this graph, the number 
of partitions is varied with a “perfect cut”, meaning for P 
partitions and a query stopping cardinality setting of N, we 
have P - 1 “winner” partitions with N/( P - 1) tuples in 
each one plus one “loser” partition with the leftover tuples 
in it. For comparison and baseline-setting purposes, in ad- 
dition to showing the performance of the three partition- 
based plans, the graph also shows the timing results for 
the Conventional Sort plan (which do not vary since N is 
fixed); the Classic Sort-Stop is not applicable here since its 

Figure 6: Queryc~~~$&t-point 
600 KB Buffer, N = 20,000, Perf. Part. 
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heap will not fit in the available buffer memory. 
The results shown in Figure 5 provide clear insights into 

how each of the partition-based plans should be dealt with 
with respect to choosing the number of partitions. The 
Reread approach, as one would obviously expect, is very 
sensitive to the number of partitions used; to avoid costly 
re-reads, two partitions (one winner, one loser) is the opti- 
mal choice. The Materialize approach performs best when 
the winner tuples are partitioned into memory-sized pieces 
so that each partition can be sorted in memory in a single 
pass; this is the case in the figure with five (or more) par- 
titions. The Hybrid approach has a similar optimal point, 
for the same reason; it outperforms Materialize by about 20 
seconds’ worth of response time since it does not material- 
ize the 80,000 loser tuples. 

Figure 6 shows the results of a series of experiments that 
explores the question of what happens to the different par- 
titioning plans when the winner/loser cut-point (which is 
the x-axis in the figure) has been incorrectly estimated; let 
us call this cut-point C from now on. The goal of this ex- 
periment is to obtain insights that we can use to guide the 
sizing of partitions (e.g., so we know which direction it is 
better to err in). As before, the query used for the exper- 
iments here is Query 1, the buffer pool size is 150 pages, 
and iV = 20,000. Learning from the results of Figure 5, 
Reread has one winner and one loser partition in this ex- 
periment, whereas Materialize and Hybrid further partition 
the winner tuples into memory-sized pieces. 

When C is set too low, Figure 6 shows that all of the 
algorithms get into fairly big trouble. This is because some 
of the winner tuples, which belong in the query result, end 
up being placed into the large loser partition. In this case, 
Reread and Hybrid both have to re-scan the entire 50 MB 
employee table to get at these tuples, while Materialize 
must sort even the large loser partition. Under these cir- 
cumstances, the Conventional Sort plan is able to beat all 
three of the partitioning plans. Materialize performs the 
worst here because it does a great deal of expensive read- 
ing and writing, and this ends up actually being more costly 
than a second sequential scan of the employee table. 

When C is set too high, Figure 6 shows that the parti- 
tioning algorithms still manage to do quite well for Query 
1. Materialize has roughly constant cost in this region, as 
it always materializes all of the “old” employees (indepen- 
dent of C). Hybrid grows slowly more expensive as C in- 
creases because it materializes C but not all “old” tuples. 
Reread grows costly much faster with an increasing cut- 
point over-estimate. To see why, we need to look at the 
amount of sorting carried out in the three plans: Reread, 
which has only one winner partition (with C tuples), must 
sort this whole winner partition in order to find the top IV 
tuples. On the other hand, Materialize and Hybrid partition 
their C winner tuples into several small winner partitions 
so that they need not sort all of these winner partitions in 
cases in which C is set too high. In any case, the bottom 
line of this experiment is that all of the partition-based algo- 
rithms suffer quite strongly if the number of tuples placed 

into winner partitions ends up being too small, and suffer 
much less if too many tuples are classified as likely win- 
ners. Thus, it is better to err on the high side, placing too 
few tuples into the loser partition (i.e., too many into win- 
ner partitions), to avoid potential performance instabilities. 

3.5 Choosing a Partitioning Vector 

Before moving on to other queries, it is worth discussing 
the issue of how the partitioning vector-i.e., the splitting 
values that control which attribute value ranges are associ- 
ated with which partitions-can be chosen for the partition- 
based plans. The preceding subsection showed us how to 
choose the partition cardinalities, so the remaining open 
problem is one of successfully mapping these desired car- 
dinalities back into attribute ranges for the ORDER BY at- 
tribute(s) of a STOP AFTER query. This is essentially the 
dual of the selectivity estimation problem, which takes a 
query’s attribute value ranges and attempts to estimate car- 
dinalities from those ranges; moreover, it is amenable to 
the same techniques. 

There are essentially two potential answers here. The 
first is histograms, which have already been thoroughly 
studied (e.g., [PIHS96]) and are available in most database 
systems today. In particular, equi-depth histograms that 
provide good accuracy even in the presence of skewed data 
are well understood [Koo80, PSC84, MD88], and in the 
case of correlated attributes, multi-dimensional histograms 
will help [PI97]. Thus, if histograms are available, they can 
be used to determine partition vectors at query compilation 
time. If no histograms are available, or it is known that the 
available histograms provide insufficient accuracy (e.g., for 
complex queries with many ‘unpredictable” joins or group- 
ing operations), then sampling at run time can be used. 
Sampling has also been thoroughly studied in the database 
context (e.g., [LNS90, HS92]), and it has also been shown 
to be quite cheap [DNS9lb]. To conclude, at this point, we 
rely on existing technology, and the new partition-based ap- 
proaches we propose in this paper can directly take advan- 
tage of any improvements made in this field in the future. 

4 Other Examples 

Thus far we have seen experimental results (involving our 
favorite query) that demonstrated the basic tradeoffs re- 
lated to the alternative range partitioning techniques and 
that showed some of the advantages of using range par- 
titioning for STOP AFTER queries. In this section, we 
present three additional examples with experimental re- 
sults that highlight several other advantages of range par- 
titioning. These example queries include a percent query, a 
nested query, and a join query. Since the tradeoffs between 
the three alternative partitioning approaches are very simi- 
lar for all STOP AFTER queries, we will focus on Hybrid 
plans, which use our preferred partitioning method, in this 
section. 
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4.1 Percent Queries 

Our fist additional example (Query 2) is a so-called per- 
cent query. The query asks for the 2% highest paid Emps 
that are more than 50 years old. 

Query 2: $3$CT 

WHERE age > 50 
ORDER BY salary DESC 
STOP AFTER x%; 

Percent queries are interesting because an additional 
counting step is required in order to fmd out how many 
tuples are to be returned. That is, we need to count the 
number of Emps that are over 50 before we can actually 
start STOPping (so to speak). Looking back at the plans 
studied in the previous section, we see that we can directly 
apply the Conventional Sort plan (Figure 1) to this per- 
cent query: the counting step can be carried out as part 
of the tb scan (Emp , age> 5 0 ) operator, and the result 
of this counting step times c% can be propagated to the 
scan- stop (N) operator before the scan- stop (N) 
operator starts to produce tuples; this is possible because 
the sort in between is a pipeline-breaking operator. Like- 
wise, all three partitioning plans of Figure 3 can be applied 
to our percent query: again, counting can be carried out as 
part of the tbs can (Emp , age> 5 0 ) operators and prop- 
agated to the scan - stop (N) operators because there ex- 
ists a pipeline-breaking operator in between (sort and/or 
part-mat or part-hybrid). The Classic Sort-Stop 
plan of Figure 1, however, cannot be directly applied in this 
case. To use a sort - stop operator, we can either read 
the whole Emp table twice (once to carry out the counting 
step and once to find the top z%), or we can read the whole 
Emp table thereby carrying out the counting step and ma- 
terializing the Emps with age > 5 0 as a temporary table 
and then read the temporary table in order to find the top 
2%. Which one of these two plans is better depends on the 
selectivity of the age predicate; in our particular example, 
the second plan is better because only one out of five Emps 
is older than 50 in our test database. In any case, both of 
these adjusted Classic-Sort-Stop plans are more expensive 
than the (inapplicable) Classic Sort-Stop plan of Figure 1. 

Figure 7 shows the running times of the Conventional 
Sort, the adjusted Classic Sort-Stop (with a materialization 

step), and the partition-based Hybrid plans for this percent 
query. As described above, the Conventional Sort and Hy- 
brid plans have almost the same running times here as for 
Query 1 in Section 3, whereas the Classic Sort-Stop plan 
has a higher cost due to writing and reading temporary re- 
sults from disk. As a result, the Hybrid plan is the clear 
winner for all z 5 50% for this percent query. Note that 
the Classic Sort-Stop plan cannot be applied for x > 50% 
because its memory requirements then exceed 4 MB. 

To find the proper partitioning vector for the Hybrid 
plan for this query, the observations of Section 3.4 es- 
sentially still apply. That is, we should partition the data 
into memory-sized portions and “play it safe” by mate- 
rializing too many rather than too few Emp tuples in the 
part-hybridoperator. 

4.2 STOP in a Subquery 

In the second example of this section (Query 3), we con- 
sider a query that has a STOP in a subquery. Our example 
query asks for the average salary of the N best paid Emps 
withage > 50. 

Query3: ;;X2;CT g;iJ6;alary) 
salary 

FROM Ew WHERE age > 50 
ORDER BY salary DESC 
STOP AFTER N) e; 

Both the Conventional Sort and the Classic Sort-Stop plan 
of Figure 1 can be applied to this query; they simply need 
an aggregate operator at the top in order to compute 
the average. These traditional plans, however, perform a 
great deal of wasted work since they produce their output in 
salary order and this ordering is not needed to compute 
the average. With a partition-based plan, most of this sort- 
ing can be avoided by partitioning the Emps into three par- 
titions: one partition containing the top L Emps (L slightly 
smaller than N), one partition containing the next M Emps 
such that it4 is small and L + M 1 N, and one partition 
with the all of the other loser Emps. In this case, only the 
M Emps in the second partition need to be sorted in order 
to find the N - L highest paid Emps in that partition. 

Figure 8 shows the running times of the three alternative 
plans for this query. We can see that the Conventional Sort 
plan again has the highest cost because it sorts all 100,000 
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Emps with age > 5 0, independent of N. Also, as in the 
previous experiments, the cost of the Classic Sort-Stop plan 
increases with N and is in between the Hybrid and Conven- 
tional Sort plans. What makes Query 3 and this experiment 
special is that the cost of the Hybrid plan is almost constant 
here because Hybrid sorts very few Emps, independent of 
N; only for very large N does the cost of the Hybrid plan 
slightly increase, due to materializing many Emp tnples. As 
a result, the differences in cost between the Classic Sort- 
Stop and Hybrid plans increase sharply with N, and the 
Hybrid plan outperforms the Conventional Sort plan even 
for N = 100,000. It should be noted that the cost of the 
Conventional Sort plan is lower for this query than in all 
previous experiments because this query can be evaluated 
using only the salary colnmn of Emps (i.e., the other 
columns are projected out after the tbscan), permitting 
the sort to be carried out in one pass in memory. Simi- 
larly, the Classic Sort-Stop plan can be used for all N for 
this query without exhausting the buffer space. 

It is somewhat trickier to find a perfect partitioning vec- 
tor for this query than for Queries 1 and 2. If we set 
C = L + M (C is the “cut-point” between winners and 
losers as in Section 3.4), then we need to make sure that 
L < N in addition to C 1 N and C as small as possi- 
ble. In other words, here we need to find a good left cut- 
ting point, L, in addition to a good right cutting point, C, 
whereas we only needed to find a good right cutting point 
for Queries 1 and 2. Figure 9 shows the sensitivity of the 
cost of the Hybrid plan towards cases in which L is set im- 
perfectly for N = 20,000 and C = 25,000. Obviously, 
the Hybrid plan performs best if L is close to N. However, 
the figure shows that the penalty for a poor setting of L is 
not severe (20% at most) due to the fact that the additional 
work is proportional to the number of misclassified tuples 
(i.e., errors here don’t cause entire additional partitions to 
become involved in the query plan); in any case the Hybrid 
plan outperforms both traditional plans. (Figure 9 shows 
the cost of the Classic Sort-Stop plan, the better of the two 
traditional plans, as a baseline.) 

4.3 Join Queries 

The last example query of this section involves a join; this 
example shows that partitioning becomes even more attrac- 
tive for more complex queries. The query asks for the N 
highest paid Emps that have age > 50 and that work in 
aDept withbudget > 1,000. 

Query 4: ;;;iCT 
iimp e, Dept a 

WHERE 
E% i.Edget > 1000 
AND e.works-in = d.dno 

ORDER BY salary DESC 
STOP AFTER N; 

Figure 11 shows two traditional plans for this query. The 
first plan is based on (conventionally) sorting the Emp table 
into sa 1 ary order and then probing the top Emps one by 
one in order to find out whether they work in a Dep t with a 
high budget (i.e., it uses an index nested-loop join). The 

second plan carries out the join first, in order to find all 
Emps that work in a Dept with a high budget (Grace- 
hash join is best for this purpose in our test database), and 
then it finds the N highest paid of these Emps using a 
sort - stop operator. As an alternative to these two tradi- 
tional plans, Figure 12 shows two partitioning-based plans 
for this query. The idea here is to partition the Emp table 
before the join, and then to join one Emp partition at a time 
with the Dep t table until at least N Emps that survive the 
join have been found. Thus, just as partitioning was used in 
the previous examples to avoid unnecessary sorting work, 
partitioning is utilized in these two join plans to avoid tm- 
necessary sorting and join work. The difference between 
these two plans is that the first one uses index nested-loops 
for the join, whereas the second one uses hashing. Note 
that for small N, the hash join of the Part+HJ plan can be 
carried out in one pass if the part - hybrid operator par- 
titions the data into memory-sized portions. 

Figure 10 shows the running times of the four plans, 
varying N and using our test database in which all Dep t s 
actually have a budget > 1,O 0 0. We see immediately 
that the partitioning plans clearly outperform the two tra- 
ditional plans. The Sort+NLJ plan has the highest cost, 
independent of N, because it always sorts all 10 MB of 
Emps with age > 50. For N > 1000, it has extremely 
high costs because, in addition to the expensive sort, the 
NLJ becomes very costly because many Emp tuples gen- 
erate probes, resulting in an excessive amount of random 
disk I/O. The GHJ+Sort-Stop plan has low sorting costs 
for small N, but it has poor performance because it per- 
forms a full-fledged Grace-hash join. For N 2 50,000, 
the GHJ+Sort-Stop plan is again inapplicable because the 
buffer requirements of the sort - stop (NJ operator ex- 
ceed the limit of 4 MB. (Replacing the sort - stop (N) 
operator by a conventional sort and a scan- stop (N) 
operator would yield an execution time of about 250 sets 
here.) Both partitioning variants avoid unnecessary sort- 
ing and joining of Emp tnples. The Part+NLJ plan per- 
forms best for small N, but its performance deteriorates 
for N > 1,000 due to the high cost of the NLJ, just as 
in the Sort+NLJ plan. The Part+HJ plan shows better per- 
formance in these cases because hash joins are better than 
index nested-loop joins when both input tables are large. 

In terms of sensitivity, the points mentioned for 
Queries 1 and 2 still basically apply; we should make sure 
that the first partition contains all of the Emp tuples needed 
to answer the query. We must keep in mind, however, 
that for the Part+HJ plan, the penalty for setting the “cut- 
point” too low is higher than for the partitioning plans for 
the simple sort queries because a restart involves not only 
re-scanning the Emp table, but also re-scanning the Dep t 
table in the Part+HJ plan. Since the Part+NLJ plan never 
actually scans the Dep t table, the Part+NLJ plan does not 
pay this additional penalty for restarts. 
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5 Other Techniques 
We have seen that range partitioning can be very help- 
ful to improve the response time of several different types 
of STOP AFTER queries. In this section, we will show 
how two other techniques can be applied to evaluate STOP 
AFTER queries. The first technique is also based on parti- 
tioning, but it is based on using ordered indexes (e.g., B+ 
trees) to partition the data. The second technique is based 
on using semi-joins to reduce the size of temporary results. 

5.1 Partitioning with Indexes 

Let us return to Query 1, which asks for the N Emps with 
the highest salary and age > 50, and see what hap- 
pens when we have a B+ tree on Emp. salary. The 
Traditional Index-Scan plan that executes this query using 
the Emp . salary index was shown in Figure 1 and dis- 
cussed in Section 2.1; it reads the RIDS of the Emps one 
at a time in salary order from the index, then fetches 
the age, address, etc. fields and applies the age pred- 
icate, until the top N old Emps have been found. In Sec- 
tion 2.1, we noted that this plan would be very good if the 
Emp . salary index is clustered or N is very small, but 
that it would have a high cost if N is large and/or the age 
predicate filters out many high paid Emps because, in this 
case, the ridscan operator would lead to a great deal of 
random I/O and many page faults for rereading pages of 
the Emp table if the buffer is too small to hold all of the 
relevant pages of the Emp table. 

For large N and unclustered indexes, we can do better 
by using, of course, partitioning. The idea is to read the 
RIDS of the top N’ Emps from the index, sort these N’ 
RIDS inpage id order, do the ridscan with the predicate, 
re-sort into salary order, and cut off the top N tuples or 
repeat if less than N of the top IV' Emps have age > 5 0, 

Similar RID sorting ideas are known as RID-list process- 
ing and have been commonly exploited in text databases 
(e.g., [BCC94]) and set query processing (e.g., [Yao79]), 
but they can only be applied in the STOP AFTER con- 
text if they are combined with partitioning. The beauty of 
this Part-Index approach is that the ridscan operator be- 
comes quite cheap since it reads the Emp pages sequentially 
and reads no Emp page more than once from disk. On the 
negative side, this approach involves two sorting steps. If 
N and N’ are small, however, these sorts are fairly cheap 
because they can be carried out in one pass in memory. 

Figure 13 shows the running times of the Traditional 
Index-Scan plan and a Part-Index plan for Query 1, varying 
N. As baselines, the figure also shows the running times 
of the Hybrid plan that does not use the Emp . salary 
index (as in Figure 4) and the “ideal” running time for 
Query 1 generated by running the Traditional Index-Scan 
plan on a special version of our test database in which the 
Emp . salary index is clustered. We see that the Part- 
Index plan clearly outperforms the Traditional Index-Scan 
plan for a large range of N. While the Traditional Index- 
Scan plan is only attractive for N 5 100, the Part-Index 
plan shows almost “ideal” performance up to N = 10,000. 
(After that its sorts become too expensive.) Only for 
N = 10 does the Traditional Index-Scan plan slightly out- 
perform the Part-Index plan (0.9 sets vs. 1 set). 

The right setting of N’, of course, depends upon both N 
and the selectivity of the age predicate. In this example, 
N’ should be set to 5 * N because every fifth Emp is older 
than 50 in our test database and the values of the salary 
and age columns are not correlated. It should be noted, 
however, that the penalty for restarts in the Part-Index plan 
is very low: rather than re-scanning the entire Emp table, a 
restart simply involves continuing the Emp . salary index 
scan and fetching the next N’ Emp tnples. 
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5.2 A Semi-Join-Like Technique 

The idea of semi-joins is to reduce the cost of I/O intensive 
operations, such as sorts, joins, and group-by operations, 
by projecting out all but those columns actually needed for 
an operation; doing so reduces the size of the temporary re- 
sults that need to be read and/or written to disk or shipped 
through a network. The disadvantage of semi-joins is that 
columns that were projected out must be re-fetched (us- 
ing a r idscan operator) after the operation in order to 
carry out subsequent operations or because they are part 
of the query result. Semi-join techniques have been exten- 
sively used in the early distributed database systems (e.g., 
[BGW+81]), but they have not been widely used in cen- 
tralized database systems. One reason for this is the po- 
tentially prohibitively high and unpredictable costs of re- 
fetches, though the cost of the re-fetches can be reduced 
with the same RID sorting trick described in the previous 
subsection. What makes semi-join-like techniques attrac- 
tive for STOP AFTER queries is that the costs of the re- 
fetches are limited and can be predicted accurately during 
query optimization if the re-fetches are always carried out 
at the end of query execution: if a query asks for the top N 
tuples, then at most N re-fetches are required at the end. 

We studied two different semi-join-like plans for 
Query 1. In both plans, the sorting of the Emp tuples can 
be carried out in one pass in main memory because only 
the RIDS and the salary fields of the Emp tuples are kept. 
The difference between the two plans is that the first plan 
which we call the Standard 53 Plan does not apply the 
RID sorting trick described in the previous subsection in 
order to improve the re-fetches, whereas the second plan, 
the SJ+Ridsort Plan, does apply this trick. We ran both 
plans with varying N, and Figure 14 shows the results of 
these experiments. The figure also shows the results of the 
Conventional Sort and Hybrid plans of Section 3 as base- 
lines. First, we see that the impact of the RID sorting trick 
is less pronounced than in the previous experiments with 
the Part-Index plan. The reason is that in both semi-join 
plans, the Emp table has already been read once, and the 
old Emps have already been filtered out, so the ri dscan 
gets more hits in the buffer pool and is applied to fewer 
tuples. Second, we observe that for small N, the two semi- 
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join plans indeed outperform the Conventional Sort plan, 
while for N 2 1000, the performance of the semi-join 
plans deteriorates due to their high re-fetching costs. Fi- 
nally, we see that the semi-join plans are clearly outper- 
formed for all N by the partition-based Hybrid plan; like 
the semi-join plans, the Hybrid plan of Section 3 carries 
out its sort (salary) in one pass (for N 5 lO,OOO), 
and the Hybrid plan has the additional advantage of sorting 
slightly more than N rather than all 100,000 Emps with 
age > 5 0. We note that it is not too difficult to find other 
example queries where a semi-join plan would actually out- 
perform a partitioning plan (e.g., for very large and highly 
selective joins with small N); sometimes the best plan to 
execute a query may be a combination of partitioning and 
semi-joins. 

6 Conclusions 

In this paper, we presented several new strategies for ef- 
ficiently processing STOP AFTER queries. These strate- 
gies, based largely on the use of range partitioning tech- 
niques, were shown to provide significant savings for han- 
dling important classes of STOP AFTER queries. We pre- 
sented examples including basic “top IV’ queries, percent 
queries, subqueries, and joins; we saw benefits from the 
use of the new partitioning-based techniques in each case 
due to the reduction in wasted sorting and/or joining effort 
that they offer. We showed that range partitioning can be 
useful for indexed as well as non-indexed plans, and we 
also showed that semi-join-like techniques can provide an 
additional savings in some cases. 

There are several areas that appear fruitful for future 
work. One area of interest is STOP AFTER query pro- 
cessing for parallel database systems. Our techniques 
should be immediately applicable there, and they may of- 
fer even greater benefits by reducing the amount of data 
communication required to process such queries. Another 
avenue for future investigation would be experimentation 
with the effectiveness of histogram and/or sampling tech- 
niques for determining the partitioning vector entries for 
STOP AFTER queries on real data sets. 
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