
The Heterogeneity Problem and Middleware Technology:
Experiences with and Performance of Database Gateways

Fernando de Ferreira Rezende Klaudia Hergula
Dept. CAE-Research (FT3/EK) Dept. CAE-Research (FTS/EK)

Daimler-Benz AG - Ulm - Germany Daimler-Benz AG - Ulm - Germany
fernando.rezende@dbag.ulm.DaimlerBenz.COM klaudia.hergula@dbag.ulm.DaimlerBenz.COM

Abstract
In this paper, we present the results that we have
obtained by comparing and testing three well-known
database middleware solutions. We have analyzed their
features related to global catalog and location trans-
parency, transaction management, DML and DDL oper-
ations, SQL-dialects mask, referential integrity, security,
scalability, supported data sources and platforms, query
optimization, and performance. In particular, we have
adapted and implemented the AS3AP benchmark to ex-
haustively evaluate the performance of the products.

1 Introduction

A common scene within most organizations nowadays
is the distribution of data along departmental and
functional lines. This leads to fragmented data re-
sources and services, and contributes to the emergence
of the so-called “islands of information”. Data are or-
ganized and managed by a mix of different data man-
agement systems from different vendors and different
operating systems that use different network protocols.
In essence, the total corporate data resource is made
up of multi-vendor database (DB) servers, legacy and
current data, and relational and non-relational data
sources. Unfortunately, such autonomous data sources
have no ability to relate data from these heterogeneous
data sources within the organization.

Middleware is a generic term referring to a system
layer of software that tries to overcome the heterogene-
ity problem. The main goal of middleware is to shield

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

both end-users and programmers from differences in
the various services and resources used by the appli-
cations. Middleware software aims at simplifying user
interfaces by providing a uniform and transparent view
of those services and resources that diverge because
they are provided by multi-vendors, they have been de-
veloped in accordance with different protocols, or are
used to support distinct applications. DB gateways
constitute a class of DB management system (DBMS)
middleware. They provide access from a DB appli-
cation developed using one vendor’s DBMS to a DB
processed by the DBMS of a different vendor on the
same or perhaps a different platform, shielding the ap-
plication developer from the differences in the multi-
vendor’s products.

At Daimler-Benz Research and Technology, we are
developing a project called MENTAS (Motor De-
velopment Assistant) where this heterogeneity prob- --
lem comes well into the surface. The main goal
of MENTAS is the realization of an interconnected,
engineer-oriented development environment for a fas-
ter conception and comparative analysis of motors.
In order to reach this goal, an automatic access to
multi-vendor DBs and simulation tools must be pro-
vided. Thus, the access to heterogeneous DBs, which
are spread along a number of servers of Mercedes-
Benz’s intranet, shall be coped with by a DB gateway
in MENTAS.

There are a lot of DB gateway products com-
mercially available in the market, and each of them
promises in its particular way “almost everything”.
However, many of the promises are merely market-
ing strategies. Further, as everyone knows, what you
hear from a vendor before buying a product is much
different from that after you have bought it. In or-
der not to live this situation as well as to become a
real feeling about the products’ capabilities, we have
decided to analyze and critically evaluate some of the
most well-known DB gateways available in the market

146

today. In this paper we present the results we have ob-
tained in our analysis. We compare the DB gateways
with each other and show which the best is, in which
particular situation, and under which conditions. We
point out the fulfilled expectations at the same time we
discuss where they could have done better and what
should be considered in next releases of such products.
This paper is organized as follows. In Sect. 2, we give
a brief overview about our project MENTAS. Sect. 3
introduces the middleware technology and some well-
known solutions available today in the market. The
comparative analysis between the products is started
in Sect. 4. Sect. 5, in turn, presents the performance
evaluation. Finally, Sect. 6 concludes the paper and
summarizes our experiences with and the performance
of DB gateways.

2 Motor Development Assistant

The Motor Development Assistant, or just MENTAS
for short, is an innovationpraject at Daimler-Benz AG
Research and Technology in Germany. It has been
started in 1997 and is being developed for the mechan-
ical engineers of the Motor Development of Mercedes-
Benz with the following motivation in mind: to in-
crease both the capability to react to market changes
as well as the potential to innovate, to reduce the de-
velopment time and consequently the costs, and to par-
allelize the development work.

The today’s motor development environment at
Mercedes-Benz is characterized by isolated, multi-
vendor software systems and DBs. These systems are,
in their majority, calculation and simulation tools and
CAD systems which cannot “understand” or commu-
nicate with each other. In addition, the DB systems
have unfortunately no ability to relate data from het-
erogeneous data sources. Essentially, each department
constitutes an information island with its own tools
and sources of data. Lastly, the communication and
teamwork between such departments is realized in a
very informal way, usually via phone calls or by filling
up job orders.

MENTAS aims at realizing an interconnected, en-
gineer-oriented development environment for a faster
conception and comparative analysis of motors. In or-
der to reach this goal, an automatic, integrated access
to heterogeneous DBs and simulation tools must be
provided. In this paper, we give emphasis to the DB
side of MENTAS and leave the problem of integrating
individual simulation tools to another opportunity.

Fig. 1 illustrates how the interconnection of hetero-
geneous DBs in MENTAS works. As said, each depart-
ment has its own sources of data. Important to notice
here is that the local autonomy of the departments’
data sources must be maintained. In practice, these

data sources vary mainly among different versions of
ORACLE DBs and different versions of DB2 DBs.r
We have analyzed the data models of each such DBs
in order to identify the crucial data for MENTAS, to
recognize semantic differences, ambiguities, common-
alities, synonyms, homonyms, and all the like. Once
done that, we have brought the heterogeneous schemas
into a global, virtual one, which contains just the data
relevant for MENTAS. At this time, we have also an-
alyzed aspects related to the distribution of the data,
communication, and consistency. Finally, we apply
then a DB middleware to bridge the diverse ontologies
and hence to cope with these heterogeneous schemas.
By this means, MENTAS can formulate requests as
though all data reside in a single local DB when, in
fact, most of the data are distributed over heteroge-
neous remote data sources.

: communication, and

Fig. 1: Integration of heterogeneous schemas.

As suggested until now, a DB middleware solution
can bring a lot of benefits. Currently, there are many
DB middleware solutions commercially available in the
market and they promise in their own way almost ev-
erything. Worse, the papers and material available
about such products have more an advertising than
informative character, lack on technical details of re-
alization and utilization, and were definitively written
by marketing people. Due to this and to the fact that
this global schema is a potential bottleneck in MEN-
TAS, we have decided to critically analyze, evaluate,
and compare the most popular DB middleware solu-
tions in the market today. Our intention was to find
out the most appropriate one for the application in
MENTAS. In the following, we shortly introduce them
and thereafter we present the results of our evaluation.

3 Database Middleware Technology

Whenever an application wants to access DBs man-
aged by multi-vendor DBMSs, code must be written to

‘Due to its nature, this paper refers to numerous software and
hardware products by their trade names. In most cases, if not
all, these names are claimed as trademarks or registered trade-
marks by their respective companies. It is not our intention to
use any of these names generically. The reader is therefore cau-
tioned to investigate all claimed trademark rights before using
any of these names other than to refer to the product described.

147

establish separate connections to each, local or remote,
data source. The major problem is that the applica-
tion must be then tailored to the DBMS in question
and the requests and queries must be issued using the
native interfaces of these data sources. The replace-
ment or insertion of a new source of data requires
changes in the applications. DB middleware shields
the application developer against these problems by
hiding the heterogeneity of network protocols, data
sources, and interfaces. It provides one single SQL
API and manages all differences in the SQL dialects.

There are mainly two categories of DB middleware
products currently available: middleware software and
DB gateway. Whereas the middleware software can
establish connection to several data sources at once,
a DB gateway establishes a point-to-point connection
to one remote DB. The gateway approach is primar-
ily used to expand the functionality of one DBMS to
another. Notwithstanding, both solutions can be em-
ployed to solve the heterogeneity problem. In this pa-
per, otherwise explicitly noted, we use both terms in-
terchangeably with the same meaning.

At the time we have decided to employ the mid-
dleware technology to bridge the DB heterogeneity in
MENTAS, we have looked up the products currently
available in the market. The products we have consid-
ered for testing are: DJ, MIRACLE, and EDI/S2

4 Comparative Analysis

4.1 Global Catalog

The global catalog stores the information that the mid-
dleware software uses in order to access the remote
DBs. With this information, the middleware can find
out which node the DB is located in, which type of DB
it is, which tables are available, and additionally which
its access rights to the DB are. All three products en-
capsulate the heterogeneity of the DB schemas by us-
ing the concept of synonyms. The way the synonyms
are created and managed by the products is somewhat
different, but the final goal is the same: to provide lo-
cation transparency. Thus, the application sees only
a global schema, but it does not in fact know whether
a particular relation is locally or remotely available.
The location transparency is a very important feature
which brings a lot of advantages for the application
developers, and it is well supported by the products.

2Due to general terms and conditions of the software licenses,
we prefer not to use the real names of the products. Instead, we
use nicknames which have no special meaning. Any similarity
would be mere coincidence.

4.2 Transaction Management

When considering multiple, heterogeneous DBs and
DML operations that may cross each of them, the
transaction processing feature of the middleware re-
ceives special relevance. A complex query performed
against heterogeneous data sources is usually han-
dled as a distributed transaction. It divides it into
small transactions and distributes the processing to
the corresponding transaction systems of the affected
DBMSs. The Two-Phase Commit (2PC) protocol
[Gr78] is probably the most commonly used by the
middleware systems in order to realize an atomic com-
mit of a distributed transaction. We present the trans-
action management of the three products separately.

4.2.1 MIRACLE

An ORACLE Server copes with distributed transac-
tions by means of a little modified 2PC protocol. Be-
sides the usual coordinator and participant roles there
is also the role of a commit point (CP) node. For the
purposes of this paper, it does not matter how the CP
node is defined. The processing of a distributed trans-
action is then performed as follows.3 In the first phase
of 2PC, the coordinator sends a prepare-to-commit
message to each of the participants, but to the CP
node. Thus, the CP node does not need to get pre-
pared. The coordinator then waits for the ready-to-
commit answers from the participants. If any partic-
ipant does not respond in a predetermined timeout,
then the coordinator sends abort messages to all par-
ticipants, including the CP node. On the other side, if
all participants have gotten prepared, the coordinator
sends first of all a commit message to the CP node and
waits for an answer. The normal or abnormal termi-
nation of the transaction on the CP node dictates now
the fate of the whole distributed transaction. If it has
committed its transaction, the coordinator sends com-
mit messages to all participants and the distributed
transaction is thus committed. Otherwise, the coor-
dinator sends abort messages to the participants and
the distributed transaction must be rolled back.

A distributed transaction which involves MIRACLE
is handled by the ORACLE Server in a very similar
way [Hu96]: the ORACLE Server always plays the role
of the coordinator and MIRACLE is always considered
to be the CP node. The reason for that is that MIR-
ACLE does not support the prepare-to-commit oper-
ation. Hence, in the CP role MIRACLE must not
get prepared, instead it must just commit/abort its

3This is a very simplified description of 2PC. The usual oper-
ations issued on behalf of e. g. the recovery manager, like write
aheading the log records, forcing/no-forcing modified tuples into
stable storage, discarding locks, etc. [Re97], are irrelevant in our
context.

148

transaction like any usual transaction, without even
knowing that it is in fact participating in a distributed
transaction. Notwithstanding, due to the fact that
there may be always one and only one CP role in the
processing of a distributed transaction, only one MIR-
ACLE may participate in a distributed transaction.
Consequently, a distributed transaction in a MIRA-
CLE environment may involve only one foreign (non-
ORACLE) DB. This is of course a serious limitation,
since it severely restricts the use of MIRACLE to solve
the heterogeneity problem in a DB federation.

4.2.2 DJ

DJ uses the 2PC protocol to process distributed trans-
actions too. First of all, DJ differentiates between two
classes of applications [IBM97]:

l Class-l: applications which establish a connection
with only one DB; and

l Class-2: applications which establish connections with
several DBs.

In addition, on establishing a connection a param-
eter called SYNCPOINT can be set according to the
following characteristics of distributed transaction pro-
cessing:

l NONE: there is no coordinator in the 2PC. A com-
mit message is sent to each participating DB. In the
case of failures, the application must cope with the
reestablishment of the DB integrity by itself.

l ONEPHASE: distributed transactions with updates
on multiple data sources are not supported. If an ap-
plication establishes a connection with DJ by using
this parameter value, then no 2PC is processed out-
side DJ.

l TWOPHASE: distributed transactions with updates
affecting multiple data sources are supported, i.e., the
2PC protocol is fully supported.

There are two typical configurations when em-
ploying DJ. First, the client establishes a Class-2-
connection with SYNCPOINT TWOPHASE and de-
tines which DBMS should be the coordinator. Thus,
a foreign DBMS can play the role of the coordina-
tor and DJ, in this case, assumes as a subcoordinator
the coordination of its integrated sources of data. In
the case of either a Class-l- or Class-2-connection with
SYNCPOINT ONEPHASE, DJ is the coordinator and
therefore responsible for the transaction processing.

In order that DJ can process 2PC with the inte-
grated DBs, these must of course also support the
2PC protocol. Since this is not the usual case in all
DBMSs, DJ employs another parameter in order to
find out whether a data source supports the 2PC pro-
tocol (2PC-data-source) or not (lPC-data-source). On
the basis of this information, DJ follows the subse-
quent rules:

l Read operations are always allowed with lPC- and
2PC-data-sources.

l Updates on lPC- and 2PC-data-sources cannot be
mixed in a single transaction. In a SYNCPOINT
ONEPHASE connection, a lPC-data-source is only
modified, if no other lPC- or 2PC-data-source is mod-
ified either. In a SYNCPOINT TWOPHASE connec-
tion, no update on lPC-data-sources is allowed.

l A distributed transaction cannot modify two lPC-
data-sources.

l The DJ’s DB is always considered a 2PC-data-source.

On following these rules, DJ allows for an update on
heterogeneous DBs only when the corresponding data
sources support the 2PC protocol. Otherwise, such
an update is simply rejected by DJ. Particularly, we
consider the actions taken by DJ during the processing
of a distributed transaction very reasonable, since the
2PC protocol may be executed in its entirety a.s long
as the involved data sources understand the 2PC as
well. Thus, with respect to transaction processing DJ
is certainly more mature than the other products.

4.2.3 EDI/S

EDI/S provides no transaction manager by its own
and therefore no support for 2PC. It offers the user
the possibility to either automatically issue a commit
after each SQL operation or the user decides when a
commit should be processed [IB197]. In both cases,
EDI/S exploits the transaction managers of the inte-
grated data sources in that it simply passes on the
commit statements to the data sources. In case of an
update operation affecting multiple sources of data, no
kind of 2PC is available to control the transaction pro-
cessing as a whole. EDI/S sends the update operations
to the corresponding DBMSs and waits for the respec-
tive return parameters. If the update is successfully
performed by all of them, the EDI/S server signals the
success of the operation to the application. Otherwise,
if at least one DBMS fails to perform the update, the
EDI/S server simply passes on the received error code
to the application. Hence, it is the responsibility of
the own application to cope with the rollback of the
update operations already successfully executed on the
other involved DBs.

In order to exemplify the consequences of not sup-
porting the 2PC protocol in a heterogeneous envi-
ronment, the reader has just to imagine the well-
known debit-credit transaction [GLPT76] being exe-
cuted against two relations of two heterogeneous DBs.
If EDI/S coordinates the processing of this distributed
transaction and any of the participant transaction
fails, no one may be completely sure about the fi-
nal state of the DBs. Furthermore, the consequences
may be really undesired: suppose the credit being done

149

without the corresponding debit. At last, reestablish-
ing a consistent state for the DBs after a transaction
failure or a system crash may even be impossible.

4.3 DML and DDL Operations

All products support the execution of DML operations
against heterogeneous data sources without problems.
The applications can perform SELECT, INSERT, UP-
DATE, and DELETE operations in all DBs comprised
by the federation. In turn, DDL operations are gener-
ally not allowed by DJ and MIRACLE. On trying to
perform a DDL operation under MIRACLE, the appli-
cation receives an error code back and the operation
is rejected. Under DJ such operations cannot even be
formulated, since by means of the nickname concept
only integrated tables can be referenced. There is no
construct available to formulate DDL operations, as
for example, to create a table in a foreign DB. On the
other hand, EDI/S does support the execution of DDL
statements. Its activities are essentially controlled by
the access rights the application has to the foreign DB,
but they are not constrained by the middleware.

In the field of non-relational DBs, the operations
supported by the middleware are not so diversified.
The SELECT operation is supported by all products
against non-relational DBs. However, the DML opera-
tions INSERT, UPDATE, and DELETE are supported
only by EDI/S on IMS DBs. Therefore, with respect
to the support of DDL and DML operations, EDI/S is
certainly more powerful than DJ and MIRACLE.

4.4 SQL-Dialects and Pass-Through

It is a task of the middleware to cope with differ-
ences in the SQL implementations. The products we
have analyzed solve this problem in basically two ways.
Firstly, they provide a single SQL (either the standard
or a particular dialect) API, and hence they mask
the differences in the various vendor dialects of the
language. Thus, the translation of SQL statements
and return codes is assumed by the middleware. Sec-
ondly, they offer the so-called pass-through function.
By means of this function, SQL statements can be sent
to a particular DBMS directly, without that the mid-
dleware tries to interpret or translate such statements.

The three products differ in the functionality of the
pass-through function. All of them support DDL op-
erations. This is so because DDL operations are ex-
ecuted by the corresponding DBMSs without return-
ing parameters which must be interpreted according to
any specific format. However, it is worth mentioning
here that the execution of DDL operations via pass-
through is always followed by an implicit transaction
commit on the corresponding DB by all three prod-
ucts. This means that an eventual rollback at the

middleware level does not imply a rollback of DDL
operations at the DB level. Therefore, by using the
pass-through function to execute DDL operations, the
distributed transaction processing features (2PC pro-
tocol) before mentioned (refer to Sect. 4.2) no longer
hold.

In turn, the DML operation SELECT returns a re-
sult that must be formatted, and unfortunately MIR-
ACLE cannot interpret such return values; it does not
understand the statement and therefore does not know
what has been read from the DB. On the other side,
the other DML operations, INSERT, UPDATE, and
DELETE, can be passed through by MIRACLE with-
out problems. DJ and EDI/S are more flexible in this
point; they support any kind of DML operation. This
is one of the aspects that makes clear the differences
between a middleware solution (as DJ and EDI/S) and
a gateway software (as MIRACLE). COMMIT and
ROLLBACK statements are supported only by EDI/S,
which particularly is the most flexible of the products
with respect to the pass-through function. Both state-
ments are always either intercepted and interpreted by
DJ and MIRACLE or, as previously mentioned, they
are implicitly issued when processing DDL operations.

4.5 Referential Integrity

All products cope with this aspect in the very same
way: they simply delegate to the single DBMSs the
responsibility for checking and taking care of the ref-
erential integrity. They do not support the referential
integrity between tables of a same DB, not even to
mention between tables of heterogeneous DBs. How-
ever, if a DBMS rejects an operation due to a referen-
tial integrity violation, the corresponding error code is
returned to the application program. Notwithstand-
ing, if a particular DBMS does not support referential
integrity, it is the application developer’s responsibil-
ity to take care of it when issuing DML operations.

4.6 Security

Basically, it is possible to define four levels of security:
the application must have login rights to the middle-
ware (via usercode/password); it is possible to define
access rights to the global schema of the middleware;
the application must have login rights to the foreign
DBMS (via usercode/password); and it must have ac-
cess rights to the corresponding tables and tuples in
the foreign DB. These four levels of security are well
supported by all three products with irrelevant differ-
ences from each other.

4.7 Scalability

We have analyzed here how easy or difficult it is to
append a new source of data to the global schema.

150

At this point, the difference between middleware and
gateway comes again into the surface. As seen, a gate-
way provides a point-to-point connection to one type
of DB. Thus, a heterogeneous environment employing
MIRACLE demands a new gateway tailored to the
new type of the DB which must be integrated into
the global schema. In turn, on integrating a new DB,
whose type pertains to the federation yet, a new in-
stance of the available gateway must be configured.

On the other side, a middleware usually compre-
hends connection possibilities to several types of DBs.
With DJ the user receives a complete software pack-
age which includes access to all supported DB types.
However, the software components are turned on or
off according to the license contract. Hence, in order
to scale up the DB federation under DJ to comprise
a new DB type, the corresponding module must be
bought and turned on, and additionally, the configu-
ration steps must be followed anew. Notice, however,
that no new software component must be integrated.
Similarly, EDI/S also comes as a complete software
package, and single components are turned on or off
according to license contracts.

4.8 Supported Data Sources and Platforms

The data sources and platforms supported by the three
products are listed in Table 1. As can be seen, EDI/S
supports the broadest range of data sources.

4.9 Query Optimization

The three products differ greatly from each other with
respect to query optimization techniques. Query op-
timization plays a fundamental role when large quan-
tities of data must be transported through a network
that connects a DB federation. Particularly when ex-
ecuting joins against tables of heterogeneous DBs, a
badly chosen execution plan can lead to a large, unnec-
essary overhead. We start explaining DJ’s techniques.

4.9.1 DJ

The algebraic optimization in DJ is called query rewrit-

ing processing. The queries are transformed in a logical
equivalent variation, in order to reduce I/O operations,
sorts, communication overhead, etc. In the field of
non-algebraic optimizations, DJ works with informa-
tion about the data and their storage. On processing
a query the optimizer decides which parts of the query
can be processed by the data source and which should
be done by DJ itself (pzlshdown analysis). Hence, I/O
operations are saved and the communication overhead
is reduced. The decision about whether the operation
should be executed locally or by the remote source of
data is taken based on a complex cost model. This

cost model takes into consideration not only the costs
of evaluating the operation but also costs for the com-
munication between DJ and the remote data source for
transferring the data or messages. The following fac-
tors are used by DJ on building its cost model: the rel-
ative CPU speed of DJ’s and data source’s machines,
the relative I/O speed of both machines as above, the
lowest communication rate between both machines,
and the alphanumeric sort facility of the data source.

Additionally, DJ maintains a knowledge base con-
taining information about how the query optimizers of
foreign data sources work. Hence, DJ does not gener-
ate an execution plan for a query which would be also
generated by the foreign DBMS; it does not generate
those execution plans which would not be understood
by the foreign DBMS; and so forth. Specifically for the
synonyms (nicknames) created for the tables or views,
DJ considers the following aspects: number of tuples
in the referenced relation, number of pages occupied by
each table, and lowest and highest value for the tables’
columns. In addition, since the existence of indices in-
fluences the processing of queries, DJ also stores some
information about them: the available indices in the
foreign DBs and the access methods, number of levels
of an index, number of leaves in an index, cardinal-
ity of an index key, and cluster behavior of clustered
indices.

All these data and information are caught by DJ
from the foreign DB. However, since some DBMSs do
not put available this information, the own user can
fill in the global catalog of DJ with such statistics.
Furthermore, DJ can by itself generate the needed in-
formation by querying the sources of data accordingly.

4.9.2 MIRACLE

MIRACLE exploits some techniques used by the OR-
ACLE Server for the query optimization (a rule-based
approach and an statistical approach). However, MIR-
ACLE does not maintain statistical data about the
foreign DBMSs, as is the case in DJ. Thus, for a query
affecting only foreign relations no kind of optimization
is tried, and therefore MIRACLE shows unfavorable
performance results in these cases (refer to Sect. 5.3).

4.9.3 EDI/S

EDI/S offers algebraic and non-algebraic optimization
techniques, but only for joins. The algebraic optimiza-
tion is called WHERE predicate cloning, and it con-
sists of generating more conditions in the WHERE
clauses whenever possible in order to specialize the
search predicate. With respect to non-algebraic op-
timization, EDI/S maintains a relative cost model for
the execution of joins. It is based on the type of the
DBs and structures of the tables and columns. By

151

Table 1: Supported data sources and platforms.
Product Platforms

“”

Data sources I
ADABAS. Allbase. AAL-IN-l. CA-Datacom. C-ISAM. DB2. DBMS. DSM. 1

I , , ,
Enscribe, FOCUS, CA-IDMS (/SQL), IMS, INFOAccess, Informix, Ingres,
ISAM, Model 204, MSM, NOMAD, Nonstop SQL, ORACLE, Progress,
QSAM, Rdb, Red Brick, RMS, ShareBase, SQL/400, MS SQL Server, Stor-
House, Supra, Svbase, System 2000, Tersdata, TOTAL, ULTRIX/SQL,
UNIFY, u&V&&(PI&) -

, _.

DB2, EDA/SQLa, IMS, Informix, MS SQL Server, ORACLE, Sybase,
VSAM

ADABAS, DB2, EDA/SQL”, FOCUS, IMS, IM”-AGE/SQL, Informan, In-
formix, Ingres, MS SQL Server, ORACLE, Rdb, RDMS, SAP, SESAM,
Sybase, Teradata, VSAM J

“By means of EDA/SQL, it is possible to access other data sources.

means of this cost model, EDI/S tries to determine
the cheapest execution sequence for a join based on the
costs to process each involved table, on the attributes’
types, on the compatibility of columns, etc.

5 The Performance Evaluation

values and are correlated, so that selectivities of 100
and projections producing exactly 100 multi-attribute
tuples are provided. In the tenpct relation most of
the attributes have 10 percent unique values and thus
selectivities of 10 percent are provided. Finally, the
updates relation is customized for update operations.

We have paid special attention to the performance of
the products. In order to exhaustively evaluate the
products’ behavior in the face of different situations,
we have implemented the AS3AP Benchmark [TOB93].
AS3AP is the ANSI SQL Standard Scaleable and
Portable Benchmark for comparing relational DBMSs.
Nevertheless, we have adapted the AS3AP benchmark
to fit into our purposes. Since we would like to test
the performance of the gateways and not specifically of
the DBMSs themselves, we have created heterogeneous
DBs and kept this heterogeneity unchanged during the
tests’ execution. What we have varied then was the
nature of the operations. In the following, we briefly
introduce the benchmark, the environment where we
performed the tests, and the results.

5.1.2 The Single-User Tests

The single user tests are logically divided into opera-
tional issues and user queries.

Operational Issues

Most of the operational issues is of little interest when
thinking about the performance of DB gateways. They
include loading the DB from disk or tape, a backup
procedure, the time to build indices, and a table scan.
This latter is the only one of interest for us:

Table scan. This operation tests sequential I/O perfor-
mance; it searches a tuple that in fact does not exist via
an attribute which has no index built on it.

5.1 The AS3AP Benchmark Test Queries

We have chosen the AS3AP benchmark for our per-
formance tests due to its completeness in comparing
relational systems with vastly different architectures
and capabilities over a variety of workloads. The
ANSI SQL Standard [Me901 DDL and DML are used
in the specification of the DB tables and attributes
and queries. It comprises two modules: the single-user
tests and the multi-user tests [TOB93].

The test queries include output tests, selections, joins,
projections, aggregates, and updates.

5.1.1 The Database Structure

Output mode queries. The three different output
modes that a query may use are tested, namely, the results
may be retrieved to the screen, stored in a file, or in a
DB relation. These queries are listed in Table 2 [TOBSS].
Comparing the measurements of these queries with the
table scan above provides a precise estimate for the time
required to format, display, and store the result of a query.

The AS3AP DB is composed of five relations. The
tiny relation is a one column, one tuple relation used
to measure overhead. All other four relations have the
same average tuple width and the same number of tu-
ples, and their size is scaleable. In the uniques relation
all attributes have unique values. In the hundred re-
lation most of the attributes have exactly 100 unique

Table 2: Output mode queries.

Query name Description

omodefiny selection on tiny relation
omode_lK selection of 10 tuples
omode_lOK selection of 100 tuples
o-mode_lOOK selection of 1000 tuples

Selections. The two most important factors influencing
the performance of query processing are controlled by the

152

AS3AP benchmark: the storage organization of the relation
and the selectivity factor of the query. The selections are
listed in Table 3 [TOB93]. In particular, the variable-select
query tests the ability of the query optimizer to correctly
choose between a scan or the use of an index at run time.

Table 3: Selection queries.
Query name Description [index)

seLlA 1 tuple (clustered)
sel-lncl 1 tuule (sec. hashed1

Joins. The joins test how efficiently the system makes use
of available indices and how query complexity affects the
relative performance of the DBMS. The join queries are
presented in Table 4 [TOB93]. The join-2 queries test the
performance of ad-hoc queries. The use of the available
indices in the join algorithm is tested by varying the join
attributes and thus the types of indices. Finally, query
complexity has been modeled by increasing the number of
tables referenced.

Table 4: Join queries.
1 Query name 1 # tables 1 Index available] Retrieved]

Projections. The most expensive part of a projection is
the elimination of duplicate tuples when projecting on non-
key attributes. Duplicate elimination is usually done by
sorting. The projection queries, listed in Table 5 [TOB93],
test mainly the DBMS’s sort utility. In particular, the
first query tests how efficiently two different data types are
handled in a complex operation such as sorting.

Table 5: Projection queries.
Query name Description Selectivity

proj-100 on signed int and on vari- 100 tuples
able length char attribute

proj_lOpct on decimal attribute 10% tuples

Aggregates. Different kinds of aggregate tests are pro-
vided (Table 6 [TOB93]). The first computes the minimum
of a key value. The second computes the minimum value
of a key partitioned into 100 partitions. The info-retrieval
query tests whether systems can use bit or pointer inter-
section algorithms for indices to avoid a relation scan to
evaluate complex predicates. The other queries test report
generation features, such as subtotal and total calculations.
Updates. Essentially, the update tests check both in-
tegrity and performance (Table 7 [TOB93]). To check in-
tegrity, one query attempts to append a tuple with a du-
plicate key value. A second attempts to violate referential

Table 6: Aggregate queries.
Query name Description] Result 1

scalagg
funcagg
info-retrieval

min(key)
min(key) grouped by name
se1 with complex predicate.

1 val
100 val

1
min(key) - -

SimpleJeport se1 avg(x) where x in (se1 10%) 1
subtotal-report 10% se1 on view, min(a), 100

max(a), avg(a), cnt(b),
grp by code, int

total-report 10% se1 on view, min(a), 1
m=(a), Wa), cnt(b)

integrity by updating a foreign key. Performance is tested
by measuring the overhead involved in updating each type
of index. Finally, single-tuple updates and bulk updates
are also considered.

5.1.3 The Multi-User Tests

The four different multi-user tests model different
workload profiles [TOB93]. For these tests, a num-
ber of processes are forked concurrently, each running
a single script. These processes then simulate con-
current users. In particular, the number of users is
determined as a function of the DB size. The tests are
explained in the following.

Information retrieval (IR) test. All users execute a
single-row selection query on the same relation using a clus-
tered index. The isolation level is 0 (browse access).

Mixed workload IR test. One user executes a cross
section of ten update and retrieval queries (refer to Table
8 [TOB93]), and all others execute the previous IR test.

Table 7: Update tests.
Test name Description mples upd

append-duplicate ins duplicate value app 1,del 1
referintegrity ins invalid frgn key ins 1,del 1
update-key ins mid, last key val. ins 2, mod 2
uadate-btree 1 uDd of B-tree idx ins l.mod 1

OLTP test. All users update a single row on the same
relation with level 3 isolation (repeatable reads). The op-
eration consists of randomly selecting a single row via a
clustered index and updating a non-indexed attribute.

Mixed workload OLTP test. One user executes the
cross-section queries (Table 8 [TOB93]) and the others ex-
ecute the previous OLTP test.

The throughput, as a function of the number of
concurrent DB users, can be measured by the OLTP
and IR tests. The mixed workload IR test measures
the degradation in response time for a cross section
of queries caused by system load. The system ability
to dynamically provide different isolation levels is also
tested.

153

Table 8: Cross-section queries.
Query name Description 1 Isolation\

5.2 The Environment

When building the environment for our tests (Fig. 2),
we have tried to reflect the same environment that we
have in MENTAS. As shortly mentioned before, the
DBs to be integrated in MENTAS are from IBM DB2
and from ORACLE. Thus, we have created two identi-
cal DBs (40 MB each) from these vendors - ORACLE
Version 7.3.2 for RS/SOOO and DB2 Common Server
Version 2.1 for RS/SOOO. The products’ Clients were
put on a same machine, the client. The benchmark op-
erations were sent from this client to the corresponding
Servers of the products, which in turn were located in
a same machine either, the server. The client is an HP
9000 Series 700 Model B160L with 192 MB of main
memory and running HP-UX 10.20. The server is an
IBM RS/SOOO Workstation Model 3BT with 128 MB of
main memory and running AIX 4.1.4.0. The versions
of the three products are: DJ Version 2.1 for AIX,
EDI/S Version 3.2 for UNIX, and MIRACLE Version
4.0 for IBM DRDA for RS/6000.4
Cue”,

Fig. 2: A simplified overview about the environment.

The statements affecting a single table were per-
formed twice, once against each kind of DB. We have
measured both access times and show in the forthcom-
ing sections the average time between both measure-
ments. By all join statements, we have distributed the
tables over both DBs. The joins have the following
structure:

41t is important to notice here that there is a version of MIR-
ACLE tailored for DB2 which does not need to use DRDA for
the communication with the DB2 Server. However, this version
is only available for DB2 under MVS. Since our DB2 DBs in
MENTAS are all for RS/SOOO, we were not interested in testing
this version of MIRACLE. Due to the fact that this version ac-
cesses the DB2 Server directly, we believe it would have shown
better performance results than this one via DRDA.

SELECT tabI .attrl, . . . , tabl.attr,,, ,
tab,n.attrl, . . . , tab,.attr,

FROM tabI, . . . , tab,
WHERE tabl.attr, = tabz.attr, AND tabl.attr, = tabs.attr,

AND . .
AND tabI .attr, = tab,.attr, AND tabI .attr, = value;

Table tab1 was placed in one DB whereas the tables
tab2 to tab, were placed in the other DB. We have
run all join statements twice switching the location of
the tables in the second run.

5.3 The Performance Results

In the total we have generated 85 graphs showing the
performance of the three products compared to each
other in the most different ways. Of course we can-
not show all of them here due to space limitations.
We have then chosen 8 of the most significant graphs,
and we present them here. In these graphs, we have
maintained the results of DJ in the X-axis constant
and shown in the Y-axis the percentage, i.e. the rela-
tive variation, that MIRACLE and EDI/S are better
or worse than DJ. In the following, when explaining
the graphs, this representation will become clear.

5.3.1 The Single-User Tests

Operational Issues

Table scan. The run sequence of the benchmark estab-
lishes that the table scan must be performed intercalated
with the select operations. Thus, we have not generated
a separate graph for the table scan. Instead, we have put
the results together with the selects shown in Fig. 4. The
results of the table scan are shown in the third blocks
from left to right. The most interesting fact we have per-
ceived with the table scan, and which have proved true in
other similar operations along the benchmark, is that DJ
does not perform well when operating on a non-indexed
attribute. As seen, the table scan searches a tuple that
in fact does not exist via an attribute which has no index
built on it, and in this case MIRACLE and EDT/S have
performed 43% better than DJ.

Test Queries

Output mode queries. Fig. 3 shows the results for the
output mode queries. As seen, there are four operations
(refer to Table 2) in which the results are retrieved to the
screen, stored in a file, or in a relation. DJ is almost
always the fastest of them to format, display, and store
the results of a query. Notice that DJ was the slowest in
the table scan test previously discussed. In these output
queries, we can also notice that EDI/S can work well with
large amounts of data, and it is sometimes better than
DJ (o-mode-l OOK(fle) and o-mode-l OOK(screen)). This
means that the time EDI/S needs to fetch the tuples is
compensated by faster routines to format and present the
results. In turn, MIRACLE is generally better than EDI/S,

154

but, on the contrary, it shows really bad performance re-
sults when manipulating large amounts of data. This can
be observed specially when the results are written in a file
and shown on the screen.

outputa rslstive to DJ

.,., ...,. ..: ;

Selections. Fig. 4 illustrates the performance results for
the select operations (refer to Table 3). As before, DJ is
almost always better than the others. As already men-
tioned, the table scan is performed better by MIRACLE
and EDI/S than by DJ. Interesting here is that this is the
only operation on a non-indexed attribute. Thus, DJ can
exploit the existence of indices very well, but it performs
worse than the others in the absence of indices. Further-
more, we believe that the reasons for DJ to work so well
in the presence of indices are due to the statistics about
the indices of all DBs that it maintains internally (refer to
Sect. 4.9). Such detailed information is neither available
to EDI/S nor to MIRACLE. Another aspect that can be
noticed is the behavior of EDI/S on executing the wari-
able-select operation. As explained before, this operation
tests the ability of the optimizer to correctly choose be-
tween a scan or the use of an index at run time. There are
two variations of this operation. In the variable-select(low)
variation, an index should be used, and in the second, sari-
able-select(high), the table should be scanned. Since both
operations are executed in order, we believe that EDI/S
had executed a scan on the table during the first operation
(it has shown worse times) instead of using an index. In
turn, in the second operation the table was memory resi-
dent, and hence the scan was performed very fast.

Joins. DJ beats the others in the processing of join op-
erations (refer to Table 4). Fig. 5 shows the performance
results. DJ is up to 400% better than EDI/S and up to
SO,OOO% better than MIRACLE in processing joins. Cer-
tainly, these results are due to the very refined query opti-
mizer of DJ. An interesting aspect here again is the result
of the query join-2 This is the only join which has been
performed on an attribute which has no index built on it.
In this case, EDI/S was even better than DJ. Particularly,
the extremely bad performance of MIRACLE in this case
leads us to the conclusion that the middleware solution to
the heterogeneity problem is much more appropriate than
the gateway approach. Furthermore, since the integration
of heterogeneous schemas is mainly done by means of join

Selsctlons rslstlvs to DJ

na

Fig. 4: Selections (including table scan).

operations, a well-designed query optimizer plays a kernel
role in the solution to the heterogeneity problem because
it greatly influences the performance.

Joins relative to DJ

.$&a“

Fig. 5: Joins.

Projections. In the projection queries (refer to Table 5),
EDI/S is faster than DJ and MIRACLE (Fig. 6). In the
query proj_fOO, where 100 tuples (O,l% of the total) are
read, EDI/S is about 200% better than the others. With
respect to DJ, the problem is again the absence of an in-
dex for this query. In turn, MIRACLE is particularly slow
to project (and thus to sort) on decimal values (query
proj-IUpct). In this case, DJ performs almost equal to
EDI/S.

Aggregates. The results we have obtained when running
the aggregate queries (refer to Table 6) were very inter-
esting and sometimes surprisingly. In the aggregate query
info-retrieval, DJ, as previously, has maintained its superi-
ority when performing select operations (Fig. 7) in compar-
ison to EDI/S and MIRACLE. The subtotal-report query
has shown us that DJ can work very well with views (up to
700% better than the others). This is because this view is
built through a join on two tables, and DJ has yet proved to
be the best of them when joining relations. On the other
hand, the seal-agg and func-agg queries are very simple
ones employed to calculate the minimal value of an at-
tribute which is the primary key of the relation. In fact, as
explained in Sect. 4.9, DJ already maintains the minimal
value of all primary keys in its own internal statistics for

155

Fig. 6: Projections.

query optimization. Surprisingly, EDI/S and MIRACLE
have performed up to 400% better than DJ to calculate
these aggregate functions. We simply do not have a plau-
sible explanation for that.
Furthermore, all three products have had problems with
the total-report query (refer to [TOB93] for details on it).
We have tried to overcome this problem by changing and
newly running the query several times in order to locate the
error. In fact, it is not an error of the gateways themselves
but of the DB2 DB. The problem stays in the evaluation of
the aggregate function avg(a) by DB2, where a is a signed
integer in the range f5 * 10s; it always returned an arith-
metic overflow (SQLSTATE = 22003). Without this aver-
age calculation, the query can be executed successfully. In
turn, DJ could not perform the simple-report query when-
ever it should be executed against the ORACLE DB. The
ORACLE Server always returned a “non-critical system
error” due to a column number out of range (SQLSTATE
= 58004). Interesting is that EDI/S and MIRACLE have
both executed the same query successfully. These are the
reasons why we do not have performance results for the
total-report and simple-report aggregate queries.

Aggregates relative to DJ

& WDC- +** &Pg

Fig. 7: Aggregates.

Updates. MIRACLE performs generally better than DJ
and EDI/S in the integrity checks (refer to Table 7). Fig. 8
shows that EDI/S and MIRACLE are up to 40% faster
than DJ when checking the integrity during update and
delete operations. However, on trying to insert a double
value for a primary key, both are much slower than DJ

(up to 150%). The reason for this stays probably in the
statistics that DJ maintains and exploits about all primary
keys.

Inb3@ty checks retative to DJ

Y)

Fig. 8: Integrity checks.

As presented in Table 7, the update operations are fur-
ther divided into updates affecting one tuple, single UP-
dates, and those affecting a number (1000) of tuples, bulk
updates. Fig. 9 presents the performance results for the
single updates. As with the integrity checks, EDI/S and
MIRACLE are faster to perform delete and update oper-
ations. In this case, both perform very similar. On the
other hand, as before DJ shows better performance results
for the insert operations than EDI/S and MIRACLE. In-
teresting here is that all insert operations are realized on
indexed attributes. Similarly to the single updates, the
bulk updates confirm the before mentioned observations
(Fig. 10). EDI/S and MIRACLE are better when coping
with update and delete operations, whereas DJ is the best
one when inserting tuples in a relation.

Single updates relative to DJ

m

t

?.

5.3.2 The Multi-User Tests

We have performed the OLTP and IR tests (refer to
Sect. 5.1.3) with 10 concurrent users and the mixed
workload OLTP and IR tests with 11 users, 10 exe-
cuting the corresponding original test and 1 executing
the cross-section queries (refer to Table 8). The system
has been firstly warmed up with the execution of the

156

Bulk updates relative to ChJ

queries for 15 minutes, and then we have started mea-
suring the throughput during 5 minutes. Since these
tests are performed on a single table, we have run them
twice, once against a table of an ORACLE DB and
once against a table of a DB2 DB. The throughput
as a function of the number of concurrent DB users is
listed in Table 9.

Table 9: Throughput in the multi-user tests.
ORA DB2 ORA DB2

I

IR

OLTP

mixed IR
DJ

I mixed OLTP 1

6,946 25,841 3,098 24,142
EDl/S 2,881 2,679 2,529 2,365
MIRACLE 16.044 9.380 10,279 7,524

DJ 7,396 13,093 5,483 12,055
EDl/S 3,125 2,989 2,886 2,672
MIRACLE 7,976 9,077 4,569 7,636

DJ has maintained its superiority by the process-
ing of select operations, and has achieved a very high
throughput on DB2. The throughput of MIRACLE
on DB2 is considerably higher than that of DJ on
an ORACLE DB. EDI/S has performed very poorly
when compared to the other two. On the other side,
the OLTP tests have revealed some interesting facts.
EDI/S has still performed poorly and shown us that
it can cope a little bit better with update operations
than with selects. Against an ORACLE DB, DJ has
even increased its performance in the processing of the
updates, but its performance was drastically reduced
when the updates were executed on a DB2 DB. Thus,
it can perform selects much better than updates. F’ur-
ther on, the throughput achieved by MIRACLE when
executing the updates against a DB2 DB was higher
than against an ORACLE DB.

6 Conclusions

We have critically evaluated three DB middleware
products and compared them with each other with re-
spect to several aspects, inclusive performance. The
most important differences between the products can

be summarized as follows. Transaction management is
well supported by DJ which fully implements the 2PC
protocol to process distributed transactions. EDI/S
supports a really broad range of DDL and DML op-
erations and many platforms and data sources. DJ
employs very refined query optimization techniques
whose benefits can be clearly perceived in its perfor-
mance. The AS3AP benchmark has allowed us to eval-
uate the performance of the products over a variety
of workloads and through the most different perspec-
tives. DJ has shown problems whenever operating on
non-indexed attributes, but it is unbeatable when per-
forming select and, specially, join operations. The pro-
cessing of views is also very well supported by DJ.

The global schema in MENTAS is mapped to the
original data sources mainly via views. These views
either select certain attributes of the relations or join
existing relations to capture and relate information.
Therefore, the efficient processing of selects and joins
plays a crucial role in MENTAS. Thus, we have com-
mitted for DJ in MENTAS.

Acknowledgments
We are greatly in debt with Alexander Jassner and
Jochen Riitschlin for always providing the necessary
technical support during all phases of our tests.

References
[Bo92] Bobrowski, S. ORACLE7 Server - Concepts Man-

ual. ORACLE Co., 1992.
(Gr78] Gray, J.N. Notes on Database Operating Sys-

tems. In: R. Bayer, M. Graham, and G. Seegmueller
(Eds.), Operating Systems: An Advanced Course, LNCS
60, Springer, Berlin, 1978. pp. 393-481.

[GLPT76] Gray, J.N., Lorie, R., Putzolu, F., and Traiger,
I.L. Granularity of Locks and Degrees of Consistency in
a Shared Data Base. In: Proc. IFIP Working Conf. on
Modeling in DBMS, Freudenstadt, 1976. pp. 365-394.

[Hu96] Hughes, K. ORACLE i'kansport Gateway - In-
stallation and User's Guide for IBM DRDA for RS/SOOO
(Release 4.0). ORACLE Co., 1996.

[IBIS71 Information Builders Inc. EDA/SQL Manuals. In-
formation Builders Inc., 1997.

[IBM971 IBM Co. DBB DataJoiner: Administration Guide
and Application Programming (Version 2 release 1). IBM
Co., San Jose, 1997.

[MeSO] Melton, J. (Ed.) Database Language SQL 2. ANSI,
Washington, D.C., 1990.

[Re97] Rezende, F.F. Transaction Services for Knowledge
Base Management Systems - Modeling Aspects, Archi-
tectural Issues, and Realization Techniques. infix Verlag,
DISDBIS 35, 1997.

[TOB93] Turbyfill, C., Orji, C., and Bitton, D. AS3AP:
An ANSI SQL Standard Scaleable and Portable Bench-
mark for Relational Database Systems. In: J. Gray (Ed.),
The Benchmark Handbook for Database and Transaction
Processing Systems, Morgan Kaufmann, 1993.

157

