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Abstract 

Previous work on functional joins was constrained 
in two ways: (1) all approaches we know as- 
sume references being implemented as physical 
object identifiers (OIDs) and (2) most approaches 
are, in addition, limited to single-valued refer- 
ence attributes. Both are severe limitations since 
most object-relational and all object-oriented da- 
tabase systems do support nested reference sets 
and many object systems do implement references 
as location-independent (logical) OIDs. In this 
work, we develop a new functional join algo- 
rithm that can be used for any realization form 
for OIDs (physical or logical) and is particu- 
larly geared towards supporting functional joins 
along nested reference sets. The algorithm can 
be applied to evaluate joins along arbitrarily long 
path expressions which may include one or more 
reference sets. The new algorithm generalizes 
previously proposed partition-based pointer joins 
by repeatedly applying partitioning with inter- 
leaved re-merging before evaluating the next func- 
tional join. Consequently, the algorithm is termed 
P(PM)*M where P stands for partitioning and M 
denotes merging. Our prototype implementation 
as well as an analytical assessment based on a cost 
model prove that this new algorithm performs su- 
perior in almost all database configurations. 
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1 Introduction 

Inter-object references are one of the key concepts of 
object-relational and object-oriented database systems. 
These references allow to directly traverse from one ob- 
ject to its associated (referenced) object(s). This is very 
efficient for navigating within a limited context-so-called 
“pointer chasing”-applications. However, in query process- 
ing a huge number of these inter-object references has to be 
traversed to evaluate so-called functional joins. Therefore, 
naive pointer chasing techniques cannot yield competitive 
performance. Consequently, several researchers have in- 
vestigated more advanced pointer join techniques to opti- 
mize the functional join. First of all, there are approaches 
to materialize (i.e., precompute) the functional joins in the 
form of generalized join indices [Val87]. [BK89] was the 
first proposal for indexing path expressions, and the access 
support relations [KM901 are another systematic approach 
for materializing the functional join along arbitrarily long 
path expressions; it was later augmented to join index hier- 
archies [XH94]. Many more proposals exist by now. 

[SC901 were the first who systematically evaluated three 
pointer join techniques (naive, sorting, and hash partition- 
ing) in comparison to a value-based join. Their work 
was augmented by [DLM93] to parallel database systems. 
[DLM93] also allowed nested sets of references, but they 
did not report on how to re-establish the grouping of the 
nested sets after performing the functional join. [CSL+90] 
incorporated some of the key ideas of pointer joins in the 
Starburst extensible database system. The emphasis in this 
work was on supporting hierarchical structures, i.e., one- 
to-many relationships, with hidden pointers. [GGT96] con- 
centrate on finding the optimal evaluation order for chains 
of functional joins. Thus it complements our work: We 
devise an algorithm to efficiently evaluate a functional join 
within the query engine while they are concerned with find- 
ing the best evaluation order. 

Unfortunately, the previous work on functional joins 
was constrained in two ways: (1) all approaches we know 
assume references being implemented as physical object 
identifiers (OIDs) and (2) most approaches are, in addition, 
limited to single-valued reference attributes. Both are se- 



vere limitations since most object-relational and all object- 
oriented database systems do support nested reference sets 
for modelling many-to-many and one-to-many object asso- 
ciations and many object systems do implement references 
as location-independent (logical) OIDs. In this work, we 
develop a new functional join algorithm that can be used 
for any realization form for OIDs (physical or logical) and 
is particularly geared towards supporting functional joins 
along reference sets. The algorithm can be applied to evalu- 
ate joins along arbitrarily long path expressions which may 
include one or more reference sets. The new algorithm gen- 
eralizes previously proposed partition-based pointer joins 
by repeatedly applying partitioning with interleaved re- 
merging before evaluating the next functional join. Conse- 
quently, the algorithm is termed P(PM)*M where P stands 
for partitioning and M denotes a merging. 

Before going into the technicalities let us motivate our 
work by way of a simplified order-inventory example ap- 
plication. In an object-oriented or object-relational schema 
the LineItems that model the many-to-many relationship 
between Orders and the ordered Products would most natu- 
rally be modelled as a nested set within the Order objects:’ 
create type Order as ( create type Product as ( 

OrderNumber number, ProductID number, 
LineItems set(tuple( Quantity number, Cost number, 

ProductRef ref(Product))) . . . ); 
. ..). 

Here, Order refers to the ordered Products via a nested set 
of references in attribute Lineltems. Let Orders be a rela- 
tion (or type extension) storing Order objects. Then, in an 
example query we could retrieve the Orders’ total values: 

The remainder of this paper is organized as follows: In 
Section 2 we give a short overview of physical and logical 
OID realization techniques. Section 3 overviews the known 
algorithms and introduces our new P(PM)*M-algorithm. 
Section 4 explains the integration of our algorithm into 
our iterator-based query engine and gives an initial perfor- 
mance comparison. In Section 5 we present a more com- 
prehensive performance analysis based on a cost model by 
comparing the algorithms for different database configura- 
tions. Section 6 concludes the paper. 

2 Realization of Object Identifiers 

Object identity is a fundamental concept to enable object 
referencing in object-oriented and object-relational data- 
base systems. Each object has a unique object identifier 
(OID) that remains unchanged throughout the object’s life 
time. There are two basic implementation concepts for 
OIDs: physical OIDs and logical OIDs [KC86]. 

2.1 Physical Object Identifiers 

Physical OIDs contain parts of the initial permanent ad- 
dress of an object, e.g., the page identifier. Based on this 
information, an object can be directly accessed on a data 
page. This direct access facility is advantageous as long 
as the object is in fact stored at that address. Updates to 
the database may require, however, that objects are moved 
to other pages. In this case, a place holder (forward ref- 
erence) is stored at the original location of the object that 
holds the new address of the object. When a moved object 
is referenced, two pages are accessed: the original page 

select o.OrderNumber, (select sum(l.Quantity * 1.ProductRef.Cost) containing the forward and the page actually carrying the 
from o.LineItems I)) object. With increasing number of forwards, the perfor- 

from Orders o; mance of the DBMS gradually degrades, at some point 
Logically, the query starts at each Order o and traverses making reorganization inevitable. 02 [02T94], Object- 
via the nested set of references to all the ordered Prod- Store [LLOW91], and (presumably) Illustra [Sto96, p. 571 
ucts to retrieve the Cost from which the total cost of the are examples of commercial systems using physical OIDs. 
Order is computed. Note that, unlike in a pure (flat) re- 
lational schema, the nested set of LineItems constitutes an 2.2 Logical Object Identifiers 

explicit grouping of the Lineltems belonging to one Order Logical OIDs do not contain the object address and are thus 
that is, in most systems, also maintained at the physical location independent. To find an object by OID, however, 
level. Our new algorithm exploits this physically main- an additional mapping structure is required to map the logi- 
tained grouping. However, we do, of course, avoid the cal OID to the physical address of the object. If an object is 
danger of “thrashing” that is inherent in a naive nested moved to a different address, only the entry in the mapping 
loops pointer chasing approach. Our prototype implemen- structure is updated. In the following, we describe three 
tation as well as a comprehensive analytical assessment data structures for the mapping. [EGK95] give details and 
based on a cost model prove that this new algorithm per- a performance comparison. 
forms superior in almost all configurations. In particular, 
our P(PM)*M-algorithm performs very well even for small 2.2.1 Mapping with a B+-Tree 
memory sizes. The logical OID serves as key to access the tree entry con- 

‘Throughout the paper we will use some (pseudo) SQL syntax that taining the actual object address (cf. Figure 1 (a)). In this 
is close to the commercial ORDBMS product that we used for compari- 
son purposes. Unfortunately, the commercial ORDBMS products do not 

graph, a letter represents a logical OID and a number de- 

entirely obey the SQL3 standard. Length limitations prevent us from ad- 
notes the physical address of the corresponding object (e.g., 

ditionally showing the standardized ODMG object types and OQL queries the object identified by a is stored at address 6). Here, we 
[CBB+97]-but they are very similar. use simplified addresses; in a real system the address is 

111 



(a) B+-tree (b) Hash-Table 

Figure 1: Mapping Techniques 

(c) Direct 
Mapping 

composed of page identifier and location within that page. 
For each lookup, the tree is traversed from the root. Alter- 
natively, if a large set of sorted logical OIDs needs to be 
mapped, a sequential scan of the leaves is possible. Shore 
[CDF+94] and (presumably) Oracle8 [LMB97] are sys- 
tems employing B-trees for OID mapping. 

2.2.2 Mapping with a Hash Table 

The logical OID is used as key for a hash table lookup 
to find the map entry carrying the actual object address 
(cf. Figure 1 (b)). For example, Itasca [Ita93] and Versant 
[Ver97] implement OID mapping via hash tables. 

2.2.3 Direct Mapping 

The logical OID constitutes the address of the map entry 
that in turn carries the object’s address. In this respect, the 
logical OID can be seen as an index into a vector contain- 
ing the mapping information. Direct mapping is immune to 
hash collisions and always requires only a single page ac- 
cess (cf. Figure 1 (c)). Furthermore, since the logical OIDs 
are not stored explicitly in the map, a higher storage den- 
sity is achieved. Direct mapping was used in CODASYL 
database systems and is currently used in BeSS [BP95]. 

3 Functional Join Algorithms 

The subsequent discussion of the algorithms is based on the 
following very simple abstract schema: 

create type R-t as ( create type S-t as ( 
RData char(200), SAttr number, 
SrefSet set(ref(S+)), SData char(200), 
. .); . .); 

create table R of R-t; create table S of S-t; 
The example queries we wish to discuss are the 
following-one with an aggregation, the other without:* 

select r.RData, select r.RData, 
(select sum(s.SAttr) (select s.SAttr 
from r.SrefSet s) from r.SrefSet s) 

from R r; from R r; 

2Note that the query on the right-hand side is not standard SQL be- 
cause the nested query returns a set of tuples. However, some ORDBMS 
products do already support this-and in OQL this query is also possible 
(in a slightly different syntax, though). 

3.1 Known Algorithms 

3.1.1 The Naive Pointer-Chasing Algorithm 

The naive, pointer chasing algorithm scans R and traverses 
every reference stored in the nested set Sreflet individually. 
For logical OIDs, first the Map is looked up to obtain the 
address of the referenced S object which is then accessed. 
If the combined size of the Map and S exceeds the memory 
capacity this algorithm performs very poorly. 

In a system employing physical OIDs the naive algo- 
rithm does not need to perform the lookup in the Map. 
However, the access to the page the physical OID is refer- 
ring to may reveal that the object has moved to a different 
page. In this case, the forward pointer has to be traversed in 
order to retrieve the object. Again, the algorithm performs 
very poorly if the size of S exceeds the memory capacity. 

3.1.2 The Flatten-Algorithms 

These algorithms flatten (unnest) the SrejSet attribute and 
partition or sort the flat tuples to achieve locality. For iogi- 
cal OIDs the evaluation plan looks as follows: 

VSAttr:SottrSet /‘SrefSet:Sref (( (R) W, Map) W, S) 

Here, psrejset:sref denotes the unnest (flatten) operator which 
replicates the R objects and replaces the set-valued attribute 
Srefset with the single-valued attribute Sref. The nest oper- 
ator vsArtr:sottr&t forms a set-valued attribute SuttrSet from 
SAttr [SS86]. The functional join is denoted by W, to in- 
dicate that for every (left) argument the corresponding join 
partner of the right argument is “looked up.” To perform 
the two functional joins with the Map and with S, respec- 
tively, two techniques can be applied to achieve locality: 
partitioning and sorting. 

If partitioning is applied, the flattened R tuples are par- 
titioned such that each partition refers to a memory-sized 
partition of the Map. Upon replacing the logical OID in 
Sref by the address obtained from the Map the tuples are 
once again partitioned for the next functional join with S. 
Instead of partitioning, one could also sort the flattened R 
tuples. For the Map lookup the tuples are sorted on the Sref 
attribute and for the second functional join they are sorted 
on the addresses of S objects. 

The final v (nesting) operation is evaluated by grouping 
the flattened R tuples based on the OIDs of the original R 
objects. Grouping can be done by a sort-based or by a hash- 
based algorithm. 

For physical OIDs the evaluation plan omits the first 
functional join with the Map. 

3.1.3 Value-Based Join 

The value-based join plan is as follows: 

VSAttr:SattrSet (WejSet:Sref CR) WR.Sref=S.OID s) 

We assume that every object “knows” its OID-here 
S.OZD. Note that this plan is equally applicable for logical 
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and physical OID realizations because the object references 
are not traversed but only compared. 

3.2 The PartitionMerge-Algorithm P(PM)*M 

The partition/merge-algorithm is an adaptation of the above 
flatten/partition-algorithm in the way that it retains the 
grouping of the flattened R tuples across an arbitrary num- 
ber of functional joins. This is achieved by interleaving par- 
titioning and merging in order to retain (very cheaply) the 
grouping after every intermediate partitioning step. This is 
captured in the notation P(PM)*M. We will first describe 
the basic P(PM)‘M-algorithm which is applied when eval- 
uating a single functional join under logical OIDs. More 
intermediate PM-steps are needed when longer functional 
join chains are evaluated (cf. Section 3.4). 

In the P(PM)‘M-algorithm two joins are performed: (1) 
R is joined with the Map to replace the logical OIDs by 
their physical counterparts and (2) the result is joined with 
S. For evaluating the joins we will adapt the hash join al- 
gorithm. The probe input is R for the first join and R with 
the logical OIDs replaced by their physical counterparts- 
then called RM-in the second phase. Unlike the original 
hash join algorithm, only the probe input is explicitly par- 
titioned.3 The build input, i.e., the Map and S, are either 
faulted into the buffer or-if range partitioning is applied- 
loaded explicitly (i.e., prefetched) into the buffer. In both 
cases, however, a partitioning step for the Map and S in- 
volving additional disk i/o is not required. 

The successive steps of the partition/merge-algorithm 
can be visualized as follows: 

flatten and partition --) 
join with Map to obtain RM 

R N-way 
and partition RM + . . . 

(N * K)-way 

. . . + re-merge RM to K partitions 
and join with S 

-+ merge 

That is, the partition/merge-algorithm first flattens the R ob- 
jects and partitions them, then applies the mapping from 
logical to physical OIDs, partitions the resulting RM, then 
re-merges the initial partitioning and performs the join with 
S, and finally merges the partitions to restore the over-all 
grouping of the flat R tuples belonging to the same R ob- 
ject. 

We need two partitioning functions hM and hs: 

hw partitions the Map into N memory-sized chunks by 
mapping logical OIDs of S to the partition numbers 1 
to N and 

hs partitions S into K memory-sized chunks by map- 
ping addresses of S objects to the partition numbers 1 
to K. 

3For simplifying the presentation, we assume that the partitioning can 
be done in one recursion level-however, this is not required for the algo- 
rithm to work. 

That is, Map is partitioned into partitions Ml, . . . , MN and 
S into S 1, . . . , SK. Actually, these partitioning functions are 
not applied on Map and S but on the logical OIDs stored in 
the nested sets of R and on their physical counterparts-in 
RM after applying the mapping. 

In more detail, the algorithm performs the following 
four steps: 

1. 

2. 

3. 

4. 

Flatten the nested SrejSets and partition the flat R ob- 
jects/replicas into N partitions, denoted RI,. . . , RN. 
That is, for every object [r,{Srefl,. . . ,Srefi}] E R gen- 
erate the 1 flat tuples [r,Srefi], . . . , [r,Sre$] and in- 
sert these tuples into their corresponding partitions 
h(srefi), . . . , hM(Srefi), respectively. Of course, the 
R attributes (R-Llata in our example query) need not 
be replicated. It is sufficient to include them in one of 
the flat tuples or, often even better, to leave them out 
and re-merge them at the end (cf. Section 3.5). The 
partitions are written to disk. 
For all 1 5 i 2 N do: 

l For (every) partition Ri the K initially empty par- 
titions denoted RMil , . . . , RMiK are generated. 

l Scan Ri and for every element [r,Sref] E Ri do: 
- Replace the logical OID Sref by its physical 

counterpart Suddr obtained (probed) from 
the i-th partition Mi of the Map. 

- Insert the tuple [r,Suddr] into the partition 
RMij where j = hs(Suddr). 

Note that all OID mapping performed in this step 
concerns only partition Mi of the Map, which is 
either prefetched or faulted into the buffer. 

Having completed step 2., all the N * K partitions 
RMlr,. . . ,RM~K, RM21,. . . , RMNK are on disk. 
For all 1 _< j 5 K do: 

Scan the N partitions RMlj,. . . ,RMN,~ simul- 
taneously and merge them into a single tuple 
stream. The merging is done to restore the 
grouping of the flat R tuples according to R 
OIDs; that is, the merging generates the tuple 
stream [rt ,... I,. . ., [q ,... 1, [r2 ,... I,. . . . 

For every tuple [r,Suddr] the functional join with 
S is performed by looking up the S object at lo- 
cation Saddr and the relevant information, here 
SAttr, is retrieved. Insert the tuple [r,SAttr] 
into partition RMSj. 
All S objects referenced in this step belong to 
the j-th partition Sj of S which is prefetched or 
faulted into the buffer-again, the partitioning 
ensures that the entire Sj fits into memory. 

After completion of step 3., the K partitions 
RMS t ,. . . ,RMSK are on disk. 
Scan all partitions RMSl , . . . , RMSK simultaneously 
and re-assemble the flat tuples into the nested repre- 
sentation, i.e., group the tuples according to R-OIDs. 
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Figure 2: An Example Application of the Partition/Merge-Algorithm P(PM)*M ( 4 denotes the lookup of the functional 
join; for simplicity, the handling of the additional R attribute RDatu is not shown) 

We note that the partition/merge-algorithm writes the (aug- 
mented) R to disk three times: (1) to generate the N par- 
titions of the probe input for the application of the Map, 
(2) to generate the N * K partitions after applying the Map, 
and (3) the K partitions obtained after joining with S. The 
intermediate N * K-way partitioning and subsequent N-fold 
merging of the N * K partitions into K partitions is the key 
idea of this algorithm. This way the grouping of the flat- 
tened R tuples is preserved across the two partitioning steps 
with different partitioning functions hM and hs. Please ob- 
serve that immediately distributing the objects into the K 
partitions after applying the Map would have destroyed the 
grouping on R that we want to retain in every partition. 

In this respect the partition/merge-algorithm induces the 
same i/o-overhead as the basic flatten-algorithms of Sec- 
tion 3.1.2. However, the CPU cost of the partition/merge- 
algorithm is far lower than for the basic flatten-algorithms 
because there is no in-memory re-grouping involved. The 
flat tuples of the same R object are always in sequen- 
tial order in all the partitions-it may only happen that 
some partitions do not contain any tuple. Furthermore, the 
P(PM)*M-algorithm gives room for optimizations based on 
the retained grouping that are not applicable to other algo- 
rithms (cf. Section 3.5). 

3.3 An Example of the P(PM)*M-Algorithm 

Figure 2 shows a concrete example application of the 
P(PM)*M-algorithm with two partitioning steps. The ta- 
bles Ri, RMi,i and RMSi are labelled by a disk symbol to 
indicate that these temporary partitions are stored on disk. 

We start with table R containing two objects with logical 
OIDs r-1 and r2-for simplicity, any additional R attributes 

are omitted. The set-valued attribute Sreflet contains sets 
of references (logical OIDs) to S. The first processing step 
flattens these sets and partitions the stream of flat tuples. In 
our example, the partitioning function hM maps {a,. . . , d} 
to partition R1 and {e, . . . , i} to partition R2. The next pro- 
cessing step starts with reading R1 from disk, maps the log- 
ical OIDs in attribute Sref to object addresses using the por- 
tion Mt of the Map (note that the Map is not explicitly par- 
titioned) and in the same step partitions the tuple streams 
again with partitioning function hs (hs maps { 1,. . . ,4} to 
partition 1 and (5,. . . ,9} to partition 2. The resulting par- 
titions RMli (here 1 5 j 5 2) are written to disk. Process- 
ing then continues with partition R2 whose tuples are parti- 
tioned into RM2j (1 5 j 2 2). Once again, let us emphasize 
that the fine-grained partitioning into the N * K (here 2 * 2) 
partitions is essential to preserve the order of the flat R tu- 
ples belonging to the same R object. The subsequent merge 
scans N (here 2) of these partitions in parallel in order to 
re-merge the fine-grained partitioning into the K partitions 
needed for the next functional join step. Skipping the fine- 
grained partitioning into N * K partitions and, instead, par- 
titioning RM into the K partitions right away would not 
preserve the ordering of the R tuples. In detail, the third 
phase starts with merging RMl1 and RM21 and simultane- 
ously dereferences the S objects referred to in the tuples. In 
the example, [r-1,2] is fetched from RMl1 and the S object 
at address 2 is dereferenced. The requested attribute value 
(SAttr) of the S object-here 1 l-is then written to par- 
tition RMSl as tuple [ri,ll]. After processing [r1,31 from 
partition RMlt , [rl ,l] is retrieved from RM21 and the object 
address 1 is dereferenced, yielding a tuple [rl, 171 in par- 
tition RMS,. Now that all flattened tuples belonging to r-1 
from RMl1 and RM21 are processed, the merge continues 
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with r2. After the partitions RMlt and RM21 are processed, 
RMl2 and RM22 are merged in the same way to yield a sin- 
gle partition RMS2. As a final step, the partitions RMSl and 
RMSz are merged to form the result RMS. During this step, 
the flat tuples [r,SAttr] are nested (grouped) to form set- 
valued attributes [r,{SAttr}]. If aggregation of the nested 
SAttr values had been requested in the query, it would be 
carried out in this final merge. 

3.4 P(PM)*M, Physical OIDs, Path Expressions 

At first glance, repeatedly partitioning and re-merging ap- 
pears unnecessary for systems employing physical OIDs 
where the intermediate join with the Map is not needed. 
In fact, in the simple case of a one-step functional join 
the variant P(PM)‘M is applied. However, the full-fledged 
P(PM)*M-algorithm is necessary if the query traverses a 
longer path expression. Consider, for example, the follow- 
ing query where we want to group to each Customer the set 
of Manufacturers from which he or she has ever ordered 
goods: 

select c.Name, (select l.ProductRef.ManufRef.Name 
from c.OrderRefSet o, o.LineItems I) 

from Customers c 
Here we assume additional types Customer and Manufac- 
turer with the attribute Name. Customers refer via a nested 
reference set OrderRejSet to the given Orders. Manufac- 
turers are referenced from Products via the reference at- 
tribute Manuflef. 

Another query would be to determine the Customers’ 
aggregated Order volumes: 

select c.Name, (select sum (I.Quantity * l.ProductRef.Cost) 
from c.Orders o, o.LineItems 1) 

from Customers c 
Let us, however, concentrate on the Manufacturer query. 
The P(PM)*M evaluation plans for physical OIDs and log- 
ical OIDs are outlined in Figure 3 (a) and (b), respec- 
tively. Both plans contain two unnesting operations to flat- 
ten the OrderRejSet and the LineItems sets, respectively. 
When comparing the two plans, they differ mainly in the 
higher number of functional joins needed for mapping log- 
ical OIDs. We assume different Maps Mapo, Mapp, and 
MapM for Orders, Products, and Manufacturers, respec- 
tively. The plan based on physical OIDs draws profit from 
the interleaved partition/merge (PM) steps in the same way 
as the one based on logical OIDs, i.e., the grouping of Cus- 
tomers’ Orders and their LineItems is retained across the 
successive functional joins. Therefore, the final grouping 
operation is realized as a (very cheap) merge, in both plans. 

3.5 Fine Points of the P(PM)*M-Algorithm 

There are still some fine points in the design of the 
P(PM)*M-algorithm that we have to address. 

M @iwUP) M (group) 

da 
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Figure 3: Manufacturer Query Using (a) Physical and (b) 
Logical OIDs 

Obtaining an Order on R The algorithm requires an or- 
der on the R tuples for the merge iterators. When compar- 
ing tuples from different partitions-e.g., [r2,6] from RM12 
and [rl,5] from RM22 in Figure 2-it has to be determined 
in what order r-1 and r2 were contained in the original R. 
If there is no such order given by the key on R, an addi- 
tional sequence number is inserted during the first “flatten 
and partition” step and used for the succeeding merge steps. 
Note that all flattened tuples of one R object are assigned 
the same sequence number. 

Map Access For the first partitioning phase of the 
P(PM)*M-algorithm the particular mapping technique has 
to be taken into account. In general, a partitioning func- 
tion hM that achieves range partitioning is favorable. For 
direct mapping and hash table mapping the difference be- 
tween range partitioning and “dispersed” partitioning is 
highlighted as follows: 

(a) Dispersed Partitioning 
III1 Y5IIIII Y~lllll m 

Ml M2 M3 MI M2 M3 Ml M2 M3 

, i (b);~i$,$ii~i, i 

Ml Ml Ml M2 M2 M2 M3 M3 M3 

Range partitioning has two advantages: (1) Even if the 
pages of one partition are individually faulted into the 
buffer, the disk accesses are all in the same vicinity. (2) 
Instead of demand paging, range partitioning allows to 
prefetch the entire partition from disk, thereby transform- 
ing random i/o into chained i/o. However, prefetching is 
only reasonable if (almost) all pages of the Map are actu- 
ally accessed in performing the OID mapping. In a sys- 
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tern where the same Map is shared by many object types 
prefetching would not be reasonable. 

Achieving range partitioning for direct mapping is quite 
simple given the range of pages in the Mup because every 
logical OID is composed of page identifier and slot within 
that page. 

If a hash table mapping scheme is used, the same hash 
function has to be applied to the logical OIDs and then the 
hashed values (containing the page identifier) can be range 
partitioned. 

For a B+-tree mapping scheme prefetching a partition 
is only feasible if the pages of one partition are physically 
adjacent which is typically not the case because of the dy- 
namic growth of the B+-tree. However, for OIDs that are 
sequentially generated the B+-tree may be built (or reorga- 
nized) such that adjacent leaf pages are actually physically 
adjacent 

Access to S Similarly to the partitioning step for the Map 
access, range partitioning is beneficial in any following par- 
titioning step if the accessed data structure is clustered and 
the query engine has enough knowledge about the physical 
organization. If the partitioning function for the access to S 
achieves range partitioning on the pages S is stored on, the 
accesses to S objects belonging to one partition are more lo- 
calized. Furthermore, instead of faulting in each individual 
page of S, the whole range of S that is used for a particu- 
lar partition can be prefetched in large chunks of sequential 
i/o. 

Full Unnesting vs. Retaining Sets The P(PM)*M- 
algorithm as described above flattens the SrejSet attribute 
to a single-valued attribute Sref Instead of fully unnest- 
ing SrefSet, it is also feasible to keep the set intact as much 
as possible, i.e., the partitioning operators split the set into 
subsets each of which containing those elements that be- 
long to the same partition. That is, for every object r E R 
there is at most one tuple in every partition. This tuple 
contains a nested set containing those references belong- 
ing to the particular partition. For example, the first parti- 
tioning operator gets the complete set Sreflet as input and 
partitions it into at most N tuples and at most one tuple 
per partition, each of which again contains a set-valued at- 
tribute. Referring to the example in Figure 2, the first R ob- 
ject [rl ,{b, e, c,g, i}] would be split into [rl, {b, c}] (written 
to partition RI) and [rl, {e,g, i}] (written to R2). 

This approach avoids multiple flat tuples for the same R 
object in the same partition; thus it is most beneficial for 
larger sets SrejSet, for small partitioning fan-outs and for 
non-uniformly distributed references. Of course, keeping 
the sets requires higher implementation effort. The query 
engine has to offer “set-aware” variants of some iterators: 
The partitioning iterator must be capable of splitting nested 
sets, and the join iterators must iterate through all elements 
of the nested sets. Our query engine-described briefly in 
Section 4-is capable of processing nested sets. 

Projecting R Attributes If “bulky” attributes of R are re- 
quested in the result, they may severely inflate the amount 
of data that is written three times to partition files. To 
reduce this effect, several measures can be taken: First, 
the replication of attributes during flattening is unneces- 
sary. Instead, for every ri E R the attributes are written only 
once. Second, since the algorithm retains the order of R, 
the attributes could be projected out and merged in later for 
the final result. In contrast to the value-based join and the 
standard flatten-algorithm, the re-insertion of R attributes 
is in fact very cheap, since both R and the result have the 
same order and the R attributes are simply handled as an 
additional-(K + 1)-St-input stream of the last merge op- 
erator. If the second scan on R would be expensive (e.g., 
because of high selectivity on R), the bulky attributes of the 
qualifying R objects might be saved in a temporary segment 
during the initial scan for reuse in the final merge. 

Early Aggregation If aggregation is requested on the re- 
sult sets in addition to grouping, the aggregation can be 
folded such that it is already applied to the subgroups be- 
longing to the same R object before they are written to 
RMSj. This may result in storage savings for RMS.i. Dur- 
ing the final merge, the intermediate aggregation results are 
then combined. This is easily achieved for the aggrega- 
tions sum, min, max, count which constitute commutative 
monoids [GKG+97]-i.e., operations that satisfy associa- 
tivity and have an identity. For, e.g., avg more information 
has to be maintained to enable early aggregation. 

Buffer Allocation The algorithm consists of several con- 
secutive phases, each of which stores its intermediate re- 
sults entirely on disk. This simplifies database buffer allo- 
cation, since the memory available to the query can be allo- 
cated exclusively to the current phase. The four phases may 
be easily derived from the example in Figure 2: They are 
delimited by the three sets of partitions Ri, RMi,j, and RMS,j 
that are stored on disk. Consequently, the four phases are: 
(1) initial processing of R ending with the first set of parti- 
tions Ri, (2) Map lookup, (3) dereferencing S, and (4) final 
merge. For phases (2) and (3), the major amount of mem- 
ory is allocated to cache the Map and S, respectively, and 
only a small amount is allocated to input and output buffers 
for the partitions. Summarizing, the P(PM)*M algorithm 
is very modest in memory requirements; that is, because 
of its phased “stop and go”-approach and since it does not 
require a costly grouping, it tolerates small main memory 
sizes very well whereas other algorithms easily degrade if 
main memory is scarce in comparison to the database size. 

4 Proof of Concept 

To compare the evaluation algorithms, we have imple- 
mented them in our iterator-based query engine. In this 
section we will first outline the implementation of the 
P(PM)*M-algorithm and then describe a few performance 
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measurements we have taken with our query engine. A 
more comprehensive assessment based on a cost model is 
given in Section 5. 

4.1 Partition/Merge-Implementation 

Our query engine is based on the iterator model [Gra93] 
and is implemented in C++. Figure 4 gives an outline of the 
implementation of our P(PM)*M-algorithm. The dashed 
boxes indicate the new special-purpose PM-operators that 
are composed of two “off-the-shelf” iterators. For the ba- 
sic functional join from R to S along SrefSet, processing 
starts with a scan of R, applying an optional selection pred- 
icate and projecting out unwanted attributes, but keeping at 
least the set-valued attribute Srefset of R and a key for R. 
SrejSet is then flattened by the unnest operator P yielding 
tuples with single-valued attribute Sref. The first partition- 
ing iterator PN partitions the input into N partitions based 
on a partitioning function hM--as introduced before. The 
second half of the iterator scans the partitions one at a time 
and passes the tuples to the functional join with the Map, 
probing every logical OID in Sref against the Map and re- 
placing it by the address Saddr. The partition size and the 
partitioning function hM are chosen depending on the OID 
mapping technique such that the Map lookup can be eval- 
uated in memory (see Section 3.5). The join output is di- 
rectly fed into the next partitioning operator PMNK. This 
time the physical OIDs, now stored in Saddr, serve as par- 
titioning key, and each of the N input partitions obtained 
from the prior join is split into K output partitions yielding 
totally N * K partitions stored on disk. The dotted arrow be- 
tween PN and PMNK symbolizes a communication channel 
that tells PMNK to start a new set of partitions each time an 
input partition has been completed. Instead of processing 
all N * K partitions consecutively, we first re-merge those N 
partitions referring to the same partition of S objects. That 
is, we merge one matching subpartition from each of the 
initial N partitions, yielding K partitions as output of the 
merge operator. Each of the K partitions is then in turn 
joined with S and the join result is again written to a parti- 
tion file by an operator called “cache.” In a final step, the K 
partitions are merged to form a single output stream. If we 
projected out some “bulky” R attributes that are needed in 
the final result, we would very cheaply re-merge this infor- 
mation in this final merge by simply adding R (or the tem- 
porary segment containing the projected data of R) as the 
(K + 1)-st merge stream to the merge operator. If required, 
an aggregation is performed on the result, as indicated by 
‘Aggr.” Note that since the order of R is retained, the re- 
sult is already grouped by the key of R such that only the 
aggregation function itself (like sum) has to be computed. 

4.2 Benchmark Setup 

The benchmarks were performed on a Sun SparcStation 20 
running under Solaris 2.6, The database was held on the 
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Figure 4: P(PM)*M-Implementation 

operating system disk together with the database system, 
and another disk was used for temporary files. In order to 
avoid side effects because of file system caching, the di- 
rect ilo option was turned on for all file accesses. Thus, we 
ensured that each file access of the database system defi- 
nitely caused disk i/o and could not be satisfied from the 
OS file system cache. This is especially important for our 
first experiments on the small database. Writing the result 
tuples to display/file was suppressed for all queries-also 
the relational ones (see below). 

The database buffer cache was segmented and config- 
ured according to the optimizer (cost model) estimation in- 
dividually for each query plan. For the run time experi- 
ments, the total amount of cache available to a query did 
not exceed 2 MB at any time. Direct mapping was em- 
ployed to resolve logical OIDs. 

We restrict ourselves to the query with aggregation 
given in Section 3. For the query without aggregation, the 
final aggregation operator would be replaced by a group- 
ing operator. Since for each R object the complete group 
of SAttr had to be conserved instead of a single aggrega- 
tion result, all algorithms requiring an explicit grouping, 
i.e., the flatten-algorithms and the value-based join, would 
become even more expensive, whereas the algorithms that 
retain the initial grouping would not suffer much from the 
larger result. 

We have tried to evaluate the query on a commer- 
cial relational DBMS with object-relational extensions 
(O/RDBMS).4 For this purpose, we have created types 
and tables as described in Section 3. The references were 
scoped, i.e., they were constrained to point only to a single 
table (S) using the SQL3-like scope clause. However, the 
query crashed after a few hours with DBMS errors for our 

40~r license prohibits to identify the particular product 
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database 1 [RI IS) ISrefsetl R pages Spages 
small I 10000 10000 10 994 667 
larger 100000 100000 10 9933 6667 
database Map pages R object size S object size 
small 61 348 228 
larger 591 348 228 

Table 1: Database Cardinalities 

initial (larger) database, such that we had to fall back to a 
smaller database in order to get any results for comparison. 
The cardinalities of both the small and the larger database 
are given in Table 1. The references in Srefset were dis- 
tributed uniformly over the full extent of S. 

The O/RDBMS was installed on a faster machine (SS20 
with CPUs clocked 50% higher and faster disks) and con- 
figured with 2 MB buffer-as in our other setup. For 
comparison, we have also used the same commercial 
O/RDBMS for a pure (flat) relational representation with- 
out using references and nested sets. In this schema, the 
reference set SrejSet has been omitted and an additional 
table RS has been created to implement the association 
between R and S. Consequently, the RS table contained 
(RI * 10 rows. To compensate for the lacking OIDs, the ta- 
bles R and S were extended to contain additional integer 
(key) attributes R-key and Skey, respectively. Tuples of 
R and S had a size of 204 byte each-the smaller R tuple 
size in comparison to the R object size of 348 bytes is due 
to the missing nested reference set in the pure relational 
schema. The table RS contained only the two attributes 
RSRkey and RSSkey that served as foreign keys for R and 
S, respectively. The folIowing query, which (apart from 
Rkey) yields the same result as the object-relational one, 
was measured: 
select r.R-key, r.RData, sum(s.SAttr) 
from R r, S s, RS rs 
where rs.RS-Skey = s.S-key and rs.RS-Rkey = r.Rkey 
group by r.R-Key, r.RData 

4.3 Comparison of Measured Run Times 

We have created both databases described in Table 1 on our 
prototypical OODBMS and implemented all algorithms de- 
scribed in the previous section. For the plans either a 
cheap “stream” aggregation algorithm (only calculating the 
sum) was employed if the grouping on R was retained 
(P(PM)*M and naive) or a hash aggregation was used if 
the initial grouping has been destroyed (sort, partition and 
value-based plans). The value-based plan was implemented 
using a hybrid hash join with S as build input. For the 
P(PM)*M-algorithm, some of the optimizations described 
in Section 3.5 were implemented: The sets were retained 
(no full unnesting), range partitioning was applied for the 
access to S, and the bulky RData attribute was projected 
out and re-merged in the final step. 

Table 2 gives an overview of the observed run times for 
all algorithms. For comparison, the predictions of our cost 

model (cf. Section 5) are also shown. Furthermore, the run 
times of the queries on the O/RDBMS are given for two 
variants: (1) based on the object-relational schema of Sec- 
tion 3 with the nested reference set Srefset and (2) on the 
pure flat relational schema with the additional table RS. 

The value-based join performs quite well on the small 
database since the build input (S) is projected to contain 
only two attributes, the OID and SArtr. It is, however, not 
cheaper than the P(PM)*M-algorithm since the final hash 
aggregation causes additional cost that does not occur in 
the P(PM)*M plan. On the larger database, it can no longer 
keep its complete build input in memory and, as a con- 
sequence, has to perform an expensive hash aggregation. 
When comparing the P(PM)*M run time to the naive algo- 
rithm, there is a performance gap of more than an order of 
magnitude: On the larger database, the absolute run time 
of the naive algorithm amounts to more than five hours, 
while our P(PM)*M-algorithm requires only less than five 
minutes. The P(PM)*M-algorithm also outperforms all the 
flatten-algorithms, though not as drastically as the naive 
pointer chasing algorithm. The sort-based flatten plan suf- 
fers from high CPU cost for sorting and small run files due 
to the restricted amount of memory. 

For the object-relational schema, the commercial 
O/RDBMS shows an even worse performance than the 
naive algorithm. On the other hand, the query on the flat re- 
lational schema takes reasonable run time, although for the 
larger database still more than twice as much as P(PM)*M 
(in spite of the faster host for the O/RDBMS). 

5 Analytical Evaluation 

We developed a cost model as vehicle for a broader anal- 
ysis. I/o costs are modelled according to [HCLS97] 
and the CPU operation assumptions are mostly based on 
[PCV94] and [HR96]. Our cost model contains extensions 
to deal with set-valued attributes and our new P(PM)*M- 
algorithm. Due to space limitations, we cannot discuss in- 
dividual formulas. The cost formulas model disk i/o quite 
precisely by means of differentiating between seek, latency, 
and transfer time. As a consequence, we are able to grasp 
the difference between sequential and random i/o and the 
influence of the transfer block size. In modelling the CPU 
costs, we have included those operations that have major 
influence on CPU time, e.g., sorting, hashing, buffer man- 
agement (page hit/page fault) and iterator calls. 

Unless stated otherwise, the analyses are based on the 
larger database as described in Table 1. Similarly, the de- 
fault configuration was chosen as before, i.e., 2 MB of 
memory was available and logical OIDs were resolved us- 
ing direct mapping. The labels of the plots are constructed 
from two parts, the first one describing the access method 
to the Map, the second part describing the access to the S 
extent. The access methods are: no partitioning (N), i.e., di- 
rectly chasing each individual pointer, partitioning (P) and 



database small larger 
method our cost commercial O/RDBMS OUT cost commercial O/RDBMS 

prototype model with ref. sets flat rels w/o refs prototype model with ref. sets flat rels w/o refs 
naive 356 461 14893 18219 
flatten/partition 125 136 

flatten/sort 140 168 
value-based 40 56 
P(PM)*M 29 34 1 

1868 2029 

1110 4874 5432 
51 1811 1389 

i- 
721 

289 295 

Table 2: Run Times in Seconds (2 MB Memory, avg. (SrefSetl=lO, Direct Mapping) 
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Figure 5: Cost Model Results for 
Larger Database (Direct Mapping, 

Figure 6: Selection on R (Direct Map- Figure 7: Varying the Cardinality of 
ping, ISrefletl=lO, 2 MB Memory) Srefset (2 MB Memory, Direct Map- 

(SrefSetl=lO) 
merging (M), and sorting (S). The value-based hash join 
does not fit into this classification and is simply labelled 
“hashjoin.” 

5.1 Varying the Memory Size 

The run times of the various algorithms under varying 
memory sizes are reported in Figure 5. The NN plan using 
(naive) pointer chasing both for Map lookup and derefer- 
encing S does not even show up in the plot due to its run 
time of 6’20 hours for 1 MB to 4’ 10 hours for a 6 MB 
buffer. The NS query still uses naive Map lookup, but sorts 
the physical OIDs before accessing S. When comparing NS 
with SS, sorting the flattened R tuples for the Map lookup 
does not pay off because the Mup is smaller than 2 MB (For 
1 MB the sort-based plans are out of the range of the curve 
because for such small memory configurations they need 
several merge phases.) Both sort variants suffer from high 
CPU costs for sorting. The partition plan PP yields already 
significantly better performance than sort-based plans for 
small memory sizes. The performance advantage of parti- 
tioning over sorting for small memory sizes is due to the 
large number of run files generated for sorting. The value- 
based hash join performs even better than PP, but is still 
quite costly compared to the winners PPMM (=P(PM)‘M) 
and NPM (=P(PM)“M). The latter one omits the first par- 
titioning step and shows poor performance for very small 
memory sizes. For 2 MB and larger, the two plans have 
the same run time since PPMM uses only one partition 
for the Map access anyway and, therefore, coincides with 
NPM. The most impressive result of this curve is that the 
P(PM)*M-algorithm tolerates very small memory sizes un- 
der which all other algorithms degrade. 

ping) 
5.2 Varying the Selectivity on R 

In Figure 6 the percentage of R objects taking part in the 
functional joins is varied on the (logarithmically scaled) x- 
axis. For a small number of R objects, most pages of the 
Map are hit at most once and some pages of S are not refer- 
enced at all, such that one might expect a break-even point 
between P(PM)* M and the naive algorithm. However, for a 
high selectivity (e.g., 0.01% corresponding to 10 R objects) 
they have nearly the same run time. That is, even if there 
are only very few references to be resolved, there is no sig- 
nificant overhead induced by our P(PM)*M-algorithm. On 
the other hand, the naive algorithm very quickly degrades if 
the number of references to be mapped increases. Further- 
more, we have plotted the value-based hash join with two 
configurations, using either R or S as build input. Both vari- 
ants are, however, worse than P(PM)*M over the full selec- 
tivity range, and for a small number of R objects they are- 
due to the fix cost for the hash join and hash aggregation- 
even worse than the naive plan. 

5.3 Varying the Set Cardinality 

In the previous experiments, the number of elements in 
Srefset was constantly 10. Figure 7 shows run times of the 
algorithms with different set sizes. While the P(PM)*M- 
algorithm scales linearly, the run times for all others ex- 
plode. The flatten variants behave poorly. The naive plan 
suffers from an enormous amount of random i/o (up to 
50 * 100,000 references, calculated run time of roughly 25 
hours and is therefore not shown) and the flatten plans suf- 
fer from large temporary files. 
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Figure 8: Inflating the OID Map under Figure 9: Value-Based vs. P(PM)*M Figure 10: Comparison of Different 
Varying Memory Sizes (Direct Map- Pointer Join: ISrefSetl=3, Direct Map- OID Mapping Techniques: DM, BT, 
ping) ping, 1 ,OOO,OOO Map Entries and HT, all with P(PM)*M-Algorithm 
k4- Inflating the OID Map ory does not avoid a partitioning step of P(PM)*M and the 

flattened R must still be written to disk partitions. 
So far we assumed a distinct Map for the S objects which, 
as a consequence, is perfectly clustered. In the follow- 
ing experiment, we analyze the behavior of P(PM)*M- 
algorithms for not-so-well clustered OID Maps, as they 
may occur if there is one global OID Map or if only a 
small fraction of S is referenced, e.g., because of a se- 
lection on R. The OID Map for S-previously contain- 
ing 100,000 entries-has been inflated by inserting unused 
entries-uniformly distributed over all pages of the Map- 
to contain up to one million entries. The NPM and PPMM 
queries have been run on the standard database (100,000 
objects of R and S each, 10 elements in SrefSet) with dif- 
ferent amounts of memory available. The legend of Fig- 
ure 8 indicates the size of the Map (100000, . . . , 1000000). 
The smallest symbols denote the configuration that was 
used in Figure 5, i.e., the Map was optimally clustered. 
For larger Maps, the PPMM plan shows only a slight run 
time increase, caused by the inevitably higher number of 
i/o accesses to the larger Map. However, each Map page is 
fetched from disk only once, since the number of partitions 
in the first partitioning step is adapted such that one parti- 
tion of the Map can be cached in memory. On the other 
hand, NPM cannot cope with larger Maps since it induces 
an enormous number of page faults as long as the Map does 
not entirely fit into memory. 

Figure 9 compares the P(PM)*M-algorithm with the 
value-based hash join in an extreme scenario: The set- 
valued attribute Srefset contains only three references on 
average and the Map is inflated to contain one million 
entries-of which 900,000 are obsolete. The number of 
R and S objects remains at 100,000, respectively. This set- 
up favors the value-based hash join extremely, since it does 
not use the Map anyway. Furthermore, the hash join draws 
profit from larger amounts of memory in a larger scale than 
P(PM)*M because of the projection on S: The (projected) 
S that serves as build input for the hash join can be kept in 
memory for large memory configurations (beyond 4 MB) 
such that the join is an in-memory operation. On the other 
hand, the P(PM)*M-algorithm loads and keeps the S pages 
in their entirety in memory. Since the whole S extent of 
ca. 26 MB still does not fit in memory, the additional mem- 

5.5 Comparing Different OID Mapping Techniques 

Figure 10 compares the three OID mapping techniques that 
we have discussed in Section 2.2 for our application, i.e., in 
combination with the P(PM)*M-algorithm. Both B+-tree 
(BT) and hash table mapping (HT) show two performance 
steps. The first step occurs when increasing memory from 
1 MB to 2 MB. Here, the scan and merge operators reach 
their optimal amount of memory. The second step occurs 
when the P(PM)*M-algorithm omits the first partitioning 
phase since the OID mapping structure can be completely 
cached in memory. Since the total size of the Bf-tree is 
smaller than that of the hash table,5 this point is reached 
with a smaller memory size for the BT curve. In addition, 
BT is generally more expensive due to higher CPU cost for 
the tree lookup. The direct mapping (DM) approach is the 
cheapest: The first partitioning step can already be omitted 
at a memory size of 2 MB due to the compact representa- 
tion of the Map. Furthermore, the compact storage of the 
(direct) Map reduces the total number of i/o calls. In addi- 
tion, the CPU overhead for a single Map lookup is cheaper 
for DM than for the other two mapping techniques. 

5.6 Logical OIDs in Comparison to Physical OIDs 

So far, we have assessed our algorithms for different sce- 
narios using logical OIDs. Next, we turn to physical OIDs. 
This simplifies all algorithms since the extra Map lookup 
operation is omitted. Thus, the algorithms are no partition- 
ing (N), sorting (S), partitioning (P), and P(PM)‘M (la- 
belled PM). The value-based hash join is independent of 
the underlying OID realization. For comparison, Figure 11 
additionally includes the NPM and PPMM plans for logi- 
cal OIDs realized with direct mapping. The naive plan does 
not show up in the plot since it ranges between four and five 
hours. The run time for the partition plan P is similar to the 
value-based hash join while the sort-based query performs 
still significantly worse. Not surprisingly, the PM plan per- 
forms slightly better than the P(PM)*M plan for logical 

SDue to prefix compression and a specialized splitting procedure 
[EGK95] the B+-tree contains more entries per page than the hash table. 
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prototype implementation and the quantitative assessment 
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