
Evaluating Functional Joins Along Nested Reference Sets
in Object-Relational and Object-Oriented Databases*

Reinhard Braumandl Jens Claussen Alfons Kemper

Lehrstuhlfir Informatik, Universitiit Passau, 94030 Passau, Germany
(lastname) @db.fm i. uni-passau.de - http://www.db.fmi.uni-passau.de/

Abstract

Previous work on functional joins was constrained
in two ways: (1) all approaches we know as-
sume references being implemented as physical
object identifiers (OIDs) and (2) most approaches
are, in addition, limited to single-valued refer-
ence attributes. Both are severe limitations since
most object-relational and all object-oriented da-
tabase systems do support nested reference sets
and many object systems do implement references
as location-independent (logical) OIDs. In this
work, we develop a new functional join algo-
rithm that can be used for any realization form
for OIDs (physical or logical) and is particu-
larly geared towards supporting functional joins
along nested reference sets. The algorithm can
be applied to evaluate joins along arbitrarily long
path expressions which may include one or more
reference sets. The new algorithm generalizes
previously proposed partition-based pointer joins
by repeatedly applying partitioning with inter-
leaved re-merging before evaluating the next func-
tional join. Consequently, the algorithm is termed
P(PM)*M where P stands for partitioning and M
denotes merging. Our prototype implementation
as well as an analytical assessment based on a cost
model prove that this new algorithm performs su-
perior in almost all database configurations.

*This work was supported in part by the German National Research
Foundation DFG under contracts Ke 401/6-2 and Ke 40117-I.

Permission to copy without,fee ull or part of this materiul is grunted pro-
vided that the copies crre not made or distributed for direct commercial
advuntuge, the VLDB copyright notice und the title qf the public&m and
irs dute appear; and notice is given rhcrt copying is by permission of the
Very Large Dutu Base Endowment. 7i1 copy otherwise, or to republish,
requires u,fee an&r special permission,from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

110

1 Introduction

Inter-object references are one of the key concepts of
object-relational and object-oriented database systems.
These references allow to directly traverse from one ob-
ject to its associated (referenced) object(s). This is very
efficient for navigating within a limited context-so-called
“pointer chasing”-applications. However, in query process-
ing a huge number of these inter-object references has to be
traversed to evaluate so-called functional joins. Therefore,
naive pointer chasing techniques cannot yield competitive
performance. Consequently, several researchers have in-
vestigated more advanced pointer join techniques to opti-
mize the functional join. First of all, there are approaches
to materialize (i.e., precompute) the functional joins in the
form of generalized join indices [Val87]. [BK89] was the
first proposal for indexing path expressions, and the access
support relations [KM901 are another systematic approach
for materializing the functional join along arbitrarily long
path expressions; it was later augmented to join index hier-
archies [XH94]. Many more proposals exist by now.

[SC901 were the first who systematically evaluated three
pointer join techniques (naive, sorting, and hash partition-
ing) in comparison to a value-based join. Their work
was augmented by [DLM93] to parallel database systems.
[DLM93] also allowed nested sets of references, but they
did not report on how to re-establish the grouping of the
nested sets after performing the functional join. [CSL+90]
incorporated some of the key ideas of pointer joins in the
Starburst extensible database system. The emphasis in this
work was on supporting hierarchical structures, i.e., one-
to-many relationships, with hidden pointers. [GGT96] con-
centrate on finding the optimal evaluation order for chains
of functional joins. Thus it complements our work: We
devise an algorithm to efficiently evaluate a functional join
within the query engine while they are concerned with find-
ing the best evaluation order.

Unfortunately, the previous work on functional joins
was constrained in two ways: (1) all approaches we know
assume references being implemented as physical object
identifiers (OIDs) and (2) most approaches are, in addition,
limited to single-valued reference attributes. Both are se-

vere limitations since most object-relational and all object-
oriented database systems do support nested reference sets
for modelling many-to-many and one-to-many object asso-
ciations and many object systems do implement references
as location-independent (logical) OIDs. In this work, we
develop a new functional join algorithm that can be used
for any realization form for OIDs (physical or logical) and
is particularly geared towards supporting functional joins
along reference sets. The algorithm can be applied to evalu-
ate joins along arbitrarily long path expressions which may
include one or more reference sets. The new algorithm gen-
eralizes previously proposed partition-based pointer joins
by repeatedly applying partitioning with interleaved re-
merging before evaluating the next functional join. Conse-
quently, the algorithm is termed P(PM)*M where P stands
for partitioning and M denotes a merging.

Before going into the technicalities let us motivate our
work by way of a simplified order-inventory example ap-
plication. In an object-oriented or object-relational schema
the LineItems that model the many-to-many relationship
between Orders and the ordered Products would most natu-
rally be modelled as a nested set within the Order objects:’
create type Order as (create type Product as (

OrderNumber number, ProductID number,
LineItems set(tuple(Quantity number, Cost number,

ProductRef ref(Product))) . . .);
. ..).

Here, Order refers to the ordered Products via a nested set
of references in attribute Lineltems. Let Orders be a rela-
tion (or type extension) storing Order objects. Then, in an
example query we could retrieve the Orders’ total values:

The remainder of this paper is organized as follows: In
Section 2 we give a short overview of physical and logical
OID realization techniques. Section 3 overviews the known
algorithms and introduces our new P(PM)*M-algorithm.
Section 4 explains the integration of our algorithm into
our iterator-based query engine and gives an initial perfor-
mance comparison. In Section 5 we present a more com-
prehensive performance analysis based on a cost model by
comparing the algorithms for different database configura-
tions. Section 6 concludes the paper.

2 Realization of Object Identifiers

Object identity is a fundamental concept to enable object
referencing in object-oriented and object-relational data-
base systems. Each object has a unique object identifier
(OID) that remains unchanged throughout the object’s life
time. There are two basic implementation concepts for
OIDs: physical OIDs and logical OIDs [KC86].

2.1 Physical Object Identifiers

Physical OIDs contain parts of the initial permanent ad-
dress of an object, e.g., the page identifier. Based on this
information, an object can be directly accessed on a data
page. This direct access facility is advantageous as long
as the object is in fact stored at that address. Updates to
the database may require, however, that objects are moved
to other pages. In this case, a place holder (forward ref-
erence) is stored at the original location of the object that
holds the new address of the object. When a moved object
is referenced, two pages are accessed: the original page

select o.OrderNumber, (select sum(l.Quantity * 1.ProductRef.Cost) containing the forward and the page actually carrying the
from o.LineItems I)) object. With increasing number of forwards, the perfor-

from Orders o; mance of the DBMS gradually degrades, at some point
Logically, the query starts at each Order o and traverses making reorganization inevitable. 02 [02T94], Object-
via the nested set of references to all the ordered Prod- Store [LLOW91], and (presumably) Illustra [Sto96, p. 571
ucts to retrieve the Cost from which the total cost of the are examples of commercial systems using physical OIDs.
Order is computed. Note that, unlike in a pure (flat) re-
lational schema, the nested set of LineItems constitutes an 2.2 Logical Object Identifiers

explicit grouping of the Lineltems belonging to one Order Logical OIDs do not contain the object address and are thus
that is, in most systems, also maintained at the physical location independent. To find an object by OID, however,
level. Our new algorithm exploits this physically main- an additional mapping structure is required to map the logi-
tained grouping. However, we do, of course, avoid the cal OID to the physical address of the object. If an object is
danger of “thrashing” that is inherent in a naive nested moved to a different address, only the entry in the mapping
loops pointer chasing approach. Our prototype implemen- structure is updated. In the following, we describe three
tation as well as a comprehensive analytical assessment data structures for the mapping. [EGK95] give details and
based on a cost model prove that this new algorithm per- a performance comparison.
forms superior in almost all configurations. In particular,
our P(PM)*M-algorithm performs very well even for small 2.2.1 Mapping with a B+-Tree
memory sizes. The logical OID serves as key to access the tree entry con-

‘Throughout the paper we will use some (pseudo) SQL syntax that taining the actual object address (cf. Figure 1 (a)). In this
is close to the commercial ORDBMS product that we used for compari-
son purposes. Unfortunately, the commercial ORDBMS products do not

graph, a letter represents a logical OID and a number de-

entirely obey the SQL3 standard. Length limitations prevent us from ad-
notes the physical address of the corresponding object (e.g.,

ditionally showing the standardized ODMG object types and OQL queries the object identified by a is stored at address 6). Here, we
[CBB+97]-but they are very similar. use simplified addresses; in a real system the address is

111

(a) B+-tree (b) Hash-Table

Figure 1: Mapping Techniques

(c) Direct
Mapping

composed of page identifier and location within that page.
For each lookup, the tree is traversed from the root. Alter-
natively, if a large set of sorted logical OIDs needs to be
mapped, a sequential scan of the leaves is possible. Shore
[CDF+94] and (presumably) Oracle8 [LMB97] are sys-
tems employing B-trees for OID mapping.

2.2.2 Mapping with a Hash Table

The logical OID is used as key for a hash table lookup
to find the map entry carrying the actual object address
(cf. Figure 1 (b)). For example, Itasca [Ita93] and Versant
[Ver97] implement OID mapping via hash tables.

2.2.3 Direct Mapping

The logical OID constitutes the address of the map entry
that in turn carries the object’s address. In this respect, the
logical OID can be seen as an index into a vector contain-
ing the mapping information. Direct mapping is immune to
hash collisions and always requires only a single page ac-
cess (cf. Figure 1 (c)). Furthermore, since the logical OIDs
are not stored explicitly in the map, a higher storage den-
sity is achieved. Direct mapping was used in CODASYL
database systems and is currently used in BeSS [BP95].

3 Functional Join Algorithms

The subsequent discussion of the algorithms is based on the
following very simple abstract schema:

create type R-t as (create type S-t as (
RData char(200), SAttr number,
SrefSet set(ref(S+)), SData char(200),
. .); . .);

create table R of R-t; create table S of S-t;
The example queries we wish to discuss are the
following-one with an aggregation, the other without:*

select r.RData, select r.RData,
(select sum(s.SAttr) (select s.SAttr
from r.SrefSet s) from r.SrefSet s)

from R r; from R r;

2Note that the query on the right-hand side is not standard SQL be-
cause the nested query returns a set of tuples. However, some ORDBMS
products do already support this-and in OQL this query is also possible
(in a slightly different syntax, though).

3.1 Known Algorithms

3.1.1 The Naive Pointer-Chasing Algorithm

The naive, pointer chasing algorithm scans R and traverses
every reference stored in the nested set Sreflet individually.
For logical OIDs, first the Map is looked up to obtain the
address of the referenced S object which is then accessed.
If the combined size of the Map and S exceeds the memory
capacity this algorithm performs very poorly.

In a system employing physical OIDs the naive algo-
rithm does not need to perform the lookup in the Map.
However, the access to the page the physical OID is refer-
ring to may reveal that the object has moved to a different
page. In this case, the forward pointer has to be traversed in
order to retrieve the object. Again, the algorithm performs
very poorly if the size of S exceeds the memory capacity.

3.1.2 The Flatten-Algorithms

These algorithms flatten (unnest) the SrejSet attribute and
partition or sort the flat tuples to achieve locality. For iogi-
cal OIDs the evaluation plan looks as follows:

VSAttr:SottrSet /‘SrefSet:Sref (((R) W, Map) W, S)

Here, psrejset:sref denotes the unnest (flatten) operator which
replicates the R objects and replaces the set-valued attribute
Srefset with the single-valued attribute Sref. The nest oper-
ator vsArtr:sottr&t forms a set-valued attribute SuttrSet from
SAttr [SS86]. The functional join is denoted by W, to in-
dicate that for every (left) argument the corresponding join
partner of the right argument is “looked up.” To perform
the two functional joins with the Map and with S, respec-
tively, two techniques can be applied to achieve locality:
partitioning and sorting.

If partitioning is applied, the flattened R tuples are par-
titioned such that each partition refers to a memory-sized
partition of the Map. Upon replacing the logical OID in
Sref by the address obtained from the Map the tuples are
once again partitioned for the next functional join with S.
Instead of partitioning, one could also sort the flattened R
tuples. For the Map lookup the tuples are sorted on the Sref
attribute and for the second functional join they are sorted
on the addresses of S objects.

The final v (nesting) operation is evaluated by grouping
the flattened R tuples based on the OIDs of the original R
objects. Grouping can be done by a sort-based or by a hash-
based algorithm.

For physical OIDs the evaluation plan omits the first
functional join with the Map.

3.1.3 Value-Based Join

The value-based join plan is as follows:

VSAttr:SattrSet (WejSet:Sref CR) WR.Sref=S.OID s)

We assume that every object “knows” its OID-here
S.OZD. Note that this plan is equally applicable for logical

112

and physical OID realizations because the object references
are not traversed but only compared.

3.2 The PartitionMerge-Algorithm P(PM)*M

The partition/merge-algorithm is an adaptation of the above
flatten/partition-algorithm in the way that it retains the
grouping of the flattened R tuples across an arbitrary num-
ber of functional joins. This is achieved by interleaving par-
titioning and merging in order to retain (very cheaply) the
grouping after every intermediate partitioning step. This is
captured in the notation P(PM)*M. We will first describe
the basic P(PM)‘M-algorithm which is applied when eval-
uating a single functional join under logical OIDs. More
intermediate PM-steps are needed when longer functional
join chains are evaluated (cf. Section 3.4).

In the P(PM)‘M-algorithm two joins are performed: (1)
R is joined with the Map to replace the logical OIDs by
their physical counterparts and (2) the result is joined with
S. For evaluating the joins we will adapt the hash join al-
gorithm. The probe input is R for the first join and R with
the logical OIDs replaced by their physical counterparts-
then called RM-in the second phase. Unlike the original
hash join algorithm, only the probe input is explicitly par-
titioned.3 The build input, i.e., the Map and S, are either
faulted into the buffer or-if range partitioning is applied-
loaded explicitly (i.e., prefetched) into the buffer. In both
cases, however, a partitioning step for the Map and S in-
volving additional disk i/o is not required.

The successive steps of the partition/merge-algorithm
can be visualized as follows:

flatten and partition --)
join with Map to obtain RM

R N-way
and partition RM + . . .

(N * K)-way

. . . + re-merge RM to K partitions
and join with S

-+ merge

That is, the partition/merge-algorithm first flattens the R ob-
jects and partitions them, then applies the mapping from
logical to physical OIDs, partitions the resulting RM, then
re-merges the initial partitioning and performs the join with
S, and finally merges the partitions to restore the over-all
grouping of the flat R tuples belonging to the same R ob-
ject.

We need two partitioning functions hM and hs:

hw partitions the Map into N memory-sized chunks by
mapping logical OIDs of S to the partition numbers 1
to N and

hs partitions S into K memory-sized chunks by map-
ping addresses of S objects to the partition numbers 1
to K.

3For simplifying the presentation, we assume that the partitioning can
be done in one recursion level-however, this is not required for the algo-
rithm to work.

That is, Map is partitioned into partitions Ml, . . . , MN and
S into S 1, . . . , SK. Actually, these partitioning functions are
not applied on Map and S but on the logical OIDs stored in
the nested sets of R and on their physical counterparts-in
RM after applying the mapping.

In more detail, the algorithm performs the following
four steps:

1.

2.

3.

4.

Flatten the nested SrejSets and partition the flat R ob-
jects/replicas into N partitions, denoted RI,. . . , RN.
That is, for every object [r,{Srefl,. . . ,Srefi}] E R gen-
erate the 1 flat tuples [r,Srefi], . . . , [r,Sre$] and in-
sert these tuples into their corresponding partitions
h(srefi), . . . , hM(Srefi), respectively. Of course, the
R attributes (R-Llata in our example query) need not
be replicated. It is sufficient to include them in one of
the flat tuples or, often even better, to leave them out
and re-merge them at the end (cf. Section 3.5). The
partitions are written to disk.
For all 1 5 i 2 N do:

l For (every) partition Ri the K initially empty par-
titions denoted RMil , . . . , RMiK are generated.

l Scan Ri and for every element [r,Sref] E Ri do:
- Replace the logical OID Sref by its physical

counterpart Suddr obtained (probed) from
the i-th partition Mi of the Map.

- Insert the tuple [r,Suddr] into the partition
RMij where j = hs(Suddr).

Note that all OID mapping performed in this step
concerns only partition Mi of the Map, which is
either prefetched or faulted into the buffer.

Having completed step 2., all the N * K partitions
RMlr,. . . ,RM~K, RM21,. . . , RMNK are on disk.
For all 1 _< j 5 K do:

Scan the N partitions RMlj,. . . ,RMN,~ simul-
taneously and merge them into a single tuple
stream. The merging is done to restore the
grouping of the flat R tuples according to R
OIDs; that is, the merging generates the tuple
stream [rt ,... I,. . ., [q ,... 1, [r2 ,... I,. . . .

For every tuple [r,Suddr] the functional join with
S is performed by looking up the S object at lo-
cation Saddr and the relevant information, here
SAttr, is retrieved. Insert the tuple [r,SAttr]
into partition RMSj.
All S objects referenced in this step belong to
the j-th partition Sj of S which is prefetched or
faulted into the buffer-again, the partitioning
ensures that the entire Sj fits into memory.

After completion of step 3., the K partitions
RMS t ,. . . ,RMSK are on disk.
Scan all partitions RMSl , . . . , RMSK simultaneously
and re-assemble the flat tuples into the nested repre-
sentation, i.e., group the tuples according to R-OIDs.

113

hu

(Direct)
MT
Saddr

MI
6
2
3
7

t

M2

5
8
9
4
1

s
IIDs SAttr

SI

f, 17 11
ii 13 19

s2
e 18

r2 {19,13,17,12,10}

Figure 2: An Example Application of the Partition/Merge-Algorithm P(PM)*M (4 denotes the lookup of the functional
join; for simplicity, the handling of the additional R attribute RDatu is not shown)

We note that the partition/merge-algorithm writes the (aug-
mented) R to disk three times: (1) to generate the N par-
titions of the probe input for the application of the Map,
(2) to generate the N * K partitions after applying the Map,
and (3) the K partitions obtained after joining with S. The
intermediate N * K-way partitioning and subsequent N-fold
merging of the N * K partitions into K partitions is the key
idea of this algorithm. This way the grouping of the flat-
tened R tuples is preserved across the two partitioning steps
with different partitioning functions hM and hs. Please ob-
serve that immediately distributing the objects into the K
partitions after applying the Map would have destroyed the
grouping on R that we want to retain in every partition.

In this respect the partition/merge-algorithm induces the
same i/o-overhead as the basic flatten-algorithms of Sec-
tion 3.1.2. However, the CPU cost of the partition/merge-
algorithm is far lower than for the basic flatten-algorithms
because there is no in-memory re-grouping involved. The
flat tuples of the same R object are always in sequen-
tial order in all the partitions-it may only happen that
some partitions do not contain any tuple. Furthermore, the
P(PM)*M-algorithm gives room for optimizations based on
the retained grouping that are not applicable to other algo-
rithms (cf. Section 3.5).

3.3 An Example of the P(PM)*M-Algorithm

Figure 2 shows a concrete example application of the
P(PM)*M-algorithm with two partitioning steps. The ta-
bles Ri, RMi,i and RMSi are labelled by a disk symbol to
indicate that these temporary partitions are stored on disk.

We start with table R containing two objects with logical
OIDs r-1 and r2-for simplicity, any additional R attributes

are omitted. The set-valued attribute Sreflet contains sets
of references (logical OIDs) to S. The first processing step
flattens these sets and partitions the stream of flat tuples. In
our example, the partitioning function hM maps {a,. . . , d}
to partition R1 and {e, . . . , i} to partition R2. The next pro-
cessing step starts with reading R1 from disk, maps the log-
ical OIDs in attribute Sref to object addresses using the por-
tion Mt of the Map (note that the Map is not explicitly par-
titioned) and in the same step partitions the tuple streams
again with partitioning function hs (hs maps { 1,. . . ,4} to
partition 1 and (5,. . . ,9} to partition 2. The resulting par-
titions RMli (here 1 5 j 5 2) are written to disk. Process-
ing then continues with partition R2 whose tuples are parti-
tioned into RM2j (1 5 j 2 2). Once again, let us emphasize
that the fine-grained partitioning into the N * K (here 2 * 2)
partitions is essential to preserve the order of the flat R tu-
ples belonging to the same R object. The subsequent merge
scans N (here 2) of these partitions in parallel in order to
re-merge the fine-grained partitioning into the K partitions
needed for the next functional join step. Skipping the fine-
grained partitioning into N * K partitions and, instead, par-
titioning RM into the K partitions right away would not
preserve the ordering of the R tuples. In detail, the third
phase starts with merging RMl1 and RM21 and simultane-
ously dereferences the S objects referred to in the tuples. In
the example, [r-1,2] is fetched from RMl1 and the S object
at address 2 is dereferenced. The requested attribute value
(SAttr) of the S object-here 1 l-is then written to par-
tition RMSl as tuple [ri,ll]. After processing [r1,31 from
partition RMlt , [rl ,l] is retrieved from RM21 and the object
address 1 is dereferenced, yielding a tuple [rl, 171 in par-
tition RMS,. Now that all flattened tuples belonging to r-1
from RMl1 and RM21 are processed, the merge continues

114

with r2. After the partitions RMlt and RM21 are processed,
RMl2 and RM22 are merged in the same way to yield a sin-
gle partition RMS2. As a final step, the partitions RMSl and
RMSz are merged to form the result RMS. During this step,
the flat tuples [r,SAttr] are nested (grouped) to form set-
valued attributes [r,{SAttr}]. If aggregation of the nested
SAttr values had been requested in the query, it would be
carried out in this final merge.

3.4 P(PM)*M, Physical OIDs, Path Expressions

At first glance, repeatedly partitioning and re-merging ap-
pears unnecessary for systems employing physical OIDs
where the intermediate join with the Map is not needed.
In fact, in the simple case of a one-step functional join
the variant P(PM)‘M is applied. However, the full-fledged
P(PM)*M-algorithm is necessary if the query traverses a
longer path expression. Consider, for example, the follow-
ing query where we want to group to each Customer the set
of Manufacturers from which he or she has ever ordered
goods:

select c.Name, (select l.ProductRef.ManufRef.Name
from c.OrderRefSet o, o.LineItems I)

from Customers c
Here we assume additional types Customer and Manufac-
turer with the attribute Name. Customers refer via a nested
reference set OrderRejSet to the given Orders. Manufac-
turers are referenced from Products via the reference at-
tribute Manuflef.

Another query would be to determine the Customers’
aggregated Order volumes:

select c.Name, (select sum (I.Quantity * l.ProductRef.Cost)
from c.Orders o, o.LineItems 1)

from Customers c
Let us, however, concentrate on the Manufacturer query.
The P(PM)*M evaluation plans for physical OIDs and log-
ical OIDs are outlined in Figure 3 (a) and (b), respec-
tively. Both plans contain two unnesting operations to flat-
ten the OrderRejSet and the LineItems sets, respectively.
When comparing the two plans, they differ mainly in the
higher number of functional joins needed for mapping log-
ical OIDs. We assume different Maps Mapo, Mapp, and
MapM for Orders, Products, and Manufacturers, respec-
tively. The plan based on physical OIDs draws profit from
the interleaved partition/merge (PM) steps in the same way
as the one based on logical OIDs, i.e., the grouping of Cus-
tomers’ Orders and their LineItems is retained across the
successive functional joins. Therefore, the final grouping
operation is realized as a (very cheap) merge, in both plans.

3.5 Fine Points of the P(PM)*M-Algorithm

There are still some fine points in the design of the
P(PM)*M-algorithm that we have to address.

M @iwUP) M (group)

da

khfacturer

da

PM
/

PM’ khfacturer

da

P/ -soducts

d,

Pd 31ap&t
I
kJ Lineltems:l CL

$a

P’ -kiers

Ph/ -ko&lcts

da
I

/J OrderR@et:o PI/ %kqAD

CUAIWS /J LineItems:l

da

PA/ klas

da
p/ “\

Mm
I

AJ OrderR&et:o

CUAIlWS

Figure 3: Manufacturer Query Using (a) Physical and (b)
Logical OIDs

Obtaining an Order on R The algorithm requires an or-
der on the R tuples for the merge iterators. When compar-
ing tuples from different partitions-e.g., [r2,6] from RM12
and [rl,5] from RM22 in Figure 2-it has to be determined
in what order r-1 and r2 were contained in the original R.
If there is no such order given by the key on R, an addi-
tional sequence number is inserted during the first “flatten
and partition” step and used for the succeeding merge steps.
Note that all flattened tuples of one R object are assigned
the same sequence number.

Map Access For the first partitioning phase of the
P(PM)*M-algorithm the particular mapping technique has
to be taken into account. In general, a partitioning func-
tion hM that achieves range partitioning is favorable. For
direct mapping and hash table mapping the difference be-
tween range partitioning and “dispersed” partitioning is
highlighted as follows:

(a) Dispersed Partitioning
III1 Y5IIIII Y~lllll m

Ml M2 M3 MI M2 M3 Ml M2 M3

, i (b);~i$,$ii~i, i

Ml Ml Ml M2 M2 M2 M3 M3 M3

Range partitioning has two advantages: (1) Even if the
pages of one partition are individually faulted into the
buffer, the disk accesses are all in the same vicinity. (2)
Instead of demand paging, range partitioning allows to
prefetch the entire partition from disk, thereby transform-
ing random i/o into chained i/o. However, prefetching is
only reasonable if (almost) all pages of the Map are actu-
ally accessed in performing the OID mapping. In a sys-

115

tern where the same Map is shared by many object types
prefetching would not be reasonable.

Achieving range partitioning for direct mapping is quite
simple given the range of pages in the Mup because every
logical OID is composed of page identifier and slot within
that page.

If a hash table mapping scheme is used, the same hash
function has to be applied to the logical OIDs and then the
hashed values (containing the page identifier) can be range
partitioned.

For a B+-tree mapping scheme prefetching a partition
is only feasible if the pages of one partition are physically
adjacent which is typically not the case because of the dy-
namic growth of the B+-tree. However, for OIDs that are
sequentially generated the B+-tree may be built (or reorga-
nized) such that adjacent leaf pages are actually physically
adjacent

Access to S Similarly to the partitioning step for the Map
access, range partitioning is beneficial in any following par-
titioning step if the accessed data structure is clustered and
the query engine has enough knowledge about the physical
organization. If the partitioning function for the access to S
achieves range partitioning on the pages S is stored on, the
accesses to S objects belonging to one partition are more lo-
calized. Furthermore, instead of faulting in each individual
page of S, the whole range of S that is used for a particu-
lar partition can be prefetched in large chunks of sequential
i/o.

Full Unnesting vs. Retaining Sets The P(PM)*M-
algorithm as described above flattens the SrejSet attribute
to a single-valued attribute Sref Instead of fully unnest-
ing SrefSet, it is also feasible to keep the set intact as much
as possible, i.e., the partitioning operators split the set into
subsets each of which containing those elements that be-
long to the same partition. That is, for every object r E R
there is at most one tuple in every partition. This tuple
contains a nested set containing those references belong-
ing to the particular partition. For example, the first parti-
tioning operator gets the complete set Sreflet as input and
partitions it into at most N tuples and at most one tuple
per partition, each of which again contains a set-valued at-
tribute. Referring to the example in Figure 2, the first R ob-
ject [rl ,{b, e, c,g, i}] would be split into [rl, {b, c}] (written
to partition RI) and [rl, {e,g, i}] (written to R2).

This approach avoids multiple flat tuples for the same R
object in the same partition; thus it is most beneficial for
larger sets SrejSet, for small partitioning fan-outs and for
non-uniformly distributed references. Of course, keeping
the sets requires higher implementation effort. The query
engine has to offer “set-aware” variants of some iterators:
The partitioning iterator must be capable of splitting nested
sets, and the join iterators must iterate through all elements
of the nested sets. Our query engine-described briefly in
Section 4-is capable of processing nested sets.

Projecting R Attributes If “bulky” attributes of R are re-
quested in the result, they may severely inflate the amount
of data that is written three times to partition files. To
reduce this effect, several measures can be taken: First,
the replication of attributes during flattening is unneces-
sary. Instead, for every ri E R the attributes are written only
once. Second, since the algorithm retains the order of R,
the attributes could be projected out and merged in later for
the final result. In contrast to the value-based join and the
standard flatten-algorithm, the re-insertion of R attributes
is in fact very cheap, since both R and the result have the
same order and the R attributes are simply handled as an
additional-(K + 1)-St-input stream of the last merge op-
erator. If the second scan on R would be expensive (e.g.,
because of high selectivity on R), the bulky attributes of the
qualifying R objects might be saved in a temporary segment
during the initial scan for reuse in the final merge.

Early Aggregation If aggregation is requested on the re-
sult sets in addition to grouping, the aggregation can be
folded such that it is already applied to the subgroups be-
longing to the same R object before they are written to
RMSj. This may result in storage savings for RMS.i. Dur-
ing the final merge, the intermediate aggregation results are
then combined. This is easily achieved for the aggrega-
tions sum, min, max, count which constitute commutative
monoids [GKG+97]-i.e., operations that satisfy associa-
tivity and have an identity. For, e.g., avg more information
has to be maintained to enable early aggregation.

Buffer Allocation The algorithm consists of several con-
secutive phases, each of which stores its intermediate re-
sults entirely on disk. This simplifies database buffer allo-
cation, since the memory available to the query can be allo-
cated exclusively to the current phase. The four phases may
be easily derived from the example in Figure 2: They are
delimited by the three sets of partitions Ri, RMi,j, and RMS,j
that are stored on disk. Consequently, the four phases are:
(1) initial processing of R ending with the first set of parti-
tions Ri, (2) Map lookup, (3) dereferencing S, and (4) final
merge. For phases (2) and (3), the major amount of mem-
ory is allocated to cache the Map and S, respectively, and
only a small amount is allocated to input and output buffers
for the partitions. Summarizing, the P(PM)*M algorithm
is very modest in memory requirements; that is, because
of its phased “stop and go”-approach and since it does not
require a costly grouping, it tolerates small main memory
sizes very well whereas other algorithms easily degrade if
main memory is scarce in comparison to the database size.

4 Proof of Concept

To compare the evaluation algorithms, we have imple-
mented them in our iterator-based query engine. In this
section we will first outline the implementation of the
P(PM)*M-algorithm and then describe a few performance

116

measurements we have taken with our query engine. A
more comprehensive assessment based on a cost model is
given in Section 5.

4.1 Partition/Merge-Implementation

Our query engine is based on the iterator model [Gra93]
and is implemented in C++. Figure 4 gives an outline of the
implementation of our P(PM)*M-algorithm. The dashed
boxes indicate the new special-purpose PM-operators that
are composed of two “off-the-shelf” iterators. For the ba-
sic functional join from R to S along SrefSet, processing
starts with a scan of R, applying an optional selection pred-
icate and projecting out unwanted attributes, but keeping at
least the set-valued attribute Srefset of R and a key for R.
SrejSet is then flattened by the unnest operator P yielding
tuples with single-valued attribute Sref. The first partition-
ing iterator PN partitions the input into N partitions based
on a partitioning function hM--as introduced before. The
second half of the iterator scans the partitions one at a time
and passes the tuples to the functional join with the Map,
probing every logical OID in Sref against the Map and re-
placing it by the address Saddr. The partition size and the
partitioning function hM are chosen depending on the OID
mapping technique such that the Map lookup can be eval-
uated in memory (see Section 3.5). The join output is di-
rectly fed into the next partitioning operator PMNK. This
time the physical OIDs, now stored in Saddr, serve as par-
titioning key, and each of the N input partitions obtained
from the prior join is split into K output partitions yielding
totally N * K partitions stored on disk. The dotted arrow be-
tween PN and PMNK symbolizes a communication channel
that tells PMNK to start a new set of partitions each time an
input partition has been completed. Instead of processing
all N * K partitions consecutively, we first re-merge those N
partitions referring to the same partition of S objects. That
is, we merge one matching subpartition from each of the
initial N partitions, yielding K partitions as output of the
merge operator. Each of the K partitions is then in turn
joined with S and the join result is again written to a parti-
tion file by an operator called “cache.” In a final step, the K
partitions are merged to form a single output stream. If we
projected out some “bulky” R attributes that are needed in
the final result, we would very cheaply re-merge this infor-
mation in this final merge by simply adding R (or the tem-
porary segment containing the projected data of R) as the
(K + 1)-st merge stream to the merge operator. If required,
an aggregation is performed on the result, as indicated by
‘Aggr.” Note that since the order of R is retained, the re-
sult is already grouped by the key of R such that only the
aggregation function itself (like sum) has to be computed.

4.2 Benchmark Setup

The benchmarks were performed on a Sun SparcStation 20
running under Solaris 2.6, The database was held on the

Am
r - - - _I_ - - _,
: merge ’ K fold
I

MK : I >a
1 cache L,--:

next partition ._,...’
..: k+

I.:<------’
next partition ,_...‘.”

I

RMsi

PN

R
Figure 4: P(PM)*M-Implementation

operating system disk together with the database system,
and another disk was used for temporary files. In order to
avoid side effects because of file system caching, the di-
rect ilo option was turned on for all file accesses. Thus, we
ensured that each file access of the database system defi-
nitely caused disk i/o and could not be satisfied from the
OS file system cache. This is especially important for our
first experiments on the small database. Writing the result
tuples to display/file was suppressed for all queries-also
the relational ones (see below).

The database buffer cache was segmented and config-
ured according to the optimizer (cost model) estimation in-
dividually for each query plan. For the run time experi-
ments, the total amount of cache available to a query did
not exceed 2 MB at any time. Direct mapping was em-
ployed to resolve logical OIDs.

We restrict ourselves to the query with aggregation
given in Section 3. For the query without aggregation, the
final aggregation operator would be replaced by a group-
ing operator. Since for each R object the complete group
of SAttr had to be conserved instead of a single aggrega-
tion result, all algorithms requiring an explicit grouping,
i.e., the flatten-algorithms and the value-based join, would
become even more expensive, whereas the algorithms that
retain the initial grouping would not suffer much from the
larger result.

We have tried to evaluate the query on a commer-
cial relational DBMS with object-relational extensions
(O/RDBMS).4 For this purpose, we have created types
and tables as described in Section 3. The references were
scoped, i.e., they were constrained to point only to a single
table (S) using the SQL3-like scope clause. However, the
query crashed after a few hours with DBMS errors for our

40~r license prohibits to identify the particular product

117

database 1 [RI IS) ISrefsetl R pages Spages
small I 10000 10000 10 994 667
larger 100000 100000 10 9933 6667
database Map pages R object size S object size
small 61 348 228
larger 591 348 228

Table 1: Database Cardinalities

initial (larger) database, such that we had to fall back to a
smaller database in order to get any results for comparison.
The cardinalities of both the small and the larger database
are given in Table 1. The references in Srefset were dis-
tributed uniformly over the full extent of S.

The O/RDBMS was installed on a faster machine (SS20
with CPUs clocked 50% higher and faster disks) and con-
figured with 2 MB buffer-as in our other setup. For
comparison, we have also used the same commercial
O/RDBMS for a pure (flat) relational representation with-
out using references and nested sets. In this schema, the
reference set SrejSet has been omitted and an additional
table RS has been created to implement the association
between R and S. Consequently, the RS table contained
(RI * 10 rows. To compensate for the lacking OIDs, the ta-
bles R and S were extended to contain additional integer
(key) attributes R-key and Skey, respectively. Tuples of
R and S had a size of 204 byte each-the smaller R tuple
size in comparison to the R object size of 348 bytes is due
to the missing nested reference set in the pure relational
schema. The table RS contained only the two attributes
RSRkey and RSSkey that served as foreign keys for R and
S, respectively. The folIowing query, which (apart from
Rkey) yields the same result as the object-relational one,
was measured:
select r.R-key, r.RData, sum(s.SAttr)
from R r, S s, RS rs
where rs.RS-Skey = s.S-key and rs.RS-Rkey = r.Rkey
group by r.R-Key, r.RData

4.3 Comparison of Measured Run Times

We have created both databases described in Table 1 on our
prototypical OODBMS and implemented all algorithms de-
scribed in the previous section. For the plans either a
cheap “stream” aggregation algorithm (only calculating the
sum) was employed if the grouping on R was retained
(P(PM)*M and naive) or a hash aggregation was used if
the initial grouping has been destroyed (sort, partition and
value-based plans). The value-based plan was implemented
using a hybrid hash join with S as build input. For the
P(PM)*M-algorithm, some of the optimizations described
in Section 3.5 were implemented: The sets were retained
(no full unnesting), range partitioning was applied for the
access to S, and the bulky RData attribute was projected
out and re-merged in the final step.

Table 2 gives an overview of the observed run times for
all algorithms. For comparison, the predictions of our cost

model (cf. Section 5) are also shown. Furthermore, the run
times of the queries on the O/RDBMS are given for two
variants: (1) based on the object-relational schema of Sec-
tion 3 with the nested reference set Srefset and (2) on the
pure flat relational schema with the additional table RS.

The value-based join performs quite well on the small
database since the build input (S) is projected to contain
only two attributes, the OID and SArtr. It is, however, not
cheaper than the P(PM)*M-algorithm since the final hash
aggregation causes additional cost that does not occur in
the P(PM)*M plan. On the larger database, it can no longer
keep its complete build input in memory and, as a con-
sequence, has to perform an expensive hash aggregation.
When comparing the P(PM)*M run time to the naive algo-
rithm, there is a performance gap of more than an order of
magnitude: On the larger database, the absolute run time
of the naive algorithm amounts to more than five hours,
while our P(PM)*M-algorithm requires only less than five
minutes. The P(PM)*M-algorithm also outperforms all the
flatten-algorithms, though not as drastically as the naive
pointer chasing algorithm. The sort-based flatten plan suf-
fers from high CPU cost for sorting and small run files due
to the restricted amount of memory.

For the object-relational schema, the commercial
O/RDBMS shows an even worse performance than the
naive algorithm. On the other hand, the query on the flat re-
lational schema takes reasonable run time, although for the
larger database still more than twice as much as P(PM)*M
(in spite of the faster host for the O/RDBMS).

5 Analytical Evaluation

We developed a cost model as vehicle for a broader anal-
ysis. I/o costs are modelled according to [HCLS97]
and the CPU operation assumptions are mostly based on
[PCV94] and [HR96]. Our cost model contains extensions
to deal with set-valued attributes and our new P(PM)*M-
algorithm. Due to space limitations, we cannot discuss in-
dividual formulas. The cost formulas model disk i/o quite
precisely by means of differentiating between seek, latency,
and transfer time. As a consequence, we are able to grasp
the difference between sequential and random i/o and the
influence of the transfer block size. In modelling the CPU
costs, we have included those operations that have major
influence on CPU time, e.g., sorting, hashing, buffer man-
agement (page hit/page fault) and iterator calls.

Unless stated otherwise, the analyses are based on the
larger database as described in Table 1. Similarly, the de-
fault configuration was chosen as before, i.e., 2 MB of
memory was available and logical OIDs were resolved us-
ing direct mapping. The labels of the plots are constructed
from two parts, the first one describing the access method
to the Map, the second part describing the access to the S
extent. The access methods are: no partitioning (N), i.e., di-
rectly chasing each individual pointer, partitioning (P) and

database small larger
method our cost commercial O/RDBMS OUT cost commercial O/RDBMS

prototype model with ref. sets flat rels w/o refs prototype model with ref. sets flat rels w/o refs
naive 356 461 14893 18219
flatten/partition 125 136

flatten/sort 140 168
value-based 40 56
P(PM)*M 29 34 1

1868 2029

1110 4874 5432
51 1811 1389

i-
721

289 295

Table 2: Run Times in Seconds (2 MB Memory, avg. (SrefSetl=lO, Direct Mapping)

‘:,; p~gcy2jJ

1 2 Memoly?MByte., 4 5 6

Figure 5: Cost Model Results for
Larger Database (Direct Mapping,

Figure 6: Selection on R (Direct Map- Figure 7: Varying the Cardinality of
ping, ISrefletl=lO, 2 MB Memory) Srefset (2 MB Memory, Direct Map-

(SrefSetl=lO)
merging (M), and sorting (S). The value-based hash join
does not fit into this classification and is simply labelled
“hashjoin.”

5.1 Varying the Memory Size

The run times of the various algorithms under varying
memory sizes are reported in Figure 5. The NN plan using
(naive) pointer chasing both for Map lookup and derefer-
encing S does not even show up in the plot due to its run
time of 6’20 hours for 1 MB to 4’ 10 hours for a 6 MB
buffer. The NS query still uses naive Map lookup, but sorts
the physical OIDs before accessing S. When comparing NS
with SS, sorting the flattened R tuples for the Map lookup
does not pay off because the Mup is smaller than 2 MB (For
1 MB the sort-based plans are out of the range of the curve
because for such small memory configurations they need
several merge phases.) Both sort variants suffer from high
CPU costs for sorting. The partition plan PP yields already
significantly better performance than sort-based plans for
small memory sizes. The performance advantage of parti-
tioning over sorting for small memory sizes is due to the
large number of run files generated for sorting. The value-
based hash join performs even better than PP, but is still
quite costly compared to the winners PPMM (=P(PM)‘M)
and NPM (=P(PM)“M). The latter one omits the first par-
titioning step and shows poor performance for very small
memory sizes. For 2 MB and larger, the two plans have
the same run time since PPMM uses only one partition
for the Map access anyway and, therefore, coincides with
NPM. The most impressive result of this curve is that the
P(PM)*M-algorithm tolerates very small memory sizes un-
der which all other algorithms degrade.

ping)
5.2 Varying the Selectivity on R

In Figure 6 the percentage of R objects taking part in the
functional joins is varied on the (logarithmically scaled) x-
axis. For a small number of R objects, most pages of the
Map are hit at most once and some pages of S are not refer-
enced at all, such that one might expect a break-even point
between P(PM)* M and the naive algorithm. However, for a
high selectivity (e.g., 0.01% corresponding to 10 R objects)
they have nearly the same run time. That is, even if there
are only very few references to be resolved, there is no sig-
nificant overhead induced by our P(PM)*M-algorithm. On
the other hand, the naive algorithm very quickly degrades if
the number of references to be mapped increases. Further-
more, we have plotted the value-based hash join with two
configurations, using either R or S as build input. Both vari-
ants are, however, worse than P(PM)*M over the full selec-
tivity range, and for a small number of R objects they are-
due to the fix cost for the hash join and hash aggregation-
even worse than the naive plan.

5.3 Varying the Set Cardinality

In the previous experiments, the number of elements in
Srefset was constantly 10. Figure 7 shows run times of the
algorithms with different set sizes. While the P(PM)*M-
algorithm scales linearly, the run times for all others ex-
plode. The flatten variants behave poorly. The naive plan
suffers from an enormous amount of random i/o (up to
50 * 100,000 references, calculated run time of roughly 25
hours and is therefore not shown) and the flatten plans suf-
fer from large temporary files.

119

Figure 8: Inflating the OID Map under Figure 9: Value-Based vs. P(PM)*M Figure 10: Comparison of Different
Varying Memory Sizes (Direct Map- Pointer Join: ISrefSetl=3, Direct Map- OID Mapping Techniques: DM, BT,
ping) ping, 1 ,OOO,OOO Map Entries and HT, all with P(PM)*M-Algorithm
k4- Inflating the OID Map ory does not avoid a partitioning step of P(PM)*M and the

flattened R must still be written to disk partitions.
So far we assumed a distinct Map for the S objects which,
as a consequence, is perfectly clustered. In the follow-
ing experiment, we analyze the behavior of P(PM)*M-
algorithms for not-so-well clustered OID Maps, as they
may occur if there is one global OID Map or if only a
small fraction of S is referenced, e.g., because of a se-
lection on R. The OID Map for S-previously contain-
ing 100,000 entries-has been inflated by inserting unused
entries-uniformly distributed over all pages of the Map-
to contain up to one million entries. The NPM and PPMM
queries have been run on the standard database (100,000
objects of R and S each, 10 elements in SrefSet) with dif-
ferent amounts of memory available. The legend of Fig-
ure 8 indicates the size of the Map (100000, . . . , 1000000).
The smallest symbols denote the configuration that was
used in Figure 5, i.e., the Map was optimally clustered.
For larger Maps, the PPMM plan shows only a slight run
time increase, caused by the inevitably higher number of
i/o accesses to the larger Map. However, each Map page is
fetched from disk only once, since the number of partitions
in the first partitioning step is adapted such that one parti-
tion of the Map can be cached in memory. On the other
hand, NPM cannot cope with larger Maps since it induces
an enormous number of page faults as long as the Map does
not entirely fit into memory.

Figure 9 compares the P(PM)*M-algorithm with the
value-based hash join in an extreme scenario: The set-
valued attribute Srefset contains only three references on
average and the Map is inflated to contain one million
entries-of which 900,000 are obsolete. The number of
R and S objects remains at 100,000, respectively. This set-
up favors the value-based hash join extremely, since it does
not use the Map anyway. Furthermore, the hash join draws
profit from larger amounts of memory in a larger scale than
P(PM)*M because of the projection on S: The (projected)
S that serves as build input for the hash join can be kept in
memory for large memory configurations (beyond 4 MB)
such that the join is an in-memory operation. On the other
hand, the P(PM)*M-algorithm loads and keeps the S pages
in their entirety in memory. Since the whole S extent of
ca. 26 MB still does not fit in memory, the additional mem-

5.5 Comparing Different OID Mapping Techniques

Figure 10 compares the three OID mapping techniques that
we have discussed in Section 2.2 for our application, i.e., in
combination with the P(PM)*M-algorithm. Both B+-tree
(BT) and hash table mapping (HT) show two performance
steps. The first step occurs when increasing memory from
1 MB to 2 MB. Here, the scan and merge operators reach
their optimal amount of memory. The second step occurs
when the P(PM)*M-algorithm omits the first partitioning
phase since the OID mapping structure can be completely
cached in memory. Since the total size of the Bf-tree is
smaller than that of the hash table,5 this point is reached
with a smaller memory size for the BT curve. In addition,
BT is generally more expensive due to higher CPU cost for
the tree lookup. The direct mapping (DM) approach is the
cheapest: The first partitioning step can already be omitted
at a memory size of 2 MB due to the compact representa-
tion of the Map. Furthermore, the compact storage of the
(direct) Map reduces the total number of i/o calls. In addi-
tion, the CPU overhead for a single Map lookup is cheaper
for DM than for the other two mapping techniques.

5.6 Logical OIDs in Comparison to Physical OIDs

So far, we have assessed our algorithms for different sce-
narios using logical OIDs. Next, we turn to physical OIDs.
This simplifies all algorithms since the extra Map lookup
operation is omitted. Thus, the algorithms are no partition-
ing (N), sorting (S), partitioning (P), and P(PM)‘M (la-
belled PM). The value-based hash join is independent of
the underlying OID realization. For comparison, Figure 11
additionally includes the NPM and PPMM plans for logi-
cal OIDs realized with direct mapping. The naive plan does
not show up in the plot since it ranges between four and five
hours. The run time for the partition plan P is similar to the
value-based hash join while the sort-based query performs
still significantly worse. Not surprisingly, the PM plan per-
forms slightly better than the P(PM)*M plan for logical

SDue to prefix compression and a specialized splitting procedure
[EGK95] the B+-tree contains more entries per page than the hash table.

120

References
[BK89] E. Bertino and W. Kim. Indexing techniques for queries on

nested objects. IEEE Trans. Knowledge and Data Engineering,
1(2):196-214, 1989.

[BP951 A. Bilitis and E. Panagos. A high performance configurable stor-
age manager. In Proc. IEEE Conf: on Data Engineering, pages 35-43,
Taipeh, Taiwan, 1995.

[CBB+97] R. Cattell, editor. The Object Database Stan&d: ODMG
2.0. Morgan Kaufmann Publishers, San Mateo, CA, USA, 1997.

v. 08 ewrds h s

Figure 11: Physical OIDs vs. Figure 12: Effect of Forwards
[CDF+94] M. J. Carey, D. J. Dewitt, M. J. Franklin, N. E. Hall, M. L.

McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan,
Logical OIDs with Direct Map- 0. G. TsataIos, S. J. White, and M. J. Zwilling. Shoring up persistent

ping applications. In Pmt. of the ACM SIGMOD Intl. Cor$‘. pages 383-394,
Minneapolis, Ml, USA, May 1994.

OIDs. However, the additional cost of the Map lookup is
kept at a low level. For example, for 3 MB of memory the
PM plan was only 14% cheaper than P(PM)*M.

While physical OIDs are definitely advantageous on a
“clean” database, they incur a severe performance penalty
in the presence of forwards. We have created a varying
percentage of forward references (0% to 5%) in the S ex-
tent. Figure 12 shows that the sort-based plans are fairly
robust against forwards-although at a high cost level-
because they “hit” the same forwarded object consecu-
tively whereas the multiple hits of the forwarded object
are non-consecutive for partition-based plans. Therefore,
sort-based plans need to allocate only one additional page
for loading the currently “active” forwarded object whereas
partition-based plans need to allocate more buffer for a par-
tition containing forwards. P and PM behave similarly (the
lines are parallel), such that partition/merge retains its ad-
vantage. For comparison, the PPMM plan under logical
OIDs is also shown. Evidently, even for very low levels of
forward references (e.g., 1%) logical OIDs are superior to
physical OIDs.

6 Conclusion and Future Work

In object-relational and object-oriented database systems,
one-to-many and many-to-many relationships are typically
represented as nested sets of references-instead of a sep-
arate relation as in the pure relational model. Very of-
ten, queries along these nested reference sets require to re-
tain the implicit grouping given by the set of references.
In this paper we have developed a new algorithm that is
based on successively partitioning and merging. This algo-
rithm retains the grouping within the partitions and restores
the overall grouping by (efficient) merge operations. Our
prototype implementation and the quantitative assessment
based on a cost model have proven that the algorithm is
superior to other methods.

The key idea of the P(PM)*M-algorithm consists of re-
taining an order (or grouping) given by nested reference
sets across multiple functional joins. Of course, this idea

[CSL+90] M. J. Carey, E. Shekita, G. Lapis, B. Lindsay, and J. McPher-
son. An incremental join attachment for Starburst. In Proc. of the
VLDB Co& pages 662-673, Brisbane, Australia, August 1990.

[DLM93] D. DeWitt, D. Lieuwen, and M. Mehta. Pointer-based join
techniques for object-oriented databases. In Proc. of the Intl. IEEE
Co@ on Parallel and Distributed Irtfinmation Systems, San Diego,
CA, USA, January 1993.

[EGK95] A. Eickler, C. A. Gerlhof, and D. Kossmann. A performance
evaluation of OID mapping techniques. In Proc. of the VLDB Cm$,
pages 18-29, Zurich, Switzerland, September 1995.

[GGT96] G. Gardarin, J.-R. Gruser, and Z.-H. Tang. Cost-based selec-
tion of path expression processing algorithms in object-oriented data-
bases. In Proc. of the VLDB Cor$:, pages 390401, Bombay, India,
September 1996.

[GKG+97] T. Grust, I. Kroger, D. Gluche, A. Heuer, and M. H. Scholl.
Query evaluation in CROQUB - calculus and algebra coincide. In
Proc. Brit. Natl. Cor$ on Databases (BNCOD), London, UK, Jul 1997.

[Gra93] G. Graefe. Query evaluation techniques for large databases.
ACM Compufing Surveys, 25(2):73-170, June 1993.

[HCLS97] L. M. Haas, M. J. Carey, M. Livny, and A. Shukla. Seeking
the truth about ad hoc join costs. The VLDB Journul, 6(3):241-256,
1997.

[HR96] E. P. Harris and K. Ramamohanarao. Join algorithm costs revis-
ited. The VLDB Journal, 5(1):6&84, 1996.

[lta93] ltasca Systems Inc. Technical summary for release 2.2, 1993.
ltasca Systems. Inc., 7850 Metro Drive, Mineapolis, MN 55425, USA.

[KC861 S. N. Khoshafian and G. P. Copeland. Object identity. In Proc.
oj’the ACM Cor$ on Object-Oriented Prqrumming Systems und Lun-
guclges (OOPSLA), pages 408-416, November 1986.

[KM901 A. Kemper and G. Moerkotte. Access support in object bases. In
Proc. of the ACM SIGMOD Intl. Cmf:‘, pages 364-374, Atlantic City,
USA, April 1990.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Ob-
jectStore database system. Comm. ACM, 34(10):50-63, 1991.

[LMB97] L. Leverenz, R. Mateosian, and S. Bobrowski. Orucle8 Server
- Concepts Manual. Oracle Corporation, USA, 1997.

[02T94] 02 Technology, Versailles Cedex, France. A Technicul
Overview c$the 02 Sysfem, July 1994.

[PCV94] J. M. Patel, M. J. Carey, and M. K. Vernon. Accurate modeling
of the hybrid hash join algorithm. In Pmt. of the ACM SIGMETRICS,
pages 56-66, Santa Clara, CA, May 1994.

[SC901 E. Shekita and M. J. Carey. A performance evaluation of pointer-
based joins. In Proc. of the ACM SIGMOD Intl. Ccmf:, pages 300-3 11,
Atlantic City, NJ, May 1990.

[SS86] H.-J. Schek and M. H. Scholl. The relational model with relation-
valued attributes. Inform&m Systems, 1 l(2): 137-147, 1986.

[Sto96] M. Stonebraker. Object-Relational DBMSs: The Next Great
Wave. Morgan Kaufmann Publishers, San Mateo, CA, USA, 1996.

[Val87] P. Valduriez. Join indices. ACM Truns. on Dutubuse Sysfems,
12(2):218-246, June 1987.

[Vet971 Versant Object Technology. Versant release 5, October 1997.
http://www.versant.com/.

is also applicable to a pure relational database schema if [XH94] Z. Xie and J. Han. Join index hierarchies for supporting efficient

one wants to preserve the order (or grouping) across regu- navigations in object-oriented databases. In Proc. of the VLDB Conf:,

lar hash-based joins. We will investigate this in the future.
pages 522-533, Santiago, Chile, September 1994.

121

