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Abstract

Association Rule Mining algorithms operate
on a data matrix (e.g., customers � products)
to derive association rules [2, 23]. We pro-
pose a new paradigm, namely, Ratio Rules,
which are quanti�able in that we can measure
the \goodness" of a set of discovered rules.
We propose to use the \guessing error" as a
measure of the \goodness", that is, the root-
mean-square error of the reconstructed values
of the cells of the given matrix, when we pre-
tend that they are unknown. Another con-
tribution is a novel method to guess miss-
ing/hidden values from the Ratio Rules that
our method derives. For example, if some-
body bought $10 of milk and $3 of bread, our
rules can \guess" the amount spent on, say,
butter. Thus, we can perform a variety of im-
portant tasks such as forecasting, answering
\what-if" scenarios, detecting outliers, and vi-
sualizing the data. Moreover, we show how to
compute Ratio Rules in a single pass over the
dataset with small memory requirements (a
few small matrices), in contrast to traditional
association rule mining methods that require
multiple passes and/or large memory. Exper-
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iments on several real datasets (e.g., basket-
ball and baseball statistics, biological data)
demonstrate that the proposed method con-
sistently achieves a \guessing error" of up to
5 times less than the straightforward competi-
tor.

1 Introduction

Data mining has recently been receiving increasing in-
terest [11], of which the quintessential problem is as-
sociation rule mining [2]. Given a data matrix with,
e.g., customers for rows and products for columns, as-
sociation rules �nd rules that describe frequently co-
occurring products. Existing algorithms �nd rules of
the form

fbread;milkg ) butter (90%);

meaning that customers who buy \bread" and \milk"
also tend to buy \butter" with 90% con�dence. What
distinguishes database work from AI, Machine Learn-
ing and statistics work is its emphasis on large
datasets. The initial association rule mining paper by
Agrawal et al. [2], as well as all the follow-up database
work [4], proposed algorithms to minimize the time
to extract these rules through clever record-keeping to
avoid additional passes over the dataset.

What is novel about the work in this paper is that
it attempts to assess how good the derived rules are, an
issue that has not been addressed at all in the database
literature. We propose the \guessing error" as a mea-
sure of the \goodness" of a given set of rules for a given
dataset. The idea is to pretend that a cell value (or
values) of the matrix is \hidden" from us, and to try
to guess the missing value(s) using the derived rules;
the root-mean-square guessing error (averaged over all
the cells of the given matrix) indicates how good a set
of rules is.



The second major innovation of this work is the
introduction of Ratio Rules of the form:

Customers typically spend 1 : 2 : 5 dollars
on bread : milk : butter.

Ratio Rules can be used for decision support by de-
termining unknown (equivalently, hidden, missing or
corrupted) values. We provide novel algorithms for
estimating missing values, even if multiple values are
simultaneously missing.

This paper is organized as follows: Section 2 gives
the related work. Section 3 de�nes the problem by
enumerating the desired tasks. Section 4 introduces
the proposed method. Section 5 presents the results
from experiments. Section 6 provides a discussion. Fi-
nally, Section 7 gives some conclusions and pointers to
future work.

2 Related Work

Agrawal et al. distinguish between three data mining
problems: identifying classi�cations, �nding sequen-
tial patterns, and discovering association rules [1]. We
review only material relevant to the latter, since it is
the focus of this paper. See [9] for an excellent, recent
survey of all three problems.

The seminal work of [2] introduced the problem of
discovering association rules and presented an e�cient
algorithm for mining them. Since then, new serial al-
gorithms [4, 16, 20] and parallel algorithms [3] have
been proposed. In addition, generalized association
rules have been the subject of recent work [22, 13].

The vast majority of association rule discovery tech-
niques are Boolean, since they discard the quantities
of the items bought and only pay attention to whether
something was bought or not. A notable exception is
the work of Srikant and Agrawal [23], where they ad-
dress the problem of mining quantitative association
rules. Their approach is to partition each quantitative
attribute into a set of intervals which may overlap,
and to apply techniques for mining Boolean associa-
tion rules. In this framework, they aim for rules such
as

bread : [3� 5] and milk : [1� 2] ) butter : [1:5� 2]

The above rule says that customers that spend be-
tween 3-5 dollars on bread and 1-2 dollars on milk,
tend to spend 1.5-2 dollars on butter.

Traditional criteria for selecting association rules
are based on the support-con�dence framework [2]; re-
cent alternative criteria include the chi-square test [7]
and probability-based measures [21]. Related issues
include outlier detection and forecasting. See [15] for
a textbook treatment of both, and [5, 14, 8] for recent
developments.

symbol de�nition

N number of records
M number of attributes
k cuto� (number of Ratio Rules retained)
h number of holes
H set of cells which have holes
R set of rules

GE1 guessing error over each hole
GEh guessing error over h holes
� matrix multiplication
X the N �M data matrix
Xc the centered version of X
Xt the transpose of X
xi;j value at row i, column j of the matrix X
x̂i;j reconstructed (approximate) value at

row i and column j

�x the mean cell value of X
C the M �M covariance matrix (Xt

c �Xc)
V the M � k RR matrix

Table 1: Symbols, de�nitions and notation.

3 Problem De�nition

Ratio Rules can support the following applications,
thanks to their ability to reconstruct missing values:

� Data cleaning: reconstructing lost data and re-
pairing noisy, damaged or incorrect data (perhaps
as a result of consolidating data from many het-
erogeneous sources for use in a data warehouse);

� Forecasting: `If a customer spends $1 on bread
and $2.50 on ham, how much will s/he spend on
mayonnaise?';

� \What-if" scenarios: `We expect the demand for
Cheerios to double; how much milk should we
stock up on?';

� Outlier detection: `Which customers deviate from
the typical sales pattern?';

� Visualization: Each Ratio Rule e�ectively corre-
sponds to an eigenvector of the data matrix, as
we discuss later. We can project the data points
on the 2- or 3-d hyper-plane de�ned by the �rst
2 or 3 Ratio Rules, and plot the result, to reveal
the structure of the dataset (e.g., clusters, linear
correlations, etc.).

Next, we give more intuition behind Ratio Rules
and discuss a method for computing them e�ciently.

4 Proposed Method

The proposed method detects Ratio Rules using
eigensystem analysis, a powerful tool that has been
used for several settings, and is similar to Singular
Value Decomposition (SVD) [17], Principal Compo-
nent Analysis (PCA) [15], Latent Semantic Index-
ing (LSI) [12], and the Karhunen-Loeve Transform



bread butter
customer ($) ($)
Billie .89 .49
Charlie 3.34 1.85
Ella 5.00 3.09
� � � � � � � � �
John 1.78 .99
Miles 4.02 2.61
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Figure 1: A data matrix in table form and its counterpart in graphical form, after centering (original axis drawn
with dotted lines). As the graph illustrates, eigensystem analysis identi�es the vector (0:866; 0:5) as the \best"
axis to project along.

(KLT) [10]. Eigensystem analysis involves computing
the eigenvectors and eigenvalues of the covariance ma-
trix of the given data points (see subsection 4.1 for
the details). In subsection 4.2, we present an e�-
cient, single-pass algorithm to compute the k best Ra-
tio Rules. A fast algorithm is extremely important for
database applications, where we expect matrices with
several thousands or millions of rows. Subsection 4.3
presents one of the two major contributions of this pa-
per: the introduction of a measure for the \goodness"
of a given set of rules. Subsection 4.4 presents the sec-
ond major contribution: how to use the Ratio Rules
to predict missing values.

4.1 Intuition Behind Ratio Rules

Figure 1 lists N customers and M products organized
in an N �M matrix X, where the entries are the dol-
lar amount spent by customer i on product j. Table 1
gives a list of symbols used from here on and their
de�nitions. To make our discussion more concrete, we
will use rows and \customers" interchangeably, and
columns and \products" interchangeably. Of course,
the proposed method is applicable to any N �M ma-
trix, with a variety of interpretations for the rows and
columns, e.g., patients and medical test measurements
(blood pressure, body weight, etc.); documents and
terms (typical in IR [19]), etc.

Each row vector of the matrix can be thought of as
an M -dimensional point. Given this set of N points,
eigensystem analysis identi�es the axes (orthogonal
directions) of greatest variance, after centering the
points about the origin. Figure 1 illustrates an ex-
ample of an axis that this analysis �nds. Suppose that
we have M=2 dimensions; then our customers are 2-
d points, as in Fig. 1. The corresponding direction
x0 this analysis suggests is shown, meaning that if we
are allowed only k=1, the best direction to project
on is the direction of x0. The direction x0 is a Ra-
tio Rule (RR for short) that governs the correlations

between money spent on the products, based on cus-
tomer purchasing activity. In this case, the projection
of a data point on the x0 axis gives the overall \volume"
of the purchase. For the setting of Figure 1, the coor-
dinates of the �rst RR = (0.866, 0.5) imply the rule
\bread : butter ) $0:866 : $0:5"; that is, for the most
of our customers (2-d points) the relative spendings
bread-to-butter are close to the ratio 0.866:0.5. As we
shall discuss later, these Ratio Rules can be used for
forecasting, \what-if" scenarios, outlier detection, and
visualization. In addition, they are often amenable to
interpretation as underlying factors that describe, in
this case, purchasing behavior.

Mathematically, the directions identi�ed by eigen-
system analysis are the eigenvectors of the covariance
matrix C (see Eq. 2); each eigenvector has an asso-
ciated eigenvalue whose magnitude indicates the vari-
ance of the points along that eigenvector.

The goal of this method is to reduce the dimen-
sionality of a dataset while retaining as much varia-
tion as possible. This is done by identifying the di-
rection of maximum variance (given by the largest
eigenvalue/vector) and then incrementally identifying
the orthogonal direction with maximum variance (the
second eigenvalue/vector, etc.). In the end, only the
eigenvectors associated with the k largest eigenvalues,
namely, the Ratio Rules, are kept. In order to choose a
good cuto� k of rules to retain, the simplest textbook
heuristic (and the one used in this paper) is to retain
enough eigenvectors so that the sum of their eigenval-
ues cover 85% of the grand total [15, p. 94]. That is,
choose the cuto� k such that

Pk

i=1 �iPM

j=1 �j
� 85% (1)

Next we present a method for computing Ratio
Rules by eigensystem analysis in a single pass.



/* input: training set X on disk */
/* output: covariance matrix C */
for j := 1 to M do

colavgs[j]  0;
for l := 1 to M do

C[j][l]  0;
for i := 1 to N do

Read ith row of X from disk (X[i][1],...,X [i][M]);
for j := 1 to M do

colavgs[j] += X[i][j];
for l := 1 to M do

C[j][l] += X[i][j]*X[i][l];
for j := 1 to M do

colavgs[j] /= N ;
for j := 1 to M do

for l := 1 to M do
C[j][l] -= N � colavgs[j] * colavgs[l];

input:
covariance matrix C in main memory

output:
eigenvectors v1; : : : ;vk (i.e., the RRs)

compute eigensystem:
fv1 ; : : : ;vMg  eigenvectors(C);
f�1; : : : ; �Mg  eigenvalues(C);
sort vj according to the eigenvalues;
choose k based on Eq. 1;
return the k largest eigenvectors;

complexity:

O(M3)

(a) Single-pass over data matrix (b) Eigensystem computation

Figure 2: Pseudocode for e�ciently computing Ratio Rules.

4.2 A Single-Pass Algorithm for Ratio Rules

The computation of Ratio Rules involves determin-
ing the eigenvectors of the covariance matrix C of
the given N �M matrix X. The covariance matrix
C = [cij] intuitively is the \column-to-column" simi-
larity matrix, which has high cij values if the columns
i and j are correlated. Mathematically, it is de�ned as

C � Xt
c �Xc (2)

where Xc is derived by the given X matrix by sub-
tracting the column average from every cell. That is,
Xc is a zero-mean matrix, or \centered", in the sense
that its column averages are all zero. Thus, the co-
variance matrix C is a real, symmetric square matrix
of side M .

The following steps will compute the Ratio Rules in
an I/O-e�cient way: (a) zero-mean the input matrix
to derive Xc; (b) compute C from Eq. 2; (c) com-
pute the eigenvalues/vectors of C and pick the �rst
k. We assume that C can �t in memory: it needs M2

cells, where M is the number of columns, which should
typically be on the order of one thousand for real ap-
plications [2]. Under this assumption, we can compute
the column averages and the covariance matrix with a
single-pass over the N (� millions) of rows of the given
X matrix, using the algorithm of Figure 2(a). Once we
have the covariance matrix C in memory, we can use
any o�-the-shelf eigensystem package to determine its
eigenvalues and eigenvectors, as shown in Fig. 2(b).1

The proposed algorithm requires a single pass to
compute the column averages and the covariance ma-
trix. In more detail, it requires O(N ) disk operations
to read the matrix X and O(NM2) main-memory op-
erations to build the corresponding covariance matrix.
Since the number of rows is typically in the hundreds

1If the number of columns are much greater than one thou-
sand, as potentially might be the case in some market basket
data analyses, then the methods from [6] could be applied to ef-
�ciently compute the eigensystemof the resulting sparse matrix.

of thousands (e.g., sales, or customers), and the num-
ber of columns in the hundreds (e.g., products, or pa-
tient symptoms), the algorithm of Fig. 2 is very ef-
�cient. Note that the algorithms of [3] require more
than one pass over the dataset in an attempt to �nd
large itemsets. Also note that the O(M3) factor for
the eigensystem computation is negligible compared
to the O(NM2) operations needed to build the covari-
ance matrix, since we assume that N �M .

4.3 Measuring the Goodness of a Rule-set:
the \Guessing Error"

Let R be a given set of rules. We would like to be
able to assess how good a given set of rules R is. The
association rule mining literature has not de�ned a
criterion to assess the \goodness", or accuracy, of a
set of discovered rules. We propose a remedy, namely,
the \guessing error". The fundamental requirement is
that R must allow for estimations of missing values in
a given record/row.

Let's consider a speci�c row (customer) xi of the
matrix, and pretend that the j-th attribute is hidden
from us (i.e., the amount spend on the j-th product,
say, bread). Given R and the rest of the values xi;l
(l 6= j), we should be able to estimate the missing
value as x̂ij. The guessing error for this speci�c cell
(i; j) is x̂ij � xij.

De�nition 1 The \single-hole guessing error", or
simply the \guessing error", for a set of rules R on
a data matrix X is de�ned as the root-mean-square of
the guessing errors of the individual cells, that is,

GE =

vuut 1

NM

NX
i

MX
j

(x̂ij � xij)2 (3)

More speci�cally, we also de�ne it as the single-hole
guessing error GE1 because we allowed only a single
hole at a time. The generalization to the h-hole guess-
ing error GEh is straightforward.



/* input: bH, a 1�M row vector with holes */

/* output: b̂, a 1�M row vector with holes filled */

1. V0  EH �V; /* ``RR-hyperplane'' */

2. b0  EH � b
t
H; /* ``feasible sol'n space'' */

3. solve V0 � xconcept = b0 for xconcept /* solution in k-space */

4. d V� xconcept; /* solution in M-space */

5. b̂ b� [EHc ]t + d� [EH]
t;

Figure 3: Pseudocode for �lling holes.

De�nition 2 The \h-hole guessing error" for a set
of rules R on a data matrix X is de�ned as the root-
mean-square of the guessing errors of h cells at a time,
that is,

GEh =

vuut 1

NhjHhj

NX
i

X
H2Hh

X
l2H

(x̂i;l � xi;l)2 (4)

where Hh contains some subset of the
�
M

h

�
combina-

tions of sets H with h \holes".

The way that R is derived is independent of the
de�nition of the \guessing error". We expect that the
typical practice in Machine Learning will be followed:
we can use a portion Xtrain of the dataset X to derive
the rules R (\training set"), and some other portion
Xtest of the dataset X to compute the guessing error
(\testing set"). The details of the choice of training
and testing sets are orthogonal to our de�nition, and
outside the scope of this paper, since they have been
extensively examined in the machine learning and clas-
si�cation literature [18]. A reasonable choice is to use
90% of the original data matrix for training and the
remaining 10% for testing. Another possibility is the
use the entire data matrix for both training and test-
ing. In this paper, we report only the results for the
former choice because the two choices above gave very
similar results.

The ability to measure the goodness of a set of rules
R for a given testing dataset Y is very important, for
developers of data-mining products and for end-users
alike:

� For developers, it allows benchmarking and com-
parison with competing products and designs: a
low \guessing error" over a variety of input ma-
trices indicates a good product;

� For end-users that use a given product on a spe-
ci�c dataset, a low \guessing error" implies that
the derived rules have captured the essence of this
dataset, and that they can be used for estimation
of truly unknown values with more con�dence.

It should be highlighted that the de�nition of the
\guessing error" can be applied to any type of rules, as

long as they can do estimation of hidden values. In the
next subsection we focus on the proposed Ratio Rules,
and show how to use them to obtain such estimates.

4.4 Determining Hidden and Unknown Val-
ues

Here we present an algorithm for determining un-
known values of a data matrix both algebraically and
geometrically. If we can reconstruct these so-called
\holes", then we can �nd hidden values or forecast
future values. This framework is also applicable to
\what-if" scenarios where we can specify some of the
values (`What if the demand for Cheerios doubles?')
and then forecast the e�ect on other attributes (`Then
the demand for milk will double.'). In addition, it can
be used to discover outliers by hiding a cell value, re-
constructing it, and comparing the reconstructed value
to the hidden value. A value is an outlier when its pre-
dicted value is signi�cantly di�erent (e.g., two stan-
dard deviations away) from the existing hidden value.

We begin by developing some notation necessary
for formulating the problem algebraically. Then we
give the geometric intuition and show how the problem
leads to a system of equations.

De�nition 3 An h-hole row vector bH is de�ned as a
vector with holes (denoted with \?"s) at indices given
in H, where H is the set of \holes".

An example of a 1�5 2-hole row vector is the following:

bf2;4g = [b1; ?; b3; ?; b5]

De�nition 4 An (M�h)�M eliminationmatrix EH
is de�ned as an M �M identity matrix with h = jHj
rows removed, where the row indices are given in the
set H.

An example of a 3 � 5 elimination matrix is the fol-
lowing:

Ef2;4g =

2
4

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

3
5

An elimination matrix is very useful in helping us pick
and choose entries from vectors. For example, we can
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Figure 4: Two of the three possible cases: exactly de�ned, and over-speci�ed

eliminate the \?"s from bf2;4g as follows:

Ef2;4g�b
t
f2;4g =

2
4

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

3
5�

2
6664

b1
?
b3
?
b5

3
7775 =

2
4

b1
b3
b5

3
5

Once the user has speci�ed partial knowledge from
a transaction bH (e.g., the dollar amounts spent by
a new customer, for some products), the set of un-
knowns H are determined by the k Ratio Rules that
have been kept, and are reported as b̂, that is, bH with
the holes H �lled in. The geometric intuition is the fol-
lowing: the rules form a k-dimensional hyper-plane V0

(= EH �V) in M -space, the \RR-hyperplane", on or
close to which the data points lie. The h holes result
in an h-dimensional hyper-plane b0 (= EH � btH) in
M -space, the \feasible solution space", on which the
solution is constrained. We want to �nd a point that
agrees with our given partial data (\feasible solution
space"), and is as close to (or exactly on) the RR-
hyperplane.

Figure 4(a) illustrates the case in the simplest pos-
sible form: we haveM=2 products (say, amount spent
on \bread" for the x-axis, and amount spent on \but-
ter" for the y-axis), k=1 rule, and h=1 hole. We know
(a) that a customer spends the given amount on bread
and (b) that most of our previous customers fall on
or close to the line de�ned by the �rst rule (RR1).
We want to �nd the amount spent on butter (the
hole). The intersection of \feasible locations" (vertical
dashed line) and \expected locations" (solid diagonal
line) gives our best prediction for the 2-d point that
corresponds to that sale; the value on the \butter"
axis, labeled as \guess" is our proposed estimate for

the required amount spent on butter.
The intersection of the two hyper-planes corre-

sponds to a system of linear equations V0�xconcept =
b0, from which the solution of xconcept determines the
unknowns. Figure 3 gives the pseudo-code for the ge-
ometric description above.

Recall that the intersection of \feasible locations"
and \expected locations" gives our best prediction.
There are three possibilities regarding the intersection
of the two hyper-planes, which are illustrated in Fig. 4-
5. Respectively, there are three possibilities regarding
the equation from step 3 of the pseudo-code,

V0 � xconcept = b0 (5)

given that there are (M � h) equations and k un-
knowns.

CASE 1: (EXACTLY-SPECIFIED)
The two hyper-planes intersect at a point.
This occurs when (M � h) = k. The respec-
tive linear equations have an exact solution
determined by

xconcept = (V0)�1 � b0 (6)

Figure 4(a) illustrates an example in M = 2
dimensions, for h = 1 hole and cuto� k = 1
ratio rule.

CASE 2: (OVER-SPECIFIED)
The two hyper-planes do not intersect. This
occurs when (M � h) > k. The respective
equations are over-determined, and the closest
distance between them is chosen for the solu-
tion to xconcept based on the Moore-Penrose



pseudo-inverse of V0 (see [17]). This uses the
singular value decomposition of V0:

V0 = R� diag(�j)� St (7)

Since V0 is singular, no inverse exists, but we
can �nd a pseudo-inverse:

[V0]�1 = S� diag(1=�j)�Rt (8)

and, thus,

xconcept = [V0]�1 � b0 (9)

Figure 4(b) illustrates an example in M = 3
dimensions, for h = 1 hole and cuto� k = 1.

bread

milk

butter

RR1

RR2

Given valueguess

feasible

RR-plane

under-speci�ed

Figure 5: The last possible case: under-speci�ed.

CASE 3: (UNDER-SPECIFIED)
The intersection of the two hyper-planes forms
a (min(k; h) � 1)-dimensional hyper-plane.
This occurs when (M � h) < k. The respec-
tive equations are under-determined. Among
the in�nite solutions, we propose to keep the
one that needs the fewest eigenvectors. Thus,
we ignore (k + h)�M rules to make the sys-
tem exactly-speci�ed, and then solve it using
CASE 1. Figure 5 illustrates an example in
M = 3 dimensions, for h = 2 holes and cuto�
k = 2.

5 Experiments

We ran three sets of experiments. The �rst was to in-
vestigate the prediction accuracy achieved by the pro-
posed method; the second was to examine the stability
of Ratio Rules in estimating more than one simultane-
ous hole; the third was to see how our method scales
up for large datasets.
Methods: We compared Ratio Rules with a

straightforward technique for predicting values, named

col-avgs: for a given hole, use the respective column
average from the training set. Note that col-avgs is
identical to the proposed method with k = 0 eigenval-
ues. Multiple linear regression (e.g., [14]) is remotely
related to our proposed approach: it can predict miss-
ing values for a given, speci�ed column of the data
matrix, if everything else is known. Our method is
more general because it can predict arbitrary choices
of arbitrary numbers of missing columns, thanks to our
technique in subsection 4.4. We cannot compare Ratio
Rules with any association-based methods because, as
we argue in Sec. 6.3, association-based methods do not
lead to prediction of missing values.
Error Measure: We use the GEh \guessing error"

described in Sec. 4.3.
Datasets: We ran our experiments on a variety of

real datasets (see Section 6.1 for scatter-plots of them),
described as follows:

� `nba' (459 � 12) - basketball statistics from the
1991-92 NBA season, including minutes played,
�eld goals, rebounds, and fouls;

� `baseball' (1574 � 17) - batting statistics from
Major League Baseball for four seasons; �elds in-
clude batting average, at-bats, hits, home runs,
and stolen bases;2

� `abalone' (4177 � 7) - physical measurements of
an invertebrate animal, including length, diame-
ter, and weights.3

Preliminary to running these experiments, for each
dataset we chose 90% of the matrix rows for the train-
ing matrix; the remaining 10% were used as the test-
ing matrix. We computed the Ratio Rules from the
training matrix, along with the column averages of the
training matrix for use as the competitor (col-avgs).

5.1 Prediction Accuracy

Figure 7 shows the GE1 guessing error for the
`nba' , `baseball' , and `abalone' datasets, normal-
ized by the guessing error attained by col-avgs. As
a frame of reference, we also present the normalized
GE1 of col-avgs, which is, of course, 100%. Note
that the proposed method method was the clear win-
ner for all datasets we tried and gave as low as one-�fth
the guessing error of col-avgs.

5.2 Error Stability

In Fig. 6, we show GEh for the `nba' and `baseball'
datasets, for 1 � h � 5 holes. The results for the
`abalone' dataset were similar, and are omitted for

2The `baseball' dataset is available at
http://www.usatoday.com/sports/baseball/sbstats.htm.

3The `abalone' dataset is available at
http://www.ics.uci.edu/�mlearn/MLSummary.html.
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Figure 6: Guessing error vs. number of holes (1-5) for the `nba' and `baseball' datasets
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brevity. Note that the guessing error is relatively sta-
ble for up to several simultaneous holes. Note that
GEh is constant with respect to h for colavgs since
the computation of GEh turns out to be the same for
all h, for that method.

5.3 Scale-up

Figure 8 demonstrates the scale-up of our algo-
rithm. The vertical axis is the average actual com-
putation time to determine the Ratio Rules (in sec-
onds), as measured by the time utility of UNIXTM

. The horizontal axis is the number of data matrix
rows N . Since all of our datasets are relatively small
(N < 5000) for this experiment, we used a 100,000
� 100 data matrix created using the Quest Synthetic
Data Generation Tool.4 The methods were imple-
mented in C and Splus. The experiments ran on a
dedicated Sun SPARCstation 5 with 32Mb of main

4Quest is available at
http://www.almaden.ibm.com/cs/quest/syndata.html.
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Figure 8: Scale-up: time to compute RR versus db size
N in records.

memory, running SunOS 4.1.3. The disk drive was
a FUJITSU M2266S-512 model `CRANEL-M2266SA'
with minimum positioning time of 8.3ms and maxi-
mum positioning time of 30ms.

The plot is close to a straight line, as expected.
The y-intercept of the line is the time to compute the
eigensystem, which is alwaysO(M3) = O(1003), which
apparently has a negligible e�ect on the curve.

6 Discussion

Here we show the visualization capabilities that Ra-
tio Rules o�er by presenting 2-d scatter-plots of the
datasets used. Using the `nba' dataset, we demon-
strate how these Ratio Rules can be interpreted, with
references to the plots. Finally, we present a qualita-
tive comparison of the Ratio Rules versus association
rules [23].
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Figure 9: Scatter plots of (a) `baseball' and (b) `abalone' in 2-d RR space.

6.1 Visualization

Recall that Ratio Rules identify the axes of greatest
variation. Similar to PCA, by projecting the points
onto the best two or three of these axes (i.e., the eigen-
vectors associated with the largest eigenvalues), the
points can be plotted to give an idea of the density
and structure of the dataset. For example, Figure 11
shows a scatter-plot of `nba', which originally included
the statistics of N=459 players for M=12 attributes
and has been reduced to 2-dimensional RR-space (i.e.,
two Ratio Rules).

In (a), the x-axis corresponds to the �rst (and
strongest) rule RR1; the y-axis corresponds to RR2.
In (b), the x-axis corresponds to RR2 and the y-axis
corresponds to RR3. Most of the points are very close
to the horizontal axis, implying that they all closely
follow the �rst eigenvector and are considerably lin-
ear. The plot also shows that many of the attributes
are correlated with one another, such as �eld goals and
minutes played. There are two points that are clearly
outliers: (3000; 971) and (2100;�1296), corresponding
to Michael Jordan and Dennis Rodman, respectively.
Figure 9 shows 2-d plots for (a) `baseball' and (b)
`abalone'.

6.2 Interpretation of the Ratio Rules

In this section, we illustrate by example how Ratio
Rules can be interpreted as meaningful rules. The
methodology is outlined in Figure 10.

Table 2 presents the �rst three Ratio Rules (RR1,
RR2, and RR3) for the `nba' dataset, whose �elds in-
clude minutes played, �elds goals, o�ensive rebounds,
defensive rebounds, assists, and steals, among others.

By drawing on a basic knowledge of basketball and
by examining these Ratio Rules, we conjecture the fol-
lowing: RR1 represents \court action", separating the
starters from those who sit on the bench, and gives
a 0.808:0.406 � 2:1 ratio. This is a Ratio Rule with

1. Solve the eigensystem;
2. Keep k strongest rules according to Eq. 1;
3. Display Ratio Rules graphically in a histogram;
4. Observe positive and negative correlations;
5. Interpret;

Figure 10: Interpretation of Ratio Rules.

�eld RR1 RR2 RR3

minutes played .808 �:4
�eld goals

goal attempts
free throws

throws attempted
blocked shots

fouls
points .406 .199

o�ensive rebounds
total rebounds �:489 .602

assists �:486
steals �:07

Table 2: Relative values of the RRs from `nba'.

the obvious interpretation: the average player scores 1
point for every 2 minutes of play (equivalently, 1 bas-
ket for every 4 minutes played). According to RR1,
Michael Jordan was by far the most active player in
almost every category (see Fig. 11(a)). RR2 shows that
the number of rebounds is negatively correlated with
points in a 0.489:0.199 � 2.45:1 ratio. This is because
a goal attempt makes it di�cult for a player to get in a
good position for rebounding, and vice versa. For that
reason, \minutes played" and \points" are also nega-
tively correlated, meaning that a rebounder scores less
as a percentage of time on the �eld than players who
place emphasis on o�ense. Thus, RR2 roughly repre-
sents \�eld position", separating the guards, who get
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the most opportunities to shoot, from the forwards,
who are more likely to be rebounders. For example, in
Fig. 11(a), we see the extremes among active players:
star shooting guard Michael Jordan at one end with
2404 points and 91 rebounds, and power forward (and
excellent rebounder) Dennis Rodman at the other with
800 points and 523 rebounds. RR3 says that rebounds
are negatively correlated with assists and steals. Typi-
cally, tall players make better rebounders because they
can reach high and short players are better at as-
sists and steals because they can move fast. Thus,
RR3 roughly represents \height", with Mugsy Bogues
(5'3") and Karl Malone (6'8") at opposite extremes
(see Fig. 11(b)).

6.3 Ratio Rules vs. Association Rules

Ratio Rules are quite di�erent from association rules in
many qualitative aspects. Here we compare and con-
trast the two paradigms. Of the association rules, we
examine both Boolean and quantitative rules. Exam-
ples of each type of rule with which we are concerned
follow:

� Boolean association rules [2]:
fbread;milkg ) butter

� quantitative association rules [23]:
bread : [2� 5] ) butter : [1� 2]

� Ratio Rules: ratio of spendings
bread:butter = 2:3

Boolean association rules have the advantages that
they are easy to interpret and relatively easy to imple-
ment. The major drawback, however, is that a given
data matrixX with, e.g., amounts spent per customer
per product, is converted to a binary matrix by treat-
ing non-zero amounts as plain \1"s. This simpli�es
the data mining algorithms but tends to lose valuable
information.

Quantitative association rule algorithms perform an
important step to retain the above information. Fig-
ure 12(a) illustrates how these rules might work for
a �ctitious dataset with a few customers (points) and
M = 2 products only, namely, \bread" and \butter".
In this dataset, the quantitative association rules will
derive rules that correspond to the dashed rectangles
of the �gure. For example, the �rst two lower-left rect-
angles will yield the rules

bread : [1� 3] ) butter : [:5� 2:5]

bread : [3� 5] ) butter : [2� 3]

Ratio Rules, for the same setting of Figure 12 and
with k = 1 rule, will �t the best possible line through
the dataset; its unit vector is exactly the �rst rule of
the given data matrix. Thus, the corresponding rule
will be

bread : butter = :81 : :58

For the remaining discussion, we focus only on quanti-
tative association rules since the focus is on real-valued
data such as dollar amounts spent by customers on
products. We compare the strengths of quantitative
association rules with those of Ratio Rules.

The advantages of quantitative association rules in-
clude the following:

� They will be more suitable if the data points form
clusters;

� They have been applied to categorical data.

The advantages of Ratio Rules include the following:

� They achieve more compact descriptions if the
data points are linearly correlated, as in Figure 12,
or as in the real datasets that we saw earlier. In
such cases, a single Ratio Rule captures the cor-
relations, while several minimum bounding rect-
angles are needed by the quantitative association
rules to convey the same information;
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Figure 12: Illustration of rules from a �ctitious dataset of sales on bread and butter: (a) quantitative association
rules; (b) Ratio Rules. The \given" entry asks for an estimation for butter, for the given amount spent on bread.

� They can perform extrapolations and predictions.
For example, in Figure 12, suppose that we are
given that a customer bought $8.50 of bread and
we want to know how much butter s/he is ex-
pected to buy. Ratio Rules will predict $6.10 on
butter, as Figure 12(b) illustrates. Quantitative
association rules have no rule that can �re because
the vertical line of \feasible solutions" intersects
none of the bounding rectangles. Thus they are
unable to make a prediction;

� Their derivation requires a single pass over the
dataset;

� They are easily implemented, thanks to highly
�ne-tuned eigensystem packages; the remaining
programming e�ort is minimal.

7 Conclusions

We have proposed a completely di�erent type of rules
as the target of data mining e�orts, namely, Ratio
Rules. These rules have signi�cant advantages over
Boolean and quantitative association rules:

� They lead to a natural measure, the \guessing er-
ror", which can quantify how good a given set of
rules is;

� They can be used to estimate one or more
unknown (equivalently, missing, hidden or cor-
rupted) values when a new data record is given,
based on the novel method proposed in Sec-
tion 4.4; thus, they can also be used in forecasting,
for \what-if" scenarios, and for detecting outliers;

� They are easy to implement. The most di�cult
part of our method is the solution of an eigen-
system for which reliable packages and/or source
code are widely available;

� They are fast and scalable, requiring a single pass
over the data matrix, and growing linearly on the
largest dimension of the matrix, presumably the
number N of rows (customers);

� They give visualization for free, thanks to the di-
mensionality reduction properties of Ratio Rules.

We described how to interpret Ratio Rules and we
discussed their qualitative di�erences from association
rules. Finally, we presented experiments on several
real datasets, which showed that the proposed Ratio
Rules scale-up for large datasets, and can achieve up
to 5 times smaller guessing error than the competitor.
Future research could focus on applying Ratio Rules
to datasets that contain categorical data.
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