
Efficient Testing of High Performance Transaction 
Processing Systems 

Dennis Wildfogel 
Tandem Computers Inc. 

Cupertino, CA 95014 
wildfogel-dennis@tandem.com 

Abstract 

Testing the reliability of high performance 
tlansaetion processing systams poses many 
difficult challenges that are not adequately 
answered by conventional testing techniques. 
We discuss a new test paradigm, which is dy- 
namic and exploratory in nature, and discuss 
its ability to meet these challenges. We de- 
scribe an implementation of thii paradigm in 
products that aid in efficiently testing reliable, 
high performance transaction processing sys- 
tems at T~adem Computers Inc. 

1 Introduction 

Mission critical database applications, e.g., a stock 
market system, insist on guaranteed data integrity 
in all situations. They also demand extremely high 
performance and high system availability (the cost of 
even short outages, of the order of minutes, is pro- 
hibitively high). Such applications employ high perfor- 
mance transaction processing systems that also have 
high availability characteristics ([TDG87], [SKP088], 
[MHLPSOS]). Tandem’s NonStop SQL ([TDG87], 
[TPG88], [BPSS]) is one such system. Nonstop SQL 
runs in a shared nothing, multi-processor architecture 
that provides high performance through scalable paral- 
lelism ([BarOl], [Sto91]). High availability is afforded 

Permission to copy without fee all or part of thia material is 
granted provided that the copier an not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying ia by permisrion of the Very L4rge Data B4se 
Endowment. To copy othenuiae, or to npubliah, requirea a fee 
and/or apccial permission from the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

Ramana Yerneni 
Computer Science Dept. 

Stanford, CA 94305 
yerneni@cs.stanford.edu 

through hardware fault tolerance (by way of redun- 
dancy, e.g., mirrored disks) as well as software fault 
tolerance (by way of process pairs with active, “hot 
standby” backup processes) ([GR93], [Bor84]). At 
the heart of the Nonstop SQL system, the Transac- 
tion Manager (TM) and the Disk Process (DP), are 
two products that work together to provide ACID - 
atomic, consistent, isolated, durable - transactions, 
thus ensuring data integrity at alI times. 

An analysis of outages of transaction processing sys- 
tems shows that the dominant cause of system unavail- 
ability is software faults (they far outweigh all other 
faults put together, including operator faults and hard- 
ware faults) ([GraySO], [GR93]). Thus, it is extremely 
important to ensure the reliability of the software com- 
pane& of NonStop SQL, ia order for it to be a highly 
available transaction processing system. TM and DP 
are two of the key software components whose relia- 
bility is of particular concern because faults in these 
components can compromise database consistency (by 
violating the ACID semantics of transactions), not just 
system availability. 

Developing software components like TM and DP 
poses many challenges. One particularly difficult task 
is to test their reliability. In this paper, we argue that 
conventional solutions to testing software products are 
inadequate in verifying the reliability of products like 
TM and DP. We describe a novel dynamic testing 
paradigm that is more suitable for this task. We dii- 
cuss how tests can be written in this paradigm to ef- 
ficiently and effectively test high performance, highly 
available transaction processing systems like Nonstop 
SQL. 

2 Conventional Approaches 

Conventional approaches to testing software products 
are based on a static paradigm of specifying the precise 
set of inputs and outputs of each test ([Mye79]). There 
are three main problems with conventional approaches 

595 



when testing products whose behavior is influenced by 
the state of the system in which they operate. They 
are: 

l it may not be possible to specify each test com- 
pletely because part of the input to the test is the 
system state that influences the operation of the 
products, and one may not be able to describe 
the relevant system state precisely in a high level 
specification of the test. This makes test specifi- 
cation cumbersome and arduous. 

l it is very difficult, if not impossible, to create the 
specified system state accurately when executing 
a test. This makes test development and execu- 
tion very difficult. 

l the number of system states that may affect the 
products is so large that it is very inefficient, 
and often infeasible, to enumerate all the relevant 
tests. This makes the whole testing process inef- 
ficient . 

l it is nearly impossible to recognize in advance 
many different states that have nontrivial affect 
on the operation of the products. This makes 
the testing process potentialIy deficient because 
it may miss some important test cases. 

TM and DP implement many key protocols and al- 
gorithms like Two-Phase Commit, Two-Phase Lock- 
ing, Write Ahead Logging, Do-Undo-Redo Recovery, 
and Steal-No Force Buffer Management ([MHLPS92], 
[BN97]). The operation of these protocols and algo- 
rithms is influenced by the state of the system at the 
time of their execution. In this sense, TM and DP are 
highly state sensitive products. 

TM and DP run as process pairs (TM-Primary, 
TM-Backup, DP-Primary and DP-Backup), that are 
deployed in different CPUs, in order to tolerate the 
failure of any single component of the system, with- 
out compromising service availability. When the pri- 
mary process, or the CPU in which it resides, fails the 
backup process takes over and resumes the product 
services in a seamless manner. Process checkpointing 
mechanisms are used to implement the ability to take 
over no matter when the failure occurs. Of course, 
the behavior of the take over code will be strongly in- 
fluenced by the state of the primary and the backup 
processes at the time of the failure event. This is an- 
other aspect of the state sensitivity of TM and DP. 

Thus, given the state sensitive nature of TM and 
DP, conventional test approaches are not suitable to 
verify the reliability of TM and DP. 

3 Dynamic Test Paradigm 

We developed a dynamic test paradigm, which is much 
better suited to the task of verifying the reliability of 
TM and DP ([Wil92]). The essential idea of this test 
paradigm for transaction processing systems is to cre- 
ate transaction activity in the system, asynchronously 
generate system events (like the failure of a hardware 
component, e.g. a CPU), and verify the appropriate 
response of the system with respect to data integrity, 
availability and performance. 

We illustrate the dynamic test paradigm with the 
following example. Nonstop SQL provides complete 
tolerance of single point failures. That is, the sys- 
tem availability is not affected by the failure of any 
one component of the system. Of course, the database 
consistency must always be preserved, no matter what 
failures happen. So, for example, a dynamic test would 
create background transaction activity in the system, 
invoke the failure of a single CPU in the cluster (hap- 
pening asynchronously with respect to the background 
transaction activity), and verify that alI the system 
services are available when the CPU is up (to start 
with), when it fails, and when it comes back up. In 
addition, it would also verify that the consistency of 
the database is maintained. 

We note here that the timing of the CPU failure in 
the above example test, with respect to the state of the 
various transactions active in the system and the states 
of the processes like the TM and the DP at the time 
of the CPU failure, is crucial. Since the generation of 
the CPU failure event in the test is asynchronous to 
the transaction activity created by the test, each run 
of the test may produce a different timing situation. 
In order to robustly verify the correct behavior of the 
Nonstop SQL system in the presence of a CPU failure, 
one may run this test many times over. 

Another approach, and the one we have taken in 
our implementation, is to repeat the failure event gen- 
eration many times in a single test. That is, in the 
example test described above, the test will take the 
CPU down, bring it up, take it down, bring it up, and 
so on. At various points in the test, the availability of 
the system services as well as the consistency of the 
database may be verified. Thus, in the dynamic test 
paradigm, it is common to have tests that repeat the 
system events many times, within a test. 

4 Implementation Experience 

Each time a system event occurs in a dynamic test, one 
can define a test case based on the timing of this event 
with respect to the state of the system (the transac- 
tions and the processes). In this sense, each dynamic 
test spawns many test cases in a single run of the test. 
Note here that each of these test cases is not explicitly 

596 



specified. Instead, each test covers a large set of test 
cases that are enumerated dynamically at run time. 
This exploratory nature of the dynamic test paradigm 
clearly distinguishes it from conventional approaches 
that require explicit specification of the test cases. The 
ability of a dynamic test to cover a large number of test 
cases is a powerful feature which leads to concise test 
specfication, simple test design, and efficient test de- 
velopment and execution. Our implementation of the 
dynamic test paradigm in verifying the reliability of 
TM and DP has demonstrated this fact clearly. 

Over the past few years, we have relied heavily 
on the dynamic test paradigm to test TM and DP 
([Wilgl]). During this time, the reliability of these 
products has improved significantly. This, and the fact 
that tests developed using the dynamic paradigm have 
found many faults in these products, points strongly 
to the significant contribution of our paradigm in en- 
suring the reliable development of TM and DP. 

Some aspects of the TM and DP products, like their 
basic application programming interface and system 
administration interface (to configure, monitor and ad- 
minister) are amenable to verification based on con- 
ventional testing approaches, based on the static test 
paradigm. Accordingly, the test libraries developed 
using the dynamic test paradigm are complemented 
by sets of tests based on conventional approaches to 
provide a comprehensive verification of the reliability 
of these products. 

We have employed the dynamic test paradigm in 
verifying the reliability of other related products like 
Nonstop SQL’s Disaster Recovery Facility ([LyonSO]). 
Our experience suggests that this test paradigm is very 
suitable for the reliability verification of many prod- 
ucts, not only in transaction processing systems but 
also in contexts like operating systems and network 
management systems. 

5 Conclusion 

In this paper, we have briefly described the problem 
of efficiently testing high performance transaction pro- 
cessing systems. We observed that conventional soft- 
ware testing techniques are not adequate in testing 
the core software components of such systems. We 
discussed a novel test paradigm that is dynamic and 
exploratory in nature. Many years of our experience in 
its use have shown its applicability in efficiently testing 
Tandem’s Nonstop SQL, a high performance, highly 
available transaction processing system. 

References 

[Bar811 J. Bartlett. A Nonstop Kernel. Proc. 8th 
Symposium on Operating Systems, Decem- 
ber, 1981. 

[BN97] 

[Bor84] 

[BP881 

[GR93] 

P. Bernstein, E. Newcomer. Principles of 
Transaction Processing: For the Systems 
Professional. Morgan-Kauffman, 1997. 

A. Borr. Robustness to Crash in a Dis- 
tributed Database: A Non Shared-Memory 
Multi-Processor Approach. PTOC. 10th In- 
ternational Conference on Very Large Data 
Bases, September, 1984. 

A. Barr, F. Putsolu. High Performance 
SQL Through Low-Level System Integration. 
Tandem Computers TR 88.10, June, 1988. 

J. Gray, A. Reuter. mansaction Process- 
ing: Concepts and Techniques. Morgan- 
Kauffman, 1993. 

[GraySO] J. Gray. A Census of Tandem System Avail- 
ability between 1985 and 1990. IEEE Trims- 
actions on Reliability, October 1990. 

[Gray811 J. Gray. The Transaction Concept: Virtues 
and Limitations. Proc. 7th International 
Conference on Very Large Dada Bases, June 
1981. 

[He1891 P. HelIand. The TMF Application Program- 
ming Interface: Program to Program Com- 
munications, Transactions, and Concurrency 
in the Tandem Nonstop Computer System. 
Tandem Computers TR 89.3, 1989. 

[LyonSO] J. Lyon. Tandem’s Remote Data Facility. 
Proc. 35th IEEE Compcon, 1990. 

[MHLPSDZ] C. Mohan, D. Haderle, B. Lindsay, H. Pi- 
rahesh, P. Schwartz. ARIES: A Trans- 
action Recovery Method Supporting Fine- 
Granularity Locking and Partial Rollbacks 
Using Write-Ahead Logging. ACM !lkans- 
actions on Database Systems, 17(l), 1992. 

[Mye79] G. Myers. The Art of Software Testing. Wi- 
ley Series in Business Data Processing, ed: 
R. Canning, J.D. Couger, 1979. 

[SKP088] M. Stonebraker, R. Katz, D. Patterson, 
J. Ousterhout. The Design of XPRS. Proc. 
14th International Conference on Very Large 
Data Bases, August, 1988. 

[StoSl] M. Stonebraker. The Case for Shared Noth- 
ing. IEEE Database Engineering, March, 
1991. 

[TDG87] T an d em Database Group. Nonstop SQL: A 
Distributed High Performance, High Avail- 
ability Implementation of SQL. High 

597 



Performance Transaction Systems, Berlin: 
Springer- Verlag, 1987. 

[TPG88] Tandem Performance Group. A Benchmark 
of NonStop SQL on the Debit Credit Trans- 
actions. Proc. ACM SIGMOD conference, 
June, 1988. 

[Wil92] D. Wildfogel. Dynamic and Exploratory 
Testing. Proc. 5th International Software 
Quality Week, May, 1992. 

[Wilgl] D. Wildfogel. NAPR: The Testing Environ- 
ment for Low Level Database QA. PTWC. TSG 
Productivity and Quality Conference, Octo- 
ber, 1991. 

598 


