Integrating SQL Databases with Content-specific Search Engines

Stefan Dessloch, Nelson Mattos
IBM Database Technology Institute, San Jose, CA
dessloch@aimaden.ibm.com, mattos@vnet.ibm.com

Abstract

In recent years, database research and product
development activities have focused on support
for non-traditional data types, such as text or
multi-media documents. This paper describes
an approach of coupling SQL databases and
content-specific search engines, such as full-
text retrieval engines, in an efficient manner. It
is based on a query rewrite scheme that
exploits so-called table functions, which are
used to pass results from external search
engines into the database engine. Using this
approach the content-specific indexing mecha-
nisms of search engines can be exploited with-
out having to extend the database engine with
new access methods, or having to break up the
search engine to map its indexing scheme to
database index structures.

1 Introduction

In recent years, database research and product develop-
ment activities in the areas of object-oriented, extensi-
ble, and object-relational databases have focused on
support for non-traditional data types, such as text or
multi-media documents [Car86, CD96, Cha96, Kim95,
Loh91, Schw86, Sto96, ZM90]. These activities have
resulted in systems that support extensibility in terms of
their type systems and their query languages. Such
extensibility features permit the creation of new data
types and new functions (or methods) to accommodate
new types of content in the database as well as well as to
manipulate and search such content.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
Jor direct commercial advantage, the VLDB capyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

Existing object-relational database products, such as
IBMs DB2 Universal Database [Cha96, Dav96a] or
Informix Universal Server [Dav96b] provide an archi-
tecture and APIs for integrating content management

and search for new data types in the form of plug-ins.!
This is especially attractive for vendors of content-spe-
cific search engines, giving them the opportunity to plug
their existing search engine products into the database
engine with minimal migration efforts, thereby provid-
ing database users with their advanced content search
capabilities inside SQL.

This trend is also reflected in current standardization
efforts, such as SQL3 [Mel96], ODMG [Cat96], and
SQL/MM [Cot96a]. The current version of the SQL3
standard draft, which is expected to become an official
standard in 1998, specifies language extensions for cre-
ating complex, user-defined types (abstract data types,
or ADTS) and user-defined functions (UDFs). The SQL3
standard specification is ‘supplemented’ by the SQL/
MM documents, which attempt to standardize the struc-
ture and behavior of multi-media data types such as text
or image, as well as other non-traditional data types
such as geospatial data, in the context of the SQL lan-
guage.

In order to efficiently support the addition of such new
data types, a database engine has to be truly extensible,
meaning that the engine and the optimizer have to be
able to recognize and execute user-defined types and
functions in the same way as built-in ones. Moreover,
indexing support has to be extended in such a way that it
also covers user-defined data types.

Various approaches for extending indexing support have
been developed over the last years [Aok91, DDSS95,
GFHR96, LS88, Sto86]. In the relational, or object-rela-
tional context, some of these approaches permit the user
or database administrator to create indices not only on
table columns, but also on the results of function invoca-
tions or expressions involving columns. While indexing
on the results of function invocations is definitely an
important concept, it does not help at all in the support
of content search on data types such as text documents
or images. Content search on such data types usually
involves predicates for specifying that a certain value or
document should match a (potentially very complex)

1. IBM calls such plug-ins ‘relational extenders’
[IBM95], Informix calls them ‘DataBlade ®

528

search pattern. Neither storing the complete document nor
storing the result of a simple function invocation on a doc-
ument in an index helps to support such types of queries.
Other approaches have concentrated on developing new
database access methods for non-traditional content, such
as for text or spatial data [Gut84, Jag90]. While the incor-
poration of new access methods into the database engine is
probably the most effective way to enhance indexing capa-
bilities, it is also the most expensive one. In general, this
is hardly possible by just plugging in some code into the
engine. Because of its interaction with central database
components such as locking and recovery management,
adding an access method is a complicated task that
requires advanced database skills and intimate knowledge
of the underlying database system. Especially for a vendor
that is specialized in search technology for specific types
of content and would like to implement a database ‘plug-
in’ for existing object-relational DBMS, adding an access
method to the DBS may not be feasible. In addition to the
above described database aspects, such a vendor also has
to map his content-specific index data structures and the
processing model of the indexing engine to the indexing
approach of the database system. Thus, it is likely that
because it is exactly the (usually proprietary) indexing and
search technology where vendors differ and compete, a
single access method provided by the database vendor for
a specific type of content, such as d-trees for text, does not
meet the requirements of such a vendor.

This paper describes an approach of coupling SQL data-
bases and content-specific search engines, such as full-text
retrieval engines, in an efficient manner, It is based on a
query rewrite scheme that exploits so-called table func-
tions, which are used to pass results from external search
engines into the database engine. Using this approach the
content-specific indexing mechanisms of search engines
can be exploited without having to extend the database
engine with new access methods, or having to break up the
search engine to map its indexing scheme to database
index structures.

The paper is organized as follows. In Section 2, we intro-
duce a sample scenario from the area of text databases,
which serves as a running example throughout the text,
and illustrates the problem we are addressing with our pro-
posed approach. In Section 3, we introduce the usage of
table functions, which resembles a first step towards a
solution. Section 4 describes the definition of index func-
tions and the associated query rewrite approach. Addi-
tional aspects related to the index function rewrite are
discussed in Section 5. A discussion of related work is pre-
sented in Section 6, and Section 7 resembles our final con-
clusions.

2 Text Search in SQL Databases - a Sample
Scenario
In order to prepare the grounds for the discussion of our

approach, we describe a sample scenario in the area of text
search in SQL databases.

529

21 SQL3 and SQL/MM Full-Text

SQL3 defines statements for adding so-called abstract data
types (ADTs) to the database type system. ADTs have
attributes, whose values can again be ADTs. Moreover,
subtyping with inheritance as well as encapsulation are
supported. ADTS ‘live’ inside columns of relational tables,
and they can only be inspected and modified using their
functional interface, i.e., the set of functions defined for
the ADT. Using the SQL mechanisms for creating ADTs
and user-defined functions, any database user having the
required privileges can extend SQL to accomodate, mod-
ify, and search over new types of content.

The SQL/MM Full-Text document [Cot96b] attempts to
standardize the integration of text retrieval in SQL based
on the concepts introduced in SQL3 by providing defini-
tions of text-related ADTs and their functional interfaces.
For example, the ADT ‘FullText’ is defined, together with
a number of functions operating on the ‘FullText’ ADT.
Once this ADT is available in a database, a user can define
a table with a full-text column in the following way to cre-
ate a table with information about projects.

CREATE TABLE projects (
proj_no integer,
title varchar(50),
budget integer,

description FullText)

In addition, SQL/MM defines a number of functions to
work with values of type ‘FullText’, such as constructor
functions and search functions. For example, the function
‘contains’ can be used to perform text search on columns
of type ‘FullText’ in the following way.

SELECT proj_no, title
FROM compschema.projects
WHERE contains(description,
¢ “database” IN SAME SENTENCE AS
“object-relational” *)

The above query would retumn all projects with a textual
description that contains the word “database” in the same
sentence as “object-relational”. The ‘contains’ function
involved in this query has two arguments (a value of type
FullText and a search pattern string), and it returns a bool-
ean value.

A vendor implementing the SQL/MM Full-Text specifica-
tion can supply function libraries and DDL statements that
can be executed to create the ADTs and additional func-
tions in the scope of a database, so that a database user can
use them in the above described manner.

2.2 Problem Description

1t is obvious that the above SQL query involving text
search cannot be efficiently executed without some sort of
indexing scheme on FullText documents. Otherwise, the
‘contains’ function would have to be performed on the
description column for each tuple in the projects table.
This would dramatically impact the overall execution cost
of the statement not just because of the full table scan

involved in the evaluation, but also because of the costs of
evaluating the ‘contains’ function itself. Without appropri-
ate index support, ‘contains’ would have to fully analyze
the given document to determine whether it matches the
search expression.

This type of search and indexing support is well-under-
stood and commercially available in the area of informa-
tion retrieval and full-text search engines. Such engines
utilize index structures based on inverted word lists
[Sal89], and they typically support APls to

+ construct a (named) index for a collection of documents
in a given scope somehow identified by the user, and

» search for all identifiers of documents in a certain scope
(given by the index name) that match a given text search
pattern.

This is exactly the functionality required for index support
in database-oriented text search, where the scope of an
index is usually the FullText column of a base table, and
FullText documents can be identified in the context of this
tabie either by a row or tuple identifier, or by a unique key
value (e.g., the primary key).
As discussed previously, there are various reasons why
existing approaches, such as using indices on functional
expressions, utilizing existing access methods, or adding a
new access method to the database engine either do not
apply, or are not desirable, essentially because they require
to break up the existing text search engine and map its
indexing and search scheme to the one of the database sys-
tem. This forces the vendor to expose proprietary key
technology by making it ‘public’ in the database index,
which is any many cases not tolerable. We are therefore
looking for a more light-weight approach that preserves
the text search engine, and allows to utilize its index-based
search technology inside of the database engine through
its standard APIs. In such an approach, user-defined data-
base functions (e.g., ‘contains’) would be realized in an
external programming language (such as C), and would
utilize the external search engine through its standard pro-
gramming APIs.

2.3 Impiementing SQL/MM Full-Text: the DB2 Text
Extender

As an example of an implementation of the SQL/MM
Full-Text specification, we introduce the DB2 Text
Extender, a ‘plug-in’ developed for IBMs DB2 Universal
Database product [Cha%96, Dav96a). DB2 Universal Data-
base supports some of the object-relational features speci-
fied in SQL3, such as user-defined distinct types and user-
defined functions. These features serve as a basis for the
implementation of the Text Extender, which integrates text
search into SQL by utilizing an IBM stand-alone text
search engine called SearchManager.

Using Text Extender, the SQL statements introduced in
Section 2.1 look slightly different. The projects table
would now be defined in the following way.

CREATE TABLE projects (
proj_no integer,
title varchar(50),

530

budget integer,
description CHARACTER LARGE OBJECT,
description_id db2texth)

Text content is stored in the table using the traditional data
types available for character data, such as variable length
character data types, or character large objects. Each text
column is ‘accompanied’ by an additional column of type
‘db2texth’, which is a user-defined distinct type intro-
duced by Text Extender. The values of these columns (also
called text handles) serve, among other things, to uniquely
identify the text documents in the text column for the
search engine. When issuing text search queries, the
accompanying handle column has to be used instead of the

text columns itself, as illustrated in the following query.!

SELECT proj_no, title
FROM compschema.projects
WHERE contains(description_id,
¢ “database” IN SAME SENTENCE AS
“object-relational” ’)

Figure 1 explains the basic architecture of the text
extender in terms of the interaction of the database engine
with the text search engine, and helps to illustrate how the
above query would be evaluated. Please note that the
architecture depicted in the figure is in so far incomplete
as it illustrates only aspects related to text search UDFs.
Additional functionality and components of Text
Extender, such as client components and administrative
APIs are not described. The query would be submitted via
a DB2 client to the DB2 server engine. For each row in the
projects table, the engine calls the contains function with
the contents of the description_id column and the search
pattern as arguments. The contains function is a user-
defined function written in a 3GL (C). It again calis the
text search engine (realized as a set of C functions in a
shared library), passing it the search pattern as well as the
name of the index covering the text documents stored in

the description column of the projects table.2 The text
search engine returns the result of the text search to the
contains UDF body in form of a list of document identifi-
ers (i.e., values of type db2texth). The UDF checks
whether the identifier that has been supplied by the data-
base engine is actually contained in the result list returned
by the text search engine, and returns the appropriate
result (‘true’ or ‘false’) to the database engine. Based on
the result of the contains function call, the database engine
will construct the query result. It is possible for the con-
tains UDF to keep the results returned by the text search
engine across invocations inside of a query by using a spe-
cial ‘scratchpad’ memory area supplied by the engine.
Therefore, the actual text search using the external text
search engine has to be performed only once, during the

1. This approach was chosen to be able to perform text
search over existing character data columns without
breaking existing applications. The ADT support will
be added in a future release.

2. This information is stored in text extender system cata-
log tables in the database.

client

server

Figure 1: Interaction of database and
text search engine in Text Extender.

first invocation of the contains UDF inside of a query.
There are several issues related to this type of coupling
that we would like to address very briefly.

» Text index creation is initiated using a separate text
extender API implemented on top of DB2. It utilizes
DB?2 stored procedures to have the text engine build the
index, which consists of a set of files stored outside of
DB?2 in an index directory on the server system.

» Meta information relevant for text search, such as the
names of database columns enabled for text search and
the names of the external text indices covering a certain
database column are stored in additional ‘catalog’
tables. The catalog table is a regular DB2 table, whose
contents are manipulated by the text extender admin
functions, but can be read by the end-user using stan-
dard SQL.

« For constructing the external text index, a separate pro-
cess is initiated that accesses the text catalog table and
determines the text column containing the text data, as
well as the associated handle column. It then reads the
text data plus the handle on a per-document basis, and
analyzes the text for constructing the index entries, stor-
ing the text handle value as a unique identifier of the
document inside the index.

« DB2 triggers, which may also call UDFs in the condi-
tions and trigger bodies, are used to reflect updates pet-
formed on text columns correctly in the corresponding
text indices.

« The contains UDF for text search runs in the same pro-
cess and address space as the database engine. This
extremely minimizes UDF overhead by eliminating

expensive inter-process communication. '
For a detailed description, the reader is referred to

1. Additionally, DB2 supports a ‘fenced” execution mode
for ‘untrusted” UDFs, where the UDF runs in its own
process, separate from the DB engine.

531

[IBM9S, IBM96].

Problem Description Rephrased

Although the above described architecture permits the
exploitation of an external text search engine through its
native APIs, and even limits the interaction to a single call
(performed during the first call of the contains UDF), there
is no way to avoid a full table scan on the projects table. In
other words, although the text search engine can provide
the result in form of a set of identifiers in one call, the
database engine will call the contains function for each
row in the table. The main problem is therefore: How can
the set of identifiers returned by a text index lookup
(involving the API of the external text search engine) be
fed back into the database query evaluation process in a
way that is comparable to a ‘traditional’ database index
lookup to avoid the table scan. Moreover, the mechanism
to achieve this integration of results needs to be externally
available through a database API, so that it can be utilized
by anybody that wants to integrate support for new data

types.

3 Using Table Functions - a First Step

Essentially, the problem described above lies in the mis-
match of the text search engine access (one access per
base table column or index, returning a set of identifiers)
and the SQL text search function ‘contains’ (one call per
given identifier, result is true/false). This can be overcome
by replacing or supplementing the ‘contains’ function with
a different type of user-defined function that matches the
characteristics of the text engine access. Based on the con-
cepts and syntax introduced in SQL3, we can define a new
user-defined function that takes as its arguments a text
search pattern and information about the scope of the
search, and produces as a result a table of identifiers for
the documents matching the search expression. The fol-
lowing syntax could be used to create such a function in

SQL, which is named ‘containstable’.2
CREATE FUNCTION containstable

(schema VARCHAR(B),
table VARCHAR(18),
column VARCHAR(18),

secarcharg LONG VARCHAR)
RETURNS TABLE(resultid db2texth);

The schema’, table, and column names are parameters
supplied by the user to specify the scope of the text search.
Internally, this information can be used by the ‘containsta-
ble’ function to determine the information (such as the
external text index name) that needs to be supplied to the
text search engine for specifying the context of the search.

2. The concept of table functions is available in IBM’s
DB2 Universal Database product

3. A schema in DB2 is simply a collection of named
objects. The same table name can be used multiple
times in different schemas, denoting different tables.

This information could be stored either in an additional
database table serving as a system catalog for text indices,
or in an external file. The resuit of the function call is a
table, whose rows identify the matching documents.

A query using this new UDF when written in standard
SQL3 would look like the following:

SELECT proj_no, title
FROM compschema.projects
WHERE description_id IN
(SELECT resuitid
FROM TABLE(containstable(‘ COMPSCHEMA’,
‘PROJECTS”,
‘DESCRIPTION_ID’,
¢ “database” IN SAME SENTENCE AS
“object-relational” *))
ASrestab (l‘PQ\II[Id\\

Ly S ud

This query produces the same results as the original query
introduced in Section 2 using ‘contains’. The ‘Containsta-
ble’ function producing a table of ids can be used in the
FROM clause of the SELECT statement, and referenced
just like any other table, as can be seen in the subquery in
the above query.

An alternative usage of this table function is the following
query, which uses a more efficient join instead of a sub-
query. A good query optimizer would also be capable of
internally producing this form of the query out of the pre-
vious one.

SELECT proj_no, title
FROM compschema.projects,
TABLE(containstable(‘COMPSCHEMA',
‘PROJECTS’,
‘DESCRIPTION_ID’,
¢ “database” IN SAME SENTENCE AS
“object-relational” *))
AS restab (resultid)
WHERE description_id = resultid

As can be seen from the queries, in order to retrieve infor-
mation about the matching projects, a join with the
projects table using the id columns has to be performed.
For performance reasons, an index on the identifier col-
umn should be available, so that a more efficient join
method can be chosen by the optimizer.

The significant advantage of using the table function ‘con-
tainstable’ is the performance gain. Since the resulting
identifiers can be directly picked up by the database
engine to locate the tuples in the projects table, the table
scan that had to occur in the original ‘contains’ solution is
avoided. In other words, the index of the text search
engine is really utilized by the database engine to directly
determine result tuples in the projects table. Note that a
database index has to exist on the identifier column
(description_id) so that the resulting indentifiers can be
used for fast lookup.

But still there are disadvantages in this approach:

« The user has to decide to use the ‘containstable’ func-
tion and the different form of query instead of the origi-
nal one using ‘contains’ as introduced in Section 2.

532

Moreover, existing query front-end tools that generate
SQL queries currently cannot create the above syntax
involving table functions. It would therefore be nicer if

the DBMS (i.e., the opiimizer) could automaticaily

apply a rewrite, if the underlying base table is large
enough,

+ The containstable UDF works very well for base tables.
However, in the case that we have a view that, for
instance produces a union of two text tables, the usage
of the ‘containstable’ function may cause provlems.
This is because the view itself is not associated with a
text index at all, but the two text tables can be associated
with different text indices. If the user supplies the
schema, table and column name of the view, the con-
tainstable function would need to break down the view
definition to the columns of the base tables involved.
This can be a very tedious tasks involving the lookup of
view definitions in system catalogs and semantic analy-
sis of the view definitions.

Therefore, we propose an automatic rewrite approach

involving the DB optimizer.

4 The Automatic Rewrite Approach

The above described containstable UDF exhibits exactly
the ‘properties’ that one usually finds with standard DB
indexing. For the evaluation of a certain predicate (or
function returning a boolean value), a special function
(index lookup) can be applied that yields an identification
of the matching values. For locating the applicable index,
one needs to know the schema, table, and column for the
item involved in the predicate, plus a value for the actual
lookup. These are exactly the input parameters for ‘con-
tainstable’.

If the optimizer knows about the existence of this function
and about the fact that it can be exploited when evaluating
the ‘contains’ function, then an automatic rewrite can be
performed by the optimizer. This can happen after view
expansion, which solves the second problem described
above.

Note that the user still has to supply the definition of the
table function, such as ‘containstable’. The table function
can hardly be generated automatically, because it follows a
different processing model than a scalar function.

4.1 Defining Index Functions

Assume the following definition for the UDF ‘contains’:

CREATE FUNCTION
contains(text db2texth, searcharg VARCHAR)
RETURNS BOOLEAN

Then this information required for performing the rewrite
can be communicated to the DBMS through the following
extensions in the definition of the ‘containstable’ UDF:

CREATE FUNCTION containstable(

schema VARCHAR(®B),
table VARCHAR(18),
column VARCHAR(18),

scarcharg LONG VARCHAR)
RETURNS TABLE(resultid db2texth)
INDEX FUNCTION FOR
contains (id db2texth, arg VARCHAR)
INDEX CHECK index_exists (
VARCHARC(8), VARCHAR(18), VARCHAR(18))
COLUMNS id AS resultid
VALUE arg

Some comments on the above extensions:

« INDEX FUNCTION FOR contains (id db2texth, arg
VARCHAR)
This specifies that the ‘containstable’ function is a
rewrite alterative (‘index function’) for the UDF ‘con-
tains’ with the given parameter types.

» INDEX CHECK index_exists (VARCHAR(8), VAR-
CHAR(18), VARCHAR(18))
For the case that the creation of the external text index is
not communicated to the DBMS (e.g., using an exten-
sion of the ‘CREATE INDEX statement), this clause
specifies a boolean UDF that can be used to determine
whether a user-defined index has actually been defined
on a certain column. The function parameters are the
schema name, table name, and column name.
Such a function can be used at compile time to deter-
mine whether an index exists (result value = true) and
therefore the rewrite can be performed, or whether this
is not the case (result = false).

« COLUMNS id AS resultid
This specifies (1) a parameter position of the ‘original’
UDF (contains), and (2) a field name of the table
returned by the ‘index UDF’. The parameter in (1)
should hold the column item in the original query. In
other words, this is the name of the parameter that is
replaced by the name of the indexed column in the UDF
call. The field name in (2) specifies the name of the cor-
responding column/field in the result table produced by
the ‘index UDF’.
It is a default assumption, that the index UDF has three
input parameters for the given column, which take the
schemaname, tablename, and columnname. One may
think of index UDFs that involve more than one table
column. In this case, more than one parameters can be
specified and the number of ‘default’ parameters for the
index UDF would be 3 * # of columns.

* VALUE arg
This specifies the parameter position of the ‘original’
UDF (contains), which will hold the ‘value’ we are
using for the index lookup.

Given our sample query

SELECT proj_no, title
FROM projects
WHERE contains(description_id,
¢ “database” IN SAME SENTENCE AS
“object-relational”)

and the above definition of the function ‘containstable’ as
an index function, the rewrite process would be performed

533

in the following steps.

1. Based on the function signature (i.c., name and parame-
ter types) of the ‘contains’ function, the ‘containstable’
function can be determined as a possible index function.

2.1n the query, the ‘description_id’ column is used as the
first parameter of the ‘contains’ function. This matches
the position of the formal parameter ‘id” for the contains
function, specified in the clause ‘COLUMNS id AS
resultid’ of the ‘containstable’ function.

3.In the query, the second argument of the ‘contains’ func-
tion call is a text literal (constant). This matches the
position of the formal parameter ‘arg’, specified in the
clause “‘VALUE arg’ of the ‘containstable’ function.

4. Using the schema, table, and column names of the
‘description_id’ column as parameters, the check func-
tion ‘index_exists’ is called. The following rewrite steps
are only performed if the function evaluates to true.

5.Based on the correspondence of the formal parameter
names specified in the index function definition, the
‘contains’ function call can be replaced by an IN predi-
cate. The first operand of the IN predicate is the
‘description_id’ column, because its formal parameter
‘id’ in the ‘contains’ function is associated with the
result column name of the index function (resultid) in
the clause ‘COLUMNS id AS resultid’. The second
operand of the IN predicate is the subquery statement
involving the call of the index function ‘containstable’
as a table function. The names of the schema, table, and
column involved in the original function call, together
with the search argument value are passed as arguments
of the ‘containstable’ function.

6. This results in the following rewritten query:

SELECT proj_no, title
FROM compschema.projects
WHERE description_id IN
(SELECT resultid
FROM TABLE(containstable(‘COMPSCHEMA’,
‘PROJECTS’,
‘DESCRIPTION_ID’,
¢ “database” IN SAME SENTENCE AS
“object-relational” ’))
AS restab (resultid))

4.2 Rewrite Process

Based on the syntax given above for defining the index
function, we can now define in a general form, how a
query can be rewritten to replace the appearance of a (sca-
lar) search function by an equivalent search condition
involving the index function.

Consider the following ‘template’ for an index function
definition

CREATE FUNCTION <index-function-name>
(<schema> VARCHAR(S),
<table> VARCHAR(13),
<column> VARCHAR(18),

<value> <valuetype>)

DETTIDNQ TADT T franciltnnlsy andiiaaioay ~\
AL LURND IADLE {(SICSUCO1~ \buxuuuuypcz)

INDEX FUNCTION FOR <original-function>

(<naraml> Zeonlnimntyne>
\rpasasiin S SVULULLLILY PV

<param2> <valuetype>)
INDEX CHECK <index-check-fct>

(<schema> VARCHARC(S),

<table> VARCHAR(1S),

<column> VARCHAR(18))
COLUMNS <param1> AS <resultcol>
VALUE <param2>

Let’s assume that we have an occurrence of the

UDF v—viihthve f_oilowmg patter-n: o

onT Mo 2 Yas V i TIITYNTY

SELECT ... FROM ... WHERE
name>, <searcharg>)

RE <original-function> (<col-

where the formal parameter name for <colname> in <orig-
inal-function™> is <param!>, and the formal parameter
name for <searcharg> is <param2>. Assume that <schem-
aname> and <tablename> are the schema and table names
for the column <coiname>, and that <restabiename> is an
arbitrary (temporary) table name generated by the opti-

lluLUl lUl I.hC TCWT llC
Then we can rewrite the query in the following way:

if (<index-check-fct>(<schemaname>, <tablename>,
<colname>) = ‘true’)

replace ‘<original-function>(<colname>, <searcharg>)’

with ‘<colname> IN

V{3 =i i »F ala LIIPSNGRPEPpES Wy DEGU R N

(W) D) v Oy § \chldUlCild.lllC/ \rcbum.uw

FROM TABLE(<index-function-name>(

<echemaname>
OV LI LIV

<tablename>,

<colname>,

<searcharg>)
AS <restablename>)’

The rewrite replaces the occurrence of the original func-

tion with an IN nraedicate involvine a enhouerv aver the
LIVl VY iLll Call 1LY Plv“.vubv lll'ul'uls “ \,“U“UVIJ AV A AT SN % P A V]

table produced as the result of the index function. As
already pointed out earlier, an equivaient form of the query
produced by the rewrite would avoid the subquery, but
position the call of the index function in the FROM clause
of the query and use a join predicate instead of the IN
predicate. For our proposal, we assume that the transfor-
mation of the subquery to the join can be left to the opti-
mizer as a standard rewrite optimization, and therefore
does not need to be incorporated explicitly into the index
function rewrite.

4.3 Queries Involving Views

As one can see from the above description of the rewrite
process, this rewrite is ‘local’ in the sense that it simply
replaces the occurrence of one predicate with another one
that involves a subquery This can be seen as a local pred-
icate expansion’, which can be applied by a reasonably
capable optimizer much in the same way asa view expan-

Hawravar thasa ana nanatraint tarma nf whon
SlUu nouwoved, there is one constraint in terms Of winen

this simple rewrite can be applied: In order to handle que-

534

ries over views correctly, the rewrite can only be applied

after the optimizer has expanded ihe view definitions and
merged them with the original predicates of the query.

Coancidar tho fallawin e cimnla viaw daBaitin
NATLISIUGL UV LULIVW LULE SV VIVW uvluuuuu

CREATE VIEW compschema.expensive_projects AS
SELECT *
FROM compschema projects

TVTTION T L nn nnn

wrnreRe Duugc[> 500 U0y
and the following query
SELECT proj_no, title

FROM compschema expensive_projects
WHERE contains(description,
‘ “database” IN SAME SENTENCE AS

“object-relational” ’)

PO PO o g

Applying the proposed index function rewrite before the
view expansion would result the following rewritten
anarye
quvl)’.

SELECT proj_no, title
FROM compschema.expensive_projects
WHERE description idIN

IOTY DO

WeELLU T resul uu

FROM TABLE(containstable(‘COMPSCHEMA’,

‘EXDPENCIVE DRDOTECOTS

428 Bl NLIA Y By R ANNJSURIN. BT ,

‘DESCRIPTION’,

¢ “database” IN SAME SENTENCE AS
“object-relational” *))
AS restab (resultid))
However, the containstable function will fail to return the
desired results in this case, because the table name sup-
plied as one of its parameters

{‘FYDFNQT\!F PROJECTS’ \ ig not the name of a base

LA LaiNwpd A3 UL WA RS LRSS

table but the name of the view. Therefore, a lookup to
determine the name of the index associated with the que-
ried table will fail, since only base tables can be indexed.
Consequently, the index function rewrite can only be
applied after the optimizer has brought the query into the
following form (or into an internal representation equiva-
lent to this query) by expanding the view definition and
merging the WHERE clauses.

SELECT proj_no, title

= AN LS

FROM compschema.projects
WHERE budget > 500 000
AND contains(description,

¢ “database” IN SAME SENTENCE AS
“object-relational” ’)

Then, the application of the index function rewrite yields
the following, correct form.

SELECT proj_no, title

ETRNM anmnanhama nrniantg

L INWIWVL \.«uxupauuuxua.pl\guum

WHERE budget > 500 000
AND description_id IN
(SELECT resultid
FROM TABLE(containstable(‘COMPSCHEMA’,

‘PROJECTS’,

‘DESCRIPTION’,
‘ “database” IN SAME SENTENCE AS
“object-relational” °))
AS restab (resultid))

S Further Discussion

Optimizer Considerations

The rewrite mechanism for index function integrates very
well with existing optimizer technology, mainly because
of two reasons:

 The required transformation affects only the scope of a
single predicate in a query, and replaces the predicate
entirely with another one. No complex transformations
in the scope of the entire query are required. Therefore,
the implementation of the rewrite in the scope of a rela-
tional optimizer is inexpensive, and does not come in
the way with existing rewrite optimization rules.

« The rewrite utilizes existing language constructs (i.e.,
user-defined table functions), which, if supported by the
database engine, are already known to the optimizer in
terms of execution costs, statistics, etc. For example,
DB2 Universal Database [Cha96, Dav96] allows the
user to give information to the optimizer about the exe-
cution costs of external, user-defined functions. Since
index functions are nothing more than standard user-
defined table functions, the optimizer can use cost infor-
mation supplied for them in the further process of opti-
mizing the query. In other words, no additional
extensions to the optimizer are required for communi-
cating information about costs and statistics.

Generalization for arbitrary predicates

The above approach supports the rewrite of user-defined
functions that return a boolean value. What if a function
returns other (numeric or non-numeric) values, and
appears as an operand of an arbitrary SQL predicate?
Assume the following definition for the UDF ‘rank’:

CREATE FUNCTION rank (id db2texth,
arg LONG VARCHAR)
RETURNS DOUBLE PRECISION

This function behaves like the contains function, but
returns a rank value instead of a boolean value, describing
how well a document meets the text search criteria. For
example, the query

SELECT proj_no, title
FROM projects
WHERE rank (description,
¢ “database” IN SAME SENTENCE
AS “object-relational”)
>0.5

would retrieve all text information for documents that
match the given search argument with a rank value > 0.5
(all rank values range between 0 and 1).

Our approach can be generalized to allow index functions
that can be applied in this case as well. For this type of
support, the index function would need to take additional
arguments for capturing the predicate and the additional
operands in the predicate. The CREATE FUNCTION
statement for the indexing function would then look like
the following one:

CREATE FUNCTION ranktable(
schema VARCHARC(S),
table VARCHAR(18),
column VARCHAR(18),
searcharg LONG VARCHAR,
predicate VARCHAR(18),
rankval DOUBLE PRECISION)
RETURNS TABLE(resultid db2texth)
INDEX FUNCTION FOR
rank(id db2texth, arg LONG VARCHAR)
INDEX CHECK index_exists
(VARCHAR(8), VARCHAR(18), VARCHAR(18),
VARCHAR(18))
COLUMNS id AS resultid
VALUE arg

There are two significant changes (marked by putting
them in bold face) when compared with the approach out-
lined above for the boolean functions:

 Additional parameters have been added for communi-
cating the predicate (in textual form) and the 2nd oper-
and involved in the predicate to the indexing function.
At run-time, these parameters will hold the predicate
(e.g., ") and the second parameter (e.g., 0.5) of the
comparison in which the original function call appears.

» The function for checking at compile-time, if an index
exists, has been extended by an additional parameter
that holds the predicate involved in the comparison
(e.g., >’). This is used by the ‘index_exists’ function to
determine, whether the user-defined index functionality
can handle the predicate at all. If the predicate cannot be
interpreted by the indexing function, then the
‘index_exists” function can return an appropriate error
code at compile-time to prohibit the rewrite.

The automatic rewrite for the above query would then

result in the following query:

SELECT proj_no, title
FROM compschema.projects
WHERE description_id IN
(SELECT resultid
FROM TABLE(ranktable(‘COMPSCHEMA’,
‘PROJECTS’,
‘DESCRIPTION’,
¢ “database” IN SAME SENTENCE AS
“object-relational” °,
G>,’
0.5))
AS restab (resultid))

In other words, the predicate ‘>’ and the second operand
‘0.5” would be passed to the index function as additional

535

parameters. The lower bound of 0.5 for the rank value can
then either be passed to the external search engine (pro-
vided that the programming API of the text search engine
supports this), or it can be applied on the results delivered
by the text search engine in the table function itself, which
would return only those documents whose rank value
exceed the given threshold.

6 Related Work

The presented approach allows the efficient exploitation of
content-specific indexing and search capabilities of exist-
ing, stand-alone search engines in databases, without hav-
ing to add new, content-specific access methods to the
database or map content-specific indices onto the existing
database access methods.

[CS93] addresses the same problem, and presents a solu-
tion based on user-defined, logical rewrite rules for speci-
fying logical equivalences of subqueries. In contrast, our
approach focuses on the easy and straightforward specifi-
cation of a certain type of equivalences that can also be
handled more efficiently by the query engine in the query
rewrite phase, without introducing a logic-based rewrite
rule notation. Moreover, we introduce capabilities to sup-
ply the table functions in the rewritten part of the query
with information available to the query processing engine,
such as table name and column name of the columns
involved in the query, and with the capability to register
index check functions (such as ‘index_exists’) that allow
the query engine to check on prerequisites to be met
before the rewrite takes place.

The approaches presented in [DDSS95] and [GFHR96]
for integrating text search and databases have been devel-
oped on the basis mapping the text index itself into rela-
tional tables. In other words, an (enhanced) inverted word
list of text documents is stored in a relational table, which
can be indexed using the standard indexing techniques of
the DBMS. [DDSS95] uses an enhancement of the data-
base engine for this purpose, which is essentially a capa-
bility to store a table as ‘index only” or as an inverted table
structure. In both approaches, the user or application
assumes responsibility for updating index information, if
the original text documents change. Moreover, the appli-
cation has to be aware of the index model and the correla-
tion of text tables and index tables in formulating text
search queries. Essentially, this approach completely
exposes the structure of the content-specific index and
requires to reimplement content-specific search within the
database system. Using this mapping scheme, the support
that can be provided by the database system is limited to a
text search involving a single keyword. Complex search
patterns need to be mapped to a combination of indepen-
dent relational operations on the underlying base tables,
making additional optimizations usually performed by
search engines not applicable.

The approach described in [LS88], also in the realm of
textual databases, which is based on extensions of index-
ing support in the POSTGRES system [Sto86], essentially
suffers the same drawbacks. An extended indexing sup-

port is provided that permits a user-defined function to
produce a list of values for given column value, which are
then stored in the index entries instead of the original col-
umn value. This is used to produce a list of keywords
found in a text document, resulting in an index structure
similar to an inverted word list. The same limitation in
terms of the complexity of search and the required reim-
plementation of additional search capabilities within of the
DBMS as described above apply here as well,

A number of database access methods have been devel-
oped for content-specific search, such as the R-tree
[Gut84] and the P-tree [Jag90] for spatial data, or D-trees
[Dav96b] for textual data. In the (rare) case that a database
system supports such access methods, they are ‘hard-
wired’ into the database engine, leaving no room for
adjustments to the specific requirement and advantages of
the indexing technology ‘owned’ by a search engine ven-
dor.

Adding new access methods to a database engine is a very
complicated and expensive task. [HNP95] and [KMH97]
present an access method ‘template’ called generalized
search trees, which can easily be ‘instantiated’ by plug-
ging in various ‘operations’ into the generic template.
While this approach seems to be very promising, it is pro-
posing a framework for a tight integration of user-defined
access methods into the DB system, whereas our approach
concentrates on making existing access structures of exter-
nal search engines efficiently exploitable in SQL queries.
[HS93] addresses the optimization of queries involving
expensive predicates, such as external function invoca-
tions. By exploiting cost information about the predicate
invocations, the query processor will evaluate such expen-
sive predicates as late in the plan as possible. Such tech-
niques rely only on the availability of cost information for
the execution of UDFs, and do not attempt to replace a
query predicate by another predicate or subquery. They
therefore complement our approach in that they can be
used to further optimize both the original query plan, as
well as the one resulting from our proposed rewrite, and
chose the best one in the end.

7 Summary

Object-relational database systems have started to leave
the research labs and become a reality in the marketplace.
These systems are capable of language extension that per-
mit suppliers of content-specific search technology, such
as fulltext retrieval engines, to ‘plug’ into the database
engine in order to extend the content management and
search capabilities of SQL.

In this paper, we have presented an approach that supports
this type of plug-in extensibility in an easy and efficient
manner. Based on the concept of user-defined table func-
tions, which can be registered in the database engine as so-
called index functions, a search technology provider can
integrate search as well as indexing support into the data-
base engine without significant impact to the original, con-
tent-specific search engine, and without sacrificing
integration at the query language (SQL) and query execu-

536

