
Groupwise Processing of Relational Queries 

Damianos Chatziantoniou” Kenneth A. ROSS* 
Department of Computer Science, Columbia University 

damia,nos,kar@cs.columbia.edu 

Abstract 

In this paper, we define and examine a particu- 
lar class of queries called group queries. Group 
queries are natural queries in many decision- 
support applications. The main characteristic of a 
group query is that it can be executed in a group- 
by-group fashion. In other words, the underlying 
relation(s) can be partitioned (based on some set 
of attributes) into disjoint groups, and each group 
can be processed separately. We give a syntactic 
criterion to identify these queries and prove its 
sufficiency. We also prove the strong result that 
every group query has an equivalent formulation 
that satisfies our syntactic criterion. We describe 
a general evaluation technique for group queries, 
and demonstrate how an optimizer can determine 
this plan. We then consider more complex queries 
whose components are group queries with poten- 
tially different partitioning attributes. We give 
two methods to identify group query components 
within such a query. We also give some per- 
formance results for group queries expressed in 
standard SQL, comparing a commercial database 
system with our optimized plan on top of the 
same commercial system. These results indicate 
that there are significant potential performance 
improvements. 

‘This research was supported by a grant from the AT&T 
Foundation, by a David and Lucile Packard Foundation Fel- 
lowship in Science and Engineering, by a Sloan Foundation 
Fellowship, by NSF CISE grant CDA-9625374, and by an NSF 
Young Investigator award. 
Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

1 Introduction 

With the recent interest in decision support systems and 
data warehousing has come a demand for techniques to 
evaluate and optimize very complex relational queries in- 
volving both aggregation and joins. Current commercial 
systems do not find good plans for many very complex 
queries. 

In this paper we examine a particular class of complex 
queries, called group queries. Many complex decision 
support queries describe the following idea: for each value z 
in a dimension D (e.g. for each customer), evaluate a query 
Q’. This query Q’ can be something simple (e.g. compute 
avg(sales)) or complex (e.g. include joins, selections, fur- 
ther aggregations, etc). To specify this kind of complex 
query in SQL, one has to embed D within many places 
of a complex piece of SQL code. This may have many 
drawbacks in terms of performance if the optimizer is not 
aware of the query’s structure. This particular structure 
is often amenable to the following evaluation strategy: 
partition the data along dimension D, and evaluate Q’ 
independently on each partition. Therefore it is important 
to be able to identify whether an SQL specification has the 
form mentioned above. In that case, that SQL specification 
constitutes a group query. Our main contributions are: 

Group Queries (Section 2) We define the concept of 
a group query. A query Q is a group query with respect 
to certain partitioning attributes S if, for all databases, 
it is possible to answer Q by (a) partitioning the data 
according to the values for attribute(s) S, (b) evaluating 
another query Q’ on each partition of the database, and (c) 
taking the union of the results. Common decision support 
queries require complex operations within groups and not 
just simple aggregation. We provide a syntactic criterion 
for identifying group queries and prove its sufficiency. We 
also prove the surprising result that every group query can 
be expressed in a way that satisfies our syntactic criterion. 
We consider arbitrary relational queries expressed in SQL, 
and do not restrict ourselves to a special syntax. 

Execution Plan (Section 3) We demonstrate how a 
group query can be evaluated by partitioning the data and 
applying a significantly simpler query to each partition. 
Further, this evaluation plan can be automatically gener- 
ated given a query that satisfies the criterion. The main 
benefits of this approach are that the simpler query is often 
much easier to optimize and evaluate, and often partitions 

476 



are small enough to fit in main memory, reducing the I/O 
cost significantly. In the presence of multiple CPUs, the 
partitions could be processed in parallel. We do not assume 
that the data is partitioned in advance. 

Performance (Section 4) We present some preliminary 
performance results indicating that there are often large 
potential gains in performance for group queries. 

Partial Group Queries (Section 5) We consider 
queries that are made up of group query components. 
These components can potentially be evaluated in a group- 
wise fashion. We show how to recognize such components, 
and outline some evaluation techniques. 

Motivating Examples 

In this paper we will use the following relations typical of 
a decision-support database: 

FYI-LClC(id,day,month,year,time,section,duration) 
FYI-DILL(cust-id,month.year.payment) 

A news organization called FYI maintains a web server 
with up-to-date news information. The FYI-LOG relation 
stores the log of customer requests as they access different 
sections of the news. The id attribute is unique to each cus- 
tomer, the day, month, year and time attributes represent 
the time of the connection, the section attribute denotes 
some section of the news (e.g., sports, world, business, 
travel, politics, etc.) and the duration attribute gives 
the time spent on this section. The unit of abstraction 
is the connection, not the day, since we assume that the 
web server is updated continuously. The FYI-BILL relation 
stores information about customers’ monthly payments. 
The FYI organization would like to ask a variety of queries 
on their database in order to understand user access pat- 
terns. Such queries are likely to heavily use aggregation; 
examples include: 

Ql. For each customer, show how many times the world 
section was accessed and how many times the time 
spent in the world section was greater than the cus- 
tomer’s average section time. 

Q2. For each customer, find the maximum among the 
average durations for each section, along with the 
section’s name. 

Q3. For each customer and for the world section accessed 
on connection t, show the average time spent on 
that section during the connections prior to t, and 
the average time spent on that section during the 
connections following t 

Q4. For those customers and months for which the cus- 
tomer’s payment was greater than the customer’s 
average monthly payment, find the section with the 
maximum average duration during that month. 

The answers to queries like these could be utilized for 
marketing purposes, to allocate resources to sections based 
on usage, or for behavioral research on customers over 
extended periods. It is not straightforward to express 
these queries in standard SQL. Multiple views joined to- 
gether with complex conditions are necessary (correlated 

subqueries can also be used.) Let’s see how query Ql could 
be expressed in standard SQL. 

create view Vl as 
select id, avg-d=avg(duration) 
from FYI-LOG 
group by id 

create view V2 as 
select id, cnt=count(*) 
from FYILOC 
where section=“WORLD” 
group by id 

create view V3 as 
select C. id, cnt=count (*> 
from FYI-LOG C, Vl 
where C.id = Vl.id and 

C. section = “WORLD” and 
C.duration > Vi.avg-d 

group by C.id 

Ql: select VZ.id, V2.cnt. V3.cnt 
from V2, V3 
where VZ.id=V3.id 

We need several joins on the id attribute between the 
FYI-LOG relation and views on FYI-LOG. Although this 
query is expressed using joins, this query does not have 
to be evaluated using joins. While we won’t go into details 
yet, it is apparent that for this query we could partition 
the FYI-LOG relation on the id attribute. Each of the views 
and the query can then be evaluated separately on each 
partition, with no interaction between the partitions being 
necessary. The answer to the query is simply the union of 
the answers in each partition. 

One major advantage of this approach is that partitions 
may be sufficiently small that they fit in memory. If 
so, then the I/O complexity no longer depends on the 
complexity of the query. Complex in-memory operations 
can be done on the whole partition, each partition being 
processed in turn. In a parallel database system, multiple 
partitions could be simultaneously processed. 

Query Q2 can be expressed in SQL as 

create view Vl as 
select id, section, avg-d=avg(duration) 
from FYI-LOG 
group by id.section 

create view V2 as 
select id, max-s=max (avg-d) 
from V1 
group by id 

02: select Vl.id, Vl.section, VP.max-s 
from Vl, V2 
vhere Vl.id=Va.id and VZ.max-s=Vl.avg-d 

A similar observation about partitioning can be made: 
the query (without the join condition on id) could be 

477 



applied separately to partitions of FYIJJG based in id, 
and the partial results could be unioned together. 

Query Q3 is expressed in standard SQL as follows. View 
Vl contains the average duration of the sections read in the 
days before each access to the world section, and view V2 
the average duration of the sections read in the days after. 
We join Vl and V2 in order to get the result in single 
tuples. The actual SQL formulation is omitted due to lack 
of space and appears in [Cha97]. Once again, FYI-LOG 
can be partitioned on id attribute and a simpler query can 
be posed separately on each partition. We shall discuss 
Query Q4 in Section 2.4. 

2 Theoretical Framework 

In this section, we introduce our terminology and define 
what we mean by a group query. We give a syntactic 
criterion for identifying group queries and prove that this 
condition is sufficient. We also show that every group query 
can be expressed in a form that satisfies our criterion. 

2.1 Assumptions and Terminology 

We assume that queries are written in terms of views, with 
no subqueries. This is a valid assumption since there are 
many ways to rewrite a subquery as a join of two (or more) 
views [Kim82, Day87, SPLSG]. We initially assume that the 
database contains a single relation R. (Multiple relations 
will be considered in Section 2.4.) R may itself be a view 
or the result of another query, but from our point of view it 
is treated as an encapsulated table. (I.e., if R was a view, 
then we don’t consider unfolding the definition of R into 
queries over R.) 

We shall define below the notion of a query graph. A 
query graph has nodes that are relational operations. We 
consider three kinds of relational operations: 

Basic Blocks A basic block is some combination of 
projections and selections applied to a join of relations. In 
SQL such operations are expressed as SELECT-FROM-WHERE 
queries without aggregates or attribute renaming. A base 
relation is also treated as a basic block. 

Aggregation Blocks An aggregation block is a sin- 
gle aggregation operation specifying a set of grouping 
attributes and a list of aggregate functions to be com- 
puted over the groups. The aggregation can optionally 
be followed by a selection. In SQL, such operations are 
expressed as SELECT-FROM-GROUPBY-HAVING queries where 
the SELECT clause includes all grouping attributes (plus 
some aggregates), and the FROM clause contains a single 
relation. 

Set Blocks Set blocks express the set-oriented opera- 
tions, namely union, intersection and difference of relations 
with the same schema. The corresponding SQL constructs 
are UNION, INTERSECT and EXCEPT. 

Any relational query can be specified using these three 
operations. A query can be split into two blocks if neces- 
sary, for example if the query has both a WBERE clause and 
a GROUPBY clause then we can rewrite it as an aggregation 
block applied to a basic block. Note that we do not allow 
constant relations in queries, nor do we allow attribute 

renaming. (In [Cha97] we describe the extensions needed 
to handle the renaming operator.) 

Definition 2.1: (Query Graph) Suppose that we are 
given a query Q. The nodes of the query graph for Q 
are the relational operations (as defined above) used in Q 
and its subviews. Basic blocks are written as rectangles, 
aggregation blocks as circles, and set blocks as diamonds. 
Every block is given a label corresponding to the view (or 
relation) name of that block. There is an edge from node 
labeled Ni to node labeled Ns if Ns is mentioned in the 
FROM clause of Ni , or if Ns is an argument of a set operation 
in Ni. An edge whose source is an aggregation block N is 
labeled with the grouping attributes of N. Edges coming 
out of a single basic block N are linked together with an 
arc, and jointly labeled by the join condition of N. Edges 
coming out of set blocks are not labeled. 0 

A query graph is a directed acyclic graph with a single 
source (root) node representing the query result. We shall 
conventionally draw the graph with edges “pointing up.” 
For single-relation databases, there will always be a single 
sink node at the top of the picture. Figure 1 shows the 
query graphs for queries Ql, and Q2. Notice the separation 
of V2 and V3 from query Ql into basic blocks (V2B, V3B) 
and aggregation blocks (V2A, V3A). 

E), , O2 : join conditions. 0 : join condition. 

(4 query Ql (b) query Q2 

Figure 1: Query graphs 

Definition 2.2: (Partitioning) Let S be a set of attributes 
from the underlying relation R, and let D represent the 
domain over which the tuples of S values range. For every 
node N in the query graph and for x E D we write N(x) 
to represent the answer at node N when the extension of 
R is replaced by crs== (R). 0 

Observe that the attributes in S do not have to be at- 
tributes of the answer at node N for N(x) to be well- 
defined. Also, observe that R = UzED R(z). 

478 



Definition 2.3: (Equality) If Q and Q’ are queries we say 
Q = Q’ if the answer to query Q is the same as the answer 
to query Q’ for all databases. 0 

2.2 Group Queries 

Given a relation R and a set of attributes S of R, imagine 
the following computation: First, R is partitioned based 
on S. Then, a new query is executed on every partition. 
Finally, the partial results are unioned to form one rela- 
tion. Any query on R that can be translated to such a 
computation is called a group query on attributes S. 

Definition 2.4: We say that a query Q on a relation R is 
a group query on attributes S of R, iff there exists a query 
Q’ such that Q = UzED Q’(z), where D is the domain of 
attributes S. 0 

It is the job of the optimizer to identify group queries 
and “decorrelate” them. We now give a criterion to identify 
group queries, and we prove its sufficiency. 

Criterion 2.1: Let G be a query graph on relation R, and 
let S be a set of attributes of R. 

l Every outgoing edge of any aggregate block in G must 
have as label a superset of S, and 

l If a basic block iV represents a join, then the join 
condition must conjunctively contain an equijoin on 
attributes S of each child of N. In other words, if 
there are edges from N to each of fi, fi, . . . , f,,, then 
the joining condition 0 should have the form (f1.S = 
f2.S = ... = fn.S) AO’, for some 8’. 0 

Example 2.1: Queries Ql, Q2, and Q3 satisfy Crite- 
rion 2.1 when S is {id). Consider queries Ql and Q2 
in Figure 1. The join conditions are conjunctions of an 
equijoin on the id attribute with some other condition 8’. 
Also, id is among the grouping attributes in each of the 
aggregation operations. 0 

Criterion 2.1 is a syntactic criterion. In other words, 
given a query expressed in standard SQL and a set of 
attributes S, it is immediate to check whether the query 
meets the Criterion. We just examine the attributes of the 
group-by clauses and the join conditions. Furthermore, 
checking Criterion 2.1 need not be performed for all pos- 
sible sets of partitioning attributes S. For a given query 
graph we need only consider sets S that (a) are subsets of 
the grouping attributes at all aggregation nodes, and (b) 
have all members equated in the appropriate way in each 
join node. 

The following theorem demonstrates the suficiency of 
Criterion 2.1. 

Theorem 2.1: Every query graph that satisfies Crite- 
rion 2.1 defines a group query. 
Proof: See (Cha97] where a more general result is proved. 
I 

The proof of Theorem 2.1 is constructive: it shows 
how to construct a Q’ that operates on partitions of R 
given Q. Essentially, Q’ is Q with join nodes modified 
by removing the equality conditions between partitioning 
attributes. We call the resulting query Q’ the partial query 
of Q, which we write as pq(Q). 

2.3 Necessity 

Criterion 2.1 is not a necessary condition for a query to 
be a group query. For example, any query that returns 
the empty answer for all databases is a (trivial) group 
query whether or not its query graph satisfies Criterion 2.1. 
A nontrivial group query violating Criterion 2.1 is the 
following: 

create view VI as 
select * from FYI-LOG where year<=1995 

create view V2 as 
select * from FYI-LOG where year>=1995 

select year from Vl, V2 
where Vl.year>=V2.year 

The selection conditions together with the join condition 
imply the equality of the year attribute, and thus ensure 
that this is a group query on year. It is relatively 
straightforward to construct a query Q’ from a query Q 
such that Q’ is a group query if and only if Q is empty 
for all databases. However, deciding whether a query 
returns the empty set as an answer is an undecidable 
problem[DiP69]. 

Nevertheless, Theorem 2.2 shows that every group query 
can be expressed using a query graph satisfying Crite- 
rion 2.1. In other words, by restricting attention to 
queries satisfying Criterion 2.1 we can still express all group 
queries. 

Theorem 2.2: For every group query Q there exists a 
query Q’ such that (i) Q = Q’, and (ii) The query graph 
of Q* satisfies Criterion 2.1. 
Proof: This is a special case of a more general result shown 
in [Cha97]. 1 

2.4 Multiple Base Relations 

In this section we extend our formalism to handle queries 
over multiple relations. 

Example 2.2: Consider Query Q4 from Section 1. Its 
SQL version appears in [Cha97]. The query graph for 
this query is given in Figure 2. 0 

Multiple views on both FYI-LOG and FYIBILL are de- 
fined and joined together. However, the key idea is still 
present. We can partition FYI-LOG on the id attribute, and 
partition FYIBILL on the cust-id attribute and apply a 
query on partitions of FYILOG and FYIBILL with the same 
value of id and cust-id respectively. A partition still needs 
to be evaluated if some (but not all) of the relations are 
empty on that partition; for example R1 - RZ could be 
nonempty on a partition even if Rz were empty on that 

479 



partition. At the end, we union the partial results to get 
the answer to the initial query. 

The two attributes, id and cust-id must be from the 
same domain, although they may have different names. 
Thus we need to extend our concept of a set of partitioning 
attributes. The basic idea is that we pick an attribute from 
a common domain from each relation, and require that 
these attributes are equivalent for the purposes of parti- 
tioning. More generally, we can pick a tuple of attributes 
from each relation, and require an equivalence. 

We would choose {(FYI_LOG.id), (FYIBILL.cust-id)} as 
our partitioning set in Example 2.2. The idea is that we 
simultaneously partition the base relations on attributes 
with common domains. Queries can operate on multiple 
relations, so that query graphs can have multiple sinks. 

The definition, criterion, and theorems can be appropri- 
ately extended. The details appear in [Cha97]. Query Q4 
of Example 2.2 satisfies the more general criterion, and it 
is a group query (it satisfies Q = UIED Q(Z) under a more 
general definition of Q(Z)). 

3 Execution Plan 

Given a group query Q satisfying Criterion 2.1, we would 
like to be able to find efficient techniques for the evaluation 
of Q. It should come as no surprise that the first step of our 
suggested execution plan is to partition the base relation(s) 
according to the partitioning set. Thus we expect to have 
a number of separate partitions of the base relations, and 
we will subsequently process each partition independently, 
perhaps even in parallel. Note that we do not assume that 
the underlying data is partitioned in advance. 

On each partition we can execute the query pq(Q), with 
the system locally optimizing this query on the partitioned 
data set. Since the partitioned data set is likely to be 
much smaller than the original relation, it is likely that 
the partitioned data will fit in memory, putting an upper 
bound on the amount of I/O needed. 

Nevertheless, for complex queries we cannot simply ig- 
nore CPU time. CPU time may contribute a large fraction 
of the cost of answering a query. (In Section 4 it will 
become apparent that CPU time does dominate for queries 
like Query Q3.) Thus it is essential to make the query 
on each partition as simple as possible, and to convey as 
much information to the optimizer as possible in the form 
of the query, so that the optimizer can do a good job of 
optimization. 

Looking at pq(Q) we can see that it is not ideal accord- 
ing to the discussion above. In particular, the partitioning 
attributes are still present throughout the query. This has 
several drawbacks. 

(a) The partitioning attribute(s) will be redundantly rep- 
resented in every tuple of the base relation(s). Since they 
take a single value on the partition, this representation is 
not necessary. The optimizer may also unnecessarily rep- 
resent the partitioning attribute(s) in intermediate results. 

(b) While it is possible to expect an optimizer to have 
(and use) information on the cardinalities of relations being 
queried, it is unreasonable to expect the optimizer to notice 

Figure 2: Query graph of Example 2.2 

that there is a single value of one or more attribute(s) 
within a relation. As a result, operations like aggregation 
will group by more attributes than necessary. By mak- 
ing an inaccurate estimate of the number of groups, the 
optimizer may chose a suboptimal plan. 

Fortunately, we can restructure the query pq(Q) to 
avoid the difficulties above. Rather than simply parti- 
tioning R into partitions R(x), we partition R into two 
relations. The first is h(x) = i;.s(R(z)), where iis projects 
out the attributes in S, leaving all other attributes. The 
second is a relation X with schema S and a single tuple x. 
If there are multiple sink relations then all can share the 
same X relation. 

We can transform pq(Q) to the partition partial query 
epq(Q) as follows: The sink node(s) are all replaced by 
R(z), and attributes S are removed from all nodes in 
pq(Q). In particular, attributes in S are removed from the 
list of grouping attributes in aggregation nodes. Any node 
that needs the z value for selections or for inclusion in the 
final result (at the root node), can obtain it by first taking 
a cross-product (i.e., a join with an empty condition) of its 
argument(s) with X. 

Because there is only one x value in the partition, it 
should be clear that pq(Q) = ppq(Q). The advantages 
of ppq(Q) are that: (a) The x value is not represented 
redundantly, and is used without duplication exactly where 
it is needed. (b) The optimizer has access to the cardinality 
information for X. Thus the optimized query plan for 
ppq(Q) can reflect the fact that X has one tuple. (c) ppq(Q) 
is considerably simpler than pq(Q) or Q, and hence is likely 
to be more easily optimized. 

If the partitioning is likely to be relatively uniform, then 
it is also possible to optimize ppq(Q) once for a partition 
of the expected size, and to use the resulting plan on each 
partition. 

The final step in the plan is to form the union of the 
partial results. This step can be avoided if all partition 
results are written to a common output relation. 

Example 3.1: Let FYI-LOG’ denote %id(FYI-LOG) and let 

480 



X denote the single relation with schema id containing the 
single id value of the current partition. The partial query 
ppq(Q1) is the following: 

create viev VLPPQ as 
select avgd=avg(duration) 
from FYI-LOG’ 

create view VSPPQ as 
select cnt=count (*) 
from FYI-LOG’ 
where section=“WORLD” 

create view V3PPQ as 
select cnt=count(*) 
from FYI-LOG’ C. VlSPQ 
where C.duration > Vl.avg-d and 

C. section = “WORLD” 

PPq (91) : select id, V2PPQ.cnt, V3PPQ.cnt 
from X. VZSPQ, V3SPQ 

The form of VlPPQ, V2PPQ, and VSPPQ ensure 
that each view represents a single value, so the optimizer 
should consider them as such in the joins that they appear 
in. With the id attribute in the views this would not 
have been possible without requiring the optimizer to know 
about the number of distinct attribute values in (tempo- 
rary) relations. This query is substantially simpler than 
the original specification of Query Ql. 0 

Another reason why we expect our partitioning algo- 
rithm to perform well is that it reduces the complexity of 
the evaluation problem. In general, joins and aggregations 
have nonlinear complexity. Thus, if we can divide a 
query evaluation problem of size n into s (less difficult) 
subproblems of size n/s with overhead’ linear in n, then 
we win in terms of complexity for any operations that take 
n(n log n) time. This observation holds for both I/O time 
and CPU time. In the next section we demonstrate the 
disparity between the performance of a commercial system 
on a full group query and the performance of the same 
commercial system when partitioning and processing each 
partition in turn. 

4 Performance Results 

We used a popular commercial system, running on a Sparc- 
server 630MP with Solaris 2.5. We used the standard SQL 
of that system to run both the standard version of our 
examples and our method. Each group of FYI-LOG for a 
given id contains 50 tuples. 30 of these tuples belong to 
the “WORLD” section. In all cases, the cost is the average 
cost (elapsed time) of multiple runs on a lightly loaded 
machine. 

Given a group query Q on attributes S, the partial query 
ppq(Q) is found very easily, by dropping the equijoins on S 
from the join conditions and removing S from the grouping 
attributes in the group-by’s clauses. Furthermore, S is 

‘The overhead is O(n log s) here. 

replaced by parameters in the select clause. This is ppq(Q). 
Then we sort the underlying relation(s) on attributes S and 
apply ppq(Q) on each group. The total time is calculated 
by adding the sorting cost to the sum of costs of bringing 
each group in memory and processing it. For these mea- 
surements we use a single CPU and a single disk device; 
we do not take advantage of the potential parallelism 
available for processing the partitions. Furthermore, we 
sort the base relation(s) (instead of hash partition, for 
example), because this is the mechanism provided by the 
commercial system and we wanted an implementation on 
top of that system. Having incorporated hash-partitioning 
and parallelism, the performance would be substantially 
better. 

Figures 3(a),(b),(c) and (d) show the performance of 
queries Ql to Q4 for both the commercial system’s stan- 
dard method and our method. We used relation sizes of 
100 groups to 600 groups in increments of 100 groups. 
Note that the performance of our method is better than 
the standard method in this range only for queries Q3 
and Q4. For queries Ql and Q2, our method performs 
poorly for two reasons. First, the number of groups is 
small, and the joins are not expensive to perform (the 
standard plan). Second, the sorting step in our method is 
quite expensive. In cases (a) to (d) the number of groups 
is small. In (a) and (b), where the computation performed 
within each group is quite simple, the standard method 
beats our method. However, in cases (c) and (d), where the 
computation performed within each group is more complex 
(e.g. incorporates joins), our method is better, even for a 
small number of groups. 

We also wish to consider relations of comparable sizes 
with a substantially larger number of groups. We have 
conducted performance experiments for queries Ql and 
Q2 for relation sizes 4000 groups to 20000 groups in incre- 
ments of 4000 groups. Each group contains 5 tuples this 
time. The performance results are shown in Figure 3(e) 
and (f). Cases (e) and (f) represent a much larger number 
of smaller groups. Our method performs better than the 
native commercial system’s engine for (e) but not for (f). 

Note that we are biased in our experiments against our 
method, since we are not exploiting possible benefits of 
hash partitioning and parallelism. Further, our method is 
implemented on top of the commercial system rather than 
as part of it. 

The cost of our method can be estimated as the sum 
of the cost of the partitioning step, plus the cost to apply 
the partial query ppq(Q) on each group multipled by the 
estimated number of groups. In general, before our method 
is applied, its estimated cost should be compared with the 
estimated cost of other methods, since it is not always 
better than conventional techniques. See [Cha97] for a dis- 
cussion of cost formulas for our techniques. Furthermore, 
the presence of indices should be considered since with 
sorting or hash-partitioning, indices may become useless 
for later computations. As a very general rule of thumb, 
our method is better when the complexity of the partial 
computation is high (like in queries Q3 and Q4) and/or 
the number of groups is large (like Ql, in Figure 3(e)). 

481 



(a) Performance for Ql 

120 swldatdsoL - 
Gmupwir Eval *. 

(d) Performance for Q4 

50 , 
45 sundud SGL - 

Glvr" --hEmI . . 
40 

(b) Performance for Q2 

(e) Performance for Ql 

5 Group Query Components 
So far we have considered queries such that the whole query 
is a group query. A number of natural queries are not group 
queries with respect to a set of partitioning attributes 
S, but have components that can be classified as group 
queries on S. These components could then be evaluated 
as suggested in Section 3, within a larger query execution 
plan. In this section we define what it means for part of a 
query to be a group query and we describe techniques for 
identifying such parts of a query. 

To describe better the idea of group query components 
within a query, consider the following example. 

Example 5.1: (Group queries within a query) 

Q5. Find the tuples that have duration greater than the 
average duration (over all customers) of the whole 
section. Then, from the selected tuples, find each 
user’s average duration. 

In this example, we have to find first the average dura- 
tion for each section, select the tuples that have duration 
greater than the corresponding section’s average duration, 
and then group over the id attribute. The query graph for 
this example is given in Figure 4(a). Note that this query 
is not a group query with respect to any set of attributes 
of FYI-LOG. However, we can find parts of the query that 
are group queries, i.e. we can “decompose” the query 
graph in two components, as shown in Figure 4(b). The 
first component represents a group query on the section 
attribute and the second component represents a group 
query on the id attribute. Each component represents the 
part of the query that is relevant to grouping according to 
a set of attributes. 0 

A common characteristic of decision support queries is 
that they aggregate according to several different sets of 

0 100 200300400500ow 
swimw d 50 Nples =m 

(c) Performance for Q3 

“0 4ooo Boo0 12wm mooo zcmo 
SWmrdSWr~~ 

(f) Performance for Q2 

Figure 3: Performance of standard method versus groupwise processing for different relation sizes 

grouping attributes and then correlate the results through 
joins (cross-dimensional queries). This idea is implicit 
in papers that model multi-dimensional databases [LW96, 
AGS97]. In our framework this characteristic results in a 
query graph with several, possibly overlapping, component 
group queries. 

Having a complex decision support query, it is impor- 
tant to identify its group query components for a number 
of reasons. 

Firstly, each component can be optimized locally. As a 
result, simpler and more efficient plans can be identified. 
For example, the group query component on the section 
attribute of query Q5 constitutes a multi-feature query 
(discussed in [CR96]). 

Secondly, depending on the structure and the inter- 
relation of these components, special cases with efficient 
plans can be identified. Results of one component can be 
pipelined to another, or components can be evaluated in 
parallel. 

Finally, one of the key ideas in multiple-query opti- 
mization is to allow queries to be decomposed into smaller 
subqueries that now become the unit of execution [Self%]. 
The idea of group query components is very similar: Group 
queries become now the unit of execution. In fact, our 
framework can be used for multiple-query optimization 
in the case of aggregate queries. Given a set of decision 
support queries, the first step is to identify the group query 
components of each query. To derive an execution plan, 
all these components should be considered. Research on 
multiple-query optimization has been focused on queries 
not involving aggregation. However, with the increased 
demand for decision support systems and data mining, we 
believe that multiple-query optimization in the context of 
complex aggregate queries will be very important. 

In summary, we believe that our approach provides a 

482 



id 

(4 query Q5 (b) group query components 

Figure 4: Query graphs 

framework that is suitable for complex aggregate query 
analysis and optimization, since it identifies the parts of 
a query that can be evaluated in a partitioned fashion 

5.1 Identifying Multiple Group Queries 

We first define the notion of a component of a query graph, 
and use this notion to represent group query components 
of queries. 

Definition 5.1: (Component) Given a query graph G, we 
say G’ is a component of G if G’ is a connected subgraph 
of G, and for every node N in G’ of arity greater than one, 
either all outgoing edges of N are in G’, or none is in G’. 
cl 

A component of a query graph may have one or more 
sink nodes, and one or more source (root) nodes. Having 
multiple source nodes presents no additional technical diffi- 
culties, and all of the concepts defined for query graphs also 
apply to components. A maximal group query component 
with respect to a set of attributes S is a component that 
satisfies Criterion 2.1 and it is maximal in the sense that 
it can not be extended with neighboring nodes to form a 
larger group query component on S. In general, we are 
interested only in maximal group query components. For 
optimization purposes it is better to partition as large a 
subquery as possible in order to simplify the processing of 
that subquery. Below, we briefly discuss two algorithms 
to identify group query components (for a detailed dis- 
cussion, see [Cha97]). The idea of maximal group query 
components is fundamental in both. 

The first algorithm has running time O(mn), where m 
is the number of aggregate and join nodes in the query 
graph and n the total number of nodes. 

Algorithm 5.1: Initially, each aggregate node is associ- 
ated with its grouping attributes and each join node with 
the set of attributes equated in a conjunct within the join 
condition. These nodes are the initial components. We 

keep expanding these components with neighboring nodes 
such that the Criterion 2.1 is satisfied with respect to the 
set of attributes associated with these components. We 
repeat this step until we can not expand any component 
further (note that we do not expand from any base rela- 
tion(s)). 

Example 5.2: Consider a query with query graph as 
shown in Figure 5(a). Algorithm 5.1 would give the 
decomposition of Figure 5(b). 0 

The ouput of Algorithm 5.1 is one decomposition with 
possibly overlapping maximal group query components. 
However, overlap means repeated work. We would like 
to have a decomposition with no overlapping group query 
components. For that reason, we modify slightly Algo- 
rithm 5.1. 

Algorithm 5.2: Choose an aggregate node and a set S to 
be the node’s grouping attributes, or choose a join node and 
let S be the set of attributes equated in a conjunct within 
the join condition. Keep expanding by adding neighboring 
nodes so that Criterion 2.1 is satisfied with respect to S. 
Do not expand from any of the base relation(s). When 
you can not expand further, choose an aggregate or join 
node that either has not been selected so far, or is a sink 
node for some already defined group query component. 
Expand from this node like before, but do not expand from 
nodes that belong to other group query components or base 
relation(s). Repeat this, until there are no more join or 
aggregate nodes to choose from. 

Different node selections at choice points give different 
decompositions. Applying Algorithm 5.2 for all possible 
choices, we get all possible decompositions into group 
query components with at least one maximal group query 
component. 

Example 5.3: Figures 5(c), (d), and (e) show the de- 
compositions given by Algorithm 5.2 for all possible node 
choices for the query graph of Figure 5(a). 

6 Related Work 
Query processing. A large body of work exists on query 
optimization in databases. Graefe surveys various prin- 
ciples and techniques [Gra93]. The issues of aggregation 
and join have been studied separately until quite recently, 
when a number of papers on optimization of both aggre- 
gation and join have appeared [YL94, YL95, CS94, CS96, 
GHQ95]. Yan and Larson in [YL94, YL95] describe a class 
of transformations that allow the query optimizer to push 
a group-by past a join (eager aggregation) or pull a group- 
by above a join (lazy aggregation). In a similar direction, 
Chaudhuri and Shim in [CS94, CS96] present a similar class 
of pull-up and push-down transformations. Furthermore, 
they incorporate these transformations in optimizers and 
propose a cost-based optimization algorithm to pick a plan. 
In [GHQ95], Gupta, Harinarayan and Quass try to unify 
these transformations, viewing aggregation as an extension 
of duplicate-eliminating projection. Our approach is quite 

483 



V6 

(8) W 

Figure 5: Output of Algorithms 5.1 and 5.2 

Cc) Cd) w 

different from these in that we try to optimize a query by 
partitioning the query (or components of a query) rather 
than by changing the order of operations. 

Similarities exist in the context of distributed query 
processing and horizontally partitioned relations [SA80, 
ESW78, Day83]. In these papers, one of the key ideas for 
query optimization is that selection, projection and join 
distribute over union, a key idea also in our work. 

Kim in [Kim82], Dayal in [Day87], Seshadri in [SPL96] 
propose decorrelation techniques, where an SQL correlated 
query is transformed to a query that is a join of base 
tables and one or more aggregate views. When rewritten 
using views, the attributes used for equality correlations 
tend to become partitioning attributes in our sense. Thus 
our techniques can have impact on optimizing correlated 
subqueries. 

Although our method is presented in the context of 
a single-processor database system, parallelism can be 
exploited by partitioning the base relations on the par- 
titioning attributes and then applying the partition partial 
query on each partition simultaneously. This is similar to 
intraoperator parallelism [Gra93, DG92]. However it is 
different in the sense that an entire complex query may be 
executed in parallel, rather than a single operation. While 
it has always been clear that multiple operators could 
be parallelized together [DG92], our work is novel in two 
important respects: Firstly, we have given a criterion (Cri- 
terion 2.1) that allows the expression of every group query 
on a given set of partitioning attributes. Thus, we have 
answered the problem of how much partitioning parallelism 
is possible for an arbitrary relational query in a relational 
system. Secondly, our partitioning algorithm is designed 
to achieve benefits beyond the linear speedup associated 
with partitioning a process among multiple CPUs. We 
have argued (and illustrated on a commercial system) that 
partitioning very complex queries makes the partitioned 
queries simpler and easier to optimize. Partitions of the 
input relation(s) can often fit in memory leading to reduced 

I/O costs. This strategy can improve query performance 
by more than a linear factor, whether one uses a parallel 
database system or a single-processor system. 

Shatdal and Naughton have described a performance 
comparison of various algorithms for performing aggrega- 
tion in the presence of data partitioning [SN95]. While we 
have not considered data partitioning here, our partitioned 
queries would obviously benefit in a parallel system if the 
data were partitioned to CPUs according to the partition- 
ing attributes. A similar kind of performance evaluation 
for group queries rather than single aggregates would be 
an interesting direction for future work. 

If the data is partitioned by the partitioning attributes 
then view maintenance algorithms can also be simplified. 
On addition or deletion of a tuple, only one group is 
affected. Therefore, a differential form of the partial query 
ppq(Q) can be applied only to that group, where Q is the 
query defining the materialized view. 

Extended syntaxes. A number of papers and systems 
propose extensions of standard SQL in order to more 
easily express and optimize complex queries [CR96, KS95, 
RBVG96, Syb94]. Each of these proposals makes the 
argument that with an extended syntax, complex queries 
are easier to write and easier to optimize. We did not 
consider an extended syntax here, because (a) we wanted 
our work to apply to present-day systems, (b) we wanted to 
see how much optimization potential there was for queries 
without utilizing the hints inherent in a special syntax, 
and (c) we did not want to restrict the class of queries 
we considered in any way. Our techniques apply to all 
relational queries, including those expressed in a special 
syntax. 

Decision support. Very recently, a number of papers 
appeared on data models for decision support queries 
[AGS97, LW96]. In these papers databases are treated 
as multidimensional constructs and operators such as push 
(similar to grouping with aggregation) and join are pro- 
posed. We believe that Section 5 is in the same spirit 



as these papers and gives a framework for optimization of 
complex decision support queries, using the notion of group 
queries. 

7 Conclusions 
We defined the class of group queries, a class of relational 
queries that can, in principle, be evaluated by evaluating a 
simpler query on each partition of the data. This class 
includes a number of complex queries that are typical 
in decision support applications. We have provided a 
syntactic criterion that we show is a sufficient condition for 
a query to be a group query. We also show that every group 
query can be written in a form that satisfies our criterion. 
We have provided an execution plan for evaluating group 
queries that (a) partitions the relations, (b) applies a 
significantly simpler query to each partition, and (c) unions 
the results. Because the query applied to each partition 
has simpler join conditions and grouping attributes, it is 
often easier to optimize. We have presented some perfor- 
mance results using a commercial database system that 
indicate that large potential performance improvements 
are possible. We have described techniques for identifying 
components of queries that are group queries, and have 
outlined evaluation algorithms for nested group queries. 

There are several issues that remain open and we would 
like to investigate them further in future work. Probably 
the most interesting and challenging questions lie in the 
area of decision support query optimization. How can one 
optimize the evaluation of a complex query graph, with 
more than one relation and multiple group query compo- 
nents? A cost-based approach seems imperative. What 
will constitute the costs and how will they be calculated? 
As we have seen, CPU cost plays a significant role. 

References 

[AGS97] Rakesh Agrawal, Ashish Gupta, and Sunita 
Sarawagi. Modeling multidimensional databases. In 
IEEE International Conf. on Data Engineering, 1997. 

[Cha97] Damianos Chatziantoniou. Optimization of Com- 
plex Aggregate Queries in Relational Databases. PhD 
thesis, Department of Computer Science, Columbia Uni- 
versity, 1997. 

[Syb94] Sybase Corporation. Sybase SQL Server, Refer- 
ence manual, Vol. 1. Sybase, Inc, 1994. 

[CR961 Damianos Chatziantoniou and Kenneth Ross. 
Querying multiple features of groups in relational 
databases. In 22nd VLDB Conference, pages 295-306, 
1996. 

[CS94] Surajit Chaudhuri and Kyuseok Shim. Including 
group-by in query optimization. In VLDB Conference, 
pages 354-366, 1994. 

[CS96] Surajit Chaudhuri and Kyuseok Shim. Optimizing 
queries with aggregate views. In Extending Database 
Technology, pages 167-182, 1996. 

[Day831 Umeshwar Dayal. Processing queries over gen- 
eralization hierarchies in a multidatabase system. In 

Proceedings of the 9th VLDB Conference, pages 342- 
353, 1983. 

[Day871 Umeshwar Dayal. Of nests and trees: A unified 
approach to processing queries that contain nested sub- 
queries, aggregates, and quantifiers. In Proceedings of 
the 13th VLDB Conference, pages 197-208, 1987. 

[DG92] David Dewitt and Jim Gray. Parallel database 
systems: The future of high performance database sys- 
tems. Communications of the ACM, 35(6):85-98, 1992. 

[DiP69] R. A. DiPaola. The recursive unsolvability of 
the decision problem for a class of definitite formulas. 
Journal of ACM, 16(2):324-327, 1969. 

[ESW78] Robert Epstein, Michael Stonebraker, and Eu- 
gene Wong. Distributed query processing in a relational 
data base system. In ACM SIGMOD, Conference on 
Management of Data, pages 169-178, 1978. 

[GHQ95] Ashish Gupta, Venky Harinarayan, and Dallan 
Quass. Aggregate-query processing in data warehousing 
environments. In VLDB Conf., pages 358-369, 1995. 

[Gra93] Goetz Graefe. Query evaluation techniques for 
large databases. ACM Computing Surveys, 25(2):73- 
170, 1993. 

[Kim821 Won Kim. On optimizing an SQL-like nested 
query. ACM fiansactions on Database Systems, 
7(3):443-469, 1982. 

[KS951 Ralph Kimball and Kevin Strehlo. Why decision 
support fails and how to fix it. SIGMOD RECORD, 
24(3):92-97, 1995. 

[LW96] Chang Li and Sean W. Wang. A data model for 
supporting on-line analytical processing. In to appear 
in International Conference on Information and Knowl- 
edge Management, pages 81-88, 1996. 

[RBVG96] Sudhir Rao, Antonio Badia, and Dirk 
Van Gucht. Providing better support for a class of 
decision support queries. In A CM SIGMOD, Conference 
on Management of Data, pages 217-227, 1996. 

[SASO] Patricia Selinger and Michel Adiba. Access path 
selection in distributed database management systems. 
In International Conference on Databases, pages 204- 
215, 1980. 

[Se1881 Timos Sellis. Multiple-query optimization. ACM 
pansactions on Database Systems, 13(1):23-52, 1988. 

[SN95] Ambuj Shatdal and Jeffrey F. Naughton. Adaptive 
parallel aggregation algorithms. In ACM SIGMOD, 
Conference on Management of Data, pages 104-114, 
1995. 

[SPL96] Praveen Seshadri, Hamid Pirahesh, and T.Y. Cliff 
Leung. Complex query decorrelation. In International 
Conference of Data Engineering, pages 450-458, 1996. 

[YL94] Weipeng P. Yan and Per-Ake Larson. Performing 
Group-By before Join. In IEEE International Conjer- 
ence on Data Engineering, pages 89-100, 1994. 

[YL95] Weipeng P. Yan and Per-Ake Larson. Eager ag- 
gregation and lazy aggregation. In VLDB Conference, 
pages 345-357, 1995. 


