
Fast Incremental Maintenance of Approximate Histograms 

Phillip B. Gibbons Yossi Matias Viswanath Poosala 

Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974 
{ gibbons,matias,poosala} @research.bell-labscorn 

Abstract 

Many commercial database systems maintain his- 
tograms to summarize the contents of large re- 
lations and permit efficient estimation of query 
result sizes for use in query optimizers. Delay- 
ing the propagation of database updates to the 
histogram often introduces errors in the estima- 
tion. This paper presents new sampling-based ap- 
proaches for incremental maintenance of approx- 
imate histograms. By scheduling updates to the 
histogram based on the updates to the database, 
our techniques are the first to maintain histograms 
effectively up-to-date at all times and avoid com- 
puting overheads when unnecessary. Our tech- 
niques provide highly-accurate approximate his- 
tograms belonging to the equi-depth and Com- 
pressed classes. Experimental results show that 
our new approaches provide orders of magni- 
tude more accurate estimation than previous ap- 
proaches. 

An important aspect employed by these new ap- 
proaches is a backing sample, an up-to-date ran- 
dom sample of the tuples currently in a relation. 
We provide efficient solutions for maintaining a 
uniformly random sample of a relation in the pres- 
ence of updates to the relation. The backing sam- 
ple techniques can be used for any other applica- 
tion that relies on random samples of data. 

1 Introduction 

Most DBMSs maintain a variety of statistics on the con- 
tents of the database relations in order to estimate various 
quantities, such as selectivities within cost-based query op- 
timizers. These statistics are typically used to approximate 

Permission to copy without jke all or part of this material is granted 
provided that the copies are not made or distributedfor direct commercial 
advantage, the VWB copyright notice and the title af the publication and 
its date appear: and notice is given that copying is by permission of the 
%-r-y Large Data Base Endowment. 7i) copy otherwise, or to republish, 
requires a fee and/or special permission from the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

the distribution of data in the attributes of various database 
relations. It has been established that the validity of the op- 
timizer’s decisions may be critically affected by the quality 
of these approximations [1, 41. This is becoming particu- 
larly evident in the context of increasingly complex queries 
(e.g., data analysis queries). 

Probably the most common technique used in practice 
for selectivity estimation is maintaining histograms on the 
frequency distribution of an attribute. A histogram groups 
attribute values into “buckets” (subsets) and approximates 
true attribute values and their frequencies based on summary 
statistics maintained in each bucket [q. For most real-world 
databases, there exist histograms that produce low-error 
estimates while occupying reasonably small space (of the 
order of 1K bytes in a catalog) [6]. Histograms are used 
in DB2, Informix, Ingres, Oracle, Microsoft SQL Server, 
Sybase, and Teradata. They are also being used in other 
areas, e.g., parallel join load balancing [7] toprovidevarious 
estimates. 

Histograms are usually precomputed on the underlying 
data and used without much additional overheads inside the 
query optimizer. A drawback of using precomputed his- 
tograms is that they may get outdated when the data in the 
database is modified, and hence introduce significant errors 
in estimations. On the other hand, it is clearly impractical to 
compute a new histogram after every update to the database. 
Fortunately, it is not necessary to keep the histograms per- 
fectly up-to-date at all times, because they are used only 
to provide reasonably accurate estimates (typically within 
l-10%). Instead, one needs appropriate schedules and al- 
gorithms for propagating updates to histograms, so that the 
database performance is not affected. 

Despite the popularity of histograms, most issues related 
to their maintenance have not been studied in the literature. 
Most of the work so far has focused on proper bucketizations 
of values in order to enhance the accuracy of histograms, 
and assumed that the database is not being modified. In 
our earlier work, we have introduced several classes of 
histograms that offer high accuracy for various estimation 
problems [8]. We have also provided efficient sampling- 
based methods to construct various histograms, but ignored 
the problem of maintaining histograms. In a more general 
context, we can view histograms as materialized views, but 
they are different in two aspects. First, during utilization, 

466 



they are typically maintained in main memory, which im- 
plies more constraints on space. Second, they need to be 
maintained only approximately, and can therefore be con- 
sidered as cached approximate materialized views. We are 
not aware of any prior work on approximate materialized 
views. 

The only approach used to date for histogram updates, 
which is followed in nearly all commercial systems, is to 
recompute histograms periodically (e.g., every night). This 
approach has two disadvantages. First, any significant up- 
dates to the data between two recomputations could cause 
poor estimations in the optimizer. Second, since the his- 
tograms are recomputed from scratch by discarding the old 
histograms, the recomputation phase for the entire database 
is computationally very intensive. 

In this paper, we present fast and effective procedures 
for maintaining two histogram classes used extensively in 
DBMSs: equi-depth histograms (which are used in most 
DBMSs) and Compressed histograms (used in DB2). As 
a key component of our approach, we introduce the notion 
of a “backing sample”, which is a random sample of the 
tuples in a relation, that is kept up-to-date in the presence 
of updates. We demonstrate important advantages gained 
by using a backing sample and present algorithms for its 
maintenance. We conducted an extensive set of experi- 
ments studying these techniques which confirm the theoret- 
ical findings and show that with a small amount of additional 
storage and CPU resources, these techniques maintain his- 
tograms nearly up-to-date at all times. 

Due to the limited space, the proofs of all theorems in 
this paper, as well as many technical details, are omitted 
and can be found in the full version of this paper [3]. 

2 Histograms and their maintenance 

The domain 2) of an attribute X is the set of all possible 
values of X and the value set V (C 2)) for a relation R 
is the set of values of X that are present in R. Let V = 
{vi : 1 5 i 5 IVl}, where zii < vj when i < j. The 
frequency fi of vi is the number of tuples t E R with 
t .X = Q. The data distribution of X (in R) is the set of 
pairs 7 = {(VI, f~), (~2, f2), . . . , (~1~1, fpl)l. 

A histogramon attribute X is constructed by partitioning 
the datadistribution 7 into p (2 1) mutually disjoint subsets 
called buckets and approximating the values and frequencies 
in each bucket in some common fashion. Typically, a bucket 
is assumed to contain either all m values in 2) between 
the smallest and largest values in that bucket (the bucket’s 
range), or just rE 5 m equi-distant values in the range, 
where L is actual number of values in the bucket. The former 
is known as the continuous value assumption [9], and the 
latter is known as the uniform spread assumption [S]. Let 
fn be the number of tuples t E R with t.X = v for some 
value v in bucket B. The frequencies for values in a bucket 
B are approximated by their averages; i.e., by either f~/m 

Different classes of histograms can be obtained by using 
different rules for partitioning values into buckets. In this 
paper, we focus on two important classes of histograms, 
namely the equi-depth and Compressed (simply called 
Compressed in this paper) classes. In an equi-depth (or 
equi-height) histogram, contiguous ranges of attribute val- 
ues are grouped into buckets such that the number of tuples, 
fB, in each bucket B is the same. In a Compressed his- 
togram [8], the n highest frequencies are stored separately 
in n singleton buckets; the rest are partitioned as in an equi- 
depth histogram. In our target Compressed histogram, the 
value of n adapts to the data distribution to ensure that no 
singleton bucket can fit within an equi-depth bucket and 
yet no single value spans an equi-depth bucket. We have 
shown in our earlier work [8] that Compressed histograms 
are very effective in approximating distributions of low or 
high skew. 

Equi-depth histograms are used in one form or another 
in nearly all commercial systems, except DB2 which uses 
the more accurate Compressed histograms. 

Histogram storage. For both equi-depth and Compressed 
histograms, we store for each bucket B the largest value in 
the bucket, B.maxval, and a count, Bcount, that equals or 
approximates fB. When using the histograms to estimate 
range selectivities, we apply the uniform spread assumption 
for singleton buckets and the continuous value assumption 
for equi-depth buckets. 

2.1 Approximate histograms 

Let ‘H be the class C histogram, or C-histogram, on attribute 
X for a relation R. When R is modified, the accuracy of 
31 is affected in two ways: 1-I may no longer be the cor- 
rect C-histogram on the updated data (Class Error) and ‘H 
may contain inaccurate information about X (Distribution 
Error). 

For a given attribute, an approximate C-histogram pro- 
vides an approximation to the actual C-histogram for the 
relation. The quality of the approximation can be evaluated 
according to various error metrics defined based on the class 
and distribution errors. 

The pcount error metric. An example of a distribution 
error metric, relevant to many histogram types, reflects the 
accuracy of the counts associated with each bucket. For 
example, when R is modified, but the histogram is not, then 
there may be buckets B with B.count # fB; the difference 
between fB and B.count is the approximation error for B. 
We consider the error metric, pcount, defined as follows: 

’ ’ &B, - Bi.count)z , Pcount = z 
3 

@ i=l (1) 

where N is the number of tuples in R and /I is the number 
of buckets. This is the standard deviation of the bucket 

467 



counts from the actual number of elements in each bucket, 
normalized with respect to the mean bucket count (N/P). 

2.2 Incremental histogram maintenance 

There are two components to our incremental approach: 
(i) maintaining a backing sample, and (ii) a framework 
for maintaining an approximate histogram that performs a 
few program instructions in response to each update to the 
database,’ and detects when the histogram is in need of an 
adjustment of one or more of its bucket boundaries. Such 
adjustments make use of the backing sample. There is a 
fundamental distinction between the backing sample and 
the histogram it supports: the histogram is accessed far 
more frequently than the sample and uses less memory, and 
hence it can be stored in main memory while the sample 
is likely stored on disk. Figure 1 shows typical sizes of 
various entities relevant to our discussion. 

Figure 1: Typical sizes of various entities 

Incremental histogram maintenance was previously 
studied in [2], for the important case of a high-biased his- 
togram, which is a Compressed histogram with /3 - 1 buck- 
ets devoted to the p - 1 most frequent values, and 1 bucket 
devoted to all the remaining values. This algorithm did 
not use the approach described above - for example, no 
backing sample was maintained or used. 

3 Backing sample 
A backing sample is a uniform random sample of the tuples 
in a relation that is kept up-to-date in the presence of updates 
to the relation. 

We argue that maintaining a backing sample is useful for 
histogram computation, selectivity estimation, etc. In most 
sampling-based estimation techniques, whenever a sample 
of size n is needed, either the entire relation is scanned to 
extract the sample, or several random disk blocks are read. 
In the latter case, the tuples in a disk block may be highly 
correlated, and hence to obtain a truly random sample, n 
disk blocks must be read. In contrast, a backing sample can 
be stored in consecutive disk blocks, and can therefore be 
scanned by reading sequential disk blocks. Moreover, for 
each tuple in the sample, only the unique row id and the 

‘To further reduce the overhead of our approach, the few program 
instructions can be performed only for a random sample of the database 
updates (as discussed in Section 6.2). 

attribute(s) of interest are retained. Thus the entire sample 
can be stored in only a few disk blocks, for even faster 
retrieval. Finally, an indexing structure for the sample can 
be held, which would enable quick access of the sample 
values within a certain range. 

At any given time, the backing sample for a relation R 
needs to be equivalent to a random sample of the same size 
that would be extracted from R at that time. In this section, 
we present techniques for maintaining a provably random 
backing sample of R based on the sequence of updates to 
R, while accessing R very infrequently (R is accessed only 
when an update sequence deletes about half the tuples in 
R). 

Let S be a backing sample maintained for a relation 
R. We first consider insertions to R. Our technique for 
maintaining S as a simple random sample in the presence 
of inserts is based on the Reservoir Sampling technique 
due to Vitter [lo]. The algorithm proceeds by inserting the 
first n tuples into a “reservoir.” Then a random number of 
records are skipped, and the next tuple replaces a randomly 
selected tuple in the reservoir. Another random number of 
records are then skipped, and so forth, until the last record 
has been scanned. The distribution function of the length 
of each random skip depends explicitly on the number of 
tuples scanned so far, and is chosen such that each tuple 
in the relation is equally likely to be in the reservoir after 
the last tuple has been scanned. By treating the tuple being 
inserted in the relation as the next tuple in the scan of the 
relation, we essentially obtain a sample of the data in the 
presence of insertions. 

Extensions to handle modify and delete operations. We 
extend Vitter’s algorithm to handle modify and delete oper- 
ations, as follows. Modify operations are handled by updat- 
ing the value field, if the element is in the sample. Delete 
operations are handled by removing the element from the 
sample, if it is in the sample. However, such deletions de- 
crease the size of the sample from the target size n, and 
moreover, it is not known how to use subsequent insertions 
to obtain a provably random sample of size n once the sam- 
ple has dropped below n. Instead, we maintain a sample 
whose size is initially a prespecified upper bound U, and 
allow for it to decrease as a result of deletions of sample 
items down to a prespecified lower bound L. If the sample 
size drops below L, we rescan the relation to re-populate 
the random sample. In the full paper [3], we show that with 
high probability, no such rescans will occur in databases 
with infrequent deletions. Moreover, even in the worst case 
where deletions are frequent, the cost of any rescans can 
be amortized against the’cost of the large number of dele- 
tions that with high probability must occur before a rescan 
becomes necessary. 

Optimizations. The overheads of the algorithm can be 
lowered by using a hash table of the row ids in the sample 
to test an id’s presence and by batching deletions together 

468 



whenever possible (e.g., data warehouses often batch dis- 
card the oldest data prior to loading the newest data). Since 
the algorithm maintains a random sample independent of 
the order of the updates to the database, we can “rearrange” 
the order, until an up-to-date sample is required by the ap- 
plication using the sample. We can use lazy processing 
of modify and delete operations, whereby such operations 
are simply placed in a buffer to be processed as a batch 
whenever the buffer becomes full or an up-to-date sample 
is needed. Likewise, we can postpone the processing of 
modify and delete operations until the next insert that is 
selected for S. 

We show in [3] that this procedure maintains a random 
sample for R. Based on the overheads, it is clear that the 
algorithm is best suited for insert-mostly databases or for 
data warehousing environments. 

4 Fast maintenance of approximate equi- 
depth histograms 

The standard algorithm for constructing an (exact) equi- 
depth histogram first sorts the tuples in the relation by at- 
tribute value, and then selects every LN/pJ ‘th tuple. How- 
ever, for large relations, this algorithm is quite slow because 
the sorting may involve multiple I/O scans of the relation. 

An approximate equi-depth histogram approximates the 
exact histogram by relaxing the requirement on the number 
of tuples in a bucket and/or the accuracy of the counts. Such 
histograms can be evaluated based on how close the buckets 
are to N/P tuples and how close the counts are to the actual 
number of tuples in their respective buckets. 

A class error metric for equi-depth histograms. Con- 
sider an approximate equi-depth histogram with /3 buckets 
for a relation of N tuples. We consider an error metric, 
&,d, that reflects the extent to which the histogram’s bucket 
boundaries succeed in evenly dividing the tuples in the re- 
lation: 

This is the standard deviation of the buckets sizes from 
the mean bucket size, normalized with respect to the mean 
bucket size. 

Computing approximate equi-depth histograms from a 
random sample. Given a random sample, an approximate 
equi-depth histogram can be computed by constructing an 
equi-depth histogram on the sample but setting the bucket 
counts to be N/p ([8]). Denote this the Sample-Compute 
algorithm. 

We will next present an incremental algorithm that oc- 
casionally uses SampleXompute. The accuracy of the 
approximate histogram maintained by the incremental al- 
gorithm depends on the accuracy resulting from this pro- 

cedure, which is stated in the following theorem2. The 
statement of the theorem is in terms of a sample size m. 

Theorem 4.1 Let ,L? 1 3. Let m = (c ln2 /3)/?, for Some 
c 2 4. Let S be a random sample of size m of values drawn 
uniformlyfrom a set of size N > m3, either with or without 
replacement. Then Sample-Compute computes an approx- 
imate equi-depth histogram such that with probability at 
least 1 - ,f3-(fi-‘) - N-‘13, ped = pcount 5 CX. 

4.1 Maintaining equi-depth histograms using a back- 
ing sample 

We first devise an algorithm that monitors the accuracy of 
the histogram, and recomputes the histogram from the back- 
ing sample only when the approximation error exceeds a 
pre-specified tolerance parameter. We denote this algorithm _ _ 
the Equi-depthSimple algorithm. We assume throughout 
that a backing sample is being maintained using the algo- 
rithm of Section 3 with L set to the sample size m from the 
theorems. 

The algorithm works in phases. At each phase we main- 
tain a threshold T = (2 + -y)N’/P, where N’ is the number 
of tuples in the relation at the beginning of the phase, and 
y > - 1 is a tunable performance parameter. The thresh- 
old is set at the beginning of each phase. The number of 
tuples in any given bucket is maintained below the thresh- 
old T. (Recall that the ideal target number for a bucket 
size would be N/P.) As new tuples are added to the re- 
lation, we increment the counts of the appropriate buckets. 
When a count exceeds the threshold T, the entire equi- 
depth histogram is recomputed from the backing sample 
using Sample-Compute, and a new phase is started. 

Performance analysis. We first consider the accuracy of 
the above algorithm, and show that with very high proba- 
bility it is guaranteed to be a good approximation for the 
equi-depth histogram. The following theorem shows that 
the error parameter pcount remains unchanged, whereas the 
error parameter p@J may grow by an additive factor of at 
most (1 + y), the tolerance parameter. 

Theorem 4.2 Let p 2 3. Let m = (c ln2 p)p, forsome c 2 
4. Let S be a random sample of size m of values drawn uni- 
formlyfrom a set of size N 2 m3, either with or without re- 
placement. Let a = (c ln2 ,8)-‘16. Then Equi-depthSimple 
computes an approximate equi-de 
withprobability at least 1 - /3-( 4 

th histogram such that 
‘-‘) - (N/(2 + r))-‘i3, 

The following lemma bounds the total number of calls 
to Sample-Compute as a function of the final relation size 
and the tolerance parameter y. 

2Even though the computation of approximate histograms from a ran- 
dom sample of a fixed relation R has been considered in the past, we are 
not aware of a similar analysis. 

469 



Lemma 4.3 Let a = 1 + (1 + 7)/P. rf a total of N 
tuples are-inserted in all, then the number of calls to Sam- 
ple-compute is at most min(lg, N, N). 

4.2 The split&merge algorithm 

In this section we modify the previous algorithm in order to 
reduce the number of calls to Sample-Compute by trying to 
balance the buckets using a local, inexpensive procedure, 
before resorting to Sample-Compute. When a bucket count 
reaches the threshold, T, we split the bucket in half instead 
of recomputing the entire histogram from the backing sam- 
ple. In order to maintain the number of buckets, ,L3, fixed, 
we merge some two adjacent buckets whose total count 
does not exceed T, if such a pair of buckets can be found. 
Only when a merge is not possible do we recompute from 
the backing sample. We define a phase to be the sequence 
of operations between consecutive recomputations. Denote 
this the Equi-depthSplitMerge algorithm. 

The operation of merging two adjacent buckets is quite 
simple; it merely involves adding the counts of the two 
buckets and disposing of the boundary (quantile) between 
them. The splitting of a bucket is less straightforward; an 
approximate median value in the bucket is selected to serve 
as the bucket boundary between the two new buckets, us- 
ing the backing sample. The split and merge operation is 
illustrated in Figure 2. Note that split and merge can occur 
only for 7 > 0. 

AITRIBVTI: v*t.uEF MEAN 

Figure 2: Split and merge operation during equi-depth 
histogram maintenance 

The tolerance parameter 7 determines how often a re- 
computation occurs. Consider the extreme case of 7 R - 1. 
Here Equi-depthSplitMerge recomputes the histogram 
with each database update, i.e., there are O(lRI) phases. 
Consider the other extreme, of setting 7 > (RI. Then 
the algorithm simply sticks to the original buckets, and is 
therefore equivalent to the trivial algorithm which does not 
employ any balancing operation. Thus, the setting of the 
performance parameter 7 gives a spectrum of algorithms, 
from the most efficient one which provides very poor ac- 
curacy performance, to the relatively accurate algorithm 
which has a rather poor efficiency performance. By se- 
lecting a suitable, intermediate, value for 7, we can get an 

algorithm with good performance, both in accuracy as well 
as in efficiency, For instance, setting 7 = 1 will result with 
an algorithm whose imbalance factor is bounded by about 3, 
and the number of phases is O(lg N). 

The following lemma establishes a bound on the number 
of splits in a phase, as a function of 7. We prove it for the 
range 7 5 2, in which we are particularly interested. 

Lemma 4.4 Let 7 < 2. The number of splits that occur in 
a phase is at most /3. 

The number of phases is bounded as follows: 

Lemma 4.5 Let (Y = 1 + y/2 if 7 > 0, and otherwise 
let IY = (1 + (1 + 7)/j?). If a total of N tuples are in- 
serted in all, then the number of recomputations is at most 
min(lg, N, N). 

We can now conclude: 

Theorem 4.6 Consider Equi-depthSplitMerge with p 
buckets and performance parameter - 1 < 7 5 2 applied 
to a sequence of N inserts. Then the total number of phases 
is at most Ig, N, and the total number of splits is at most 
p Ig, N, where cy = 1 + y/2 if 7 > 0, and otherwise 
(Y = 1 -I- (1 + 7)/P. 

4.3 Extensions to handle modify and delete operations 

Consider first the Equi-depthsimple algorithm. To handle 
deletions to the database, we extend it as follows. Deletions 
can decrease the number of elements in a bucket relative 
to other buckets, so we use an additional threshold, Te, 
that serves as a lower bound on the count in a bucket. 
After each recomputation, we set Te = IRI/(P(2 + 7e)), 
where 7e > - 1 is a tunable parameter. We also set T as 
before. Consider a deletion of a tuple r with r.X = v 
from R. Let B be the bucket in the histogram 7-1 whose 
interval contains v. We decrement Bcount, and if now 
Bcount = Te then we recompute fi from the backing 
sample, and update both T and Te. 

For modify operations, we observe that if the modify 
does not change the value of attribute X, or if it changes the 
value of X such that the old value is in the same bucket as 
the new value, then 3-1 remains unchanged. Else, we update 
31 by treating the modify as a delete followed by an insert. 

Note that the presence of deletions and modifys does 
not affect the accuracy of the histogram computed from the 
backing sample. Moreover, the upper and lower thresholds 
control the imbalance among buckets between recomputa- 
tions, so the histograms remain quite accurate. On the other 
hand, the number of recomputations can be quite large in 
the worst case. By repeatedly inserting items into the same 
bucket until T is reached, and then deleting these same 
items, we can force the algorithm to perform many recom- 
putations. However, if the sequence of updates to a relation 
R is such that (RI increases at a steady rate, then the number 

470 



of recomputes can be bounded by a constant factor times 
the bound given in Lemma 4.3, where the constant depends 
on the rate of increase. 

Now consider the Equi-depthSplitMerge algorithm. 
The extensions to handle delete operations are identical to 
those outlined above, with the following additions to handle 
the split and merge operations. If B.count = Te, we merge 
B with one of its adjacent buckets and then split the bucket 
B’ with the largest count, as long as B’.count 2 2(T” + 1). 
(Note that B’ may, or may not be the newly merged bucket.) 
If no such B’ exists, then we recompute 3t from the backing 
sample. Modify operations are handled as outlined above. 

5 Fast maintenance of approximate Com- 
pressed histograms 

In this section, we consider another important histogram 
type, the Compressed(V, F) histogram. We first present 
a “split&merge” algorithm for maintaining a Compressed 
histogram in the presence of database insertions, and then 
show how to extend the algorithm to handle database mod- 
ifys and deletes. We assume throughout that a backing 
sample is being maintained. 

Definitions. Consider a relation of (a priori unknown) size 
N. In an equi-depth histogram, values with high frequen- 
cies can span a number of buckets; this is a waste of buckets 
since the sequence of spanned buckets for a value can be 
replaced with a single bucket with a single count. A Com- 
pressed histogram has a set of such singleton buckets and 
an equi-depth histogram over values not in singleton buck- 
ets. Our target Compressed histogram with /3 buckets has 
p’ equi-depth buckets and p - p’ singleton “high-biased” 
buckets, where I 5 p’ 5 p, such that the following re- 
quirements hold: (Rl) each equi-depth bucket has [N’/p’J 
or [N’//3’1 tuples, where N’ is the total number of tuples in 
equi-depth buckets, (R2) no single value “spans” an equi- 
depth bucket, i.e., the set of bucket boundaries are distinct, 
and conversely, (R3) the value in each singleton bucket has 
frequency 2 N///3’. Associated with each bucket B is a 
maximum value B.maxval (either the singleton value or the 
bucket boundary) and a count, B.count. 

An approximate Compressed histogram approximates 
the exact histogram by relaxing one or more of the three 
requirements above and/or the accuracy of the counts. 

Class error metrics. Consider an approximate Com- 
pressed histogram ‘If with equi-depth buckets BI , . . . , Bpl 
and singleton buckets Bp~+l , . . . , Bp. Recall that f~ is 
defined to be the number of tuples in a bucket B. Let 
N’ be the number of tuples in equi-depth buckets, i.e., 
N’ = & f~,. We define two class error metrics, fled 
and phb (,&d is as defined in Section 4 but applied only to 

the equi-depth buckets): 

where U is the set of values that violate requirement (R2) 
or (R3). This metric penalizes for mistakes in the choice 
of high-biased buckets in proportion to how much the true 
frequencies deviate from the target threshold, N//P’, nor- 
malized with respect to this threshold. 

5.1 A split&merge algorithm for Compressed his- 
tograms 

We show how Equi-depthSplitMerge can be extended to 
handle Compressed histograms. We denote this algorithm 
the Compressed-SplitMerge algorithm. 

On an insert of a tuple with value v into the relation, the 
(singleton or equi-depth) bucket, B, for ZI is determined, 
and the count is incremented. If B is an equi-depth bucket, 
then as in Equi-depthSplitMerge, we check to see if its 
count now equals the threshold T for splitting a bucket, and 
if it does, we update the bucket boundaries. The steps for 
updating the Compressed histogram are similar to those in 
Equi-depthSplitMerge, but must address several additional 
concerns: 

1. 

2. 

3. 

4. 

New values added to the relation may be skewed, so 
that values that did not warrant singleton buckets be- 
fore may now belong in singleton buckets. 

The threshold for singleton buckets grows with N’, the 
number of tuples in equi-depth buckets. Thus values 
rightfully in singleton buckets for smaller N’ may no 
longer belong in singleton buckets as N’ increases. 

Because of concerns 1 and 2 above, the number of 
equi-depth buckets, p’, grows and shrinks, and hence 
we must adjust the equi-depth buckets accordingly. 

Likewise, the number of tuples in equi-depth buckets 
grows and shrinks dramatically as sets of tuples are re- 
moved from and added to singleton buckets. The ideal 
is to maintain N’/fl tuples per equi-depth bucket, but 
both N’ and p’ are growing and shrinking. 

Our algorithm addresses each of these four concerns as fol- 
lows. To address concern 1, we use the fact that a large 
number of updates to the same value u will suitably in- 
crease the count of the equi-depth bucket containing v so as 
to cause a bucket split. Whenever a bucket is split, if doing 
so creates adjacent bucket boundaries with the same value 
v, then we know to create a new singleton bucket for v. To 
address concern 2, we allow singleton buckets with rela- 
tively small counts to be merged back into the equi-depth 

471 



buckets. As for concerns 3 and 4, we use our procedures for 
splitting and merging buckets to grow and shrink the num- 
ber of buckets, while maintaining approximate equi-depth 
buckets, until we recompute the histogram. The imbalance 
between the equi-depth buckets is controlled by the thresh- 
olds T and Te (which depend on the tunable performance 
parameters y and yl, as in Equi-depthSplitMerge). When 
we convert an equi-depth bucket into a singleton bucket or 
vice-versa, we ensure that at the time, the bucket is within a 
constant factor of the average number of tuples in an equi- 
depth bucket (sometimes additional splits and merges are 
required). Thus the average is roughly maintained as such 
equi-depth buckets are added or subtracted. 

The requirements for when a bucket can be split or when 
two buckets can be merged are more involved than in Equi- 
depthSplitMerge: A bucket B is a candidate split bucket 
if it is an equi-depth bucket with B.count 2 2(Te + 1) or a 
singleton bucket such that T/(2 + y) 2 Bcount 2 2(Tl+ 
1). A pair of buckets, Bi and Bj , is a candidate merge pair 
if (1) either they are adjacent equi-depth buckets or they 
are a singleton bucket and the equi-depth bucket in which 
its singleton value belongs, and (2) Bi .count + Bj .count < 
T. When there are more than one candidate split bucket 
(candidate merge pair), the algorithm selects the one with 
the largest (smallest combined, resp.) bucket count. 

Due to space limitations, the exact details of this al- 
gorithm are presented in [3], including the procedure for 
computing an approximate Compressed histogram from the 
backing sample. 

Lemma 5.1 Algorithm CompressedSplitMerge maintains 
the following invariants. (1) For all buckets B, B .count > 
Te. (2) For all equi-depth buckets B, B.count < T. (3) All 
bucket boundaries (B.maxval) are distinct. (4) Any value 
v belongs to either one singleton bucket, one equi-depth 
bucket or two adjacent equi-depth buckets (in the latter 
case, any subsequent inserts or deletes are targeted to the 
first of the two adjacent buckets). 

Thus the set of equi-depth buckets have counts that are 
within a factor of T/T!, which is a small constant indepen- 
dent of JR] (details in the full paper). 

5.2 Extensions to handle modify and delete operations 

We now discuss how to extend CompressedSplitMerge to 
handle deletions to the database. Deletions can decrease 
the number of tuples in a bucket relative to other buckets, 
resulting in a singleton bucket that should be converted to 
an equi-depth bucket or vice-versa. A deletion can also 
drop a bucket count to the lower threshold Te. 

Consider a deletion of a tuple r with T.X = v from 
R. Let B be the bucket in the histogram ‘H whose interval 
contains V. First, we decrement B.count. If B.count = Te, 
we do the following. If B is part of some candidate merge 
pair, we merge the pair with the smallest combined count 

and then split the candidate split bucket B’ with the largest 
count. (Note that B’ may, or may not be the newly merged 
bucket.) If no such B’ exists, then we recompute 3-1 from 
the backing sample. Likewise, if B is not part of some 
candidate merge pair, we recompute ‘H from the backing 
sample. As in the insertion-only case, the conversion of 
buckets from singleton to equi-depth and vice-versa is pri- 
marily handled by detecting the need for such conversions 
when splitting or merging buckets. 

For modify operations, we observe as before that if the 
modify does not change the value of attribute A, or it 
changes the value of A such that the old value is in the 
same bucket as the new value, then ‘H remains unchanged. 
Else, we update ‘H by treating the modify as a delete fol- 
lowed by an insert. 

The invariants in Lemma 5.1 hold for the version of the 
algorithm that incorporates these extensions for modify and 
delete operations. 

6 Experimental evaluation 
In this section, we experimentally study the effectiveness of 
our histogram-maintenance techniques and their efficiency. 
First, we describe the experiment testbed. 

Database. We model the base data already in the database 
and the update data independent of each other using an 
extensive set of Zipf-ian [ 1 l] data distributions. The Zipf 
distribution was chosen because it supposedly models the 
skew in many real-life data quite closely. The z value was 
varied from 0 to 4 to vary the skew (z = 0 corresponds 
to the uniform distribution). The number of tuples (T) 
in the relation was 1OOK to start with and the number of 
distinct values (D) was varied from 200 to 1000. Since the 
exact attribute values do not affect the relative quality of our 
techniques, we chose the integer value domain. Finally, the 
frequencies were mapped to the values in different orders - 
decreasing (deer), increasing (incr), and random (random) 
-thereby generating a large collection of data distributions. 
We refer to a Zipf distribution with the parameter z and 
order z as the zipf( r , x) distribution. 

Histograms. The equi-depth and Compressed histograms 
consisted of 20 buckets and were computed from a sample 
of 2000 tuples, which was also the size of the backing 
sample. 

Updates. We used three classes of updates, described be- 
low, based on the mix of inserts, deletes, and modifys. In 
each case, the update data was taken from a Zipf distribu- 
tion. By varying the z parameter, we can vary the skew in 
the updates. The number of updates was increased up to 
40011’ (four times the relation size). 

1. Insert: The first class of updates consists of just insert 
operations, Since our algorithms are most efficient for 
such an environment, they are studied in most detail. 

472 



Warehouse: This class contains an alternating se- 
quence of a set of inserts followed by a set of deletes. 
This pattern is common in data warehouses keeping 
transactional information during sliding time windows 
(loading fresh data and discarding very old data, when 
loaded close to capacity). 

Mixed: This class contains a uniform mixture of in- 
serts, deletes, and modifys occurring in random order. 

In this paper, we only present the results for the Insert class. 
The results for the remaining classes are given in [3]. 

Techniques. We studied several variants of old and new 
techniques which are described below in terms of their op- 
erations for a single insert (operations for delete are similar 
in principle). 

1. 

2. 

3. 

4. 

5. 

Fixed-Histogram: The sum ‘of frequencies in each 
bucket is incremented by i so that the total sum of 
the frequencies increases by 1. This is essentially the 
technique currently in use in nearly all systems, which 
treat insertions of all values the same and simply keep 
track of the number of tuples. 

Periodic-Sample-Compute: This (expensive) tech- 
nique requires recomputing the histogram from the 
backing sample after each insertion into the sample, 
while the total sum of frequencies is incremented as in 
the above technique. 

SplitMerge: This is the class of techniques correspond- 
ing to the algorithms proposed in this paper. 

No-Recompute: This technique differs from Split- 
Merge by not performing the recomputations and sim- 
ply increasing the split threshold when a merge can 
not be performed. 

Fixed-Buckets: This technique differs from Split- 
Merge by not attempting to split any bucket. But, 
unlike the Fixed-Histogram algorithm, the size of the 
bucket containing the inserted value is correctly incre- 
mented. 

Error metrics. The following error metrics are used: 
pcount (Es. I), ped (Eq. 2 and 31, and PM 0% 4). In 
addition a new metric P,.,,~~ is defined, which captures 
the accuracy of histograms in estimating the result sizes 
of range predicates (of the form X 5 a). The query-set 
contains range predicates over all possible values in the 
joint value domain. For each query, we find the error as 
a percentage of the result size. P,.~,,~~ is defined as the 
average of these errors over the query-set. 

6.1 Effects of recomputation and y 

Figure 3 depicts the errors (,~,d) of the equi-depth histogram 
obtained at the end of 40011’ insertions as a function of y, 
under the SplitMerge and No-Recompute techniques. The 
base data distribution for this case was uniform and the up- 
date distribution was zipf(2,decr). It is clear that SplitMerge 
outperforms the technique without recomputations. Also, 
the errors due to the techniques are lowest for low values 
of y and increase rapidly as y increases. This is because, 
for low values of y the histogram is recomputed more often 
and the bucket sizes do not exceed a low threshold, thus 
keeping the p& small. 

On the other hand, small values of y result in a larger 
number of disk accesses (for the backing sample). Figure 4 
shows the effect of y on the number of recomputations. It 
is clear that too small values of y result in a large number 
of recomputations. Based on similar sets of experiments 
conducted over the entire set of data distributions, we con- 
cluded that y = 0.5 is a reasonable value for limiting the 
number of computations as well as for decreasing errors; 
we use this setting in all the remaining experiments. 

6.2 Update sampling 

Nearly all the experiments in this paper were conducted 
by considering every insertion in the database. In some 
update-intensive databases this could result in intolerable 
performance degradation. Hence we propose uniformly 
sampling the updates with a certain probability and mod- 
ifying the histograms only for the sampled updates. In 
this experiment, we study the effect of the update sampling 
probability on histogram performance. The base and up- 
date distributions are chosen to be zipf((l,incr) and zipf(0.5, 
random) respectively, and the histogram is Compressed. 
Figure 5 depicts the errors due to the SplitMerge technique 
for various sampling probabilities. The x-axis represents 
the average number of updates that are skipped and the 
y-axis represents the errors incurred by the histogram re- 
sulting at the end of 40011 inputs in estimating the result 
sizes of range queries &range). It is clear from this fig- 
ure that the accuracy depends on the number of updates 
sampled; as long as not too many updates are skipped (say, 
at most 100 in this experiment), the errors are reasonably 
small. 

6.3 Approximation of equi-depth histograms 

We compare the effectiveness of various techniques in ap- 
proximating equi-depth histograms under insertions into 
the database. The results are presented for uniform base 
data and zipf(2,incr) update data and are fairly consistent 
over most other combinations. Figures 6 through 8 contain 
various error measures on the y-axes, and the number of 
insertions on the x-axes. For this experiment, the Split- 
Merge technique performed just 2 recomputations while 
Periodic-Sample-Compute performed 3276. 

473 



0.x - 

-Without Recomputes 

0.6 - -With Recomputes 

B 

2’ CM- 

Gamma 

Figure 3: Effect of y and recom- 
putation on &d errors 

..-....‘. Fixed-Histogram ..-....‘. Fixed-Histogram 
- L- - Fixed-Buckets - L- - Fixed-Buckets 
- Periodic-Sample-Camp. - Periodic-Sample-Camp. 
----- SplitMerge ----- SplitMerge 

Figure 6: &,j errors (equi-depth 
histograms) 

Figure 4: Effect of y on the num- 
ber of recomputations 

-+ Fixed-Buckets 
- Periodic-Sample-Camp. 
---. SplitMerge 

Figure 7: peoUnt errors (equi- 
depth histograms) 

It is clear from Figure 6 that the SplitMerge technique 
is nearly identical to the more expensive Periodic-Sample- 
Compute technique in maintaining the histogram close to 
equi-depth. The Periodic-Sample-Compute technique does 
not maintain a perfectly equi-depth histogram because it is 
recomputed from the backing sample which may not reflect 
all the insertions. The other two techniques clearly result 
in a very poor equi-depth histogram because they do not 
perform any splits of the over-populated buckets. Figure 
7 shows that the SplitMerge and Fixed-Buckets techniques 
are very accurate in reflecting the accurate counts, because 
their bucket sizes are correctly updated after every insertion. 
For the other two techniques, the size of a bucket is always 
equal to N//3, hence the p,,,nt and &d measures are iden- 
tical. Finally, it is clear from Figure 8 that the SplitMerge 
technique offers the best performance in estimating range 
query result sizes as well. 

6.4 Approximation of Compressed histograms 

We compare the effectiveness of various techniques in main- 
taining approximating Compressed histograms. The base 
data distribution is zipf(l,incr) (a skewed distribution was 
chosen so that the Compressed histogram will contain a 
few high-biased buckets) and the update distribution is 
zipf(2,random), which introduces skew at different points 
in the relation’s distribution. Figures 9 and 10 depict the 
phb and p,.ange errors on the y-axes respectively and the 

update samplln# Period 

Figure 5: Effect of update sam- 
pling 

....-. Fixed-Histogram “..-. Fixed-Histogram 
-.- Fixed-Buckets -.- Fixed-Buckets 
- Periodic-Sample-Comp. - Periodic-Sample-Comp. 
--- SplitMerge --- SplitMerge 

jb 0 
” twmo ?.m ?Jtth ‘4mxY) 

Number of Updates 

Figure 8: pfange errors (equi- 
depth histograms) 

number of insertions on the x-axes. The results for the 
other two metrics are similar to the equi-depth case and 
consistently demonstrate the accuracy of the SplitMerge 
technique, hence are not presented. Once again, the Split- 
Merge technique performed just 2 recomputations from the 
sample, while Periodic-Sample-Compute performed 3274 
recomputations. 

It can be seen from Figure 9 that the Periodic-Sample- 
Compute and SplitMerge techniques result in almost zero 
errors in capturing the high frequency values in the updated 
relation, even when these values were not frequent in the 
base relation. In the beginning, the updates do not create a 
new high frequency value and all techniques perform well. 
But once a new value becomes frequent, it is clear that the 
other two techniques fail to characterize it as such and hence 
incur high errors. 

Figure 10 shows that the errors in range size estimation 
follow the similar pattern as the equi-depth case. Also, 
as expected from our earlier work [8], the Compressed 
histograms are observed to incur smaller errors than the 
equi-depth histograms from Figure 8. 

6.5 Effect of skew in the updates 

High skews in the update data can vary the distribution of 
the base relation data drastically and hence require effec- 
tive histogram maintenance techniques. In Figure 11 we 
depict the performance of various Compressed histograms 

474 



..-- Fixed-Histogram 
a Fixed-Buckets 

- Periodic-Sample-Camp. 
- *- SplitMerge 

I, ,,MXlX, 2cmm Jcixm 
Number of Updales 

Figure 10: P,.,,~~ errors (Com- 
pressed histograms) 

-+ Fixed-Histogram -+ Fixed-Histogram 
-+-Fixed-Buckets -+-Fixed-Buckets 
+ Periodic-Sample-Camp. + Periodic-Sample-Camp. 
- *- SplitMerge - *- SplitMerge 

Figure 11: Effect of skew in the 
updates 

Figure 9: phb errors (Compressed 
histograms) 

resulting from the techniques at the end of 400K insertions 
to the database. ‘The x-axis contains the z parameter values 
and the y-axis contains the errors in estimating range query 
result sizes (pvange ). The Fixed-Histogram technique fails 
very quickly because it assumes that the updates are uniform 
and hence does not update the high-biased part correctly. It 
is clear from this figure that the SplitMerge technique per- 
forms consistently well for all levels of skew and is always 
better than the other techniques, because it approximates 
the equi-depth part well using splits and recomputations, 
and approximates the high-biased part well by dynamically 
detecting high-frequency values. 

7 Conclusions 

This paper proposed a novel approach for maintaining his- 
tograms and samples up-to-date in the presence of updates 
to the database. Algorithms were proposed for the widely 
used equi-depth histograms and the highly accurate class 
of Compressed(V,F) histograms using the novel notions of 
split and merge techniques and backing samples. The CPU, 
I/O and storage requirements for these techniques are negli- 
gible for insert-mostly databases and for data warehousing 
environments. Based on our analytical and experimental 
studies, our conclusions are as follows: 

l The new techniques are very effective in approximat- 
ing equi-depth and Compressed histograms. They 
are equally effective for relations orders of magnitude 
larger. In fact, as the relation size grows, the relative 
overhead of maintaining the backing sample necessary 
for the same performance, becomes even smaller. 

l Very few recomputations from the backing sample are 
incurred for a large number of updates, proving that 
our split&merge techniques are quite effective in min- 
imizing the overheads due to recomputation. 

l The experiments clearly show that histograms main- 
tained using these techniques remain highly effective 
in result size estimation, unlike the current approaches. 

Based on our results, we recommend that these techniques 
be used in most DBMSs, for effective incremental mainte- 
nance of approximate histograms. 

Acknowledgments. We acknowledge the contributions 
of Andy Wrtkowski to the algorithm for maintaining ap- 
proximate equi-depth histograms. We also thank Nabil 
Kahale and Sridhar Rajagopalan for discussions related to 
this work. 

References 
[l] S. Christodoulakis. Implications of certain assumptions in 

database performance evaluation. ACM TODS, 9(2): 163- 
186, June 1984. 

[2] P B. Gibbons and Y. Matias. Space-efficient maintenance of 
top sellers lists in large databases. Manuscript., July 1996. 

[3] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental 
maintenance of approximate histograms. Technical report, 
Bell Laboratories, Murray Hill, NJ, June 1997. 

[4] Y. Ioannidis and S. Christodoulakis. On the propagation of 
errors in the size of join results. Proc. of ACM SIGMOD 
Co& pages 268-277,199 1. 

[5] R. P. Kooi. The optimization of queries in relational 
databases. PhD thesis, Case Western Reserver University, 
Sept. 1980. 

[6] V. Poosala. Histogram-based estimation techniques in 
database systems. PhD thesis, Univ. of Wisconsin-Madison, 
Feb. 1997. 

[7] V. Poosala and Y. Ioannidis. Estimation of query-result dis- 
tribution and its application in parallel-join load balancing. 
Proc. of the 22nd Int. Conf on Very Large Databases, pages 
448459, Sept. 1996. 

(81 V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved 
histograms for selectivity estimation of range predicates. 
Proc. of ACM SIGMOD ConJ pages 294-305, June 1996. 

[9] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and 
T. Price. Access path selection in a relational database man- 
agement system. Proc. ofACMSIGMOD Conf, pages 23-34, 
1979. 

[ 101 J. S. Vitter. Random sampling with a reservoir. ACM Trans. 
Math. Softiare, 11:37-57, 1985. 

[l l] G. K. Zipf. Human behaviour and the principle of least 
e$ort. Addison-Wesley, Reading, MA, 1949. 

475 


