
Garbage Collection in Object Oriented Databases Using
Transactional Cyclic Reference Counting

S. Ashwinl* Prasan Roy’ S. Seshadri’ Avi Silberschatz2
S. Sudarshanl

‘Indian Institute of Technology,
Mumbai 400 076, India

sashwin@cs.wisc.edu
{prasan,seshadri,sudarsha}@cse.iitb.ernet.in

‘Bell Laboratories
Murray Hill, NJ 07974

avi@bell-labs.com

Abstract

Garbage collection is important in object-
oriented databases to free the programmer
from explicitly deallocating memory. In this
paper, we present a garbage collection al-
gorithm, called Transactional Cyclic Refer-
ence Counting (TCRC), for object oriented
databases. The algorithm is based on a vari-
ant of a reference counting algorithm pro-
posed for functional programming languages
The algorithm keeps track of auxiliary refer-
ence count information to detect and collect
cyclic garbage. The algorithm works correctly
in the presence of concurrently running trans-
actions, and system failures. It does not ob-
t,ain any long term locks, thereby minimizing
interference with transaction processing. It
uses recovery subsystem logs to detect pointer
updates; thus, existing code need not be re-
writt#en. Finally, it exploit,s schema informa-
tion, if available, to reduce costs. We have im-
plemented the TCRC algorithm and present
results of a performance study of the imple-
mentation.

* Currently at the University of Wisconsin, Madison

Permission to copy without fee all 01‘ part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission ojthe Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission jrom the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

1 Introduction

Object oriented databases (OODBs), unlike relational
databases, support the notion of object identity, and
objects can refer to other objects via object identifi-
ers. Requiring the programmer to write code to track
objects and their references, and to delete objects that
are no longer referenced, is error prone and leads to
common programming errors such as memory leaks
(garbage objects that are not referred to from any-
where, and haven’t been deleted) and dangling ref-
erences. While these problems are present in tradi-
tional programming languages, the effect of a memory
leak is limited to individual runs of programs, since
all garbage is implicitly collected when the program
terminates. The problem becomes more serious in per-
sistent object stores, since objects outlive the programs
that create and access them. Automated garbage col-
lection is essential in an object oriented database to
protect from the errors mentioned above. In fact,
the Smalltalk binding for the ODMG object database
standard requires automated garbage collection.

We model an OODB in the standard way as an ob-
ject graph, wherein the nodes are the objects and the
arcs are the references between objects. The graph has
a persistent root. All objects that are reachable from
the persistent root or from the transient program state
of an on-going transaction are live; while the rest are
garbage. We often call object references as pointers.

There have been two approaches to garbage collec-
tion in object oriented databases: Copying Collector
based [YNY94] and Mark and Sweep based [AFGQ5].
The copying collector algorithm traverses the entire ob-
ject graph and copies live objects into a new space; the
entire old space is then reclaimed. In contrast, the
Mark and Sweep algorithm marks all live objects by
traversing the object graph and then traverses (sweeps)
the entire database and deletes all objects that are un-

366

marked. The copying collector algorithm reclusters ob-
jects dynamically; the reclustering can improve locality
of reference in some cases, but may destroy program-
mer specified clustering resulting in worse performance
in other cases. The garbage collection algorithms of
[YNY94] as well as [AFG95] handle concurrency con-
trol and recovery issues.

With both the above algorithms, the cost of tra-
versing the entire object graph can be prohibitively
expensive for databases larger than the memory size,
particularly if there are many cross-page references.
In the worst case, when the buffer size is a small frac-
tion of the database size and objects in a page refer to
objects in other pages only, there may be an I/O for
every pointer in the database. To alleviate this prob-
lem, earlier work [YNY94, AFG95] has attempted to
divide the database into partitions consisting of a few
pages. Each partition stores inter-partition references,
that is references to objects in the partition from ob-
jects in other partitions, in a persistent data structure.
Objects referred to from other partitions are treated
as if they are reachable from the persistent root, and
are not garbage collected even if they are not referred
to from within the partition. Each partition is garbage
collected independent of other partitions; references to
objects in other partitions are not followed. Thus, par-
titioning makes the traversal more efficient; the smal-
ler the partition, the more efficient the traversal, with
maximum efficiency occurring if the whole partition fits
into the buffer space.

Unfortunately, small partitions increase the probab-
ility of self-referential cycles of garbage that cross par-
tition boundaries; such cyclic garbage is not detected
by the partitioned garbage collection algorithms. Pre-
vious work has maintained that such cross cycle struc-
tures will be few, and will “probably” not be a prob-
lem. However, simulations by [CWZ94] showed that
even small increases in database connectivity can pro-
duce significant amounts of such garbage. Therefore,
it is not clear that partition sizes can be made very
small without either failing to collect large amounts
of garbage or employing special (and expensive) tech-
niques to detect such cyclic garbage.

A natural alternative is Reference Counting. Refer-
ence Counting is based on the idea of keeping a count of
the number of pointers pointing to each object. When
the reference count of the object becomes zero, it is
garbage and eligible for collection. Reference count-
ing has the attractive properties of localized and in-
cremental processing. Unfortunately, basic reference
counting cannot deal with self-referential cycles of ob-
jects; each object could have a positive reference count,
yet all the objects in the cycle may be unreachable from
the persistent root, and therefore be garbage. However,
a number of extensions of the basic referencing count-

ing algorithm to handle cyclic data have been proposed
in the programming language community, including:
[Bro85, Bro84, PvEP88]. More recent work in this
area includes [Lingo, MWLSO, JL91].

In this paper, we consider a version of reference
counting, proposed by Brownbridge [Bro85, Bro84]
for functional programming languages, which handles
self referential cycles of garbage. We present an al-
gorithm, called Transactional Cyclic Reference Count-
ing (TCRC), based on Brownbridge’s algorithm, which
is suitable for garbage collection in an OODB. The sa-
lient features of the TCRC algorithm are:

l It detects all self referential cycles of garbage un-
like basic reference counting, and the partitioned
garbage collection algorithms.

l It performs a very localized version of mark-and-
sweep to handle cyclic data, with each mark-and-
sweep likely to access far fewer objects than a
global mark-and-sweep. Thus it does not have
to examine the entire database while collecting
garbage, except in the worst case.

l It allows transactions to run concurrently, and
does not obtain any long term locks, thereby min-
imizing interference with transaction processing.

l It is integrated with recovery algorithms, and
works correctly in spite of system crashes. It also
uses recovery subsystem logs to detect pointer up-
dates; thus, existing application code need not be
rewritten.

l It exploits schema information, if available, to re-
duce costs. In particular, if the schema graph is
acyclic, no cyclic references are possible in the
database and TCRC behaves identically to refer-
ence counting.

A proof of correctness of the TCRC algorithm is
presented in [ARS+97]. Designing a cyclic referencing
counting algorithm which allows concurrent updates
and handles system crashes is rather non-trivial, and
to our knowledge has not been done before; we believe
this is one of the central contributions of our paper.

A problem often cited against reference counting
schemes is the overhead of updating reference counts.
However, each pointer update can only result in at
most one reference count being updated. This over-
head will have only a small impact on performance if,
as we expect is true in any realistic scenario, pointer
updates are only a small fraction of the overall up-
dates. For TCRC, moreover, the overhead is offset by
the reduced cost of traversals while collecting garbage.

We have implemented a prototype of the TCRC al-
gorithm as well as the partitioned mark and sweep

367

algorithm on a storage manager called Brahmii de-
veloped in IIT Bombay. We present a performance
study of TCRC based on the implementation; the study
clearly illustrates the benefits of TCRC.

2 Brownbridge’s Cyclic Reference
Counting Algorithm

Our Transactional Cyclic Reference Counting al-
gorithm is based on the Cyclic Reference Counting
(CRC) algorithm proposed by Brownbridge [Bro84,
Bro85], in the context of functional programming lan-
guages.

The basic idea behind the Cyclic Reference Count-
ing (CRC) algorithm of Brownbridge [Bro84, Bro85] is
to label edges in the object graph as strong or weak.
The labelling is done such that a cycle in the object
graph cannot consist of strong edges alone - it must
have at least one weak edge. Two separate reference
counts for strong and for weak edges (denoted SRefC
and WRefC respectively) are maintained per object. It
is not possible in general to cheaply determine whether
labelling a new edge as strong creates a cycle of strong
edges or not. Hence, in the absence of further informa-
tion, the algorithm takes the conservative view that la-
belling a new edge strong could create a cycle of strong
edges, and labels the new edge weak.

The SRefC and WRefC are updated as edges are
created and deleted. If for an object S, the SrefC as
well as WrefC is zero, then S is garbage and S and
the edges from it are deleted. If the SrefC is zero, but
WrefC is non-zero, there is a chance that S is involved
in a self referential cycle of garbage. If the SrefC of
an object S is greater than zero, then S is guaranteed
to be reachable from the root (however, our TCRC
algorithm does not guarantee this last property).

If the object graph did not have any garbage be-
fore the deletion of an edge to S, then the only poten-
tial candidates for becoming garbage are S and objects
reachable from S. If SrefC of S is zero and WrefC of
S is nonzero, a localized mark and sweep algorithm
detects whether S and any of the objects reachable
from S are indeed garbage. The localized mark and
sweep performs a traversal from S and identifies all
objects reachable from S and colours them red. Let
us denote the above set by R. It then colours green
every object in R that has a reference from an object
outside R (detected using reference counts). It also
colours green all objects reachable from any green ob-
ject. During this green marking phase some pointer
strengths are updated to ensure that every object has
at least one strong pointer to it. We will describe this
pointer strength update in detail in the context of our
transactional cyclic reference counting algorithm. At
the end, all objects in R not marked green are garbage

and are deleted.
However, prior cyclic reference counting algorithms,

including Brownbridge’s algorithm, were designed for
a single user system. They cannot be used in a multi-
user environment with concurrent updates to objects,
and do not deal with persistent data and failures. Our
contributions lie in extending Brownbridge’s algorithm
to (a) use logs of updates to detect changes to object
references, (b) to work in an environment with con-
current updates, (c) t,o work on persistent da.ta. in the
presence of system failures and transaction aborts, (d)
handle a batch of updates at a time rather than one up-
date at a time, and (e) optimize the localized mark and
sweep significantly by following only strong pointers.

3 System Model and Assumptions

In this section, we describe our system model and
outline the architectural assumptions on which our
garbage collector is based, which is very similar to the
model and assumptions in [AFG95].

In our model, transactions log undo and redo in-
formation for all updates. Undo and redo records
are represented as undo(tid, oid, offset, old-value), and

redo(tid, oid, offset, new-value), where tid denotes a
transaction identifier and oid an object identifier. Ob-
ject creation is logged as object-allocation(tid, oid). The
commit log is represented as commit(tid); and the
abort log is represented as abort(tid). We require that
from the oid we can identify the type of the object (per-
haps by first fetching the object), and from the offset
we can determine if the value that has been updated
is a pointer field. These requirements are sa,tisfied by
most database systems.

We make the following important assumption about
transactions:

Assumption 3.1 Transactions follow strict two-
phase locking on objects. That is, transactions acquire
read or write locks on objects as appropriate, and hold
read as well as write locks until end of transaction. 0

As with any other garbage collection scheme, we as-
sume that an object identifier is valid only if it is either
a persistent root, or is present in a pointer field of an
object in the database, or is in the transient memory
(program variables or registers) of an active transac-
tion that read the value from an object in the database.
Note that this precludes transactions from passing oids
to other transactions, and from storing oids in external
persistent storage.

Our algorithms can be used in centralized as well
as client-server settings. Let us consider first the cent-
ralized setting.

Assumption 3.2 In the centralized setting we as-
sume that transactions follow strict WAL, that is,

368

they log both the undo and the redo value before actu-
ally performing the update. 0

Our algorithms also work in a data-shipping client-
server environment, under the following assumptions

Assumption 3.3 In the client-server setting we as-
sume that clients follow:

1. strict WAL with respect to the server. That is,
before any data is received by the server, the undo
as well as redo information for the data must have
already been received by the server.

2. force with respect to the server. That is, be-
fore the transaction commits, all the updated data
must have been received by the server. 0

These assumptions make the client transaction be-
have, as far as the server is concerned, just like a local
transaction that follows strict WAL.

Our techniques are not affected by the unit of data
shipping (such as page or object) and whether or not
data is cached at the client. The clients can retain
copies of updated data after it has been sent to the
server.

Most of the assumptions above are satisfied by typ-
ical storage managers for object-oriented databases.
Our client server assumptions are also very similar to
those of [AFG95].

4 Transactional Cyclic Reference
Counting

We will now describe the Transactional Cyclic Refer-
ence Counting (TCRC) algorithm. We first describe
the data structures needed by the transactional cyclic
reference counting algorithm.

4.1 Data Structures

Associated with each object, we persistently maintain
a strong reference count (SRefC) giving the number of
strong pointers pointing to the object, a weak refer-
ence count (WRefC) giving the number of weak point-
ers pointing to the object, and a strength bit for the
object. Each pointer also has a strength bit. Both
strength bits are persistent. The pointer is strong if
the strength bit in the pointer and the strength bit in
the object pointed to have the same value; otherwise
the pointer is weak. This representation of strength
using two bits is an important implementation trick,
from Brownbridge [Bro85, Bro84]. It makes very effi-
cient the operation of flipping the strength of all point-
ers to an object, that is making all strong pointers to
the object weak, and all weak pointers to the object
strong. All that need be done is to flip the value of the
strength bit in the object.

The TCRC algorithm also maintains a persistent
table, the Weak Reference Table (WRT), which con-
tains oids for the objects which have a zero SRefC, i.e.
no strong pointers incident on them. The persistent
root is never put into the WRT.

All the above information can be constructed from
the object graph and therefore it could be made tran-
sient. However, we would then have to reconstruct the
information after a system crash by scanning the entire
database, which would be expensive. Hence we make
it persistent. Updates to SRefC and WRefC, update
of the strength bit of an object or of a pointer, and the
insert or delete of entries from the WRT are logged as
part of the transaction whose pointer update caused
the information to be updated/inserted/deleted.

There is also a non-persistent table which is used
during garbage collection: the Red Reference Table
(RRT); this table associates with (some) objects a
strong red reference count (SRedRefC), a weak red ref-
erence count (WRedRefC), and a bit that indicates
whether the colour of the object is red or green. This
table is stored on disk since the size of this table could
be large in the worst case, but updates to this table are
not logged.

Finally, similar to [AFG95] TCRC maintains an
non-persistent in-memory table called the Temporary
Reference Table (TRT), which contains all those oids
such that a reference to the object was added or de-
leted by an active transaction, or the object wa.s cre-
ated by the transaction. Such an oid may be stored in
the transient memory of an active transaction although
the object may not be referenced by any other object.
in the database. An object whose oid is in TRT may
not be garbage even if it is unreachable from any other
object, since the transaction may store a reference to
the object back in the database. Updates to TRT are
also not logged. The TRT also provides a simple way
of handling the persistent root - its oid is entered in
the TRT at system start up, and is never removed.
This prevents the garbage collector from collecting the
persistent root.

4.2 The Algorithm

TCRC consists of two distinct algorithms, run by
different processes. The first is the log-analyzer al-
gorithm. The second algorithm is the actual garbage
collection algorithm. We describe them below.

4.2.1 Log analyzer

The log-analyzer algorithm analyzes log records gener-
ated by the transaction, and performs various actions
based on the log records. As part of its actions, it may
also insert records into the log. We shall assume it is
run as part of the transaction itself, is invoked each

369

time a log record is appended to the system log tail,
and is atomic with respect to the appending of the log
record.

In the actual implementation, it is possible to run
the log-analyzer as a separate thread, and when a
transaction appends a log record to the system log, it
actually only delivers it to the log-analyzer, which then
appends the log record to the system log. In particu-
lar, in the client-server implementation the log-analyzer
process is run at the server end, not at the client.

The log-analyzer makes use of the following proced-
ures. Procedure DeletePointer decrements the WRefC
or SRefC for an object when a pointer to the object
is deleted. If the SRefC falls to zero after the decre-
ment then the object’s oid is put into WRT. Procedure
AddPointer, by default, sets the strength of the pointer
to be weak and increments the WRefC of the object
pointed to. The strength is set to weak so that cycles
of strong edges are not created; however, we will see
in Section 5 that we may be able to make some new
pointers strong.

The procedure LogAnalyzer works as follows. First
it obtains the log-analyzer-latch (which is also acquired
by the garbage collection thread) to establish a con-
sistent point, in the log. The latch is obtained for the
duration of the procedure. The log is analyzed by the
log analyzer and depending on the type of the log re-
cord various actions as outlined below are taken. For
undo/redo log records caused by pointer updates, the
reference counts for the affected objects are updated.
This is done by DeletePointer in case of undo logs, and
AddPointer in case of redo logs. For log records cor-
responding to the allocation of objects, the reference
counts for the new object are initialized to zero, and
the oid of the object is inserted into the WRT. In all
the above cases (i.e., for pointer updates and object al-
location), the oid of the affected object is inserted into
the TRT with the tid of the transaction that generated
the record.

For end-of-transaction (commit or abort) log re-
cords, the algorithm first tries to get the gcLatch. If the
latch is obt,ained immediately, then garbage collection
is not in progress and all the oid entries for the termin-
ating transaction from the TRT are removed and the
gcLatch released thereafter. However, if the gcLatch
cannot be obtained immediately then a garbage col-
lection is in progress concurrently. In this case, the
oid entries for the terminating transaction are not re-
moved, but instead flagged for later removal by the
garbage collector.

All operations on pointer strengths and reference
counts are protected by a latch on the object poin-
ted to, although not explicitly mentioned in our al-
gorithms. Access to WRT and TRT are also protected
by latches.

Procedure CollectGarbage {
acquire gcLatch
RRT = {}

Sl: for each oid in WRT that is not in TRT
RedTraverse(oid)

S2: for each oid E RRT
latch the reference count entry of oid
if SRefC,id + WRefC,id >

SRedRefC,id + WRedRefC,id
mark oid as green;

unlatch reference count entry of oid
for each oid E RRT that is marked green

if SRefC,id == SRedRefC,,id
/* all external pointers

to the object are weak */
if SRefC,,id == 0 /* oid is in WRT */

remove oid from WRT
flip the strength of all pointers to oid
swap SRefC,id and WRefC,id

GreenTraverse(oid)
done = FALSE

S3: while done == FALSE
done = TRUE
acquire log-analyzer-latch

s4: for each oid E RRT that is marked red
if oid E TRT

release log-analyzer-latch
GreenTraverse(oid)
done = FALSE
acquire log-analyzer-latch

release log-analyzer-latch
S5: for each oid E RRT that is marked red

Collect(oid)
release gcLatch
remove all flagged entries from TRT

1

Procedure GreenTraverse(oid) {
starting with oid as the root do a

depth-first traversal restricted to
the objects marked red in RRT

when visiting an object during the traversal :
mark the object green
make strong all pointers from the object

to any red object (not yet visited)
make weak all pointer from the object to

any green object (already visited)

Figure 1: Pseudo Code for Garbage Collector

4.2.2 Garbage Collector

The garbage collection algorithm is activated periodic-
ally (possibly depending on availability of free space).
The algorithm makes use of the following support func-
tions. Procedure Collect actually deletes an object;
before doing so, it deletes all pointers out of the ob-
ject, updating the stored reference counts of the ob-
jects pointed to. It also deletes the object from RR?
and WRT.

Procedure RedTraverse performs a reachability scan
from the specified object, following only strong point-
ers, and marks all reachable objects red and put,s
them in RRT. RedTraverse also maintains for each
object present in RRT, two counts: SRedRefC and
WRedRefC, giving respectively the number of strong
and weak pointers to the object from all other objects
present in RRT. These counts are maintained on the
fly during the traversal; in order to do so, RedTraverse

also maintains these counts for objects that are reach-
able by a single weak edge from objects in RRT, since
such objects may be added to RRT later in the scan.

The garbage collection algorithm is implemented by
Procedure CollectGarbage, shown in Figure 1. Initially,
all nodes reachable from objects in WRT using only t,he
strong pointers are coloured red and put in RRT by
calling RedTraverse. This function performs a fuzzy
localized traversal of the object graph during which
no locks are obtained on the objects being traversed.
Short term latches may be obtained on objects or pages
to ensure physical consistency.

After this, in Step S2 some nodes are marked green
based on the values of their WRefC+SRefC and WR.e-
dRefC+SRedRefC. WRedRefC is the number of weak
pointers pointing to an object amongst pointers from
objects in RRT. Similarly, SRedRefC is the number of
strong pointers pointing to an object amongst point-
ers from objects in RRT. The expression WRedRefC
+ SRedRefC counts how many pointers to a node s
are from nodes in RRT. If this count is less than the
total number of pointers to node s, there must be an
external (to objects in RRT) pointer to s, and s is
not garbage. Such objects are marked green in Step
S2. The Procedure GreenTraverse called in Procedure
CollectGarbage can be found in Figure 1.

Next, in Step S4, any objects in RRT that are in
TRT are also marked green since their references may
still be stored in an ongoing transaction and stored
back in the database. Objects that are reachable from
t,he above objects are also marked green, by invoking
GreenTraverse. The reason for performing Step S4 re-
peatedly (in the while loop at Step S3) is to establish
a consistent point in the log at which no object in the
RRT is in TRT; this helps simplify the proof of correct-
ness. Let us denote the time instant when we acquire

the log-analyzer-latch for the last time in the while loop
at, step S3 as T5. This guarantees that all objects in
RRT that are marked red at step S5 are not in TRT
according to log at T5.

4.2.3 Support for Logical Undo by the Recov-
ery Manager

The TCRC algorithm needs some support from t,he re-
covery manger in the form of supporting logical undos
t,o ensure correctness. There are some actions whose
undos have to be performed logically and not phys-
ically. We discuss them below and discuss what the
logical undo should do in each case:

Pointer Deletion and Strength Update: Undo
of a pointer deletion or strength update, if performed
naively, may introduce strong cycles in the graph,
which can affect the correctness of the algorithm. The
right way to undo a pointer deletion is to reinsert t,he
pointer with the strength set to be weak (even if it
was strong earlier). Similarly, the undo of a. pointer
strength update (done in case of system crash during
the garbage collection phase) is t,o set t,he strength
of the pointer as weak (irrespective of the original
strength).

Reference Counts Update: The reference counts
of a,n object 0 can be concurrently updated by multiple
transactions (including the garbage collector) through
different objects which are locked by the transactions.
The object 0 itself need not be locked since only a ref-
erence to it is being updated. Only short term latches
are necessary for maintaining physical consistency. If a
transaction that updated the reference count of an ob-
ject aborts, it should be logically undone: the undo of
a reference count increment is a decrement of t,he same
reference count, while the undo of a reference count,
decrement is always an increment of WRefC since a
reinserted pointer is always weak.

4.3 Correctness

Theorem 4.1 The TCRC algorithm

1. eventually collects any object that is garbage.

2. does not incorrectly reclaim live objects as
garbage. 0

The above theorem establishes the correctness of the
TCRC algorithm; a proof is presented in [ARS+97].
The theorem holds in the presence of concurrent trans-
actions and system failures.

An interesting point to note is that RedTraverse fol-
lows only strong pointers, and not weak pointers, in
contrast to Mark-and-Sweep. Our proof of correctness
shows that every garbage object is either in WRT or
is reachable by a sequence of strong edges from an

371

object in WRT, and thus RedTraverse finds all garbage
objects. We also show that all non-garbage objects col-
oured red are later coloured green by a call on Green-

Traverse, even though GreenTraverse only follows edges
through red objects.

Another interesting point is that although our
traversals (both RedTraverse and GreenTraverse) are
fuzzy, that is they do not acquire any long term locks.
the algorithms are still correct. The TRT (also used
by [AFG95]) plays an important role here, since any
pointers that are added or deleted during the traversal
are inserted into the TRT. Objects reachable from
TRT are not garbage collected.

A badly designed garbage collection algorithm could
create infinite work for itself, by leaving oids in WRT
which will be traversed by another garbage collection
phase, which in turn leaves oids in WRT, ad infinitum.
We now state a theorem which guarantees that this
does not happen; that is, in the absence of updates,
the system eventually reaches a state where garbage
collection thread does no more work.

Theorem 4.2 If there are no updates from the begin-
ning of one garbage collection phase to the end of the
next garbage collection phase no object will be in WRT
at the end of the second garbage collection phase. 0

The proof is presented in [ARS+97].

5 Using the Schema Graph

We now see how to use information from the data-
base schema to optimize TCRC. The schema graph is
a directed graph in which the the nodes are the classes
in the schema. An edge from node i to node j in the
schema graph denotes that Class i has an attribute that
is a reference to Class j. The pointers in the schema
graph thus form a template for the pointers between
the actual instances of the objects. If an edge E in
a schema graph is not involved in a cycle, then neither
ca.n an edge e in the object graph for which E is the
template.

We label edges which are not part of a cycle in the
schema graph as acyclic and the others as cyclic. When
adding an edge e to the object graph, if its correspond-
ing template edge in the schema graph is acyclic, the
strength of e is set to be strong. During garbage col-
lection, in RedTraverse, we do not follow strong edges
whose template edge is acyclic. In the extreme case
where the schema graph is acyclic, no edges are tra-
versed, and TCRC behaves just like reference counting,
reducing the cost significantly.

6 Performance Evaluation

We implemented the TCRC algorithm and the Parti-
tioned Mark and Sweep (PM’S) algorithm on an ob-

ject manager called Brahms developed at IIT Bom-
ba.y. Brahmci supports concurrent transactions using
two phase locking and a complete implementation of
the ARIES recovery algorithm. It provides extend-
ible hash indices as well as B+-tree indices as addi-
tional access mechanisms.

The WRT is implemented as a persistent extendible
hash table indexed on the oid while the TRT is an
in-memory hash table indexed separately on the oid
and the transact,ion id (to allow easy deletion of all
entries of a transaction). The reference counts SRefC
and WRefC are stored with the object itself. The
only persistent structures required by PMS are one
Incoming Reference List (IRL) per partition which is
maintained as a persistent Bt-tree.

Our performance study in this section is based on
the standard 007 benchmark [CDN93]. In particular,
we worked on the standard small-9 dataset in 007
which was also used in [YNY94] for their simulation
study. The 007 parameters and their values for t,his
dataset are given in Table 1 and are explained below.

The 007 dataset is composed of a number of m.od-
ules, specified by NUMMODULES. Each module con-
sists of a tree of objects called assemblies. The tree
is a complete tree with a fanout of NUMASSMPER-
ASSM and has NUMASSMLEVELS levels. The last
level of the tree is called a base assembly while the
upper levels are called complex assemblies. In a,ddi-
t,ion, each module consists of NUMCOMPPERMOD-
ULE composite objects. The base assemblies point
to NUMCOMPPERASSM of these composite objects.
Many base assemblies may share a composite object.

Each composite object points to: (a) a privat,e set of
NUMATOMICPERCOMP atomic objects, (b) a dis-
tinguished atomic object (called the composite root),
and (c) a document object. An atomic object has a
fixed number of connections (specified by NUMCON-
NPERATOMIC) out of it, to other atomic objects in
the same set. A connection is itself modeled as an
object (called a connection object) pointed to by the
source of the connection and in turn points to the des-
tination of the connection. The connections connect
the atomic objects into a cycle with chords. We will
call a composite object along with its private set of
atomic objects, connection objects and the document
object together as an object composite. All object ref-
erences in the benchmark have inverses and we always
insert or delete references in pairs (the reference and
its inverse).

The dataset consisted of 104280 objects occupying
4.7 megabytes of space. Each object composite con-
sisted of 202 objects and had a size of 9160 bytes. Dur-
ing the course of experiments, the size was maintained
constant by adding and deleting the same amount of
data. The object manager used a buffer pool consisting

372

Parameter Value

NUMMODULES 1
NUMCOMPPERMODULE 500
NUMCONNPERATOMIC 9
NUMATOMICPERCOMP 20
NUMCOMPPERASSM 3
NUMASSMPERASSM 3
NUMASSMLEVELS 7

Table 1: Parameters for the 007 benchmark
of 500 4KB pages. The I/O cost is measured in terms
of the number of 4KB pages read from or written to
the disk. All the complex and base assemblies form-
ing the tree structure were clustered together. We also
clustered together all the objects created for a compos-
ite.

For PMS, the data was divided into 4 partitions;
each partition fits in memory. The inter-partition ref-
erences were kept very small. All the complex and
base assemblies forming the tree structure were put in
the same partition. Approximately one out of every 50
composites spanned partitions.

We conducted two sets of experiments, the first was
based on structure modifications suggested in the 007
benchmark while the second modifies complex assem-
blies. We discuss each in turn.

6.1 Structure Modifications

The workload in this experiment consisted of re-
peatedly inserting five object composites and attaching
each composite to a distinct base assembly object, and
then pruning the newly created references to the same
five object composites - we call this whole set of in-
serts and deletes an update pass. This corresponds
to the structure modification operations of the 007
benchmark. This workload represents the case when
an application creates a number of temporary objects
during execution and disposes them at the end of the
execution. The results presented are over 90 update
passes interspersed with garbage collection; garbage
collection is invoked when the database size crosses
5MB (recall the steady state database size is 4.7MB).

We first present the cumulative overheads (cost dur-
ing during normal processing as well as the overhead
due to the garbage collection thread) for this workload.

Metric TCRC PMS

Logs (MB) 143.97 110.52
I/O:Read+Write 355+53701 31033$44833

Although the amount of logs generated by the
TCRC algorithm is more than that of the PMS al-
gorithm, the overall I/O performance (including the
I/O’s for logs) of TCRC is about 50% better than

PMS for this workload. Three factors contribute to
the overall performance: the frequency of invocation
of the garbage collector, the overhead during a garbage
collection pass, and the overhead due to normal pro-
cessing. We study these three factors in detail now.

6.1.1 Invocation Frequency

We checked the database size at the end of every update
pass and invoked the garbage collector if the database
size exceeded 5 MB. TCRC collects all garbage and
therefore the amount of garbage, which is generated at
the rate of 45800 bytes per update pass, exceeded 0.3
MB (and thus the total database size exceeded 5 MB)
after seven update passes. Thus, garbage collection in
case of TCRC is consistently invoked after every seven
update passes.

The pattern is more interesting in the case of PMS.
Approximately one out of fifty composites spanned par-
titions; such a composite (which is cyclic) is never col-
lected. This caused the database size to increase with
time. Since the threshold remained fixed at 5 MB, this
caused the garbage collection to be invoked more fre-
quently as time progressed. During the course of the 90
update passes, TCRC garbage collector was invoked 12
times, while PMS was invoked 14 times. Initially, the
PMS collector was invoked every seven update passes,
then every six update passes and by the end of the 90
update passes every five update passes. By the end of
the 90 update passes, there were 73280 byt,es of uncol-
lected garbage for PMS.

6.1.2 Overhead of a Garbage Collection Pass

The table below gives the average I/O overhead and
the amount of logs generated by TCRC and PMS for
an invocation of the collector. To get the total cost the
figures have to be multiplied by the number of invoca-
tions (which is 14 for PMS and 12 for TCRC).

Metric TCRC PMS

Logs (MB) 1.40 1.07
I/O:Read+Write 0+514 2007+5G8

Since garbage collection was invoked right after the
insertions, TCRC found all the objects that it had to
traverse in the cache and incurred no reads. PMS
needed to make a reachability scan from the root and
therefore had to visit all of the 104280 objects in the
dataset. This accounts for the excessive reads incurred
by PMS. The logs generated by TCRC is however big-
ger than PMS since (i) the size of an object is bigger
(due to the presence of reference counts) and therefore
the logs corresponding to the deletion of garbage ob-
jects are larger and (ii) the garbage objects are deleted

373

from WRT and these delet,ions have to be logged (re-
call that all newly created objects will be in WRT since
all new pointers are weak).

6.1.3 Normal Processing Overheads

The following table shows the amount of I/O performed
and the amount of logs generated during normal pro-
cessing (when the collector is not running) over the
course of the 90 update passes.

Metric TCRC PMS
Logs (MB) 127.17 97.33
I/O:Read+Write 355+47533 2941+37274

The algorithms have to maintain the persistent data
structures consistrent with the data during normal pro-
cessing. In the case of PMS, the only persistent data
structure is the IRL which is updated quite rarely. On
the other hand, in the case of TCRC, the reference
counts as well as the WRT may be updated. The
amounts of log generated show the additional logging
that has to be performed by TCRC for maintaining
t,hese persistent structures. The additional logs ac-
count for about 8000 extra writes for TCRC. The rest
of the extra writes performed by TCRC (about 2000)
are due to writing parts of WRT back as a result of
normal cache replacement. The amount of reads per-
formed by TCRC is significantly smaller that PMS be-
cause the cache is not disturbed much by the garbage
collection thread in the case of TCRC. In the case of
PMS, at the end of the collection pass the cache could
contain many objects from the assembly tree which are
not required during normal processing.

6.2 Updating Complex Assemblies

In this set of experiments, we updated the assembly
hierarchy tree by replacing a subtree rooted at a com-
plex assembly by a different one. The lowest level base
assemblies in the new hierarchy tree pointed to the
same composite objects. In this experiment, we modi-
fied the 007 benchmark by removing the back pointers
to t#he base assembly objects from the composite ob-
jects. This provides acyclic data which enables us to
test our schema graph optimization. It also limits the
t,raversal of TCRC.

We varied the level of the root of the the subtree
that we were replacing. The level was varied from two
t,o six (level n corresponds to the level which is the nth
level upwards from the base assemblies). Notice that
the subtree that was replaced is garbage after this up-
date. After such a update we invoked the garbage col-
lector. The higher the level of the root of the subtree
being replaced, the more the number of object com-
posites reachable, and therefore the more the number

of object,s TCRC had to traverse. In this experiment,
we report only on the overheads of the garbage collec-
tion pass. The normal processing overheads are very
similar to the previous experiment since we are creat-
ing some number of objects and pruning references to
others like the previous experiment. The cost of the
garbage collection phase for TCRC is tabulated below:

Metric Level of Root of Subtree
2 3 4 5 6

Logs (MB) 0.00 0.01 0.05 0.16 0.49
I/O:Read 77 356 10291 21209 32388
I/O:Write 8 35 177 376 1309

The cost of the garbage collection phase for PMS is
tabulated below:

Metric Level of Root of Subtree
21 31 41 51 6

I

Logs(MB) 0.00 0.00 0.00 0.02 0.05
I/O:Read 1736 1736 1736 1737 1742
I/O:Write 10 13 18 27 31

The results show that number of reads by TCRC is
smaller than the number of reads by PMS for modifica-
tions at the lower levels but degrades for modifications
higher up the hierarchy. This is expected since TCRC
performs a local traversal. The number of reads for
PMS is the same for modifications at all levels. No-
tice however that even though PMS traverses the en-
tire graph, the cost of TCRC is significantly higher
than PMS for modifications higher up the hierarchy.
There are two reasons for this. The first is that TCRC
reads all objects as it encounters their references dur-
ing the traversals unlike PMS which follows only intra-
partition references. This results in excessive read
overhead since there is a lot of cache conflicts for ob-
jects on different pages. Secondly, the RRT is disk res-
ident and as its size grows, there is extra I/O overhead
for accessing RRT. In contrast, our implementation of
PMS assumes information about which objects in a
partition have been marked during the mark phase can
be maintained in memory itself.

The amount of logs generated by TCRC (a 0.00 for
the amount of logs generated indicates that the amount
of logs generated is less than 10KB) grows in compar-
ison to the logs generated by PMS as the level number
grows since GreenTraverse updates pointer strengths
of objects, which are also logged. The more the ob-
jects traversed, the more the number of pointers whose
strengths get changed. In fact, most of the informa-
tion in the logs generated by the TCRC is very small
(either a pointer strength update, an update to WRT
or an update to the reference count). However, each
of these logs has a significant log header overhead in

374

the Brahms system. In a system which can club all
these logs under a single log header along with the log
for the actual pointer update, the overheads will come
down drastically. We are currently modifying the log
subsystem in Brahmti to do this.

The TCRC algorithm can be optimized by using se-
mantics available from the schema graph. Notice that
the template for the pointer from a complex assembly
to a base assembly is acyclic and therefore need not
be traversed by the RedTraverse algorithm thus pre-
venting TCRC from unnecessarily traversing the ob-
ject composites. The cost of the TCRC garbage collec-
tion pass when the experiment was repeated with this
schema-based optimization are tabulated below. It can
be seen that TCRC with the optimization outperforms
the basic TCRC as well as the PMS algorithm.

Metric Level of Root of Subtree
2 3 4 5 6

Logs(MB) 0.00 0.01 0.02 0.06 0.17
I/O:Read 0 0 0 0 2
I/O:Write 8 9 12 27 67

7 Conclusions and Future Work

We have presented a garbage collection algorithm,
called TCRC, based on cyclic reference counting and
proved it correct in the face of concurrent updates and
system failures. We have implemented and tested the
algorithm.

Our performance results indicate that TCRC can
be much cheaper, at least in certain cases, than par-
titioned mark-and-sweep since it can concentrate on
local cycles of garbage. We believe our algorithm will
lay the foundation for cyclic reference counting in data-
base systems.

We plan to explore several optimizations of the
TCRC algorithm in the future. For instance, we
have observed that just after creation of the datasets,
garbage collection has to perform extra work to convert
weak pointers into strong pointers. However, once the
conversion has been performed, a good set of strong
pointers is established, and the further cost of garbage
collection is quite low. It would be interesting to de-
velop bulk-loading techniques for reducing the cost of
setting up pointer strengths.

We plan to optimize RedTraverse by only following
a. strong pointer into an object if all other strong point-
ers into that object have been already encountered.
This will greatly reduce the number of objects tra-
versed and may lead to significant performance be-
nefits. Finally, another interesting extension of the
TCRC algorithm would be to develop a partitioned
TCRC algorithm in which during a local mark and
sweep only intra-partition edges are traversed.

Acknowledgments

We t,hank Jeff Naughton and Jie-bing Yu for giving
us a version of their garbage collection code which
provided us insight into garbage collection implement-
ation. We also thank Sandhya Jain for bringing the
work by Brownbridge to our notice.

References

[AFG95] L. Amsaleg, M. Franklin, and 0. Gruber. Ef-
ficient Incremental Garbage Collection for Client-
Server Object Database Systems. In Procs. of the In-
ternational Conf. on Very Large Databases, Seytem-
ber 1995.

[ARSt97] S. Ashwin, Prasan Roy, S. Seshadri, Avi Silber-
schatz, and S. Sudarshan. Garbage Collection in Ob-
ject Oriented Databases Using Transactional Cyclic
Reference Counting. Technical report, Indian lnsti-
tute of Technology, Mumbai, India, June 1997.

[Bro84] D.R. Brownbridge. Recursive Structures in Com-
puter Systems. PhD thesis, University of Newcastle
q-on Tyne, United Kingdom, September 1984.

[Bro85] D.R. Brownbridge. Cyclic Reference Counting for
Combinator Machines. In Jean-Pierre Jouannaud,
editor, ACM Conf. on Functional Programming Lan-
guages and Computer Architecture, rag-s 273-288.
$-ringer-Verlag, 1985.

[CDN93] M. Carey, D. Dewitt, and J. Naughton. The
007 Benchmark. In Proc. of the ACM SIGMOD
Znt. Conf., Washington D.C., May 1993.

[CWZ94] J. Cook, A. Wolf, and B. Zorn. Partition Selec-
tion Policies in Object Database Garbage Collection.
In Procs. of the ACM SIGMOD Conf. on Manage-
ment of Data, rages 371-382, May 1994.

[JL91] Richard E. Jones and Rafael D. Lins. Cyclic
weighted reference counting. Technical rer ort 95,
University of Kent, Canterbury, United Kingdom,
December 1991.

[Lingo] Rafael D. Lins. Cyclic reference counting with lazy
mark-scan. Technical report 75, University of Kent.,
Canterbury, United Kingdom, June 1990.

[MWLSO] A.D. Martinez, R. Wachenchauzer, and Ra-
fael D. Lins. Cyclic reference counting with local
mark-scan. Information Processing Letters, 34:31-
35, 1990.

[PvEP88] E.J.H. Perels, M.C.J.D. van Eekelen, and M.J.
Plasmeijer. A cyclic reference counting algorithm and
its proof. Internal Report 88-10, Universit.y of Nijme-
gen, Nijmegen, 1988.

[YNY94] V. Yong, J. Naughton, and J. Yu. Storage Re-
clamation and Reorganization in Client-Server Per-
sistent Object Stores. In Proc. of the Data Engineer-
ing ht. Conf., rages 120-133, February 1994.

375

