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Abstract 

ing is modified in the system while the GC is examining it 
in order to determine which objects are garbage. 

We describe a concurrent garbage collector (GC) 
for object-oriented databases. Our GC uses a new 
synchronization mechanism (mechanism that al- 
lows the GC to operate concurrently with ordinary 
users of the database), called CC-consistent cuts. 
A GC-consistent cut is a set of virtual copies of 
database pages. The copies are taken at times 
such that an object may appear as garbage in the 
cut only if it is garbage in the system. Our GC 
examines the copies, instead of the real database, 
in order to determine which objects are garbage. 

More sophisticated GCs can execute concurrently with 
the applications. This implies that objects in the system 
may be modified at any time while the GC is examining 
them, and that the GC must implement a synchronization 
mechanism-a mechanism that ensures the correctness of 
garbage collection in spite of the modifications. 

The synchronisation mechanism that is both the oldest 
known and the most widespread today is called write bar- 
riers. It was introduced by Dijkstra et al. [5]. See Jones 
and Lins [9] or Wilson [14] for a complete description of 
the state of the art concerning write barriers. 

GC-consistent cuts are easy to implement by 
already-existing code that implements consistent 
read-only transactions. Our GC scales up. Unlike 
other scalable GCs, it does not require the user 
to explicitely partition the database into loosely- 
connected subsets, and does not introduce code 
that must run all the time, hereby avoiding to slow 
down the system while the GC is not running. 

1 Introduction 

When a write barrier is used, the GC makes no effort to 
obtain a consistent view of the system (each object is seen in 
the state in which it happens to be when the GC looks at it). 
Instead, the system notifies the GC of every pointer modifi- 
cation performed while the GC is running. For this purpose, 
user code is instrumented, or virtual memory mechanisms 
are used to detect writes, or, in systems with logging, the 
log is made available to the GC and analyzed by it. The 
notifications are used by the GC to build a list of objects that 
were reachable at some point during the garbage detection 
process, yet that risk being improperly seen as unreachable. 
The GC considers all objects in the list as reachable; this is 
sufficient to ensure correctness. 

Automatic garbage collection is widely recognized as a fun- 
damental mechanism that relieves software developers from 
dealing with memory deallocation. Unfortunately, garbage 
collectors (GCs) tend to be highly obtrusive, and to impose 
inconvenient synchronization requirements upon the rest of 
the system. Unsophisticated GCs block all other activities 
in the system, because they are based on the simplistic idea 
that the correctness of the GC depends on the fact that noth- 
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In this paper, we focus on concurrent garbage collection 
in object-oriented databases. When used in this context, the 
existing garbage collection methods exhibit three problems. 
First, they are complicated to implement, and interact with 
the rest of the system in a nonmodular way. The complex- 
ity is due to a large extent to the fact that a GC-specific 
synchronization mechanism is needed, in addition to the 
standard mechanisms that already exist in the DBMS. The 
lack of modularity results from the fact that the GC, and par- 
ticularly its synchronization mechanism, depends on many 
implementation details of the underlying system. 

Second, the code that implements existing GCs degrades 
the performance of the system, by its mere existence: GC- 
specific tests are performed and GC-specific information 
is gathered all the time, even while the GC does not run. 
For example, Amsaleg et al. [ l] have measured the over- 
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head caused by their GC to be between 0.6 % and 5.8 %, 
depending on situations. 

Third, the existing GCs do not scale up in the context of 
databases. A solution to this problem consists in dividing 
the storage into partitions, and in collecting the partitions 
separately [ 1, 111. But this solution has serious drawbacks. 
It creates a new system administration burden: objects must 
be placed in partitions in a way that minimizes the number 
of inter-partition pointers. It degrades the performance 
of the system: the system must maintain tables listing all 
inter-partition pointers, and this requires every write to a 
pointer variable to be accompanied with instructions that 
test whether the value written points to a remote partition, 
and that update the tables if necessary. 

In order to address these problems, we have developped a 
new concurrent garbage collector for DBMS. This garbage 
collector has been implemented in 02, a commercial object- 
oriented DBMS [2]. To the best of our knowledge, no other 
concurrent GC has ever been implemented in an industrial 
DBMS, although many industrial garbage collectors exist 
in other contexts, and are concurrent. 

Our work is based on a new synchronization mechanism, 
named CC-consistent curs. This mechanism is essential for 
keeping the implementation simple and modular, and for 
avoiding performance degradation of the whole system. 
GC-consistent cuts resemble the synchronisation mecha- 
nism normally used for consistent reads of a database. To 
implement them, it is sufficient to modify in a minor way 
the already-existing code that implements consistent reads. 
GC-consistent cuts cause no observable performance degra- 
dation while the GC is not executing. 

The theoretical foundations of GC-consistent cuts can be 
found elsewhere [ 12,131. Work [ 121 contains formal proofs 
of all the facts about GC-consistent cuts that we quote in 
this paper. 

Scalability is obtained in our GC by a surprisingly sim- 
ple technique, that consists in ordering accesses to database 
pages in a way that minimizes swapping. This is efficient, 
because swapping is the major source of performance prob- 
lems when collecting garbage in a large database. 

The paper is organised as follows. In Section 2, we de- 
scribe the assumptions under which our garbage collector 
works, and the requirements that it satisfies. These assump- 
tions and these requirements are those of 02; they are sat- 
isfied in most object-oriented DBMS. In Section 3, we de- 
scribe the principles according to which our GC works: the 
synchronization mechanism (namely GC-consistent cuts) 
and the garbage collection algorithm. Section 4 describes 
the implementation of our GC, and Section 5 discusses per- 
formance results obtained with this implementation. Sec- 
tion 6 summarises our contribution. 

2 Problem Formulation 

In this section, we describe the assumptions about the 
DBMS that are used by our garbage collector and state the 
requirements that we impose upon the garbage collector. 

2.1 Transactions and pages 

A database execution is a sequence of transactions executed 
during a time period. Each transaction locks the data to 
which it has access, in either read only or read-write mode. 
By monitoring locks, an observer can learn which data are 
read or modified by any given transaction. This knowledge 
is an essential prerequisite for building GC-consistent cuts 
of a database. 

We assume that transactions are atomic and serializable 
171. Serialisability means that everything happens as if 
the transactions were executed sequentially, in some spec- 
ified order. In reality, transactions may be executed con- 
currently, and serialisability is implemented by the locking 
mechanism, which permits concurrent execution only when 
it is indistinguishable from a sequential one. Serialisability, 
and the resulting apparent lack of concurrency, allows us 
to depict each transaction as a fictitious atomic (thus, null- 
duration) event, that takes place at the time when the real 
transaction commits. 

We assume that the database is divided into pages. For 
every object z, P(z) denotes the page to which z belongs. 

2.2 Reachability 

We use a model of reachability based on the fact that before 
accessing an object, user code (in our case, a transaction) 
must first access a pointer to it. This model is commonly 
used in object-oriented systems, including for example 02 
and ObjectStore [lo]. 

The database is assumed to contain a fixed set of inde- 
structible objects called roots. Pointers to roots are system 
constants, to which all transactions have access. Moreover, 
every transaction has access to pointers to the objects that 
it has created. Outside of these two cases, objects can only 
be accessed by a transaction once this transaction has read 
a pointer to the object, from a pointer field in another ob- 
ject present in the database. We assume that unambiguous 
rules exist to determine which parts of an object are pointer 
fields. In 02, for example, this is accomplished using type 
information present in the object’s header. 

There are no other possibilities for a transaction to obtain 
a pointer value. For example, it is illegal to perform pointer 
arithmetic or to store pointers in places other than pointer 
fields of objects. 

An object is said to be reachable at a given time t iff it 
exists and the first transaction that will take place after t can 
access it according to the rules above. The following is a 
correct characterization of reachability. 

Definition 1 (reachability and garbage in databases) 
The reachable objects in a database execution E at time 
t form the smallest set such that (i) roots are reachable and, 
recursively, (ii) if at time t object x is reachable and object 
y exists and x contains a pointer to y, then y is reachable 
at time t. 

An object is garbage at time t if it exists but is not reach- 
able at this time. 
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Figure 1: Example of a database execution. 
We allow user code to explicitly delete objects. A de- 

struction is considered as a special case of a write access to 
the object. It can therefore only take place in a transaction 
that has access to a pointer to the object, and has locked 
for writing either the object or a bigger entity (usually, the 
page) to which the object belongs. 

2.3 Requirements Regarding the GC 

Our GC is concurrent. It is required to be safe and com- 
plete. Safety means that only garbage objects are deleted. 
All garbage collectors must be safe. Completeness means 
that the GC will delete all the objects that are garbage when 
its execution begins. No similar guarantee is required about 
the objects that become garbage while the GC is already in 
operation (such objects are guaranteed to be deleted by the 
next execution of the GC). The lack of completness is a 
serious drawback, that we are not willing to accept. (It is 
sometimes accepted, but only in contexts where complete- 
ness cannot be provided [4,3].) 

2.4 Summary 

The problem can be stated as follows. We consider an 
object-oriented DBMS, where transactions are atomic and 
serialisable, and where the database is divided into pages. 
We assume that each transaction T in the DBMS has only 
access to root objects, to objects created by T, and, re- 
cursively, to objects pointed to by pointer fields of objects 
accessed by T. Objects that exist, but cannot be accessed 
by future transactions because of the rules above are called 
garbage. 

Under these assumptions, we want to design a garbage 
collector that is concurrent (works without interrupting 
the normal operation of the database), safe (only deletes 
garbage objects) and complete (deletes all the objects that 
are garbage when the GC starts operation). 

3 The Garbage Collector-principles 

In this section, we describe our garbage collector. First, we 
introduce the notation. Then, we introduce GC-consistent 
cuts, which our GC uses as its synchronization mechanism. 
Finally, we describe the GC itself and the algorithm that 
builds GC-consistent cuts. 

3.1 Graphical Notation and Transaction Clock 

We graphically represent database executions as follows 
(see Figure 1). Time flows from left to right. Each page 
is represented by a thin horizontal line. Each transaction 
is considered as a null-duration event and represented by 
a thick black vertical line. If a transaction reads a page, 
the corresponding lines cross; if it also writes the page, an 
arrow is drawn at the crossing. For example, the leftmost 
transaction on the figure reads and writes page 0, reads page 
1, and does not access page 2. 

When talking about a database execution, we use a spe- 
cial real-valued global clock called transaction clock. This 
clock takes value 0 at some time before the first transaction. 
Then, in an execution including n transactions, it takes each 
integer value t E [l . . n - l] at some time between the t- 
th and the t + 1-th transaction. Value n is taken at some 
time after the n-th transaction. For every t, during the t-tb 
transaction the value of the clock is strictly included be- 
tween t - 1 and t. (We do not assume that the DBMS has 
access to the transaction clock; we only use the clock as a 
theoretical tool for talking about the DBMS.) 

Two elements in Figure 1, namely cameras and very 
thick gray lines, are explained below. 

3.2 Cuts 

When the contents of page i at time t is recorded for the 
needs of the GC, the recording is called a snapshot and noted 
(i, t). Since we consider transactions as atomic events, we 
only take into account the possibility of taking snapshots 
between transactions, i.e. at integer times: for (i, t) to be 
a snapshot, t must be an integer. A cut is a collection of 
snapshots taken during an execution, containing one and 
only one snapshot of each page.’ For example, Figure 1 
shows a cut composed of three snapshots (represented by 
cameras), namely (O,O), (2,1) and (1,3). 

We say that an event happens during a cut C iff it hap- 
pens between the times when the first snapshot and the last 
snapshot in C are taken, inclusively. 

In order to verify the reachability of objects in a cut, we 
proceed exactly as if the cut was a current state of the system 
at some time t. In other words, to define reachability in a 
cut, we substitute in Definition 1 the words “at time t” with 
words “in cut C.” This leads to the following definition. 

Definition 2 (presence, reachability and garbage in cuts) 
Let C be a cut. An object x is present in C ifsC contains a 
copy of x, i.e. if the snapshot of P(x) in C is taken when x 
exists; otherwise, x is absent from C. 

Objects reachable in C form the smallest set such that 
(i) roots are reachable in C and, recursively, (ii) if object x 
is reachable in C and a copy of x present in C contains a 

1 Elsewhere [12, 131 we define cuts in a more general way: a cut may 
contain more than one snapshot of the same page. This generalization is 
not useful to describe our garbage collector. 
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pointer to object y and y is present in C, then 3 is reachable 
in C. 

An object x is garbage in cut C iff it is present in C and 
is not reachable in C. 

3.3 GC-consistent Cuts 

We define now two properties that a cut must satisfy in 
order to be used by a safe and complete garbage collector; 
Section 3.4 explains why these properties are important. 
Then, we define GC-consistent cuts, a category of cuts that 
satisfy the two properties. 

Definition 3 (cuts exhibiting all garbage) A cut C of a 
database execution E exhibits all garbage iff every object 
that is constantly garbage in E during C, is garbage in C. 

This property is satisfied by all cuts. 

Definition 4 (cuts containing no false garbage) A cut C 
of database execution E contains no false garbage iff every 
object that is never garbage in E during C, is not garbage 
in C. 

This property is not satisfied by all cuts. Figure 2 shows 
a counterexample: the object X is constantly reachable in 
an execution while a cut is being taken, and is garbage in 
the cut. 

Before defining GC-consistent cuts, we must define 
paths. 

Definition 5 (path) Let E be a database execution, con- 
sisting of n transactions: we assume that the database con- 
tains m pages. A path in E is a function H that goes from 
the set of integer times of the transaction cLock to the set of 
pages (in symbols: H : (0, . . . . n} + (0, . . . . m - 1)) and 
that satisjies, for every t > 0 belonging to its domain, one 
of the following conditions: 

2. H(t) = H(t - 1) 

2. or the transaction that takes place between times t - 1 
and t holds locks that allow it to read page H( t - l), 
and to write page H(t). 

A path represents the way in which a pointer present at 
the end of a database execution E in some page i may have 
been successively copied during E in order to reach this 
page. According to Definition 5, H(t - 1) and H(t) either 
are equal (this corresponds to the situation where a pointer 
value is not copied) or are chosen so that the transaction that 
takes place between times t - 1 and t has the possibility to 
copy a pointer from page H (t - 1) to page H (t ) . The latter 
means that the transaction is allowed to read page H(t - 1), 
and to write page H(t). 

In Figure 1, two example paths are represented by very 
thick gray lines (other paths exist in this execution, we just 
chose to represent these two as examples). The lower one 
is straight. This corresponds to a constant path-a path that 

stays in the same page during the whole execution. The 
upper one shows that a pointer value located in page 1 at 
time 3 might be there because between times 2 and 3 it was 
copied there from page 0, after being copied from page 1 to 
page 0 between times 0 and 1. 

Definition 6 (GC-consistent cut) Let E be a database ex- 
ecution. A cut C of E is GC-consistent ifSit crosses every 
path, i.e. #for each path H in E there exists some time t 
satisfying (H(t), t) E C. 

GC-consistent cuts contain no false garbage. This fact 
implies that an anomaly similar to the one in Figure 2 cannot 
happen with a GC-consistent cut. 

3.4 The Garbage Collection Algorithm 

Our garbage collector is based on a classical method called 
murk and sweep. This method consists in dividing the 
work of the GC into two clearly distinct phases, respec- 
tively called marking and sweeping. While marking, the 
GC determines which objects are reachable. For this pur- 
pose, all the reachable objects are examined, according to 
the rules in Definition 1: roots are declared reachable; re- 
cursively, the objects that are pointed from within reachable 
objects are declared reachable; all other objects are consid- 
ered as garbage. The marking phase of our GC only reads 
the database, and does not write it. (In other GCs, the mark- 
ing phase writes objects: a special bit (the mark) is set in 
the objects that are found to be reachable. In the context of 
databases, however, it is more efficient to keep a separate 
list of reachable objects, stored outside of the database.) 

During the sweeping phase, the collector deletes the ob- 
jects that have been classified as garbage during the marking 
phase. Reachable objects are left intact. 

If the GC is concurrent, a synchronization mechanism 
must be used during the marking phase. Otherwise, the GC 
may incorrectly classify reachable objects as garbage, and 
delete them. Amsaleg et al. [ l] describe several example 
situations in which this occurs. For instance, consider the 
database execution shown in Figure 2, and a mark-and- 
sweep GC that examines the root Rl at time 0, and RO at 
time 1. Under these assumptions, the GC will believe that 
no pointers to object X exist in RO or in RI, and that X is 
garbage. X will therefore be deleted, even though, in fact, 
it is reachable. 

The sweeping phase does not need a synchronization 
mechanism: here, the concurrency between the GC and the 
other clients of the database poses no problem, because the 
sweeping phase of the GC only accesses garbage objects, 
while the other clients only access reachable objects. 

Our GC uses a GC-consistent cut as its synchronization 
mechanism. During the marking phase, a GC-consistent 
cut C of the database is built; concurrently (i.e. while C 
is being built), the GC performs marking in C, according 
to Definition 2. The list of garbage objects is explicitely 
built. Sweeping is performed once marking is finished, and 
consists in deleting (directly from the database, not from the 
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To explain why this scheme is correct, i.e. why it causes 
the GC to be safe and complete, observe that once an ob- 
ject in the database becomes garbage, transactions do not 
have access to pointers to it, and therefore cannot make it 
reachable or delete it. A garbage object will therefore stay 
garbage until it is deleted by the GC. 

When combined with the fact that GC-consitent cuts 
exhibit no false garbage, this observation implies that every 
object that is garbage in C is also garbage in the database at 
some time during C, and stays so until it is deleted by the 
GC. This, further combined with the fact that the GC will 
only delete objects that are garbage in C, implies that the 
GC is safe. 

To establish completeness, it suffices to combine the 
observation above with the fact that cuts exhibit all garbage, 
and to deduce that every object that is garbage when the GC 
starts operation is garbage in C, and, as such, is deleted. 

3.5 Building a GC-consistent Cut 

Usually, the number of paths in an execution grows expo- 
nentially with the number of transactions. For this reason, 
it would be impracticable to directly use Definition 6 to 
build GC-consistent cuts. Instead, we define the notion of 
captured page. 

Definition 7 (captured page) Let C be a set of snapshots 
in some execution E. We say that C captures page i at time 
t ifffor every path H in E such that H(t) = i, for some 
time t’ 5 t we have (H(t’), t’) E C. 

This definition means that C captures page i at time t iff 
C contains a snapshot, taken at time t or before, of every 
path H that goes through page i at time t. Intuitively, C 
captures page i at time t iff every pointer that is present in 
i at time t is recorded in some snapshot in C taken at time 
t or before (pointers to roots and pointers to newly created 
objects are excluded from this rule). 

For example, in Figure 1, page 2 is trivially captured at 
time 1, because snapshot (2: 1) belongs to the cut. Page 0 is 
captured at time 0 for the same reason, but is not captured at 
time 1 since at times 0 and 1, no snapshots are taken of the 
path {(l,O), (O,l), (0,2), (1,3)}, repsesented by a thick 
gray line. 

We can characterize GC-consistent cuts as follows. 

in the execution, and garbage in a cut. 
Theorem 1 (characterization of GC-consistent cuts) A 
cut C is CC-consistent ifSat the time when the last snapshot 
in C is taken, C captures all pages. 

Theorem 1 can be used as a foundation for a practical 
algorithm that builds GC-consistent cuts. It suffices that the 
algorithm ensures the following: 

(a) A snapshot of every page is taken at some time. 

(b) Once a page is captured, it cannot become noncaptured 
later. 

Condition (a) implies that every page is captured at some 
time. This fact and condition (b) imply together that pro- 
gressively, all the pages will become captured. Then, the 
algorithm can be stated as follows. 

1. Initially, no snapshots exist. 

2. If the marking process requests access to a page that 
does not have a snapshot, take a snapshot of this page 
immediately. 

3. If a transaction writes a page that has a snapshot, then 
immediately before the transaction commits, take a 
snapshot of every page read or written by this transac- 
tion which does not yet have a snapshot. 

4. When the marking process is terminated, halt. 

A complete proof of correctness for this algorithm is pro- 
vided in [12]. Here, let us just observe that rule 2 causes 
condition (a) to be satisfied, because the marking process 
requests access to all pages. Condition (b) holds thanks to 
rule 3, which insures that once a page has a snapshot, it will 
only receive information from pages that also already have 
snapshots. 

4 The Garbage Collector-Details and Im- 
plementation 

Let us recall that the objectives for our GC are simplicity, 
modularity and performance. Modularity means that we 
want the interactions between the GC and the rest of the 
system to be done according to well-defined rules, and to 
be as simple as possible. Concerning performance, our most 
important goals are scalability, and the absence of negative 
influence upon the performance of the system while the GC 
is not running. 
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4.1 Overview 

Our GC is implemented by three agents: the cutting agent 
that builds a GC-consistent cut, the marking agent that 
performs marking, i.e. lists the objects that are garbage in 
the cut, and the sweeping agent, that deletes from the system 
the objects previously listed as garbage. The cutting agent 
and the marking agent run concurrently with each other. 
The sweeping agent runs when the two other agents have 
finished. All the agents run concurrently with the ordinary 
users of the system. 

The implementation of the agents is guided by the prop- 
erties of Oz. 0s is a centralized, client-server object- 
oriented DBMS. A central process called 02 Server man- 
ages all the data, all the logs and all the locks in the system. 
Other processes, called clients, request data and locks from 
the server, and perform transactions on behalf of the users. 

02 uses data shipping, as opposed tofunction shipping: 
user code is always executed in the clients, and not directly 
in the server. As a consequence, the server is relatively 
simple. For example, it does not contain code able to create 
or delete objects, or to determine the type of an object, or 
to locate pointer fields in an object; such code is present in 
the clients. 

Data are served by whole pages. Each page contains 4 
kilobytes of data. Locks are normally granted on whole 
pages, but are de-escalated to single objects whenever nec- 
essary. The addresses of objects are stored on 64 bits. Each 
address contains a 4%bit page ID, representing the page 
where the object belongs, and a small positive integer called 
slot number. Inside each page, slot numbers are allocated 
consecutively, starting from 0, as objects are created in the 
page. The slot numbers corresponding with objects that 
exist at a given time do not necessarily remain consecutive, 
because objects may be deleted. 

4.2 The Marking Agent 

Principle 

Marking is done according to Definition 2. Accordingly, 
the marking agent successively examines all the reachable 
objects, In order to remember which objects have already 
been examined, and which ones still need to be, the agent 
uses three color marking, a method introduced by Dijkstra et 
al. [5]. According to Dijkstra, at any given time an object 
has one of three colors. The colors have the following 
semantics. 

black The object is known to be reachable and has already 
been examined. 

gray The object is known to be reachable, but has not been 
examined yet. 

white The object is not known to be reachable. 

With this semantics, when marking begins, the roots are 
gray and all other objects are white. Marking consists in 

repeating the following operation as many times as possible, 
i.e. as long as there are gray objects left. 

1. Select a gray object z. 

2. Examine z, and color gray all the white objects that 
are pointed by pointer fields in x. 

3. Color z black. 

When marking is over, all the reachable objects have been 
detected as such and examined, and are therefore black. 
Garbage objects are white. 

Details 

The marking agent is implemented as an 02 client process. 
It accesses the database through an application programmer 
interface similar to the one used by ordinary clients. 

The fact that marking is done in a cut, rather than in the 
real database, is invisible to the marking agent: the agent 
requests access to objects in an ordinary manner, and the 
server, knowing that the requests come from the marking 
agent, responds by serving objects from the cut, rather than 
from the database. 

To remember which objects are black or, respectively, 
gray, the agent uses hashtables hashed on page IDS. For 
each page ID, the table stores a bitmap that tells which 
objects in the page are black (respectively, gray). These 
bitmaps are easy to manage and small, because objects 
inside a page are identified by small and usually consecutive 
integers. There is no similar hashtable for white objects: 
objects that are not black or gray, are white. 

The goal of the marking agent is to build a list of garbage 
objects. For this purpose, having a list of reachable objects 
is not sufficient: the marking agent also needs to know 
which objects are present in the cut (remember that an 
object is garbage in the cut iff it is present in the cut, and 
not reachable). For this purpose, the agent uses the fact that 
in 02, the header of every page contains the list of slots 
used in the page, i.e. of slots that actually contain objects. 

For every page p, the agent retrieves from the header of 
p the number mpr representing the highest slot number used 
in this page, and the slot numbers in the interval [O..m,] that 
are unused (because the corresponding objects have been 
deleted). mP is memorised in a hashtable. The unused 
slots are marked black, i.e. are treated as if they contained 
reachable and already-examined objects. This may seem 
surprising, but is correct, because the marking agent only 
needs to know two things about each slot: whether the slot 
contains an object that needs to be examined, and whether 
the slot contains a garbage object. And the answers to 
these questions are the same for an empty slot and for 
a slot containing a reachable object that has already been 
examined: in both cases, the slot does not contain a garbage 
object or an object that needs to be examined. 

To summarise, the marking agent examines every reach- 
able object in the database in order to find inside pointers 
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to other objects, and it examines the header of every page 
to find which slots in the page contain objects. 

These operations may be performed in any order. We 
choose to order them so as to reduce swapping. For this pur- 
pose, we follow two rules. First, the agent tries to perform 
all the work concerning a given page at the same time. Sec- 
ond, whenever possible, the agent elects to perform work 
on pages present in the client’s cache; non-cache-resident 
pages are brought to the client only when there is currently 
no work to be done on pages in cache, i.e. when no gray 
objects are present in the cache and when all the pages in 
the cache have already had their headers examined. 

4.3 The Cutting Agent 

Principle 

The cutting agent can build several cuts simultaneously. 
Besides GC-consistent cuts, it implements atomic curs and 
causal cuts. An atomic cut represents the state of the 
database at a given time. 02 uses atomic cuts for consis- 
tent reads of the database. Causal cuts are an experimental 
feature, they are described elsewhere [ 121. 

GC-consistent cuts are implemented according to the 
algorithm quoted in Section 3.5. Atomic cuts are build 
according to the following rule: for an atomic cut taken at 
time t, take snapshots of all the pages in the system at time 
t. 

The agent implements snapshots as virtual copies: 
adding a snapshot to a cut consists in setting a copy-on- 
write flag on the corresponding page. An actual copy is 
made only if and when the page is subsequently modified 
by a transaction. 

Implementation outline 

We only describe the most important among the implemen- 
tation choices that concern the cutting agent. 

0s Server can run either with or without multithreading. 
The cutting agent is implemented as a set of C++ objects in 
the server; even when multithreading is used, there are no 
threads in the server dedicated to the agent. 

A method of the cutting agent, called not i f yCommi t, 
is invoked before every commit. Symmetrically, method 
not i f yEndComi t is invoked at the end of every com- 
mit. 

While executing not i f yCommi t, the cutting agent de- 
termines which snapshots need to be taken immediately be- 
fore the corresponding commit (for a GC-consistent cut, 
this determination is made according to the algorithm in 
Section 3.5). Copy-on-write flags are set accordingly. The 
agent then checks whether the transaction that is going to 
commit will modify pages that have the copy-on-write flag 
set. If this is the case, copies of these pages are taken, and 
only then the server is allowed to proceed with the commit. 

In agreement with our theoretical model, the cutting 
agent is built upon the assumption that each transaction is 

an atomic and instantaneous event, that executes immedi- 
ately after the corresponding call to not i f yCommi t . The 
agent also assumes that pages in stable storage are, at any 
given time, in a state that takes into account all the modifi- 
cations brought by previously-committed transactions (that 
is, by transactions for which notifyCornmi t has been 
called), and no other changes. 

These assumptions hold when multithreading is not used. 
In this case commits are indeed executed in sequence, im- 
mediately after the corresponding not i f ycommi ts, and 
between a call to not i f yConxni t and the end of the corre- 
sponding commit, the server does nothing besides executing 
the commit. The locking mechanism of 02 guarantees that 
everything happens as if the transactions themselves were 
executed in sequence, in the same order as the commits. 

02 implements a policy called no force, no steal [8], 
according to which pages stored in stable storage faithfully 
represent the current state of the database.2 

With multithreading, the situation is more complicated, 
because the cutting agent may read a page out of stable stor- 
age while commits are in progress. To ensure correctness 
despite of this form of concurrency, the agent sometimes 
delays taking snapshots, so as never to read a page that is 
in the process of being modified, i.e. that is written by a 
transaction that has already called not i f yCommi t, and 
has not yet called not i f yEndCommi t . Symmetrically, 
while a page is being read by the agent, the commits that 
write this page are not allowed to proceed until the reading 
of the page is complete. 

4.4 The Sweeping Agent 

The sweeping agent is simple. Its operation is driven by 
the hashtable of black objects, produced by the marking 
agent. For each page p mentionned in the hashtable, the 
agent deletes all the objects that were garbage in the cut, i.e. 
the objects with slot numbers less than or equal to mP, and 
which are not marked as black. Destructions are grouped 
together into transactions. 

The agent groups destructions into transactions. In the 
current implementation, it sweeps 100 pages per transac- 
tion. This number is not critical, but it should not be too 
low or too high; otherwise, either the overhead generated by 
transaction commits becomes significant, or, respectively, 
too much log space is needed. 

4.5 Status of the Implementation 

The implementation described here will be part of a future 
release of 02. An early version of our garbage collector is 

20ur GC can be implemented in a DBMS that does not follow the 
no force, no steal policy. In this case, however, constructing a snapshot 
is more complicated than simply copying a page out of stable storage. 
For example, in Exodus 161 pages in stable storage may contain changes 
brought by uncommitted transactions, and an undo log exists that makes it 
possible to suppress these changes if necessary. In Exodus, we would need 
to use the undo log to obtain snapshots, in addition to the pages stored in 
stable storage. 
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already available, as part of version 4.6 of 0s. This version 
is not concurrent, but incorporates several ideas described 
in this paper. Most notably, in order to minimise swapping 
it performs marking as described in Section 4.2. 

5 Performance results 

Performance measurements of the GC are currently in 
progress. This section provides the results that have been 
obtained so far. 

In line with previous work (e.g. [ 1, 1 l]), we run several 
experiments that allow us to measure performance proper- 
ties of the garbage collector. We attach more attention to 
marking than to sweeping, because marking is the hard part 
of garbage collection, and because in our GC only marking 
uses truly novel methods, that are worthy of being investi- 
gated. Our experiments measure the scalability of the GC, 
the ability of the marking agent to minimize swapping, and 
the sweeping speed (the speed at which garbage is deleted). 

All the experiments run on a Sun UltraSpam 1 under 
Solaris 2.5. Data in our databases are distributed among 
three disks attached to the machine through a fast wide 
SCSI bus. The disks have an average seek time of 9.5 ms. 
The machine has 128 megabytes of RAM. We use objects 
that contain 160 bytes of user data. Each database page can 
contain up to 23 such objects (the page size is 4 kilobytes). 

5.1 Preliminary Observations 

We observed that when 0s Server and the marking agent 
(which is executed in a client process) run on the same 
machine, the client process uses 35 to 50% of the avail- 
able CPU time, and 0s Server uses less than 10%. This 
observation confirms the common-sense idea that in a data- 
shipping DBMS, most CPU time is spent in the client. The 
processor is idle for at least 40% of time because pages 
need to be fetched from disk, and since marking is a simple 
process, the time spent waiting for disk pages dominates 
the computing time. 

When the marking agent and 0s Server run on two iden- 
tical machines, connected with a standard 10 Mbits/s Eth- 
ernet, the execution times of the GC are multiplied by the 
factor 3.5, as compared to the execution of both processes 
on the same machine. This is easy to understand, because 
in our experiments the disks and the CPUs are fast, and 
the network is relatively slow. Moreover, because the 0s 
Server uses very little CPU time, putting the server and the 
marking agent on different machines brings practically no 
parallelism that could compensate for the performance loss 
due to the network. 

The experiments described below are performed with the 
marking agent and the server running on the same machine. 

5.2 Scalability 

To assess the scalability of our GC, we ran it on databases 
of various sizes. Each database contains numerous objects 

Pointers per object 1 with lists 1 3 1 2 1 3/2 I 1 
Marking time I 495 I717 I 770 I 818 I915 

Figure 4: Marking time vs. number of random pointers per 
object, for a database of 21g - 1 = 524287 objects, stored 
on 9 1 megabytes. 
grouped into lists of 26CrOOO objects each. Locality is pre- 
served: objects are listed in the order in which they are 
stored on disk. All objects are reachable, therefore the task 
of the GC consists exclusively in marking. We use a cache 
of 4 megabytes, but this size is noncritical due to the good 
locality of data. 

Figure 3 shows the results. We have marked databases 
containing up to 2.4 gigabytes of data, and at up to 12.8 
million objects. The marking was done in almost-linear 
time, at a speed of 169 kilobytes per second or 884 objects 
per second. 

These results are interesting, because previously- 
published performance reports only concern garbage collec- 
tion in small databases, containing less than 128 megabytes. 
Our results are experimental evidence that garbage collec- 
tion is practicable in real-world databases. 

5.3 Swapping avoidance 

We have measured the extent to which the marking agent 
manages to avoid swapping by appropriately ordering its 
work. For this purpose, we have built several databases 
with exhibit no pointer locality, i.e. where the fact that a 
given object z contains a pointer to some other object y 
is not statistically correlated to the way in which x and y 
are placed. Usually, the absence of pointer locality induces 
heavy swapping. 

Our databases differ from each other in the number of 
objects that are simultaneously gray during marking. This 
number is important for our ordering mechanism, because 
work can only be performed on pages that contain gray 
objects. The more objects are gray simultaneously, the 
more likely it is that the marking agent will be able to order 

. work so as to avoid swapping. 
Our databases contain 21g - 1 small objects each, and 

use 91 megabytes of storage each. A cache of 2 megabytes 
is used. Pointers between objects are set up so that by 
following them, we obtain a cycle that encompasses all 
the objects in a pseudo-random order (in the experiments 
where there is more than one pointer in each object, we 
have several distinct cycles, corresponding with different 
pointer fields in the objects). 

We perform four experiments, varying the number of 
pointers in each object. In our first experiment, each object 
contains one pointer. In this case, the marking agent never 
has more than one gray object: because there is only one 
root, only one object is gray when marking begins; then, 
the number of gray objects cannot increase: whenever the 
marking agent visits a gray object o, o becomes black, 
and at most one object (the one pointed by the pointer in 
o) becomes gray. Therefore, the marking agent has no 
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Figure 3: Marking time vs. size of a database. for simole databases, 
choice concerning the order in which objects are visited: 
the order is entirely determined by the pointers contained 
in the objects, and because the pointers exhibit no locality, 
the agent will swap heavily. 

In the remaining three experiments, there is more than 
one pointer in each object: respectively, 1 i pointers average 
(one object out of two contains one pointer, the remaining 
objects contain two pointers each), 2 pointers, and 3 point- 
ers. Here, the number of gray object can increase while the 
marking agent operates: for example, when the marking 
agent visits a gray object o that contains two pointers, it 
colors o in black, but up to two other objects (those pointed 
to from within o) may become gray. As a result, many ob- 
jects may be gray simultaneously. The higher is the average 
number of pointers per object, the more rapidly the number 
of gray objects will increase. 

An extra experiment was performed under the name with 
lists, with Locality. This is a mix of the experiment in Section 
5.2, and of the experiment above, with three pointers per 
object: the objects are grouped into lists that respect locality, 
and also each object contains three pointers to other objects, 
chosen in a pseudo-random way, with no locality. 

In this experiment, the marking agent can perform well, 
because, like in the experiment in Section 5.2, the lists 
allow it to access objects in the most efficient order. But 
because non-local pointers are present in objects, the agent 
might follow these pointers instead of following the lists, 
and perform badly. The purpose of this experiment is to 
confirm that this will not actually happen. 

The results of our experiments are shown in Figure 4. 
The number labelled with lists represents the execution time 
of the experiment with lists, with locality. This time is equal 
to the marking time that results from the data in Figure 3 
for an execution of the GC with lists, and without non-local 
pointers. This equality implies that adding extra pointers 
to the system is harmless for the performance of the GC, 
even when these pointers are nonlocal, and therefore costly 
to follow. The marking agent correctly chases to follow 
the local pointers when it has the choice between local and 

E .Z in .g 

f 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fraction of objects deleted 

Figure 5: Sweeping times. 
nonlocal pointers. 

The other numbers represent execution times with var- 
ious average numbers of pointers per object. They show 
that the more pointers are present (and, correlatively, the 
more gray objects exist simultaneously during garbage col- 
lection), the faster the marking agent works. 

5.4 Concurrency 

Preliminary measurements show that, as expected, the pres- 
ence of the GC has no observable effect on the performance 
of the system while the GC does not run. When the GC 
executes in parallel with an ordinary client process, both 
the GC and the client run twice slower than usual. This is 
true both for the clients that only read the database and for 
those that both read and write many pages, and therefore 
force the cutting agent to take copies of these pages. 

5.5 Sweeping time 

We performed several sweeping experiments, removing one 
out of every n consecutive objects from a region of size s. 
We took n = 64,16,4,1 (in the latter case, all objects 
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are removed), and s = 25 MB, 6.25 MB. The experiments 
are independent, and the database is rebuilt before each 
experiment. 

The results are represented in Figure 5. In the figure, the 
z axis is labelled with $ (the fraction of objects removed) 
instead of n. The times increase steeply when n changes 
from 64 to 16, because for n = 64 only one page out of 
three is modified by the GC, and for n = 16 all the pages 
are (remember that there are 23 objects per page). From 
n = 16 to n = 1, the times increase less rapidly, because 
for these values all the pages in the region must be modified, 
regardless of n. 

6 Conclusion 

We have proposed a novel solution for concurrent garbage 
collection in object-oriented databases. The requirements 
for our GC are that it must be safe (only delete garbage 
objects), complete (delete all the objects that are garbage 
when the GC starts operation) and concurrent (work with- 
out interrupting the normal operation of the database). The 
latter implies that objects in the system may be modified at 
any time while the GC is examining them, and that the GC 
must implement a synchronization mechanism-a mecha- 
nism that ensures the correctness of garbage collection in 
spite of the modifications. 

We introduce and use a new synchronization mechanism, 
named CC-consistent cuts. This mechanism simplifies the 
implementation, because instead of being implemented sep- 
arately, it can be supported by code that exists already 
in many object-oriented DBMS, and that allows users to 
perform consistent reads of the database. Unlike other 
synchronisation mechanisms, GC-consistent cuts cause no 
observable performance degradation while the GC is not 
executing. 

The correctness of our garbage collector has been for- 
mally established. A complete description of the theory, 
including proofs, is available separately [ 121. 

Performance is improved and scalability is obtained in 
our GC by properly ordering accesses to database pages, 
in a way that minimizes swapping. This mechanism is 
efficient, yet much simpler than partitioning, the technique 
that is traditionally used to achieve scalability. 

Our garbage collector has been implemented in 02, 
a commercial object-oriented DBMS. To the best of our 
knowledge, no other concurrent GC has yet been imple- 
mented in an industrial DBMS. Performance measurements 
based on the 02 implementation imply that the GC scales 
up, that the mechanism for ordering accesses to pages ef- 
ficiently reduces swapping, and that GC-consistent cuts do 
not induce an excessive cost. 
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