
A One-Pass Algorithm for Accurately Estimating 
Quantiles for Disk-Resident Data* 

Khaled Alsabti Sanjay Ranka 
School of CIS Department of CISE 

Syracuse University University of Florida 
kaalsabt@top.cis.syr.edu ranka@cise.ufl.edu 

Vineet Singh 
Information Technology Group 

Hitachi America, Ltd. 
vsingh@hitachi.com 

Abstract 

The cpquantile of an ordered sequence of data 
values is the element with rank ‘pn, where n 
is the total number of values. Accurate esti- 
mates of quantiles are required for the solution 
of many practical problems. In this paper, 
we present a new algorithm for estimating the 
quantile values for disk-resident data. Our al- 
gorithm has the following characteristics: (1) 
It requires only one pass over the data; (2) It is 
deterministic; (3) It produces good lower and 
upper bounds of the true values of the quan- 
tiles; (4) It requires no a priori knowledge of 
the distribution of the data set; (5) It has a 
scalable parallel formulation; (6) Extra time 
and memory for computing additional quan- 
tiles (beyond the first one) are constant per 
quantile. 

We present experimental results on the IBM 
SP-2. The experimental results show that the 
algorithm is indeed robust and does not de- 
pend on the distribution of the data sets. 

1 Introduction 

The cp-quantile of an ordered sequence of data values 
is the element with rank cp x n, where n is the total 
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number of values. The median of a set of data is the 
0.5-quantile. Quantiles or accurate estimates of quan- 
tiles are required for the solution of many practical 
problems. 

Query optimizers need accurate estimates of the 
number of tuples satisfying various predicates. Meth- 
ods were proposed in [PS84] to use quantiles for this 
purpose. Also, quantile algorithms can generate equi- 
depth histograms [PIHS96], which have been used to 
estimate query result sizes. In the past, equi-depth 
histograms [KooSO, PS84, MD881 have not worked 
well for range queries when data distribution skew has 
been high. Our new algorithm called OPAQ (for One 
Pass Algorithm for Quantiles; pronounced opaque) 
promises better results due to its combination of ac- 
curacy and efficiency features. 

Quantiles can be used for computing association 
rules for data mining as shown in [AS95, AIS93, AS96]. 
Also, quantiles can be used for external sorting. Data 
can be partitioned using quantiles into a number of 
partitions such that each partition fits into main mem- 
ory. Further, quantiles are excellent for load balancing 
many parallel applications [D+91]. 

The problem of finding a cp-quantile of a set of ele- 
ments of size n which reside in the main memory can 
be solved in O(n) time by using the deterministic al- 
gorithm of [B+72] or in O(n) expected time by using 
the randomized algorithm of [FR75]. 

In many cases, the exact value of the quantile is 
not needed and a good estimate of the true value is 
sufficient. In this paper, we present an algorithm for 
estimating the cp-quantile (‘p = L,:,. . . , y) for large 
data sets. We assume that the data size is larger than 
size of the memory and the data is disk-resident. 

Algorithms for estimating quantiles can be classified 
based on the following characteristics: 

l Number of passes (single/multiple): The number 
of passes of the input data required. 
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Determinism: The running time of the algorithm 
can be deterministic or randomized. 

Accuracy: This represents the lower and upper 
bounds on the error from the true value. Some 
algorithms provide probabilistic bounds only. 

Data distribution: Some algorithms can provide a 
good estimate only for certain data distributions. 

Parallelization properties: This represents the 
parallelization properties of the algorithm. 

Cost for finding additional quantiles: In some 
cases, additional quantiles may be required. This 
represents the cost of finding additional quantiles. 

A one pass algorithm for estimating quantiles has 
been proposed in [AS95]. One limitation of this al- 
gorithm is that it does not provide an upper bound 
of the error rate. The algorithm partitions the range 
of the values into L intervals and counts the values 
in each interval. The boundaries of intervals are de 
termined on-the-fly and are continuously adjusted as 
data is read from disk. A technique that needs multiple 
passes over the data and produces accurate quantiles 
was proposed in [GS90]. This algorithm uses a lin- 
ear median-finding algorithm recursively to partition 
the data. An algorithm based on sampling [Coc77] 
and the algorithm proposed in [SD771 both require a 
priori knowledge of the data set in order to produce a 
good estimate of the quantile. The sampling algorithm 
works as follows. Draw a random subset of the data 
set as a sample. Then, sort the sample and use it to 
estimate the quantile values. In [SD77], an algorithm 
was proposed which partitions the range of values into 
k intervals. The algorithm counts the number of ele- 
ments in each interval. The counts of the intervals are 
used to estimate the quantile value. Unless we have 
a priori knowledge of the data distribution, this algo- 
rithm may produce inaccurate estimates for quantile 
values. An algorithm which does not require a priori 
knowledge of the data distribution and requires one 
pass over the data was proposed in [JC85]. In this al- 
gorithm, they store a constant number of elements and 
update the elements as the input data is read. This 
algorithm does not provide any error bounds for the 
quantile estimates. In [MP80], single pass and multi- 
pass algorithms were proposed. The single pass algo- 
rithm produces an accurate quantile and requires 0(n) 
amount of main memory, where n is the total number 
of elements. 

In this paper, we present a new algorithm OPAQ 
for estimating the quantiles. The OPAQ algorithm 
has the following characteristics: 

l It requires only one pass over the data. 

It is deterministic. 

It produces tight lower and upper bounds of the 
true value of the cp-quantile. 

It requires no a priori knowledge of the data dis- 
tribution. 

It has a scalable parallel formulation. 

The additional time and space complexity for es- 
timating each additional quantile beyond the first 
one is constant per quantile. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes and analyzes the sequential algorithm. 
We also present experimental results in this section. 
Sections 3 presents the parallel algorithm. In this sec- 
tion, we also describe the parallel machine model and 
present the experimental results on the IBM SP-2. We 
conclude in section 4. 

2 The Sequential Algorithm 

In this section, we present a new algorithm for esti- 
mating cp-quantiles. In order to describe the new al- 
gorithm, we need to define a few terms. These terms 
are defined in Table 1. 

Table 1: The definition of the terms 

Term (1 Description 
M 11 size of the main memory 
m size of each run 
n total number of elements 
I- number of runs (= 2) 
S size of the sample for each run 
cp quantile fraction (‘p E [0 . . . 11) 
Q index (rank) of the quantile (= cp x n) 
e, value of the quantile 

The OPAQ algorithm consists of two phases: sam- 
pling phase and the quantile finding phase. In the sam- 
pling phase, we input the whole data set as r runs. A 
set of sample points S = [si, . . . , ~$1 of size s is deter- 
mined where si <= si+i , for i < s, for each run. The T 
sample lists are merged together forming a sorted sam- 
ple list of size rs. The sorted sample list is used in the 
quantile finding phase to estimate the upper and lower 
bounds of the true value of cp-quantile. The accuracy 
of the result depends on both the phases. These two 
phases are described in the next subsections. 

2.1 The Sample Phase 

Figure 1 gives a high level description of the sampling 
phase. To estimate e,, we obtain an upper bound 
eau and a lower bound eQf such that e, E [e,‘, eau] 
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and the number of elements in the interval [e,l, eo“] 
is bounded. The samples are selected using regular 
sampling (LLS+93]; a sample of size s consists of the 
elements at relative indices F, . . . , ST.’ Each sample 
point thus corresponds to y points less than or equal 
to the sample point and greater than the previous sam- 
ple point. We will use the term sub-run of the sample 
point to denote these elements. 

The problem of finding a sample point at index k 
is exactly the same as finding the kth smallest ele- 
ment in the given run. The problem of finding the kth 
smallest element in a set of data is known as the selec- 
tion problem. Many algorithms have been proposed to 
solve the selection problem. Some of these algorithms 
are deterministic and others are probabilistic. A de- 
terministic algorithm is proposed in [B+72] with O(m) 
worst-case running time, where m is the number of el- 
ements. A randomized algorithm has been proposed 
in [FR75] with expected and worst case times of O(m) 
and O(m2) respective1 . 

CwaucD 

P 

Figure 1: High level description of the sample phase. 
The data set D is of size n. Each run is of size m. s 
sample points are derived from each run. 

The s sample points can be found as follows.2 First, 
find the median of the m elements and divide the list 
into two equal parts. Then, find the medians of the 
two new sublists, and so on until the sizes of the sub- 
lists reach y. The sizes of the sublists will be $ after 
logs iterations. After logs iterations, we will have s 
sublists each of size y. The maximum element of sub- 
list i is the ith sample point and it can be found in time 
0( 5). Using results in [B+72], we can find the s sam- 

1 Without loss of generality, we assume that n is divisible by 
n and m is divisible by s. 

2Assume that s and m are powers of 2. If they are not, it 
is easy to modify the algorithm slightly and maintain the same 
complexity. 

ple points in O(m log s) worst-case running time. The 
randomized algorithm for selection can be extended to 
find the s sample points in O(m log s) expected time 
and O(m2) worst case time. This algorithm has a small 
constant factor and is practically very efficient. After 
finding the T sample lists, we merge them together to 
form one sorted sample list of size TS. 

2.2 The Quantile Phase 

In this phase, we find ea’ and eau using the sorted sam- 
ple list. As a result of using regular sampling method 
in deriving the sample points, it can be easily shown 
that the sample points have the following properties: 

1. There are at least i T elements less than or equal 
to the sample point si. 

2. Additionally, there are at most r - 1 sub-runs each 
with at most y - 1 elements less than Si. 

Thus the maximum number of elements less than si 
is given by ia + (T - l)( 3 - 1). These properties are 
used in determining ear and eau. For more details see 
appendix A. 

Let List be the list of sorted samples. We assign eol 
to be the ith element in the sorted samples list such 
that: 

i3 + (r - l)(T -1) <a< (i+l)$+(r-1)(:-l) 

(1) 
Solving formula (1) for i, we get 

i = [aa - (r - l)(l - -$J 

This corresponds to 

(2) 

eal = List[[-$ - (r - l)(l - a)]] (3) 

Similarly e, u is the jth element in the sorted sam- 
ples list such that: 

This corresponds to 

e, u = List[@ (5) 

Lemma 1 The ma&mum number of elements between 
the true quantile and the lower bound e,’ is f . 

Proof: Let NL be the maximum number of ele- 
ments between ea’ and the true value of the quantile, 
and N,,,in(Cond) be the minimum number of elements 
which satisfy the condition Cond. Thus, 

NL < (Y - N,,,~,(EZements < e,‘) 
*VI =a-2, 
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Substituting the value of i from formula (2), we get 
N~=a--~+X-(r-l)(l-~)J~ 

Thus, 
Nr, 5 IX-(A”-(T-1)(1-$)-l)? 
a 
NLC&-r+l 

Thus, the maximum number of elements between 
the true quantile and the lower bound ea’ is at most 
ll 
a- m 

Lemma 2 The maximum number of elements between 
e,” and the true quantile is :. 

Proof: Similar to lemma 1. n 

Lemma 3 The madmum number of elements between 
eol and eau 5 23. 

Proof: Straightforward from lemmas 1 and 2. n 

2.3 Time requirements 

Table 2 summarizes the time requirements of the dif- 
ferent steps. The total time required for estimating q 
quantiles is o(n + rrn log s + TS log T + q). This simpli- 
fiestoO(n+nlogs+~slog~+q),sincer=~. If 
+= > log%;, - the total complexity of the algorithm 
is O(n logs). The size of the main memory M, the size 
of the sample s, the number of runs T and the number 
of elements n are constrained by the following relation: 

rs+F<M 
Since s 1 2q for achieving good bounds on the quan- 
tiles, this limits the maximum number of quantiles one 
can find using our algorithm to 0( $). 

An additional advantage of our algorithm is that the 
sample phase does not depend on the quantile phase. 
The same sorted sample list can potentially be used 
for finding other quantiles. 

Table 2: The time requirement of the different parts 
of the algorithm 

Phase Complexity 
Reading From the Disk O(n) 

Finding the rs sample points O(rm log s) 
Merging T sample lists O(rs log 7) 
Estimating q quantiles O(q) 

Total O(n+fllogs+rslog~+q) ~_ 

2.4 Experimental Results 

We have conducted several experiments to evaluate 
our algorithm on a variety of data sets and compared 
performance with other algorithms presented in the lit- 
erature. Our choice of particular data sets in terms of 

size and distribution of the keys reflects choices made 
in the literature for ease of comparison. 

We conducted three experiments with data set sizes 
of 1 million, 5 million, and 10 million. For each data 
set size, the generated keys are chosen from either a 
uniform distribution or Zipf distribution [Zip49]. Fur- 
ther, the number of duplicates for each data set of size 
n is set to s. This was done to study the impact of 
data distribution on the accuracy of the estimates ob- 
tained. From the discussions in the previous sections, 
it is easy to observe that the time requirements of our 
algorithm are relatively independent of the underlying 
data distribution. 

The Zipf distribution has a parameter which deter- 
mines the degree of the skew of the data. The data set 
corresponds to a uniform distribution when the pa- 
rameter is set to one. The level of skew increases as 
the value of this parameter decreases. The data set 
will have a very high degree of skew for the param- 
eter value equal to zero. We chose 0.86 as the Zipf 
distribution parameter. Again, this reflects our desire 
to compare the performance of our algorithm to pre- 
viously proposed algorithms. 

hi TbcbW~bavld 

)I~ 

r 
? 

Figure 2: The definitions of the terms which are used 
in the relative error rates 

The errors in estimating quantiles using our algo- 
rithm can be quantified using several measures. In 
this paper, we use three measures of error: 

1. RERA = (N, - Nt)/n x 100 

2. RERL = Ma&(Maz( , , JNi;?il, lNi;?i[)) x 

100 

3. RERN = Mcxz~=‘=,(Muz(~, Q)) X 100 
P P 

The terms used in the different error rates are ex- 
plained in Figure 2. Elements from the data set are 
shown in the figure in increasing sorted order from left 
to right. N, is the number of elements between the 
estimated lower and upper bound. Nt (not shown in 
figure) is the number of duplicates for the exact quan- 
tile value between these bounds. Ni is the number of 
elements between the true ith quantile and (i + l)th 
quantile, NLi is the number of elements between the 
estimated lower bounds of the ith and (i + l)th quan- 
tiles. Nui is defined similarly for the upper bound. 
DL~ is the number of elements between the true ith 
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quantile and the lower bound of the it” quantile. Dvi 
is defined similarly for the upper bound of the quantile. 

RE& (A for Almaden) is taken from [AS95]. Note 
that this error rate is expressed in terms of the size of 
the whole data set. RERL (L for Load Balancing) is 
useful for determining the difference in the positions of 
successive quantiles. This is useful for load balancing 
on a parallel computer. RERN (N for Normalized) is a 
normalized error rate and does not depend on the total 
data size. Instead, the denominator is the number of 
elements between consecutive (actual) quantiles. 

Table 3: The RERA produced by the OPAQ algorithm 
for different sample sizes for data sets of size 1 Million 

Dectile Uniform Distribution 11 Zipf Distribution 
s= I s= I s= II s= I s= I s= 

1 250 1 500 1 1000 11 250 1 500 1 1000 

For each data set, we report RERA, RERL and 
RERN. Based on the lemmas 1 through 3, it can 
be easily shown that the upper bounds of RERA, 
RERI;, and RERN produced by the OPAQ algorithm 
are 5 x 100, 9 x 100, and z x 100 respectively. Thus, 
the accuracy of the estimated value of the quantiles is 
directly proportional to the sample size.3 

We obtained these error rates for different sample 
sizes for finding dectiles (i.e., 10%,20%,. . .,90%) of 1 
million elements. Tables 3 and 4 show the relative 
error rates produced by the OPAQ algorithm for dif- 
ferent values of s; the size of each run was equal to 
100,000 elements. As expected, doubling the value of 
s results in approximately half the amount of the error. 
Although the execution time is not presented here, we 
observed that as the sample size s increases, the cost 
of finding the sample points and merging T sample lists 
gets larger. 

The error rates for the OPAQ algorithm for finding 
dectiles of 1 million, 5 million, and 10 million data sets 
are shown in Tables 5 and 6. The sample size s and the 
run size m are set to 1,000 and 100,000 respectively. 
The results show that the accuracy of the algorithm 
does not significantly depend on the distribution of the 
data set. 

We have also compared the accuracy of the OPAQ 

3The sample size is clearly limited by the amount of memory 
available. 

Table 4: The RERL and RERN produced by the 
OPAQ algorithm for different sample sizes for data 
sets of size 1 Million 

1 Dectile 1 Uniform Distribution 11 Zipf Distribution 1 
s= s= 

i&o I, 
s= s= 

250 500 500 1000 
RERL 1.88 0.99 0.46 1.88 0.89 0.52 
RERN 2.62 1.15 0.60 2.68 1.09 0.53 

Table 5: The RERA produced by the OPAQ algorithm 
for different data sizes 

Dectile Uniform Distribution 11 Zipf Distribution 
1M 1 5M I 10M 11 1M I 5M I 10M 

algorithm with random sampling and the algorithm 
proposed in [AS951 for RERA; these results are pre- 
sented in [AS95]. Assuming that the same amount of 
memory is provided to each of the three algorithms 
for their samples or data structures,4 we found that 
the RERA produced by our algorithm is comparable 
or better than the other two algorithms. However, the 
main strength of our algorithm is that we can bound 
the error for a given sample size. Table 7 shows the 
RERA for data sets of size 1 million. 

3 Parallel Algorithm 
Evolutionary trends of parallel computers have con- 
verged to a general architecture which consists of a 
small set (ten to a few thousand) of processing ele- 
ments connected through an interconnection network. 
These coarse grained parallel machines have memory 
physically distributed across the processors. Interpro- 
cessor communication is either through message pass- 
ing or through a shared address space. In this section, 
we describe the parallelization of our algorithm on such 
machines. 

Bather than making specific assumptions about the 
underlying network, we assume a two-level model of 
computation. The two-level model assumes a fixed 

4This corresponds to 3000 sample points (rs) in the OPAQ 
algorithm. The sample size s and the run size m are set to 600 
and 200,000, respectively. 
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Table 6: The RERr, and RERN produced by the 
OPAQ algorithm for different data sizes 

Dectile Uniform Distribution Zipf Distribution 
1M 5M 10M 1M 5M 10M 

RERL 0.46 0.51 0.53 0.52 0.53 0.54 
RERN 0.60 0.58 0.55 0.53 0.54 0.54 

Table 7: Comparisons with the other two algorithms. 
Alg. 1 is proposed in [AS951 and Alg. 2 is the random 
sampling algorithm 

’ Dec- Uniform Distribution Zipf Distribution 
tile OPAQ Alg. Alg. OPAQ Alg. Alg. 

1 2 1 2 

cost for an off-processor access independent of the dis- 
tance between the communicating processors. A unit 
computation local to a processor has a cost of 6. Com- 
munication between processors has a start-up overhead 
of T, while the data transfer rate is l/p. For our com- 
plexity analysis we assume that 7 and ~1 are constant, 
independent of the link congestion and the distance be- 
tween two nodes. This permits us to use the two-level 
model and view the underlying interconnection net- 
work as a virtual crossbar network connecting the pro- 
cessors. It closely models the interconnection network 
on the IBM SP-2 on which we will present our exper- 
imental results. Although our algorithm is analyzed 
under the assumptions of a virtual crossbar, it is rela- 
tively architecture-independent and can be efficiently 
implemented on other interconnection networks. 

We assume that each processor is assigned $ ele- 
ments from the data set. The parallel algorithm also 
has two phases: the sample phase and the quantile 
phase. The number of runs per processor, T, equals 
+. The sample phase of the parallel version is very 
similar to the sample phase of the sequential version. 
An additional step is required at the end for merging 
the local sample lists of all the p processors to form 
one global sorted sample list. The best algorithm for 
merging p lists depends on the underlying interconnec- 
tion network of the parallel machine, the sizes of lists 
to. be merged and the number of processors. We have 

investigated two algorithms which can be used to solve 
this problem: Bitonic merge and Sample merge. These 
are variations of the Bitonic sort [Bat68, KGGK94J 
and sample sort [LLS+93, KGGK94]. The only differ- 
ence between Bitonic/sample sort and Bitonic/sample 
merge is that the initial sorting step is not required be- 
cause the local lists are already sorted. The complexity 
of the Bitonic merge and the sample merge are given by 
0(6(rs(l+logp)logp)+(1+logp)logp(~+~rs)) and 
o(6(s’+(p-1)logrs+prslogp))+(1+logp)logp(~+ 
ps’) + 2(7p + @rs), respectively [LLS+93, KGGK94). 
fi is defined as the bucket expansion factor which is 
bounded by $. s’ is defined as the size of the sample 
size which is used by the sample merge. 

By merging the p sample lists, we form a globally 
sorted sample list of size prs such that processor i will 
have s rsi,. . . , srsi+rs-i elements. The quantile phase 
in the parallel version of the algorithm is very similar 
to the corresponding one in the sequential algorithm. 
The only difference is in the number of total runs. In 
the sequential algorithm, the number of the total runs 
is r, whereas the number of the total runs in the par- 
allel algorithm is rp. We can estimate the upper and 
lower bounds of cp-quantile by using formulas (2) and 
(4) of section 2 and substituting rp instead of T. Note 
that lemmas 1 through 3 also hold for the parallel al- 
gorithm. 

The time requirement of the parallel algorithm is 
the sum of the time required for each of the following 
steps: 

l Reading the s elements from the disk locally. 

l Finding the rs sample points locally. 

l Merging the r sample lists locally. 

l Merging the p sample lists globally. 

l Estimating the value of the cpquantile. 

Reading the a elements from the disk takes O(i) 
time. Finding the sample points takes O(rmlog s) 
time, using algorithms given in [FR75]. Merging 
the r samples can be done in O(rs logr) time. As 
discussed earlier, merging the p sample lists can be 
achieved by either the Bitonic merge or the sample 
merge. We denote the complexity of merging the p 
sample lists globally by T(p, z) where p is the num- 
ber of processors and z is the size of the lists on 
each processor. Estimating the upper and the lower 
bounds of the value of the quantile takes constant 
time. Thus, the total complexity of the algorithm is 
0( E + rm log s + T-S log T + T@, TS)). As in the sequen- 
tidversion, the total complexity to find q quantiles is 
0( $ + rm log s + TS log T + T(p, TS) + q) which equals 
0(~+$10gs+~s10g &+T(p,rs)+q), since r = fi. 
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In case m > logn - the total complexity of the 
algorithm ids 0( I? log s’T&p, rs)). The total complex- 
ity of the algorrthm for different merging algorithms 
is given in table 8. We expect the Bitonic merge to 
have better performance for small data sets and small 
number of processors. In other cases the sample merge 
should perform better. 

Table 8: The time requirement of the parallel algo- 
rithm using different merging algorithms 

[ using 11 The Time requirement I 
Bitonic 11 0(6(% logs + rs(b+ logp) logp)+ 1 

(-1 + log P) log P(T + clrs)) 
Sample 0(6(~logs+s’+(p-1)logrs+~rslogp) 

+(I + logp) logp(7 + 14 + 2(7~ + &8+s)) 

3.1 Scalability Analysis 

A detailed scalability analysis is done in a longer ver- 
sion of this paper jABS97). Using a formally defined 
scalability metric called &efficiency, we have shown 
that OPAQ is scalable. The analysis shows that the 
sample merge version of the parallel algorithm is far 
more scalable than the bitonic merge version. 

3.2 Experimental Results 

We implemented the OPAQ algorithm on the IBM SP- 
2. Each node of the SP-2 is a RISC System/6000 mod- 
ule 390 with 128 MBytes of main memory. Each node 
is running AIX version 4. We experimented with the 
parallel version of the algorithm on data sets with uni- 
form distribution only. The experimental results of the 
sequential version of the algorithm demonstrated that 
the accuracy of the algorithm does not significantly 
depend on the distribution of the data sets. 

Figure 3 shows the execution time of the global 
merge phase using Bitonic merge and sample merge. 
The data sizes used are lK, 2K, 4K, 8K, 16K, 32K, 
64K and 128K per processor. The Bitonic merge out- 
performs the sample merge for small number of proces- 
sors and small data sets. For large number of proces- 
sors and large data sets, the sample merge outperforms 
the Bitonic merge. We only present results using sam- 
ple merge for the rest of this section. 

The number of elements per processor was varied 
from 0.5M, lM, 2M, and 4M to study the effect of 
scaleup, sizeup and speedup properties of our algo- 
rithm. This data was stored in the disks attached 
with the processors. The number of processors used 
were 1, 2, 4, 8 and 16. The sample size s and the run 
size m are set to 1K and 128K elements respectively 
(independent of the number of processors). 

Figure 3: The execution time of different merge meth- 
ods 

Table 9: The RERA produced by the parallel algo- 
rithm for different data sets 

Dectile Uniform Distribution 
0.5M I 1M I 2M I 4M I 8M I 16M I 32M 

We conducted several experiments to determine the 
error rates produced by the algorithm for finding dec- 
tiles in different size data sets. Tables 9 and 10 show 
results (the reported data sizes are the total sizes of 
the data) for 8 processors. Our experimental results 
showed that the error rates produced were indepen- 
dent of data set size. 

The algorithm spends around 50% of the total ex- 
ecution time in performing I/O. Table 11 shows the 
percentage of the I/O time to the total execution time 
for different data sizes and different machine sizes. Ta- 
ble 12 shows the fraction of the execution time of 
the different phases of the algorithm. The number of 
elements per processor is set to 4M. The I/O time 
and sampling time take more than 83% of the total 
execution time of the algorithm and are relatively in- 
dependent of the number of processors used. Hence, 
the algorithm should scale well for larger number of 
processors. 

We did not invest any effort in optimizing the over- 
lap in I/O and computation time. One can potentially 
reduce the overall time by overlapping part of the com- 
putation time with the I/O time. 

Figure 4 shows that our algorithm is scalable. This 
is because the extra overhead of the parallel algorithm 
is the cost of the global merge. This cost is small com- 
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Table 10: The RERr, AND RERN produced by the 
parallel algorithm for different data sets 

Dectiie Uniform Distribution , 

0.5M 1M 2M 4M 8M 16M 32M 

RERL 0.62 0.62 0.54 0.61 0.53 0.54 0.51 
RERN 0.67 0.60 0.59 0.61 0.56 O.SA n..w 

Table 11: The percentage of the I/O time to the total 
time for various number of elements per processor and 
various number of processors 

1 Size 11 1 Proc. i 2 Proc. 1 4 Proc. 1 8 Proc. i 16 Proc. 1 
I 

0.5M 0.54 0.53 0.52 0.52 0.50 
1M 0.53 0.40 0.52 0.51 0.50 
2M 0.53 0.57 0.51 0.51 0.53 
4M 0.52 0.49 0.51 0.52 0.51 

pared to the cost of the other phases of the algorithm 
Figure 5 shows that our algorithm has good sizeup 

characteristics. This is again due to the low cost of 
the global merge. 

Our algorithm has a high speedup performance. 
Thii is also due to the low cost of the global merge. 
Figure 6 shows the speedup of our algorithm for a 
totaj.of 4M elements. 

. 
t 

c---.mw i .-_- ____ ----__------_--____ -_-_----- _--_-_-----__ __-__---- - 

Figure 4: Scale-up of OPAQ 

4 Conclusions 

In this paper, we have presented and analyzed OPAQ, 
a new algorithm for estimating the cp-quantile value 
on sequential and parallel machines. OPAQ has the 
following characteristics: 

l It requires only one pass over the data. 

l It is deterministic. 

l It produces good lower and upper bounds of the 
true value of the cpquantile. 

a It requires no a priori knowledge of the data set. 

Table 12: The percentage of the execution time of the 
various phases of the algorithm to the total time for 
4M elements per processor and various number of pro- 
cessors 

Phase 

I/O 

1 2 4 8. 16 
Proc. Proc. Proc. Proc. Proc. 

0.52 0.49 0.51 0.52 0.51 
Sampling 0.47 0.44 0.47 0.46 0.45 

Local Merge 0.004 0.051 0.003 0.004 0.009 
Global Merge 0 0.002 0.005 0.010 0.015 

8 
i 
i? 

l 

0 .Y UI IOU ,C44#2%!Nd- 

Figure 5: Size-up of OPAQ 
It has a scalable parallel formulation. 

Uu 

l The additional cost for each additional quantile 
beyond the first one is constant per quantile. 

The computation time of our algorithm is linear in the 
size of the data set for a fixed number of quantiles and 
a given error rate. Further, it provides the flexibility 
of improving the accuracy of the results obtained by 
increasing the computational time. 

The sorted sample list can obviously be used to es- 
timate the rank of any arbitrary element in the whole 
data set. This does not require any extra passes over 
the entire data set. 

It is easy to use the OPAQ algorithm to deal with 
new data incrementally. If the sorted samples are kept 
from the runs of the old data, one need only compute 
the sorted samples from the new runs and merge with 
the old sorted samples. 

The OPAQ algorithm can be extended to find the 
exact value of a given quantile. This will require one 
extra pass over the data set. In the extra pass, we 
keep the elements which are in the interval [eL..eE]. 
We also count the number of elements which are less 
than et, to find the rank of e:, R,;. The number of 
elements in the interval [e’,..ez] is less than or equal to 
2: (by lemma 3). We can find the exact value of the 
quantile by sorting those elements. The exact value 
of the quantile is the element (in the sorted list) with 
rank cr - R,r . P 
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Figure 6: Speedup of OPAQ 
In future work, we will overlap the I/O with com- 

putation. Since a large fraction of the total execu- 
tion time is spent in I/O, we can significantly reduce 
the total execution time by overlapping the I/O and 
the computation. Moreover, we intend to investigate 
several important applications of quantiles using the 
OPAQ algorithm: database query optimizers, data 
mining (association rules and multi-dimensional simi- 
larity search [AS95, AIS93, AS96, ALSS95]), external 
sorting, and load balancing on multiprocessors. 
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A The Properties of the Sample 
k 

L 
Points Gult2: 

1, 

i 

The 
sult of 
points, 

first property is shown in figure 7. As a re- 
using regular sampling in deriving the sample 
it can be easily shown that each sample point 

si represents a sub-run of size 5 elements. These ele- 
ments are less than or equal to si. 

Figure 8 shows the second property. Given the 
first property and the rs sample points are sorted, we 
conclude that there are at least 5, 9,. . ., e elements 
less than or equal to the sample points sr, sz, . . . , si, 
respectively. 

In this appendix we give a more detailed explanation 
of the properties used in determining eal and em“. 

Figure 8: The minimum number of elements less than 
or equal to si 

i ‘Ibas*.t1- J+ 6immntabudunaiDqtito‘~ s, 

Figure 7: The derivation of the sample points from 
each run 

There are at least T elements less than or equal 
to the sample points si. In addition to that, there are 
at most (T - l)( T - 1) elements less than si. Each 
group of m - 1 elements has a unique corresponding 
run other than si’s. This property is shown in figure 
9. 

Thus the maximum number of elements less than si 
is given by if + (r - 1)(5 - 1). 

Figure 9: The maximum number of elements less than 
Si 
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