
A One-Pass Algorithm for Accurately Estimating
Quantiles for Disk-Resident Data*

Khaled Alsabti Sanjay Ranka
School of CIS Department of CISE

Syracuse University University of Florida
kaalsabt@top.cis.syr.edu ranka@cise.ufl.edu

Vineet Singh
Information Technology Group

Hitachi America, Ltd.
vsingh@hitachi.com

Abstract

The cpquantile of an ordered sequence of data
values is the element with rank ‘pn, where n
is the total number of values. Accurate esti-
mates of quantiles are required for the solution
of many practical problems. In this paper,
we present a new algorithm for estimating the
quantile values for disk-resident data. Our al-
gorithm has the following characteristics: (1)
It requires only one pass over the data; (2) It is
deterministic; (3) It produces good lower and
upper bounds of the true values of the quan-
tiles; (4) It requires no a priori knowledge of
the distribution of the data set; (5) It has a
scalable parallel formulation; (6) Extra time
and memory for computing additional quan-
tiles (beyond the first one) are constant per
quantile.

We present experimental results on the IBM
SP-2. The experimental results show that the
algorithm is indeed robust and does not de-
pend on the distribution of the data sets.

1 Introduction

The cp-quantile of an ordered sequence of data values
is the element with rank cp x n, where n is the total

*A large part of this work was done while Khaied Alsabti
and Vineet Singh were at IBM TJ Watson Research Center.

Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy othenuise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

number of values. The median of a set of data is the
0.5-quantile. Quantiles or accurate estimates of quan-
tiles are required for the solution of many practical
problems.

Query optimizers need accurate estimates of the
number of tuples satisfying various predicates. Meth-
ods were proposed in [PS84] to use quantiles for this
purpose. Also, quantile algorithms can generate equi-
depth histograms [PIHS96], which have been used to
estimate query result sizes. In the past, equi-depth
histograms [KooSO, PS84, MD881 have not worked
well for range queries when data distribution skew has
been high. Our new algorithm called OPAQ (for One
Pass Algorithm for Quantiles; pronounced opaque)
promises better results due to its combination of ac-
curacy and efficiency features.

Quantiles can be used for computing association
rules for data mining as shown in [AS95, AIS93, AS96].
Also, quantiles can be used for external sorting. Data
can be partitioned using quantiles into a number of
partitions such that each partition fits into main mem-
ory. Further, quantiles are excellent for load balancing
many parallel applications [D+91].

The problem of finding a cp-quantile of a set of ele-
ments of size n which reside in the main memory can
be solved in O(n) time by using the deterministic al-
gorithm of [B+72] or in O(n) expected time by using
the randomized algorithm of [FR75].

In many cases, the exact value of the quantile is
not needed and a good estimate of the true value is
sufficient. In this paper, we present an algorithm for
estimating the cp-quantile (‘p = L,:,. . . , y) for large
data sets. We assume that the data size is larger than
size of the memory and the data is disk-resident.

Algorithms for estimating quantiles can be classified
based on the following characteristics:

l Number of passes (single/multiple): The number
of passes of the input data required.

346

Determinism: The running time of the algorithm
can be deterministic or randomized.

Accuracy: This represents the lower and upper
bounds on the error from the true value. Some
algorithms provide probabilistic bounds only.

Data distribution: Some algorithms can provide a
good estimate only for certain data distributions.

Parallelization properties: This represents the
parallelization properties of the algorithm.

Cost for finding additional quantiles: In some
cases, additional quantiles may be required. This
represents the cost of finding additional quantiles.

A one pass algorithm for estimating quantiles has
been proposed in [AS95]. One limitation of this al-
gorithm is that it does not provide an upper bound
of the error rate. The algorithm partitions the range
of the values into L intervals and counts the values
in each interval. The boundaries of intervals are de
termined on-the-fly and are continuously adjusted as
data is read from disk. A technique that needs multiple
passes over the data and produces accurate quantiles
was proposed in [GS90]. This algorithm uses a lin-
ear median-finding algorithm recursively to partition
the data. An algorithm based on sampling [Coc77]
and the algorithm proposed in [SD771 both require a
priori knowledge of the data set in order to produce a
good estimate of the quantile. The sampling algorithm
works as follows. Draw a random subset of the data
set as a sample. Then, sort the sample and use it to
estimate the quantile values. In [SD77], an algorithm
was proposed which partitions the range of values into
k intervals. The algorithm counts the number of ele-
ments in each interval. The counts of the intervals are
used to estimate the quantile value. Unless we have
a priori knowledge of the data distribution, this algo-
rithm may produce inaccurate estimates for quantile
values. An algorithm which does not require a priori
knowledge of the data distribution and requires one
pass over the data was proposed in [JC85]. In this al-
gorithm, they store a constant number of elements and
update the elements as the input data is read. This
algorithm does not provide any error bounds for the
quantile estimates. In [MP80], single pass and multi-
pass algorithms were proposed. The single pass algo-
rithm produces an accurate quantile and requires 0(n)
amount of main memory, where n is the total number
of elements.

In this paper, we present a new algorithm OPAQ
for estimating the quantiles. The OPAQ algorithm
has the following characteristics:

l It requires only one pass over the data.

It is deterministic.

It produces tight lower and upper bounds of the
true value of the cp-quantile.

It requires no a priori knowledge of the data dis-
tribution.

It has a scalable parallel formulation.

The additional time and space complexity for es-
timating each additional quantile beyond the first
one is constant per quantile.

The rest of this paper is organized as follows. Sec-
tion 2 describes and analyzes the sequential algorithm.
We also present experimental results in this section.
Sections 3 presents the parallel algorithm. In this sec-
tion, we also describe the parallel machine model and
present the experimental results on the IBM SP-2. We
conclude in section 4.

2 The Sequential Algorithm

In this section, we present a new algorithm for esti-
mating cp-quantiles. In order to describe the new al-
gorithm, we need to define a few terms. These terms
are defined in Table 1.

Table 1: The definition of the terms

Term (1 Description
M 11 size of the main memory
m size of each run
n total number of elements
I- number of runs (= 2)
S size of the sample for each run
cp quantile fraction (‘p E [0 . . . 11)
Q index (rank) of the quantile (= cp x n)
e, value of the quantile

The OPAQ algorithm consists of two phases: sam-
pling phase and the quantile finding phase. In the sam-
pling phase, we input the whole data set as r runs. A
set of sample points S = [si, . . . , ~$1 of size s is deter-
mined where si <= si+i , for i < s, for each run. The T
sample lists are merged together forming a sorted sam-
ple list of size rs. The sorted sample list is used in the
quantile finding phase to estimate the upper and lower
bounds of the true value of cp-quantile. The accuracy
of the result depends on both the phases. These two
phases are described in the next subsections.

2.1 The Sample Phase

Figure 1 gives a high level description of the sampling
phase. To estimate e,, we obtain an upper bound
eau and a lower bound eQf such that e, E [e,‘, eau]

347

and the number of elements in the interval [e,l, eo“]
is bounded. The samples are selected using regular
sampling (LLS+93]; a sample of size s consists of the
elements at relative indices F, . . . , ST.’ Each sample
point thus corresponds to y points less than or equal
to the sample point and greater than the previous sam-
ple point. We will use the term sub-run of the sample
point to denote these elements.

The problem of finding a sample point at index k
is exactly the same as finding the kth smallest ele-
ment in the given run. The problem of finding the kth
smallest element in a set of data is known as the selec-
tion problem. Many algorithms have been proposed to
solve the selection problem. Some of these algorithms
are deterministic and others are probabilistic. A de-
terministic algorithm is proposed in [B+72] with O(m)
worst-case running time, where m is the number of el-
ements. A randomized algorithm has been proposed
in [FR75] with expected and worst case times of O(m)
and O(m2) respective1 .

CwaucD

P

Figure 1: High level description of the sample phase.
The data set D is of size n. Each run is of size m. s
sample points are derived from each run.

The s sample points can be found as follows.2 First,
find the median of the m elements and divide the list
into two equal parts. Then, find the medians of the
two new sublists, and so on until the sizes of the sub-
lists reach y. The sizes of the sublists will be $ after
logs iterations. After logs iterations, we will have s
sublists each of size y. The maximum element of sub-
list i is the ith sample point and it can be found in time
0(5). Using results in [B+72], we can find the s sam-

1 Without loss of generality, we assume that n is divisible by
n and m is divisible by s.

2Assume that s and m are powers of 2. If they are not, it
is easy to modify the algorithm slightly and maintain the same
complexity.

ple points in O(m log s) worst-case running time. The
randomized algorithm for selection can be extended to
find the s sample points in O(m log s) expected time
and O(m2) worst case time. This algorithm has a small
constant factor and is practically very efficient. After
finding the T sample lists, we merge them together to
form one sorted sample list of size TS.

2.2 The Quantile Phase

In this phase, we find ea’ and eau using the sorted sam-
ple list. As a result of using regular sampling method
in deriving the sample points, it can be easily shown
that the sample points have the following properties:

1. There are at least i T elements less than or equal
to the sample point si.

2. Additionally, there are at most r - 1 sub-runs each
with at most y - 1 elements less than Si.

Thus the maximum number of elements less than si
is given by ia + (T - l)(3 - 1). These properties are
used in determining ear and eau. For more details see
appendix A.

Let List be the list of sorted samples. We assign eol
to be the ith element in the sorted samples list such
that:

i3 + (r - l)(T -1) <a< (i+l)$+(r-1)(:-l)

(1)
Solving formula (1) for i, we get

i = [aa - (r - l)(l - -$J

This corresponds to

(2)

eal = List[[-$ - (r - l)(l - a)]] (3)

Similarly e, u is the jth element in the sorted sam-
ples list such that:

This corresponds to

e, u = List[@ (5)

Lemma 1 The ma&mum number of elements between
the true quantile and the lower bound e,’ is f .

Proof: Let NL be the maximum number of ele-
ments between ea’ and the true value of the quantile,
and N,,,in(Cond) be the minimum number of elements
which satisfy the condition Cond. Thus,

NL < (Y - N,,,~,(EZements < e,‘)
*VI =a-2,

348

Substituting the value of i from formula (2), we get
N~=a--~+X-(r-l)(l-~)J~

Thus,
Nr, 5 IX-(A”-(T-1)(1-$)-l)?
a
NLC&-r+l

Thus, the maximum number of elements between
the true quantile and the lower bound ea’ is at most
ll
a- m

Lemma 2 The maximum number of elements between
e,” and the true quantile is :.

Proof: Similar to lemma 1. n

Lemma 3 The madmum number of elements between
eol and eau 5 23.

Proof: Straightforward from lemmas 1 and 2. n

2.3 Time requirements

Table 2 summarizes the time requirements of the dif-
ferent steps. The total time required for estimating q
quantiles is o(n + rrn log s + TS log T + q). This simpli-
fiestoO(n+nlogs+~slog~+q),sincer=~. If
+= > log%;, - the total complexity of the algorithm
is O(n logs). The size of the main memory M, the size
of the sample s, the number of runs T and the number
of elements n are constrained by the following relation:

rs+F<M
Since s 1 2q for achieving good bounds on the quan-
tiles, this limits the maximum number of quantiles one
can find using our algorithm to 0($).

An additional advantage of our algorithm is that the
sample phase does not depend on the quantile phase.
The same sorted sample list can potentially be used
for finding other quantiles.

Table 2: The time requirement of the different parts
of the algorithm

Phase Complexity
Reading From the Disk O(n)

Finding the rs sample points O(rm log s)
Merging T sample lists O(rs log 7)
Estimating q quantiles O(q)

Total O(n+fllogs+rslog~+q) ~_

2.4 Experimental Results

We have conducted several experiments to evaluate
our algorithm on a variety of data sets and compared
performance with other algorithms presented in the lit-
erature. Our choice of particular data sets in terms of

size and distribution of the keys reflects choices made
in the literature for ease of comparison.

We conducted three experiments with data set sizes
of 1 million, 5 million, and 10 million. For each data
set size, the generated keys are chosen from either a
uniform distribution or Zipf distribution [Zip49]. Fur-
ther, the number of duplicates for each data set of size
n is set to s. This was done to study the impact of
data distribution on the accuracy of the estimates ob-
tained. From the discussions in the previous sections,
it is easy to observe that the time requirements of our
algorithm are relatively independent of the underlying
data distribution.

The Zipf distribution has a parameter which deter-
mines the degree of the skew of the data. The data set
corresponds to a uniform distribution when the pa-
rameter is set to one. The level of skew increases as
the value of this parameter decreases. The data set
will have a very high degree of skew for the param-
eter value equal to zero. We chose 0.86 as the Zipf
distribution parameter. Again, this reflects our desire
to compare the performance of our algorithm to pre-
viously proposed algorithms.

hi TbcbW~bavld

)I~

r
?

Figure 2: The definitions of the terms which are used
in the relative error rates

The errors in estimating quantiles using our algo-
rithm can be quantified using several measures. In
this paper, we use three measures of error:

1. RERA = (N, - Nt)/n x 100

2. RERL = Ma&(Maz(, , JNi;?il, lNi;?i[)) x

100

3. RERN = Mcxz~=‘=,(Muz(~, Q)) X 100
P P

The terms used in the different error rates are ex-
plained in Figure 2. Elements from the data set are
shown in the figure in increasing sorted order from left
to right. N, is the number of elements between the
estimated lower and upper bound. Nt (not shown in
figure) is the number of duplicates for the exact quan-
tile value between these bounds. Ni is the number of
elements between the true ith quantile and (i + l)th
quantile, NLi is the number of elements between the
estimated lower bounds of the ith and (i + l)th quan-
tiles. Nui is defined similarly for the upper bound.
DL~ is the number of elements between the true ith

349

quantile and the lower bound of the it” quantile. Dvi
is defined similarly for the upper bound of the quantile.

RE& (A for Almaden) is taken from [AS95]. Note
that this error rate is expressed in terms of the size of
the whole data set. RERL (L for Load Balancing) is
useful for determining the difference in the positions of
successive quantiles. This is useful for load balancing
on a parallel computer. RERN (N for Normalized) is a
normalized error rate and does not depend on the total
data size. Instead, the denominator is the number of
elements between consecutive (actual) quantiles.

Table 3: The RERA produced by the OPAQ algorithm
for different sample sizes for data sets of size 1 Million

Dectile Uniform Distribution 11 Zipf Distribution
s= I s= I s= II s= I s= I s=

1 250 1 500 1 1000 11 250 1 500 1 1000

For each data set, we report RERA, RERL and
RERN. Based on the lemmas 1 through 3, it can
be easily shown that the upper bounds of RERA,
RERI;, and RERN produced by the OPAQ algorithm
are 5 x 100, 9 x 100, and z x 100 respectively. Thus,
the accuracy of the estimated value of the quantiles is
directly proportional to the sample size.3

We obtained these error rates for different sample
sizes for finding dectiles (i.e., 10%,20%,. . .,90%) of 1
million elements. Tables 3 and 4 show the relative
error rates produced by the OPAQ algorithm for dif-
ferent values of s; the size of each run was equal to
100,000 elements. As expected, doubling the value of
s results in approximately half the amount of the error.
Although the execution time is not presented here, we
observed that as the sample size s increases, the cost
of finding the sample points and merging T sample lists
gets larger.

The error rates for the OPAQ algorithm for finding
dectiles of 1 million, 5 million, and 10 million data sets
are shown in Tables 5 and 6. The sample size s and the
run size m are set to 1,000 and 100,000 respectively.
The results show that the accuracy of the algorithm
does not significantly depend on the distribution of the
data set.

We have also compared the accuracy of the OPAQ

3The sample size is clearly limited by the amount of memory
available.

Table 4: The RERL and RERN produced by the
OPAQ algorithm for different sample sizes for data
sets of size 1 Million

1 Dectile 1 Uniform Distribution 11 Zipf Distribution 1
s= s=

i&o I,
s= s=

250 500 500 1000
RERL 1.88 0.99 0.46 1.88 0.89 0.52
RERN 2.62 1.15 0.60 2.68 1.09 0.53

Table 5: The RERA produced by the OPAQ algorithm
for different data sizes

Dectile Uniform Distribution 11 Zipf Distribution
1M 1 5M I 10M 11 1M I 5M I 10M

algorithm with random sampling and the algorithm
proposed in [AS951 for RERA; these results are pre-
sented in [AS95]. Assuming that the same amount of
memory is provided to each of the three algorithms
for their samples or data structures,4 we found that
the RERA produced by our algorithm is comparable
or better than the other two algorithms. However, the
main strength of our algorithm is that we can bound
the error for a given sample size. Table 7 shows the
RERA for data sets of size 1 million.

3 Parallel Algorithm
Evolutionary trends of parallel computers have con-
verged to a general architecture which consists of a
small set (ten to a few thousand) of processing ele-
ments connected through an interconnection network.
These coarse grained parallel machines have memory
physically distributed across the processors. Interpro-
cessor communication is either through message pass-
ing or through a shared address space. In this section,
we describe the parallelization of our algorithm on such
machines.

Bather than making specific assumptions about the
underlying network, we assume a two-level model of
computation. The two-level model assumes a fixed

4This corresponds to 3000 sample points (rs) in the OPAQ
algorithm. The sample size s and the run size m are set to 600
and 200,000, respectively.

350

Table 6: The RERr, and RERN produced by the
OPAQ algorithm for different data sizes

Dectile Uniform Distribution Zipf Distribution
1M 5M 10M 1M 5M 10M

RERL 0.46 0.51 0.53 0.52 0.53 0.54
RERN 0.60 0.58 0.55 0.53 0.54 0.54

Table 7: Comparisons with the other two algorithms.
Alg. 1 is proposed in [AS951 and Alg. 2 is the random
sampling algorithm

’ Dec- Uniform Distribution Zipf Distribution
tile OPAQ Alg. Alg. OPAQ Alg. Alg.

1 2 1 2

cost for an off-processor access independent of the dis-
tance between the communicating processors. A unit
computation local to a processor has a cost of 6. Com-
munication between processors has a start-up overhead
of T, while the data transfer rate is l/p. For our com-
plexity analysis we assume that 7 and ~1 are constant,
independent of the link congestion and the distance be-
tween two nodes. This permits us to use the two-level
model and view the underlying interconnection net-
work as a virtual crossbar network connecting the pro-
cessors. It closely models the interconnection network
on the IBM SP-2 on which we will present our exper-
imental results. Although our algorithm is analyzed
under the assumptions of a virtual crossbar, it is rela-
tively architecture-independent and can be efficiently
implemented on other interconnection networks.

We assume that each processor is assigned $ ele-
ments from the data set. The parallel algorithm also
has two phases: the sample phase and the quantile
phase. The number of runs per processor, T, equals
+. The sample phase of the parallel version is very
similar to the sample phase of the sequential version.
An additional step is required at the end for merging
the local sample lists of all the p processors to form
one global sorted sample list. The best algorithm for
merging p lists depends on the underlying interconnec-
tion network of the parallel machine, the sizes of lists
to. be merged and the number of processors. We have

investigated two algorithms which can be used to solve
this problem: Bitonic merge and Sample merge. These
are variations of the Bitonic sort [Bat68, KGGK94J
and sample sort [LLS+93, KGGK94]. The only differ-
ence between Bitonic/sample sort and Bitonic/sample
merge is that the initial sorting step is not required be-
cause the local lists are already sorted. The complexity
of the Bitonic merge and the sample merge are given by
0(6(rs(l+logp)logp)+(1+logp)logp(~+~rs)) and
o(6(s’+(p-1)logrs+prslogp))+(1+logp)logp(~+
ps’) + 2(7p + @rs), respectively [LLS+93, KGGK94).
fi is defined as the bucket expansion factor which is
bounded by $. s’ is defined as the size of the sample
size which is used by the sample merge.

By merging the p sample lists, we form a globally
sorted sample list of size prs such that processor i will
have s rsi,. . . , srsi+rs-i elements. The quantile phase
in the parallel version of the algorithm is very similar
to the corresponding one in the sequential algorithm.
The only difference is in the number of total runs. In
the sequential algorithm, the number of the total runs
is r, whereas the number of the total runs in the par-
allel algorithm is rp. We can estimate the upper and
lower bounds of cp-quantile by using formulas (2) and
(4) of section 2 and substituting rp instead of T. Note
that lemmas 1 through 3 also hold for the parallel al-
gorithm.

The time requirement of the parallel algorithm is
the sum of the time required for each of the following
steps:

l Reading the s elements from the disk locally.

l Finding the rs sample points locally.

l Merging the r sample lists locally.

l Merging the p sample lists globally.

l Estimating the value of the cpquantile.

Reading the a elements from the disk takes O(i)
time. Finding the sample points takes O(rmlog s)
time, using algorithms given in [FR75]. Merging
the r samples can be done in O(rs logr) time. As
discussed earlier, merging the p sample lists can be
achieved by either the Bitonic merge or the sample
merge. We denote the complexity of merging the p
sample lists globally by T(p, z) where p is the num-
ber of processors and z is the size of the lists on
each processor. Estimating the upper and the lower
bounds of the value of the quantile takes constant
time. Thus, the total complexity of the algorithm is
0(E + rm log s + T-S log T + T@, TS)). As in the sequen-
tidversion, the total complexity to find q quantiles is
0($ + rm log s + TS log T + T(p, TS) + q) which equals
0(~+$10gs+~s10g &+T(p,rs)+q), since r = fi.

351

In case m > logn - the total complexity of the
algorithm ids 0(I? log s’T&p, rs)). The total complex-
ity of the algorrthm for different merging algorithms
is given in table 8. We expect the Bitonic merge to
have better performance for small data sets and small
number of processors. In other cases the sample merge
should perform better.

Table 8: The time requirement of the parallel algo-
rithm using different merging algorithms

[using 11 The Time requirement I
Bitonic 11 0(6(% logs + rs(b+ logp) logp)+ 1

(-1 + log P) log P(T + clrs))
Sample 0(6(~logs+s’+(p-1)logrs+~rslogp)

+(I + logp) logp(7 + 14 + 2(7~ + &8+s))

3.1 Scalability Analysis

A detailed scalability analysis is done in a longer ver-
sion of this paper jABS97). Using a formally defined
scalability metric called &efficiency, we have shown
that OPAQ is scalable. The analysis shows that the
sample merge version of the parallel algorithm is far
more scalable than the bitonic merge version.

3.2 Experimental Results

We implemented the OPAQ algorithm on the IBM SP-
2. Each node of the SP-2 is a RISC System/6000 mod-
ule 390 with 128 MBytes of main memory. Each node
is running AIX version 4. We experimented with the
parallel version of the algorithm on data sets with uni-
form distribution only. The experimental results of the
sequential version of the algorithm demonstrated that
the accuracy of the algorithm does not significantly
depend on the distribution of the data sets.

Figure 3 shows the execution time of the global
merge phase using Bitonic merge and sample merge.
The data sizes used are lK, 2K, 4K, 8K, 16K, 32K,
64K and 128K per processor. The Bitonic merge out-
performs the sample merge for small number of proces-
sors and small data sets. For large number of proces-
sors and large data sets, the sample merge outperforms
the Bitonic merge. We only present results using sam-
ple merge for the rest of this section.

The number of elements per processor was varied
from 0.5M, lM, 2M, and 4M to study the effect of
scaleup, sizeup and speedup properties of our algo-
rithm. This data was stored in the disks attached
with the processors. The number of processors used
were 1, 2, 4, 8 and 16. The sample size s and the run
size m are set to 1K and 128K elements respectively
(independent of the number of processors).

Figure 3: The execution time of different merge meth-
ods

Table 9: The RERA produced by the parallel algo-
rithm for different data sets

Dectile Uniform Distribution
0.5M I 1M I 2M I 4M I 8M I 16M I 32M

We conducted several experiments to determine the
error rates produced by the algorithm for finding dec-
tiles in different size data sets. Tables 9 and 10 show
results (the reported data sizes are the total sizes of
the data) for 8 processors. Our experimental results
showed that the error rates produced were indepen-
dent of data set size.

The algorithm spends around 50% of the total ex-
ecution time in performing I/O. Table 11 shows the
percentage of the I/O time to the total execution time
for different data sizes and different machine sizes. Ta-
ble 12 shows the fraction of the execution time of
the different phases of the algorithm. The number of
elements per processor is set to 4M. The I/O time
and sampling time take more than 83% of the total
execution time of the algorithm and are relatively in-
dependent of the number of processors used. Hence,
the algorithm should scale well for larger number of
processors.

We did not invest any effort in optimizing the over-
lap in I/O and computation time. One can potentially
reduce the overall time by overlapping part of the com-
putation time with the I/O time.

Figure 4 shows that our algorithm is scalable. This
is because the extra overhead of the parallel algorithm
is the cost of the global merge. This cost is small com-

352

Table 10: The RERr, AND RERN produced by the
parallel algorithm for different data sets

Dectiie Uniform Distribution ,

0.5M 1M 2M 4M 8M 16M 32M

RERL 0.62 0.62 0.54 0.61 0.53 0.54 0.51
RERN 0.67 0.60 0.59 0.61 0.56 O.SA n..w

Table 11: The percentage of the I/O time to the total
time for various number of elements per processor and
various number of processors

1 Size 11 1 Proc. i 2 Proc. 1 4 Proc. 1 8 Proc. i 16 Proc. 1
I

0.5M 0.54 0.53 0.52 0.52 0.50
1M 0.53 0.40 0.52 0.51 0.50
2M 0.53 0.57 0.51 0.51 0.53
4M 0.52 0.49 0.51 0.52 0.51

pared to the cost of the other phases of the algorithm
Figure 5 shows that our algorithm has good sizeup

characteristics. This is again due to the low cost of
the global merge.

Our algorithm has a high speedup performance.
Thii is also due to the low cost of the global merge.
Figure 6 shows the speedup of our algorithm for a
totaj.of 4M elements.

.
t

c---.mw i .-_- ____ ----__------_--____ -_-_----- _--_-_-----__ __-__---- -

Figure 4: Scale-up of OPAQ

4 Conclusions

In this paper, we have presented and analyzed OPAQ,
a new algorithm for estimating the cp-quantile value
on sequential and parallel machines. OPAQ has the
following characteristics:

l It requires only one pass over the data.

l It is deterministic.

l It produces good lower and upper bounds of the
true value of the cpquantile.

a It requires no a priori knowledge of the data set.

Table 12: The percentage of the execution time of the
various phases of the algorithm to the total time for
4M elements per processor and various number of pro-
cessors

Phase

I/O

1 2 4 8. 16
Proc. Proc. Proc. Proc. Proc.

0.52 0.49 0.51 0.52 0.51
Sampling 0.47 0.44 0.47 0.46 0.45

Local Merge 0.004 0.051 0.003 0.004 0.009
Global Merge 0 0.002 0.005 0.010 0.015

8
i
i?

l

0 .Y UI IOU ,C44#2%!Nd-

Figure 5: Size-up of OPAQ
It has a scalable parallel formulation.

Uu

l The additional cost for each additional quantile
beyond the first one is constant per quantile.

The computation time of our algorithm is linear in the
size of the data set for a fixed number of quantiles and
a given error rate. Further, it provides the flexibility
of improving the accuracy of the results obtained by
increasing the computational time.

The sorted sample list can obviously be used to es-
timate the rank of any arbitrary element in the whole
data set. This does not require any extra passes over
the entire data set.

It is easy to use the OPAQ algorithm to deal with
new data incrementally. If the sorted samples are kept
from the runs of the old data, one need only compute
the sorted samples from the new runs and merge with
the old sorted samples.

The OPAQ algorithm can be extended to find the
exact value of a given quantile. This will require one
extra pass over the data set. In the extra pass, we
keep the elements which are in the interval [eL..eE].
We also count the number of elements which are less
than et, to find the rank of e:, R,;. The number of
elements in the interval [e’,..ez] is less than or equal to
2: (by lemma 3). We can find the exact value of the
quantile by sorting those elements. The exact value
of the quantile is the element (in the sorted list) with
rank cr - R,r . P

353

Figure 6: Speedup of OPAQ
In future work, we will overlap the I/O with com-

putation. Since a large fraction of the total execu-
tion time is spent in I/O, we can significantly reduce
the total execution time by overlapping the I/O and
the computation. Moreover, we intend to investigate
several important applications of quantiles using the
OPAQ algorithm: database query optimizers, data
mining (association rules and multi-dimensional simi-
larity search [AS95, AIS93, AS96, ALSS95]), external
sorting, and load balancing on multiprocessors.

References

[AIS93]

[ALSS95]

[ARS97]

[AS951

(AS961

[B+ 721

R. Agrawal, T. Imielinski, and A. Swami.
Mining Associations between Sets of Items
in Massive Databases. Proc. of the ACM
SIGMOD Int? Conference on Manage-
ment of Data, Washington D.C, pages
207-216, Fy 1993.
R. Agrawal, K. Lin, H. S. Sawhney, and
K. Shim. Fast Similarity Search in the
Presence of Noise, Scaling, and Ilansla-
tion in Time-Series Databases. Proc. of
VLDB, Zurich, 1995.
K. Alsabti, S. Ranka, and V. Singh.
A One-Pass Parallel Algorithm for Ac-
curately Estimating Quantiles for Disk-
Resident Data. http://www.cise.uf?.edu/~
ranka/, 1997.
R. Agrawal and A. Swami. A One-
Pass Space-Efficient Algorithm for Find-
ing Quantiles. Proc. of the 7th Int’l
Conf. Management of Data (COMAD-95),
Pune, India, 1995.

R. Agrawal and R. Srikant. Mining Quan-
titative Association Rules in Large Re-
lational Tables. In Proc. of the ACM
SIGMOD Conference on Management of
Data, Montreal, Canada, June 1996.
M. Blum et al. Time Bounds for Selec-
tion. Journal of Computers and Systems,
7~4~448-461, 1972.

354

[Bat681

[Coc77]

[D+91]

FR751

[GS90]

[JC85]

K. Batcher. Sorting Networks and their
applications. In Proceedings of the AFIPS
Spring Joint Computing Conference, Vol.
32, 1968.
W. G. Cochran. Sampling Techniques.
John Wiley and Sons, New York, N.Y. 3rd
edition, 1977.
D. J. Dewitt et al. Parallel Sorting on a
Shared-Nothing Architecture using Prob-
abilistic Splitting . 1st Int’l Conf. on Par-
allel and Distributed Information Systems,
Miami Beach:280-291,199l.

R. W. Floyd and R. I. Rivest. Expected
Time Bounds for Selection. Communica-
tions of the ACM, 18(3):165-172,1975.

A. P. Gurajada and J. Srivastava.
Equidepth Partitioning of a Data Set
based on Finding its Medians. Techni-
cal Report TR-90-24, Computer Science
Dept., Univ. of Minnesota, 1990.
R. Jain and I. Chlamtac. The P2 Algo-
rithm for Dynamic Calculation for Quan-
tiles and Histograms Without Storing Ob-
servations. CACM, Vol. 28, No. 10:1076-
1085, Oct. 1985.

[KGGK94] V. K umar, A. Grama, A. Gupta, and

[Koo80]

[LLs+93]

[MD881

[MP80]

[PIHS96]

G. Karypis. Introduction to Parallel Com-
puting: Design and Analysis of Algo-
rithms. The Benjamin/Cummings Pub-
lishing Company, Inc, 1994.
R. P. Kooi. The Optimization of Queries in
Relational Databases. PhD Thesis, Case
Western Reserver University, Sept. 1980.
X. Li, P. Lu, J. Schaeffer, J. Shillington,
P. S. Wong, and H. Shi. On the versatil-
ity of parallel sorting by regular sampling.
Parallel Computing, 19(10):543-550, Oc-
tober 1993.

M. Muralikrishna and D. J. Dewitt.
Equi-Depth Histograms for Estimating
Selectivity Factors for Multidimensional
queries. Proc. of ACM SIGMOD, Chicago,
Illinois:28-36, June 1988.

J. I. Munro and M. S. Paterson. Selection
and Sorting with Limited Storage. The-
oretical Computer Science, 12:315-323,
1980.
V. Poosala, Y. E. Ioannidis, P. J. Haas,
and E. J. Shekita. Improved Histogram
for Selectivity Estimation of Range Pred-
icates. Proc. of the 1996 ACM SIGMOD,
Montreal:294-305, June 1996.

[PS84]

[SD771

G. Piatetsky-Shapiro. Accurate Estima-
tion of the Number of Tuples Satisfy-
ing a Condition. ACM SIGMOD 84,
Boston:256-276, June 1984.

B. W. Schmeiser and S. J. Deutsch.
Quantile Estimation from Grouped Data:
The Cell Midpoint. Communications in
Statistics: Simulation and Computation,
B6(3):221-234, 1977.

G.K. Zipf. Human Behavior and the Prin-
ciple of Least Effort. Addison-Wesley,
Reading, MA, 1949.

[Zip491

A The Properties of the Sample
k

L
Points Gult2:

1,

i

The
sult of
points,

first property is shown in figure 7. As a re-
using regular sampling in deriving the sample
it can be easily shown that each sample point

si represents a sub-run of size 5 elements. These ele-
ments are less than or equal to si.

Figure 8 shows the second property. Given the
first property and the rs sample points are sorted, we
conclude that there are at least 5, 9,. . ., e elements
less than or equal to the sample points sr, sz, . . . , si,
respectively.

In this appendix we give a more detailed explanation
of the properties used in determining eal and em“.

Figure 8: The minimum number of elements less than
or equal to si

i ‘Ibas*.t1- J+ 6immntabudunaiDqtito‘~ s,

Figure 7: The derivation of the sample points from
each run

There are at least T elements less than or equal
to the sample points si. In addition to that, there are
at most (T - l)(T - 1) elements less than si. Each
group of m - 1 elements has a unique corresponding
run other than si’s. This property is shown in figure
9.

Thus the maximum number of elements less than si
is given by if + (r - 1)(5 - 1).

Figure 9: The maximum number of elements less than
Si

355

