
Finding Data in the Neighborhood
Andr6 Eickler Alfons Kemper Donald Kossmann

UniversitSit Passau
Fakultgt fiir Mathematik und Informatik

D-94030 Passau, Germany

(ks?name)@db.fmi.uni-passau.de
http://www.db.fmi.uni-passau.de/

Abstract

In this papeE we present and evaluate alternative techniques to
effect the use of location-independent identifiers in distributed
database systems. Location-independent identifiers are important
to take full advantage of migration and replication as they allow
accessing objects without visiting the servers that created the ob-
jects. We will show how a distributed index structure can be used
for this purpose, we will present a simple, yet effective replication
strategy for the nodes qf the index, and we will present alternative
strategies to traverse the index in order to dereference identiJiers
(i.e., find a copy of an object given its identifier). Furthermore,
we will discuss the results of pe$ormance experiments that show
some tradeoffs of the proposed replication and traversal strategies
and compare our techniques to an approach that uses location-
dependent identifiers like many systems today.

1 Introduction

Large distributed systems are beginning to play a dominant
role in the information market-place. Companies are build-
ing so-called Intranets to provide access to their data from
offices all around the world, and the WWW is attracting an
ever growing number of users and providing access to an
ever growing amount of data.

To achieve acceptable performance in large distributed
information systems, it is important to replicate and to move
(migrate) data close to sites where the data is frequently
used. Both migration and replication can significantly re-
duce communication costs and help load-balance a system
by storing frequently accessed objects on different servers.
Replication can, in addition, improve the fault tolerance of a
system since copies of replicated objects are available even
if certain servers are down or unreachable.

The benefits of migration and replication can, however,
only be exploited if the system provides powerful facilities

Permission to copy wirhout,fee ~111 or part c!f this muteriul is grunted pro-
vided thut the copies ure not mude or distributed ,for direct commerciul
advuntuge, the VLDB copyright nofice und the title qf the publication und
its dute uppeur, und notice is given thut copying is by permission c?f fhe
Very Lurge Dutu Base Endowment. To copy otherwise, or to republish.
requires u,fee und/or speck1 permission,from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

to find all copies of an object given the object’s identifier.
Principally, a distributed database can be organized in two
different ways in order to find objects: it can use location-
dependent or location-independent identifiers. Location-
dependent identifiers contain the address of a server that
stores a copy of the object and/or the addresses of all other
servers that have a copy of the object; identifiers can, thus,
be dereferenced by visiting that server. One big advantage
of this approach is its simplicity. One big disadvantage of
this approach is that it cannot take advantage of migration
and replication in many situations; for example, if a copy of
an object is located in Munich (Germany) and the identifier
of the object points to a server in San Jost (USA), then a
request from Passau (Germany) to read the object will be
directed (at potentially high cost) to San Jo& before the ob-
ject can (cheaply) be retrieved from Munich.

The benefits of migration and replication can only be
fully exploited if location-independent identifiers are used.
To dereference location-independent identifiers, the system
typically maintains some sort of distributed index which
maps every identifier to a list of addresses of servers that
have a copy of the referenced object. Ideally, the nodes
of the index structure are stored on servers in such a way
that objects can be retrieved from the neighborhood without
visiting distant servers. While this approach is effective to
support migration and replication, it incurs additional cost
for probing the distributed index whenever an identifier of
a remote object is dereferenced. (Of course, local objects
can be accessed without probing the distributed index.) In
this paper, we will show how location-independent identi-
fiers can be implemented in a distributed system, and we
will focus especially on techniques to minimize the cost to
probe the distributed index by means of caching, replica-
tion and specialized traversal strategies. In addition to these
developments, we will present the results of performance
experiments that evaluate some tradeoffs of the proposed
techniques and compare these techniques to an approach
that uses location-dependent identifiers.

Throughout this paper, we will concentrate on tech-
niques to find copies of objects as efficiently as possible in
the presence of migration and replication; we will not dis-
cuss strategies that actually decide which objects to repli-
cate and migrate, or protocols that keep all the replicas of

336

an object consistent. We recognize that the choice for one
such strategy and protocol depends on the target applica-
tion, and therefore designed our techniques to be applicable
by any kind of system.

Both location-dependent and independent identifiers are
used in existing systems. URLs (uniform resource loca-
tors) in the WWW are probably the most prominent exam-
ples for location-dependent identifiers; among distributed
database systems such as SHORE [CDF+94] many other
examples can be found. Location-independent identifiers
have been proposed for the domain name service [Moc87]
and the X.500 directory [CCI89]-though in a very differ-
ent application area. In the research literature, location-
independent identifiers were used for mobile telecommu-
nication systems [AHMW94, JLS+95]. We will discuss the
differences to our approach in detail towards the end of this
paper after having fully presented our techniques.

The remainder of this paper is organized as follows.
Section 2 shows how distributed databases can be orga-
nized using location-dependent and independent identifiers.
The following three sections contain all the details of our
approach and describe alternative ways to implement and
optimize the use of location-independent identifiers: Sec-
tion 3 describes the distributed index structure, Section 4
shows how caching and replication of index nodes can be
exploited, and Section 5 presents alternative strategies to
probe and traverse the distributed index. Section 6 summa-
rizes the results of performance experiments obtained using
a simulation model. Section 7 discusses related work and
Section 8 concludes this paper.

2 Object Identification in Distributed
Databases

In this section we will give an overview of how identi-
fiers can be managed in a distributed system. As stated
in the introduction, one of the main design choices is
whether location-dependent or location-independent iden-
tifiers are to be used. While location-dependent identifiers
are straightforward to apply in practice, there is a large de-
sign space of alternative techniques to effect and tune the
use of location-independent identifiers. We will present that
design space in the following sections and focus on the fun-
damental ideas here.

2.1 Location-Dependent Identifiers

In this approach, every object identifier contains the address
of the home server of the object, i.e., the server that created
the object. The home server stores a copy of the object
and/or a collection offonvards for that object; a forward is
a simple data structure that contains the address of (another)
server that stores that object. Using location-dependent
identifiers, thus, an object can be accessed by simply con-
tacting the object’s home server. The home server will reply
by either sending a copy of the object, if it stores one, or by

returning the collection of forwards. Migration and repli-
cation of an object involves updating the home server’s col-
lection of forwards for that object; if, for example, an object
is replicated, the home server establishes a new forward for
the new replica. In order to generate unique object identi-
fiers for new objects, servers maintain counters and record
their values in the unique fields of new object identifiers or
apply one of the techniques described in [EGK95], just as
in a centralized system.

2.2 Location-Independent Identifiers

Using location-independent identifiers, objects can be ac-
cessed, migrated, and replicated independently from where
they were born. The goal is to avoid any permanent depen-
dency to one specific server (such as the home server) in
order to be able to access the object if that server is down
or to reduce cost if that server is, say, heavily loaded. This
goal is achieved by maintaining a distributed tree-structured
index.

The nodes of this index are stored on a number of ded-
icated servers organized in a hierarchy. The hierarchy re-
flects the topology of the network; typically, the commu-
nication between a name server and its child or parent is
cheap (one hop) whereas the communication with a name
server in a different branch of the hierarchy is expensive
(several hops). The number of servers in the hierarchy
and the height of the hierarchy depend on the size of the
database, the workload, and the structure of the network.
(See [AHMW94] for a detailed discussion.)

The nodes of the index are stored at servers of the hierar-
chy as follows: the root node is stored by the root server of
the hierarchy, intermediate nodes are stored by intermediate
servers and leaf nodes are stored by leaf servers. Probing
the index to find the location(s) of an object can be carried
out in a number of ways (see Section 5) and is influenced
by caching and replication (see Section 4), but the basic pat-
tern is always the same. First, the server checks, if it has,
say, a copy of the root of the index. If not, the server asks
its parent server in the server hierarchy for help. If the par-
ent server is down or cannot help, the server will ask the
grandparent server and so on, until (in the worst case) the
server will ask the root server which definitely has a copy
of the root of the index. Once the root has been found, the
pointers stored in the root node can be followed to the in-
termediate nodes and so forth until a leaf node is reached.
When the leaf node is reached, the information about the lo-
cations of the object can be extracted and the cheapest copy
of the object can be retrieved.

2.3 Discussion

In the following, we will briefly compare the tradeoffs of
the two approaches described above. First of all, both ap-
proaches perform equally well if a server creates new ob-
jects or accesses locally available objects because neither

337

approach requires interaction with other servers: as we will
see, the distributed index is constructed in such a way that it
need not record new objects as long as they are not migrated
or replicated, and in any case, local copies of objects can be
read without asking other servers. Creating new objects and
accessing local copies of objects at no additional cost is a
very important property-we expect that many applications
will predominantly work with local objects.

The differences between the two approaches become ap-
parent if a server intends to access remote data. In this
case, the use of location-dependent identifiers involves vis-
iting the home server of the object. If the home server is
down, heavily loaded or “far away” and a copy of the ob-
ject is available at a cheaper or “nearby” server, the use
of location-dependent identifiers misses a nice chance to
benefit from replication (or migration). Only the use of
location-independent identifiers makes it possible to ben-
efit from migration and replication in the best possible way
because objects can often be found at cheap servers without
visiting their expensive home servers. On the negative side,
accessing remote data with location-independent identifiers
always requires the traversal of a distributed index, thereby
possibly visiting several servers at high cost. Therefore, it
is crucial to minimize the cost of such traversals-this is the
main focus of this paper.

The two approaches also potentially differ in the costs to
migrate and replicate objects: updating a distributed index
vs. updating collections of forwards. We expect these costs
to be of minor importance because migrations and repli-
cations are rarely performed compared to object reads and
modifications.

3 The Distributed Index
In this section, we will describe our distributed index for
location-independent identifiers. Our index is adapted from
the B-link tree [LY81] and its distributed derivatives [JK93,
Lom96] with slight modifications to the layout of the nodes,
the way pointers between parent and child nodes are imple-
mented and the initialization of the index. We will first de-
scribe the structure of the index and its nodes, then index
maintenance (initialization, splitting of nodes, reorganiza-
tions), and finally how objects can be found in the presence
of concurrent migrations.

3.1 Structure of the Index and Its Nodes

Figure 1 shows an example index. The figure shows six
servers of a hierarchy with three levels, three index nodes,
and several objects with their (location-independent) iden-
tifiers. The servers and their interconnects are represented
in light gray; the nodes of the index and the objects (de-
noted by ovals) are printed in black. For ease of presenta-
tion and without loss of generality, we will assume through-
out this paper that all objects of the database are stored at
leaf servers of the server hierarchy.

Figure 1: Example Server Hierarchy

From the figure, it becomes immediately apparent that
root and intermediate nodes of our index contain pointers to
their children just as in any conventional tree-index. There
are two differences to conventional trees. The first differ-
ence is the structure of the leaf nodes of the index, and the
second difference is the way that the pointers in the index
are implemented.

The leaf nodes of our index have the following struc-
ture. Every leaf node stores exactly one entry to record the
so-called default route and a list of so-called exceptions for
migrated and replicated objects. The default entry contains
the address of the server that generated or would generate
all objects with identifiers that fall into the range of iden-
tifiers covered by the leaf node; for example, if identifiers
0 to 99 are reserved for objects created at Server Ll, then
the default entry of a leaf node for the range [O,lOO) or any
subrange hereof would point to Server Ll; this situation is
shown in Figure 1 where the default entry (labeled as d) of
the leaf node stored by Server Ll points to Server Ll , Stor-
ing default routes is an effective technique to reduce the
size of the distributed index: we expect that many objects
of a distributed database system are never migrated or repli-
cated. These objects need not be registered individually in
the distributed index as they are implicitly registered in the
default route so that space in the index is only invested for
the important cases of migrated and replicated objects.

Pointers in the distributed index are implemented as
plain server addresses rather than storing server plus disk
addresses. This is true for the pointers of the default route
and the exceptions stored in a leaf as well as for the parent-
child pointers of the root and intermediate nodes. In addi-
tion to the global distributed index, every server must, there-
fore, maintain two local indexes in order to map identifiers
(for objects) and key ranges (for index nodes) to disk ad-
dresses, and we have a two-step process: (1) use our global
distributed index to find the right server, and (2) use the
server’s local indexes which can be ordinary B+-trees to
find the object or node at that server. Obviously, this ap-
proach can result in additional disk I/O to probe a server’s

338

local index, but it also has important advantages: (1) it re-
duces the size and height of the global index as more entries
can be stored per node, and (2) it increases the local auton-
omy of servers. As we will see in Section 5, this approach
has one more crucial advantage: it allows to start probing
the global index at every of its nodes rather than being re-
stricted to starting traversals at the root.

3.2 Initialization, Splitting, Reorganization

At the beginning when no objects have yet been created, our
distributed index is initialized bottom-up. First, every leaf
server of the server hierarchy stores exactly one leaf node.
The range of the leaf node established at a server is identical
with the range of identifiers pre-allocated for the objects to
be created at that server, the default route of the leaf node
is set to point to the server itself, and the list of exceptions
is naturally empty to begin with. Based on these leaf nodes,
the intermediate nodes and the root are constructed: the root
is stored at the root server, and intermediate nodes are stored
at every intermediate server in such a way that the interme-
diate nodes stored at a server contain pointers to all index
nodes stored at child servers of that server. This approach
is very intuitive, and its effects can be seen in Figure 1 in
which the intermediate node stored at Server 11 is responsi-
ble for the leaf node stored at Server Ll This initial state
of the index is not changed even if objects are created at the
servers; migration and replication are the only operations
that trigger changes.

When an object is migrated or replicated, an exception
containing the object’s identifier and its new locations is es-
tablished in the leaf node responsible for the object. Index
nodes are handled in the same way as nodes in a B-link
tree. Thus, excessive migration and replication can result
in the usual bottom-up splitting procedure. As in a B-link
tree, no locks on the parent node need to be acquired be-
cause all the nodes of the same level are chained (including
the two nodes that result from a split) so that even clients
that read an out-of-date parent node (before the split) can
find the correct sibling node (after the split) by following
the pointers of the chain. (Details of this approach are de-
scribed in [LY81, JK93, Lom96J.) It should be noted that if
a leaf node is split, both resulting nodes inherit the default
route of the original node. Accordingly, two leaf nodes can
only be coalesced if they have the same default route. With
the exception of this constraint to coalesce nodes, all con-
ceivable reorganization techniques are possible in our dis-
tributed index; for example, moving index nodes from one
server to another.

3.3 Concurrency Control

The big advantage of B-link trees is that they allow to
safely split a node without holding a lock on the parent
node; that is, searches can be completed by navigating
along sibling links even if an out-of-date parent node was

read. But, what if an object is migrated and the lookup
is based on an out-of-date leaf node? At this level the
chaining mechanism does not work so that another solution
must be found. To see why, consider the following situ-
ation: a client reads a leaf node which indicates that Ob-
ject 5 is stored by Server Ll . Now, Object 5 migrates from
Server L 1 to Server L9, thereby deleting Server L 1 ‘s copy
of Object 5 and also updating the distributed index. Then,
the client visits Server L 1 based on its inconsistent index in-
formation and erroneously assumes that Object 5 has been
deleted. To handle these race conditions we adopt a sim-
ple technique: After Object 5 has migrated from Server Ll
to Server L9, Server Ll keeps temporarily a forward for
Object 5 to Server L9. These forwards are only accessed
by lookups that were already past the leaf node when the
modification took place. Therefore, these forwards can au-
tomatically be discarded after a short period of time.

4 Caching and Replication

We now turn to the question how the performance of our
distributed index can be improved by the means of caching
and replicating index nodes. Without caching and replica-
tion, it is easily possible that several different servers need
to be visited at potentially high cost in order to probe the
index. Both caching and replication reduce the number of
visits to remote servers, and they are particularly effective
in this environment because the nodes of our index are very
rarely modified. In this section, we will discuss situations
in which caching is especially effective, and we will present
a simple replication strategy that improves performance in
situations in which caching does not help. At the end of the
section, we will briefly discuss how copies of index nodes
can be kept consistent.

4.1 Caching

To see how caching works, consider that a client of
Server L2 wants to read Object 5 in Figure 1. To do so,
it will read the root of the index from Server R, then it will
read the intermediate node from Server 11 and finally the
leaf node from Server Ll. The kick of caching is that after
these requests have been processed, copies of the three in-
dex nodes are available at Server L2 so that a subsequent re-
quest of the client to, say, Object 25 can be processed with-
out visiting Servers R and II. The copies of the index are
kept at the client until they are found to be no longer useful
for clients of Server L2 so that they are replaced by other,
more frequently used index nodes in the cache of Server L2.

This example already demonstrates the two major rea-
sons why caching is particularly effective in our environ-
ment: (1) The root and intermediate nodes of higher levels
of the index are used very often. These nodes are, therefore,
likely to be cached by almost every server so that interaction
with the top-level servers of the server hierarchy, which are
potential bottlenecks, are rare. (2) When a client accesses

339

Figure 2: The replication scheme

an object from a remote server, it is likely that the client will
also access other, logically related objects from that server.
As a result, it is often also beneficial to cache, at least for a
while, leaf nodes of the index.

4.2 Replication

Caching is not the solution to all performance problems.
Consider again Figure 1. The figure shows that Object 41
has been migrated to Server L9-probably because it is
frequently used by Server L9 or clients that are run on
servers in Server L9’s neighborhood; say, Servers LlO, L 11,
. . . Now if a client of Server LlO tries to read Object 41, it
will have to visit (distant) Server Ll at high cost in order to
find out that Object 41 is stored at (nearby) Server L9; like-
wise, clients of Servers Lll, L12, . . . would have to visit
Server L 1 at high cost before fetching Object 41.

In this case, caching does not help because it cannot take
advantage of geographical locality; this observation has,
for example, also been made for WWW pages in [GS94].
Thus, we need to replicate the index nodes of migrated and
replicated objects as shown in Figure 2. When Object 41
is migrated from Server Ll to Server L9, the corresponding
leaf node is replicated at Server L9, the parent of this leaf is
replicated at the parent server of Server L9, and so on until
a common ancestor of Servers Ll and L9 is reached (in this
case Server R, the root). This way, requests of clients at
Servers LlO, Lll,. . . to access Object 41 can be processed
at low cost using Server 12’s copy of the intermediate node
and Server L9’s copy of the leaf node and without visiting
the distant Server Ll .

An interesting case occurs if a replicated index node is
split. Consider, for example, that the leaf node [O,lOO)
of Figure 2 needs to be split into two new leaf nodes for
[0,50) and [50,100). After this split only a replica of the
[0,50) node needs to be stored at Server L9 because only
this node contains information about objects that are stored
at Server L9. Furthermore it should be noted that there
is another important technical difference between caching
and replication: As shown in Figure 2, replication actually

changes the structure of the index; for example the root of
the index was updated as a result of replicating the inter-
mediate node; the root would not have been updated if the
intermediate node had been cached at Server 12. As a result,
the size of the index grows, and it is even possible that the
height of the index increases due to node replication.

4.3 Consistency

Of course, we have to maintain a level of consistency that
guarantees that every lookup operation finds the referenced
object (if it exists) or determines its non-existence (if it
never existed or if it was deleted). Fortunately, because our
index is based on a B-link tree, we can use all the techniques
devised in the literature for maintaining replicas of the root
and intermediate nodes of our index (e.g., [JK93, Lom96]).

We need a different approach for replicas of leaf nodes.
We propose to use a master copy concept for leaf nodes.
That is, all updates to leaf nodes are first performed on the
master copies which, of course, are freely distributed over
the network (one could, for example, declare the copy of
a leaf at its default server as master). From these master
copies the updates are asynchronously propagated to the
replicas. Now, if a lookup of an object fails this can have
two reasons: either the object does not exist or the lookup
was navigated to the wrong server due to an out-of-date in-
dex node replica. Therefore, every lookup failure has to be
verified by visiting the master copy. However, such fail-
ures can be expected to be rare because they can only hap-
pen if the referenced object doesn’t exist (i.e., a referential
integrity violation in the database occurred) or if a (copy
of an) object was migrated and this migration was not yet
propagated to the replicas of the corresponding leaf node.

5 Alternative Search Strategies

In this section, we will complete our discussion of how
location-independent identifiers can be implemented by
presenting alternative strategies to probe our distributed in-
dex in order to dereference a location-independent identi-
fier. We will classify such strategies along two dimensions:
Policies of the first dimension specify how the distributed
index is traversed, and policies of the second dimension
specify how the server hierarchy is traversed.

5.1 Traversing the Distributed Index:
Full Traversals and Shortcuts

The standard way to probe an index is to read the root of the
index first, follow the appropriate pointer to an intermediate
node, and go further down from node to node until the right
leaf is found; we will call this strategy Full Traversal. A po-
tential improvement to this strategy is to start at an interme-
diate node or, if available, even directly at the right leaf of
the index; we call such an approach a Shortcut. To illustrate
the benefits of Shortcuts, let’s go back again to Figure 1 and

340

consider a request of a client at Server L2 to access Object 5.
Due to a Shortcut, the client can search for Object 5 using
immediately the intermediate node stored at Server 11 and
without visiting Server R for the root. Shortcuts are possible
because every server maintains a local B+-tree for nodes of
the distributed index (see Section 3.1) and this local B+-
tree makes it possible to probe for relevant index nodes for
an object. We define the Shortcut policy as a search strategy
that starts an index traversal at the bottom-most of these rel-
evant index nodes; i.e., the index node with the narrowest
key range. (Of course, if no relevant index node is found at
a server, the server must ask its parent server for help using
the server-hierarchy protocol described in Section 2.2.)

The benefits of Shortcuts are not very pronounced in
some situations in which the root and high-level index
nodes are cached. If, for example, the root is cached and no
other node on the path to the right leaf node can be found,
the Full Traversal and the Shortcut strategies are identical,
since both strategies will use the cached copy of the root
as entry point for the index traversal. Using Shortcuts can,
however, improve performance if caching is not very ef-
fective, say, because the index has many levels and not all
high-level nodes of the index can be cached at every server.

5.2 Traversing the Server Hierarchy:
Iterative and Recursive Search

For the second dimension of possible search strategies, we
propose two approaches which we call Iterative and Re-
cursive search. Figure 3 gives an example for an Iterative
search. A client of Server Ll requests to access an object
stored at Server L9. After finding out that neither the ob-
ject itself nor the root or any other relevant index nodes are
available at Server Ll, the client asks Server 11, the parent
server, for help. Server 11 replies that it has no useful infor-
mation either. So, the client asks Server R, the grandparent
server, for help; Server R returns the root of the index. Then
the client visits Server 12 and finally Server L9 in order to
fetch the leaf node and the object.

In an Iterative search, a client keeps control of the en-
tire search. In a Recursive search, on the other hand, clients
delegate control to other servers-this is illustrated in Fig-
ure 4. After finding that no useful information is available
at Server Ll, the client asks Server 11 for help, just as be-
fore. Rather than replying, however, Server 11 forwards the
client’s request to Server R, its own parent, after finding that
it has not got any useful information either. Server R has
the root of the index and, therefore, knows that the search
should be continued at Server 12; it forwards the request
to Server 12, and Server 12 forwards the client’s request to
Server L9. Finally, Server L9 ships the object to Server L 1.

Comparing the Iterative and Recursive approaches in
Figures 3 and 4, it can be seen that the recursive approach
requires less messages: 5 instead of 10 for the Iterative ap-
proach. Even more important, the messages of the Recur-

Figure 3: Iterative Search Figure 4: Recursive Search

sive approach are cheaper: in all, the Recursive approach
requires 7 hops through the network (four on the way to
Server L9, and three on the way back) whereas the Iterative
approach requires 16 hops.

The basic Recursive technique has, however, one crucial
disadvantage: it does not support caching of index nodes.
After the request has been processed, no index nodes are
cached at Sever Ll. In order to take advantage of caching,
we propose the use of a cache-enhanced Recursive strat-
egy in one of the following two ways. (1) While delegating
the search from server to server, all index nodes that were
used are collected. When the search arrives at the target
server (L9 in the example), not only the object is returned
but also the collection of all used index nodes. Obviously,
this causes rather large messages to be sent over the net-
work. (2) Alternatively, the index nodes could be sent back
asynchronously to the server that started the search as soon
as the nodes are visited. In the example, Server R would
send the root node to Server Ll, Server 12 would send the
intermediate node to L 1, and Server L9 would send the leaf
node to Ll. The disadvantage of this approach is that it
causes additional messages.

5.3 Summary

Combining the two traversal methods for the distributed in-
dex and the four traversal methods for the server hierar-
chy (Iterative and the three choices for Recursive), we get
eight conceivable strategies. Each of these strategies can be
used with and without node replication, giving us a total of
sixteen different ways to implement location-independent
identifiers in a distributed database system.

6 Performance Experiments and Results

In this section, we study the tradeoffs of all the different
ways to implement location-independent identifiers. As
a baseline for our comparisons, we also show the perfor-
mance of an approach that uses location-dependent identi-
fiers as described in Section 2.1.

6.1 Simulation Model and Parameters

For all our experiments, we used a simulator. The simu-
lator allowed us to study different server hierarchies and
network topologies and get reproducible results for wide-
area networks. With the simulator, we could generate a

341

A B c

Figure 5: Server Hierarchy and Network Topology

distributed database, maintain the distributed index in the
case of location-independent identifiers and handle the for-
ward references in the case of location-dependent identi-
fiers. Each server in the simulation had a single disk (aver-
age latency 15 msec, 8K page size) for the local B+-trees
and a main-memory buffer pool for caching local and re-
mote objects, nodes of the distributed index and nodes of
the local B+-trees. When using location-independent iden-
tifiers, the buffer pool was split in two halves of equal size:
one half to cache nodes of the distributed index and one half
to cache objects of the database.

The server hierarchy and the network topology used in
all experiments reported here is shown in Figure 5. In fact,
our server hierarchy consists of three separate server hier-
archies (A, B, and C in Figure 5), each with its own root,
each with three intermediate servers, and each with nine leaf
servers. The roots of the three hierarchies are connected
by a wide-area network with 120 msecs latency. Within a
server hierarchy, intermediate servers and the root are con-
nected by a metro-area network with 30 msecs latency, and
leaf nodes of the same subnet and the “gateway” intermedi-
ate node of the subnet are connected by a local-area network
with 10 msecs latency. (All latency times were determined
in separate experiments with ping on the Internet.)

6.2 Database and Workloads

As mentioned earlier, we only consider cases in which ob-
jects are stored at leaf servers of the server hierarchy. In
our experiments, every leaf server stored exactly 10,000 ob-
jects, so the whole database had 270,000 objects. Every ob-
ject was 8K large; this is the page size and also the size of
local B+-tree nodes and nodes of our distributed index. We
established an initial distributed index for this database as
described in Section 3.2 with one exception: the root of the
index was stored on all three root servers of the three server
hierarchies. We carried out some experiments on this Znitiaf
database. Then we migrated objects and carried out experi-
ments on the resulting Migration database.

The Migration database was generated by migrating all
objects from servers in A to servers in B, migrating all ob-
jects from B to C, and migrating all objects from C to
A. After migration, every leaf server stored again exactly
10,000 objects. As a result of migration, forwards had to
be established if location-dependent identifiers were used,
and the distributed index for location-independent identi-
fiers had to be updated. Also, index nodes were replicated

Initial Migr.
LocDep 21.30 49.24
LocIndep 21.60 49.24
LocIndep + index node repl. 21.60 108.94

Table 1: Space Required for Forwards and Index (in MB)
Space Requirements for Local B+-trees are Included

if node replication was activated as defined in Section 4.2.
We also created databases with objects that were repli-

cated rather than migrated. We do not show the results of
experiments with those databases here due to space con-
straints; the effects were, however, essentially the same as
with the Migration database.

To get a feeling for the storage space consumed by the
individual approaches, Table 1 lists the space requirements
of forwards (location-dependent identifiers) and for the dis-
tributed index with and without node replication (location-
independent identifiers); all numbers of Table 1 include the
space required to maintain local B+-trees. It becomes ap-
parent that compared to forwards, the additional space used
by an entire distributed index is marginal if the nodes of the
distributed index are not replicated. Node replication using
our schema of Section 4.2 inflated the size of the index by a
factor of 2 if objects are migrated or replicated. (In the ini-
tial state, no nodes are replicated according to our scheme.)

The workloads we used are very simple. One client was
run on every leaf server, and every client requested objects
with a fixed frequency of about 20 objects per 10 seconds.
The objects read by a client were chosen randomly using
a Uniform distribution; we measured workloads in which
a client only requested objects stored in its neighborhood
(i.e., stored on one of the other 8 servers in the same server
hierarchy) or from distant servers (i.e., servers of a different
server hierarchy). To reduce the effects of randomness, we
repeated all experiments so that the 90% confidence inter-
vals (computed using batch means) were within l t5%.

6.3 Experiment 1: Initial Database

In the first experiment, we study the response time of re-
quests to read objects in the Initial database; i.e., before any
objects are migrated. Here, location-dependent identifiers
always show the lowest response time because they directly
visit the home server of an object and fetch the object from
there. We can thus use location-dependent identifiers in this
experiment as a baseline to measure the overhead of our
techniques to implement location-independent identifiers.

Figure 6 shows the response time of requests to read an
object from a nearby server (i.e., clients from A read objects
in A). Location-independent identifiers with an Iterative
and Full Traversal strategy (Full-Iter) perform only good in
the case when the cache of a server is able to hold the root
and all relevant intermediate and leaf nodes. This is the
case when the cache of every server has 40 or more pages.
Shortcuts (Shortcut-Iter) show better performance than Full

342

LocDep ~~ t
Full-lter

Shortcut-iter ;-
Shortcut-Ret 0.

Full-RecEnh n
Shortcut-RecEnh

50 1M) 150 200
buffer (pages]

Figure 6: Resp. Time, Vary Cache
Initial DB: Access to Nearby Servers

Traversals if the cache is small because Shortcuts only re-
quire the right leaf nodes rather than all relevant intermedi-
ate nodes to be cached in order to get good performance.

If location-independent identifiers are used with the ba-
sic Recursive strategy, no index nodes can be cached and
it is always necessary to visit an intermediate server and
in some cases the root server. If Shortcuts are used, the re-
sponse time of basic Recursive searching is 26% higher than
that of LocDep (the Shortcut-Ret graph in Figure 6), and if
Full Traversals are used, the performance penalty is 46%.
(We do not show the Full-Ret graph in Figure 6 to improve
readability; the graph would be higher up and parallel to the
Shortcut-Ret graph at about 130 msecs.)

The cache-enhanced Recursive strategies get the best of
caching and of cheap Recursive traversals. In this exper-
iment, these strategies, therefore, show almost the same
(best) performance as LocDep regardless of whether Full
Traversals or Shortcuts are used and regardless of the tech-
nique used to effect cache enhancement. (As a represen-
tative, we use “asynchronous messages” in all experiments
reported here.)

Figure 7 shows the response time of requests to read an
object from a distant server (i.e., clients in A read objects
from B and C). Obviously, the cost to read an object from
a distant server is much higher than from a nearby server.
Comparing the results of Figures 6 and 7, we can observe
the following differences. (1) The Iterative approaches need
more cache than in Figure 6, since there are more distant
objects than neighborhood objects and, thus, more relevant
index nodes need to be cached. (2) All Recursive strate-
gies show the same performance as LocDep because all re-
quests to remote servers need to be routed over the root of
the server hierarchy regardless of which strategy is used. As
a result, Shortcut-Ret (and Full-Ret) can find an entry point
to the index (i.e., the root) at no additional cost.

6.4 Experiment 2: Migration Database

In the second set of experiments, we study the effects of ob-
ject migration. We will examine two different scenarios: (1)
a client reads objects that were migrated from a distant to a
nearby server (e.g., a client from A reads objects that were

0 50
bud gages)

150 2cO

Figure 7: Resp. Time, Vary Cache
Initial DB: Access to Distant Servers

migrated from C to A), and (2) a client reads objects that
were migrated from distant servers to other distant servers
(e.g., a client from A reads objects that were migrated from
B to C). There is a third conceivable scenario: clients read
objects that were migrated from a nearby to a distant server.
We will not show the results of this scenario for space lim-
itations; in this third scenario, all techniques for location-
independent identifiers outperform LocDep, but they never
do so by more than 25%. Furthermore, we will not discuss
the results for Full Traversals because Shortcuts always per-
form at least as good.

Figure 8 shows the results for the first scenario. We ex-
pect this scenario to be very important for applications in
which objects are processed by different clients at different
points in their life-cycle. In this experiment, LocDep is out-
performed by any of the strategies for location-independent
identifiers if the cache of a server has more than 40 pages
because it must always visit the distant home server of an
object before it can fetch the object from the neighborhood.

As in the first experiment, the performance of location-
independent identifiers with an Iterative strategy depends on
the size of the cache. If the cache is small, Iterative shows
poor performance for repeatedly visiting distant servers, but
if the cache is large, Iterative can often completely avoid
visiting distant servers resulting in significantly better per-
formance than LocDep. The basic Recursive strategy must
always visit a distant server in order to read the right leaf
node; therefore, its performance is overall poor in this ex-
periment. The cache-enhanced Recursive strategies again
get the best of caching and Recursive searching, and thus,
show better performance than basic Recursive and Iterative
in all cases. Best performance in this scenario can, however,
only be achieved if our simple node replication strategy is
in effect: in this case, distant servers never need to be vis-
ited because all relevant index nodes are available locally or
on nearby servers. This is true regardless of which search
strategy is used, so that all three search strategies have al-
most the same performance if index nodes are replicated.

Figure 9 shows the results of the experiments in the sec-
ond scenario in which all clients read objects that were mi-
grated from distant servers to other distant servers. LocDep
has, again, the overall highest response time. LocDep first

343

LocDep +
ShortCut-lter --+---

Short&+Ret 0
ShoitCut-RecEnh A-- -.

ShortCut-lter + node repl. -+--
ShortCut-Ret + node repl. “‘2;;.

Shortcut-RecEnh + node repl.

0 50 1 Ml 15n 2cO 250 3cKl 350 400
buffer (pages)

Figure 8: Resp. Time, Vary Cache
Migration DB: Distant to Nearby

I 1 I

0 50 103 150 2rxl 250 300 350 400
buffer (pages)

Figure 9: Resp. Time, Vary Cache
Migration DB: Distant to Distant

visits the distant home server of the object, and afterwards
LocDep visits the distant server that actually stores the ob-
ject. In all, LocDep pays the price for four expensive mes-
sages across the WAN.

Location-independent identifiers with an Iterative strat-
egy are, again, sensitive to the amount of buffers available
at the servers. Interestingly, node-replication is detrimental
to the performance of the Iterative strategies in this experi-
ment because (1) node replication does not help in this case
since reading an index node is always expensive in an Iter-
ative search if the node is not cached, regardless of whether
the original or a replica of the node is read; and (2) node
replication significantly inflates the size of the distributed
index (Table l), and therefore, caching of index nodes be-
comes less effective.

Using location-independent identifiers with a Recursive
search strategy (basic or cache-enhanced), only three ex-
pensive messages need to be sent over the WAN: A client
in A would, for example, first search the right leaf node in
B. Then, the server in B would forward the request to the
server in C that stores the object. Finally, the server in C
would return the object to the client in A. With a Recursive
search strategy, node replication can sometimes be helpful
because with node replication the object in C could be read
without visiting any servers in B; thus, avoiding one hop
through the WAN. It must be noted, however, that there is
an indeterminism in the Recursive strategies which makes
node replication less effective in this case. When inspecting
the root node of the index, the search could be continued us-
ing the original copy of the intermediate node stored in B
or using the replica in C: the root node contains pointers to
both and, at that point, it is not possible to see which one
is the better to use. If the original copy is used, no advan-
tage of node replication is taken, and three hops through the
WAN are required to access an object that was migrated to
C. If the replica is used only two hops through the WAN
would be required to access an object in C; however, three
hops would be required this way if the target of the search
is an object that has not been migrated (i.e., is still stored in
B). For our experiments, we implemented this indetermin-
ism by using the original copy and the replica in 50% of the
searches each.

7 Related Work

Our work has been influenced by various developments on
index structures for distributed databases, wireless commu-
nication systems and name services in operating systems.

Data structures and algorithms for implementing dis-
tributed hash tables and trees are described in [JK93,
KW94, LNS94, Lom96]. Issues such as concurrency con-
trol and recovery are thoroughly covered there, and the re-
sults are directly applicable to our approach. The main fo-
cus of these papers is to balance the load of a system by
distributing and replicating parts of the indexes on several
servers. The issue of finding neighboring copies of repli-
cated data and the idea of finding shortcuts in a distributed
index, however, have not yet been discussed in that work.

In wireless communication systems, profiles of mobile
users need to be retrieved with as little communication
cost as possible. [AHMW94, JLS+95] discuss location-
dependent as well as location-independent schemes for
maintaining identifiers (phone numbers) for this task.
Pleiades [JLSf95], for example, uses a hierarchy of servers
where the profile information is stored in the leaves and
higher level servers store routing information for every pro-
file in all servers lower in the hierarchy. Thus, creating new
objects is much more expensive than in our approach, be-
cause in Pleiades all servers up to the root must be informed.
In addition, Pleiades does not support the caching of index-
ing information.

In operating systems, name services [Moc87, CCI89,
Ter85] bind hierarchically organized names to hosts, mail-
boxes, etc. These names can be viewed as location-
independent identifiers by which the objects are located. In
contrast to our work, the name space is usually organiza-
tionally chosen (for example, the “.com” domain in DNS)
and no index structures are involved (for example, in DNS
the database is stored in flat text files maintained by ad-
ministrators). [Ord93] contains a proposal to improve such
name services using “flat” tables.

There are several distributed database systems that em-
ploy location-dependent identifiers. SHORE [CDF+94] is a
research prototype and Itasca a commercial system [Ita93]
using a location-dependent naming scheme. In Itasca, if the

344

birth site of an object is found to be unavailable, a broadcast
message to all servers is sent which is not viable in large dis-
tributed systems. In the Thor project [DLMM93], lazy up-
dating of location-dependent identifiers was discussed. The
basic idea is to lazily change all references in the whole
database that are pointing to old locations of a migrated ob-
ject so that they contain the current location of the object.
Objects can potentially leave several forwards behind and
it may take multiple steps to resolve chains of forwards.
Patankar et al. [PSS96] propose a directory service for CIM
databases; their approach is based on hashing, and it works
best in a LAN.

8 Conclusion

In this paper, we studied two alternative ways to iden-
tify objects in a distributed database: location-dependent
and location-independent identifiers. Clearly, location-
dependent identifiers show the best performance if objects
are neither replicated nor migrated. However, in many dis-
tributed database applications there are (1) hot-spot objects
which are frequently accessed by many different sites, and
(2) there are objects whose access patterns shift in dif-
ferent phases of their life time. The solutions to these
problems are (1) object replication and (2) object migra-
tion. In this paper we showed that only systems employ-
ing location-independent identifiers can fully profit from
object replication and migration and that even in the ab-
sence of replication and migration, the overhead of using
location-independent identifiers is very low in most situa-
tions. Purely local objects (i.e., objects that never move
and are accessed only from their “birth site”) incur no addi-
tional cost in our approach because special (global) actions
are only taken for objects that are migrated or replicated. As
a result, we recommend to use location-independent identi-
fiers.

We presented a number of different techniques to im-
plement location-independent identifiers using a general-
purpose distributed index with slight modifications to the
structure of the nodes. The overall design choices were:

Index node replication vs. no node replication: Index
node replication ensures good performance in one particu-
lar, very important case: copies of objects that were created
by a distant server are available in the neighborhood. Of
course, node replication does not come for free because ad-
ditional storage space is required and replicated nodes must
be kept consistent. In our particular environment, however,
this additional cost is moderate.

Full ‘Ikaversal vs. Shortcuts: Using Shortcuts is a no-loss
game. Shortcuts are never worse than Full Traversal, but in
many situations they do not provide significant performance
benefits either.

Recursive vs. Iterative search: The clear winner in our
experiments was cache-enhanced Recursive searching.

The messages required for returning index nodes in the
cache-enhanced Recursive strategy cause costs (in terms of
bandwidth usage) that cannot be realistically measured in a
simulation. Therefore, we are currently working on a “real”
implementation of our approaches in order to carry out ex-
periments using the Internet and LANs. Based on this im-
plementation, we are also going to specifically study the
cost to migrate and replicate objects.

References
[AHMW94] V. Anantharam et al. Optimization of a database hi-

erarchy for mobility tracking in a personal communications net-
work. Peflonnance Evaluation, 20, 1994.

[CC1891 CCITT. Verzeichnis-Systeme, Volume 8 of CCIlT-
Empfehlungen der V-Serie und der X-Serie. R. v. Decker’s Ver-
lag, Heidelberg, 1989.

[CDFf94] M. J. Carey et. al. Shoring up persistent applications.
In Proc. of the ACM SIGMOD Co@ on Management of Data
Minneapolis, 1994.

[DLMM93] M. Day et. al. References to remote mobile objects
in Thor. ACM Letters on Programming Languages and Systems,
2(l-4). 1993.

[EGK95] A. Eickler, C. Gerlhof, and D. Kossmann. A perfor-
mance evaluation of OID mapping techniques. In Proc. of the
Con$ on Very Large Data Bases (VLDB), Zurich, 1995.

[GS94] J. Gwertzman and M. Seltzer. The case for geographical
push-caching. Technical Report HU TR-34-94, Harvard Univer-
sity, Cambridge, 1994.

[Ita93] Itasca Systems Inc. Technical summary for release 2.2,
1993. 7850 Metro Drive, Mineapolis, MN 55425, USA.

[JK93] T. Johnson and P. Krishna. Lazy updates for distributed
search structures. In Proc. of the ACM SIGMOD ConjI on Man-
agement of Data, Washington, 1993.

[JLS+95] J. Jannink et al. Data management for user profiles
in wireless communication systems. Technical report, Stanford
University, Computer Science Dept., 1995.

[KW94] B. Kroll and P Widmayer. Distributing a search tree
among a growing number of processors. In Proc. of the ACM
SIGMOD Con$ on Management of Data, Minneapolis, 1994.

[LNS94] W. Litwin et al. RP*: A family of order preserving
scalable distributed data structures. In Proc. of the Con$ on Very
Large Data Bases (VLDB), Santiago, 1994.

[Lom96] D. Lomet. Replicated indexes for distributed data. In
Proc. of the Intl. IEEE ConjI on Parallel and Distributed Infor-
mation Systems, Miami Beach, 1996.

[LY81] P. Lehman and S. Yao. Efficient locking for concurrent
operations on B-trees. ACM Trans. Database Sys., 6(4), 1981.

[Moc87] I?. Mockapetris. Domain names - concepts and facilities.
RFC 1034, USC/Information Sciences Institute, 1987.

[Ord93] J. J. Ordille. Descriptive Name Services for Large Inter-
nets. PhD thesis, University of Wisconsin, Madison, 1993.

[PSS96] A. K. Patankar et al. A directory service for a federation
of cim databases with migrating objects. In Proc. IEEE Con& on
Data Engineering, New Orleans, 1996.

[Ter85] D. B. Terry. Distributed Name Servers: Naming and
Caching in Large Distributed Computing Environments. Techni-
cal report CSD-85-228, University of California, Berkeley, 1985.

345

