
Using Probabilistic Information in Data Integration

Daniela Florescu Daphne Koller
AT&T Laboratories Stanford University

dana@research.att .com koller@cs.stanford.edu

Alon Levy
AT&T Laboratories

levy@research.at t .com

Abstract

The goal of a mediator system is to provide users
a uniform interface to the multitude of informa-
tion sources. To translate user queries, given in a
mediated schema, to queries on the data sources,
mediators rely on explicit mappings between the
contents of the data sources and the meanings of
the relations in the mediated schema.

Thus far, contents of data sources were described
qualitatively. In this paper we describe the use
of quantitative information in the form of proba-
bilistic knowledge in mediator systems. We con-
sider several kinds of probabilistic information:
information about overlap between collections in
the mediated schema, coverage of the information
sources, and degrees of overlap between informa-
tion sources. We address the problem of ordering
accesses to multiple information sources, in order
to maximize the likelihood of obtaining answers as
early as possible. We describe a declarative for-
malism for specifying these kinds of probabilistic
information, and we propose algorithms for order-
ing the information sources. Finally, we discuss a
preliminary experimental evaluation of these al-
gorithms on the domain of bibliographic sources
available on the WWW.

1 Introduction

The rise in the number of data sources available
on line has led to the development of several me-
diator systems, (also known as information integra-
tion systems), such as TSIMMIS [CGMH+94], HER-

MES [ACPS96], DISCO [FRV96, TRV97], SIMS [AKS96],

Pewnisaion to copy without fee all or part of thia material is
granted provided that the copies are not made ot distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice ia
given that copying ia by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permisrion from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

the Internet Softbot [EW94, KW96] and the Informa-
tion Manifold [LR096]. The goal of a mediator system
is to provide users a uniform interface to the multitude
of information sources, and therefore to free the user
from having to find the information sources, interact
with each one in isolation, and combine manually the
information from the sources.

A user interacts with a mediator system via a me-
diated achema. A mediated schema is a set of virtual
relations, which are not actually materialized, but are
used for posing queries. The actual data is stored in
the external data sources. The mediator includes a
mapping between the contents of the data sources and
the meanings of the relations in the mediated schema.
This mapping serves as a description of the contents
of the data sources [LR096]. When the user poses
a query, the mediator’s query processor uses the con-
tent descriptions to determine which data sources are
relevant to the query (i.e., may have tuples that are
used in deriving solutions to the query), translates the
query into a set of subqueries on the data sources, and
finally combines the answers appropriately.

Thus far, contents of data sources were described
qualitatively (e.g., by a set of rules or view defini-
tions). Qualitative descriptions enable the mediator
to prune access only to completely irrelevant sources,
which may still leave many sources to access. We
would like our mediator to go one step further of rele-
vance reasoning. The mediator should use additional
information to order the access to the relevant data
sources such that it maximizes the likelihood of ob-
taining answers early.

In this paper we demonstrate the utility of adding
quantitative information in the form of probabilistic
knowledge in mediator systems for the purpose of or-
dering access to information sources. We consider
three kinds of probabilistic information. First, we con-
sider information about overlap between collections in
the mediated schema. Second, we consider information
about the couemge of information sources. In general,
most sources will provide only a subset of the contents
in their descriptions. We would like to specify the de-
gree to which they cover their description. Finally,
a third kind of information we consider is the over-

216

lap between the sources, since some of the sources may
be correlated (e.g., they may be derived from other
sources by being partial copies or by integration).

In this paper we make the following contributions.
First, we provide a formalism for representing and us-
ing the three kinds of probabilistic information de-
scribed above. The main challenge we address in de-
signing the formalism is the need to specify a complete
and consistent probability distribution over the set of
collections, without having to consider the exponential
number of combinations of collections.

Second, we describe algorithms for using probabilis-
tic information for the problem of ordering the access
to data sources. An algorithm for producing the opti-
mal ordering would be prohibitively expensive. There-
fore, we describe two algorithms that produce approx-
imations of the optimal ordering. The first is a greedy
algorithm that only considers local interactions be-
tween sources. The second algorithm relies on pre-
computed orderings for a set of canonical queries, and
uses those orderings for the given query.

Finally, we describe the implementation of the
algorithms and a preliminary experimental evalua-
tion. The experiments were performed using a collec-
tion of 100 bibliography repositories available on the
www.
Section 2 describes the architecture of mediator sys-
tems we consider throughout the paper. Section 3 de-
scribes the different kinds of probabilistic information
we use and defines their meaning. Section 4 describes
the algorithms for ordering information sources, and
Section 5 describes our implementation and experi-
ments. Section 6 describes several possible extensions
to our framework and related work.

2 Mediator System Architecture

This section describes the architecture of mediator sys-
tems that we are considering. We also introduce the
example used throughout the paper and in our imple-
mentation.

2.1 Mediated Schema

A mediator provides users access to multiple data
sources via a mediated schema. The mediated schema
includes a set of possibly overlapping collections. Each
collection can be viewed as a unary relation whose ex-
tension is a set of objects. Properties of objects are
modeled by a set of attributes which can be single or
multi-valued. It should be emphasized that the collec-
tions and the attributes in the mediated schema are
only virtual and not materialized.

Our example considers a mediator system provid-
ing access to multiple bibliography data sources avail-

able online.’ Figure 1 shows a set of collections and a
set of attributes we may associate with papers in our
domain. The schema contains a collection CS-Paper

denoting the set of publications in Computer Science.
One partition of the CS-paper collection is by publica-
tion type, i.e., the collections Journal, Conference and
Book, which are assumed to be pairwise disjoint. A
second partition is by a topic hierarchy. Note that
whereas in the first case, the collections in the par-
tition were pairwise disjoint, these collections in the
second partition are obviously overlapping.

2.2 Queries and Source Descriptions

We define schema queries to be conjunctions of atoms
of the form c(X) or lc(X), where c is a collection in
the mediated schema. We only allow one variable to
appear in schema queries, and hence we usually omit
the variable. We intentionally limit the power of the
query language in order to focus on the novel problems
introduced by probabilistic reasoning. Possible exten-
sions to the query language are discussed in Section 6.

A data source S supported by the mediator is de-
scribed by a schema query Qs. The meaning of a
source description is that all objects in the source sat-
isfy the conditions of Qs. For example, the source de-
scribed by the query Database A TRecovery A Journal

contains only journal publications on databases, but
does not contain papers about recovery. In addition,
QS should be the most restrictive schema query that
describes the contents of the source S. Note that the
description of a source S does not necessarily mean
that S contains all the objects satisfying Qs.

An important point to note about the semantics of
the mediated schema is that the extension of a collec-
tion is not necessarily the union of all the objects found
in a given set of relevant data sources. For example,
the collection Databases denotes the set of published
papers in the field of Databases (by some agreed upon
standard for what it means to be published), and does
not depend on the specific sources available to the me-
diator at given point. This distinction is especially
important when we start discussing the probability of
finding a paper in a source, which should not change
if we find a new source with papers we did not have
before.

2.3 Query Processing in the Mediator

It is important to enable users to specify arbitrary con-
stants in their queries. Hence, a user-query to the
mediator is a conjunction of atoms of the form c(X),
-c(X) or X.R = a, where c is a collection in the me-
diated schema, R is an attribute, and a is a constant.

‘See http://glimpse.cs.arizona.edu/bib/ for a large col-
lection of such sources.

217

Computer Science Paper Attributes:

author
title

Journal paper Conference Paper Book Databases Operating Artificial

A

Graphics type
Systems Intelligence keywords

Recovery Deductive
Databases

A ii:g.,.
Logic Agents

Programming

Figure 1: Mediated schema for publication domain.

For example, the following query asks for Computer
Science papers who have the keyword query-languages,

and were published in TODS after 1995:

ComputerScience A X.Journal = “TODS’A

X.keyword = “query - languages” A X.year > 1995.

As we explain shortly, our goal is to define a proba-
bilistic model over our mediated schema, in order to
derive the probability that a given source contains an-
swers for a given query. However, user queries include
arbitrary constant values (e.g., keywords). It is infeasi-
ble to construct a probabilistic model that considers all
the sets of objects that can be defined by user queries.

Hence, we suppose that we have a method for map-
ping a user query to a schema query (on which we
can reason), by mapping each attribute selection to
a membership condition. For example, in our imple-
mentation we use the SMART information retrieval
system [Buc85] to map from keywords to topics in our
hierarchy. Thus, the previous user query will be trans-
lated into

ComputerScience(X)ADatabase(X)AJournaIPaper(X).

Given the schema query obtained from the user query,
the query processor of the mediator will determine
which data sources are relevant to the schema query,
and will order the relevant sources. It will then ac-
cess each one. When accessing a specific data source,
the mediator will send the original user query to the
corresponding source.

Clearly, the mapping from a user query to a schema
query may result in loss of information. The amount
of information lost is heavily dependent of the level of
detail of the mediated schema. However, the loss of
information only affects the quality of the ordering of
the information sources, and not the accuracy of the
final answer to the query. In the rest of our discussion,
the term query refers to schema queries.

3 Probabilistic Information

We begin by explaining the motivation for probabilis-
tic information in mediator systems, and highlighting
the challenges in designing our formalism. We then
describe our formalism.

3.1 Motivation

Our goal is to improve the performance of a media-
tor system by obtaining answers to queries as fast as
possible. In order to achieve this goal, we will try to
first access the sources that have a higher probability
of containing answers to the query. We now describe
the kinds of probabilistic information that are needed
for computing the probability that a source contains
answers to a query.

The first kind of information concerns overlap be-
tween collections in the mediated schema. In current
systems, we can only express three kinds of relation-
ships between collections: (1) one collection is a su-
perset of the other; (2) two collections are disjoint; (3)
there is some overlap between a pair of collections.
In our example, since no pair of topics in Computer
Science are completely disjoint, if we asked for pa-
pers about Database Systems, the mediator would not
prune any source containing Computer Science papers.
Hence, we need a mechanism for specifying the degree
of overlap between the collections. For example, we
would like to specify that P(AI] DB) = 0.05, denot-
ing that the probability that a Database paper is also
about AI is 0.05, and P(DB] OS) = 0.2, showing
that the overlap between the fields of Databases and
Operating Systems is much larger.

The second kind of probabilistic information we
need to consider is the coverage of the information
sources. Recall that we specified each source as con-
taining a subset of a given schema query. However,
this does not enable us to distinguish between sources
that are relatively complete and those that are rather
sparse. For example, we would like to specify that the
probability of finding an arbitrary paper on Deductive
Databases in source Sr is 0.8, which we can denote by
I’(& 1 DDB) = 0.8.

To see how such information can be used, suppose
that in addition to Sr we have a source &, described
by P(Ss] AI) = 0.1, i.e., that the probability of
finding a paper on AI in Sa is 0.1. Suppose we are
also given that the probability that a paper on Logic
Programming is also a paper on Deductive Databases
is 0.3 (i.e., P(DDB] LP) = 0.3). Consider the

218

query asking for papers about Logic Programming.
Although Logic Programming is a subtopic of AI, as
we show in the next section, the probability of finding
a paper on Logic Programming in Sa is only 0.1.’ In
contrast, the probability of finding such a paper in Sr
is P(Sr 1 DDB) . P(DDB 1 LP) = 0.24. Therefore,
the mediator should query Sr before 5’2.

Finally, we may want to represent information on
the overlap between information sources. While it is
possible to assume that the overlap between sources
can be automatically derived from the first two kinds
of information, in some particular cases we may have
more specific overlap information. For example, one
source may be a view on other sources, and the query
processor can take into consideration such information.

3.2 Challenge in Designing Probabilistic Rep-
resentations

The key challenge in designing a formalism for speci-
fying probabilistic information is that the size of the
specification is exponential in the size of number of col-
lections considered in the schema. For example, sup-
pose we want to specify a probability distribution on
the set of topics of Computer Science. That is, for
every set of topics d we want to know what is the
probability that a paper belongs to all the topics in
A. To do so, we need to specify 2” numbers, where n
is the number of topics. This presents two problems.
First, from a modeling viewpoint, we don’t want to
have to specify such a large number of probabilities.
Second, performing computations with such a large
set of probabilities will be prohibitively expensive. In-
stead, we would like to specify only a small number
of probabilities (e.g., intersections only between pairs
or subset of the pairs of topics in Computer Science),
and to efficiently compute the other probabilities that
may be needed in the process of source selection.

Achieving this ideal requires that we pay attention
to two issues. First, not every given set of probabili-
ties entails a unique probability distribution. For ex-
ample, if we state that P(Sr 1 Ss) = 0.2 and that
P(Sr 1 Ss) = 0.5, this does not completely specify
P(Sa I Ss). Second, not every given set of proba-
bilities may be consistent. For example, suppose we
have stated that Source 1 provides half of the papers
on Databases (denoted by P(Sr I DB) = 0.5), and
that Source 2 provides 60% of Database papers (i.e.,
I’(& 1 DB) = 0.6). Th ese two statements already en-
tail that there must be some overlap between Sr and
&, and therefore would be inconsistent with a state-
ment saying that Sr and Sz are disjoint.

aSince Logic Programming is a subtopic of AI, and & con-
tains 10% of AI papers, WC can assume (in the lack of other in-
formation) that S, contains 10% of Logic Programming papers.

In order to obtain unique and complete probability
distributions we need to (1) limit the kinds of proba-
bilistic assertions we can make and (2) make several
independence assumptions about the probability dis-
tribution that enable us to compute the missing prob-
abilities. We describe our formalism next.

3.3 Specifying Probabilistic Information

We recall some basic terminology. The probability of
a query Q, denoted by P(Q) is the probability that
an object randomly chosen from the domain is an an-
swer to Q. Similarly, we can define the probability of
a source S, P(S), to be the probability that an ob-
ject, randomly chosen from the domain, appears in S.
In our discussion we specify and compute conditional
probabiZities.3 For example, the conditional probabil-
ity of Qr given Q2, denoted by J’(Qr I Qs), is the
probability that an object that is an answer to Qs is
also an answer to Qr. Given a query Q and a source
S, the goal is compute P(S I Q), i.e., the probability
that an answer to Q appears in the source S.

3.3.1 Probabilistic Information in the Medi-
ated Schema

We begin with the task of specifying probabilistic in-
formation in the mediated schema, i.e., overlaps be-
tween the collections of objects in the schema. The
overlap between a collection cl and a collection ~2, de-
noted by P(cz 1 cr) is the conditional probability that
an object belonging to cl also belongs to ~2. Our goal
is to define a complete probability distribution on the
set of collections that enables us to compute the con-
ditional probabilities of P(Qr 1 Qz), for Qr and &a
being arbitrary queries. To encode such a probability
distribution efficiently, we propose the following bee-
encoding (shown in Figure 2).

To define the tree, we assume there exists some (ar-
bitrary) ordering co,. . . , c, on the set of collections,
where co is a superset collection of cl, . . . , c,. Every
node m in the tree, has a label L(m) associated with it,
which is a schema query. The root of the tree is labeled
with co. The children of the root are labeled from left
to right with cl, (-Jc~Ac~), . . . , (x~A.. .A~c,-SAC,),
(x1 A.. . A lc,,).

In general, a node is labeled by the schema query
ilA... A li, where li is either ci or lci. The children
of the node m labeled L(m) = 11 A . . . A li are labeled
as follows from left to right: (L(m) A Ci+l), (L(m) A

lCi+l ACi+z), * * et (L(m)ATCi+lAlCi+zA. a .Alcn-lA
c,), (L(m) A lci+r A lci+z A.. . A TC,). Finally, with
every node m, we associate the probability P(L(m)).

SRecall that the conditional probability P(A 1 B) is equal to
P(A A B)/P(B).

219

C&Papers

DB, AI, OS DB, AI, not OS
(0.0005) (0.0095)

Figure 2: A probability distribution on Computer Science topics.

To compute the probability of a query Q, we add
up all the probabilities of all nodes in the set M con-
structed as follows:

l Initially, n/ includes all nodes in the tree whose
label is a superset of the conjuncts of Q.

l Then, we remove from N any node whose parent
is also in N.

Consider the tree shown in Figure 2. To compute
the probability of Artificial Intelligence papers, we add
the probabilities of P(lDB A AI) (from level 1) and
P(DB A AI) in level 2 obtaining 0.21.

The most important property of the tree encoding
is that it specifies a unique and complete probabil-
ity distribution over the set of collections. Hence, we
can compute any conditional probability of the form
P(Qr 1 Qz), where Qr and &a are queries.

In the worst case, the size of the tree can be ex-
ponential in the number of collections (but still less
than the total number of possible queries over the set
of collections which is 3n). In practice, however, in
many domains it is the case that objects belong to a
very few number of collections at a time. As a conse-
quence, many nodes in the tree will have a probability
of 0, and hence the tree will be sparse, and can be
stored compactly. In particular, if objects can belong
at at most 1 collections at a time, the tree will have at
most O(n’) nodes.

The time to compute the probability of a query Q
from the tree is at most linear in the number of nodes
in the tree. It is interesting to note that computing the
probability of a query Q depends on the position of the
collections that are mentioned in Q in the ordering of
collections. In particular, computing the probability
of ci requires to consider at most 2’ nodes.

Another important feature to note about the tree
encoding is the fact that it gracefully incorporates a
strict subsumption hierarchy. Let’s assume that we
have a partial ordering on the set of collections in the
mediated schema describing a strict inclusion relation-
ship between collections (e.g., Agents is a subset of

AI). When building the tree we choose an ordering on
the collections satisfying the following constraint. If
cl includes ~2, then cl appears in the ordering befwe
~2. Assuming such an ordering, the number of nodes
in the tree drastically decreases. It is obvious to note
that the subtrees rooted at nodes whose label includes
lcr A c2 will be empty (i.e., all nodes have probabil-
ity 0).

In order to avoid probabilistic computations at run-
time, it is possible to precompute from the tree the
probability of every possible schema query. Even if we
do so, the tree is a useful tool for easing the specifica-
tion of the probability distribution.

3.3.2 Coverage of Information Sources

The second kind of probabilistic information we spec-
ify is the coverage of each source. Recall that every
source S is described by an expression S C Qs, de-
noting that the set of objects in S is a subset of the
objects described by the query Qs. In the probabilis-
tic setting, we add to the description the conditional
probability P(S] Qs). This denotes the probabil-
ity that an object belonging to the answer to QS is
found in the source S. For example, the statement
P(Sr 1 AI A DB) = 0.5 means that the source Sr con-
tains 50% of papers on AI and Databases. Note that
S c Qs entails that P(S 1 7Qs) = 0.

Recall that the goal is to compute P(S 1 Q), i.e., the
probability that an answer to a query Q will be found
in the source S. For this goal, it is not enough to know
the probability that an object is in S, given that it is
in Qs. In addition we make the following conditional
independence assumption: not only are the objects in
S a subset of Qs, but they are uniformly distributed
over Qs, that is the query QS describing the source
renders the source independent of any other properties
the objects may have. Formally, this independence
assumption is stated as follows:

W I Qs, Q> = W I Qd
Given this independence assumption, we can derive

220

the following equality that enables us to compute the
probability that a source contains an answer to a query
Q using the probabilistic information in the mediated
schema and the source description:

J’(SIQ) = WIQs,Q).P(QsIQ)+
P(S I --Qs,Q) * p(-Qs I Q)

= PCS I Qs,Q) - P(Qs I Q)
= J’(s I Qs) - J’(Qs I Q).

The first term is simply the coverage of the source
(which is given), and the second value can be com-
puted from the tree. For example, suppose our query
asks for papers on Databases and Operating Systems.
The probability that answers to the query are in source
5’1 is P(Si) DBAOS) = P(Si 1 AIADB)*P(AIADB 1
DB A OS).

As a consequence of the independence assumption,
a provider of a data source only has to describe the
coverage of the source w.r.t. the query describing it.
He does not have to describe the coverage w.r.t. every
collection (or combination of collections) in the medi-
ated schema (some of which he will know little about).

The independence assumption is reasonable in prac-
tice since QS is supposed to be the most restrictive
query characterizing the contents of the source S.
Hence, given that we do not have more specific in-
formation about the contents of S, it is reasonable to
assume that within Qs, the contents of S are uniformly
distributed.

Finally, we note that providing coverage informa-
tion about sources was especially natural in our set-
ting because our source descriptions were given using
the approach advocated in the Information Manifold
system [LR096]. I n contrast, it would be a less general
extension if sources are described as in the TSIMMIS
system (see [II11971 for a comparison of the two sys-
tems).

3.33 Overlap Between Information Sources

To motivate the need for computing the overlap be-
tween information sources, consider the following sce-
nario. Suppose we have accessed a source S1 and we
are trying to decide which source to query next. Given
a source S, it is not enough to compute P(S (Q). In-
stead, we really need to know P(-Si A S 1 Q). That
is, we need to know what is the probability of finding
an answer of Q in S which does not appear in Si.

In the absence of any additional information, we can
assume that the contents of the sources are indepen-
dent of each other. That is, the presence of an object
in one source does not change the probability that the
object belongs to another source. In this case, we can
compute the overlap of Si and Sz w.r.t. a query Q as
follows (using values that can be computed from our

tree and coverage information):

WI A sa I 0) = P(Sl A sa I &I, &a, Q) a

p(Ql A Qz I Q>
= P(& I 91). P(Sz I Qz) .

p(Ql A &a I Q). (1)
The probability P(+& A Sz (Q) is simply P(Sz 1
Q) - P(Si A Sz I Q). Note that this process can
be generalized to compute a probability of the form
I’(+ A.. . A +-i A Si I Q), though we need to add
up 2’ terms.

In practice, data sources are not always indepen-
dent of each other, since many sources are correlated
(e.g., they may be derived from other sources by being
partial copies or by integration). When we have addi-
tional information about source overlap, we would like
to be able to use it.

Suppose we are given two correlated sources, Si
and Sz, that are described by the queries Qr and
Qz, respectively (i.e., we are given P(Si I Qi) and
P(sa I &a))- If we are also given overlap informa-
tion, expressed by the probabilities P(Si I Sa, Qi, Qz)
and P(Sz I Si, &I, Qz), we can also compute P(+i A
Sz 1 Q). Unfortunately, unlike the previous case,
this formula does not easily generalize to compute
+sl A.. . A +‘i-r A Si I Q). It does generalize when
the pairs of correlated sources are pairwise disjoint.
However, if a source Si is correlated to more than one
source (e.g., to Sz and S’s), then we need to specify
all the combinations of the form P(SA I &A), where
SA is a subset of (Si, Sz, Ss}, and QA is a subset of
(01, Q2, Q31.

4 Algorithms

We now consider the problem of ordering the informa-
tion sources. Assume that the mediator can access k
data sources in parallel at any given point. For exam-
ple, if the data sources are on the WWW, this is the
value of k that best utilizes the network bandwidth.
Our goal is to develop an algorithm that will give US

the best k sources to access at a given point. In this pa-
per we assume that the cost of accessing every source
is the same.

Formally, we want the k sources to maximize the
probability of finding answers to the query. That is,
given a query Q, we want to choose sources Si, . . . , Sk,
that maximize the value of P(Si V . . . V Sk I Q). This
value can be computed by the following formula, whose
terms can be computed as described in Section 3.

P(S1 v . , . V Sk IQ) = P(& 1 Q) + P(& A -1 1 Q) +
. . . + P(sk h +I A . . . A -Sk-l / Q). (2)

In general, finding the k sources that maximize the
probability of finding answers requires considering ev-

221

ery subset of k sources. Considering all such sub-
sets would be prohibitively expensive at run-time (in
particular, it would entail considering O(nk) possibil-
ities, where n is the number of sources). Therefore,
we describe efficient algorithms based on two effective
heuristics. In the next section we show that in our
experiments the algorithms are both efficient and pro-
duce nearly optimal orderings.

4.1 Two Greedy Algorithms

The first algorithm, simple-greedy, only uses the in-
formation in the mediated schema and the coverage
information. Given a query Q, the algorithm orders
the sources according to the value of P(S; 1 Q), which
is the probability of finding an answer to Q in S,
and chooses the best k sources. The potential over-
lap between sources are completely ignored, except
that we do not include a source S1 in the set of k se-
lected sources if there is another source &, such that
P(Sa I SI A Q) > 1 - E, where E is very small (this
would imply that the source Sr is nearly subsumed by
Sa).

The number of times that the algorithm invokes
the probabilistic computation is linear in the number
of sources. Since the algorithm ignores the overlaps
between sources, it produces nearly optimal solutions
when the overlaps between sources are relatively small.
To analyze the degree of overlap we distinguish two
cases: (1) source overlap is estimated based on the
conditional independence assumption, and (2) we have
explicit overlap information.

In the first case, the overlap is estimated using
Equation 1. The overlap is proportional to the prod-
uct of the coverages of the sources within the query de-
scribing them, and to the conditional probability that
an answer of the query is in both queries describing
the two sources. Therefore, the overlap is expected
to be small unless all these factors are simultaneously
large. Thus, the algorithm will in general produce
nearly optimal orderings except for the cases when we
have several sources that are nearly complete, and the
conjunction of their descriptions nearly covers the re-
quired query.

In the second case, the overlap between the sources
may be arbitrarily skewed. Consequently, cases can be
designed for which the algorithm behaves arbitrarily
badly. However, since the algorithm checks for nearly
subsumed sources, it avoids bad behavior in at least
one common case of source correlation.

The second algorithm, greedy-select, is shown in
Figure 3. In the first iteration, it computes the prob-
ability of finding answers to the query in each source,
i.e., for each source it computes P(Si 1 Q), and it se-
lects the source that maximizes this value. Assume

procedure greedy-select(Q, SI, . . . , S,,k)
begin
Selected = {}.
s = (4 . ..Sn}.
until Selected contains k sources or S is empty do

for each S E S,

let La. be the so&e in S for which ps is
maximal.

add S,,. to Selected and remove it from S.
return Selected.
end greedy-select.

Figure 3: Greedy algorithm for ordering sources.

the sources &, . . . , Si were selected in the first i steps.
In step i + 1, we compute for each remaining source
s, P(lS1 A . . . A di AS 1 Q), i.e., the probability of
finding an answer to Q in S that has not been found
in the previous chosen sources. We select the source
that maximizes this value, and continue in a similar
fashion until k sources are selected. Note that the
algorithm is independent of whether we have explicit
overlap information about the sources or whether we
are using the conditional independence assumption for
calculating P(T& A . . . A +3i A S 1 Q).

The running time of the algorithmis 0(2k~n), where
n is the number of sources (though, assuming n is
large and k is small, still very efficient compared to the
O(nk) of the algorithm that produces the optimal or-
dering). In contrast to algorithm simple-greedy, this
algorithm does take into consideration possible source
overlap, and can produce better orderings when the
sources are strongly correlated.

4.2 A Merge Algorithm

The third algorithm, merge-select, shown in Fig-
ure 4, relies on a set of precomputed orderings and
merges them appropriately at run-time. For every
atomic query, q, of the form c(X) or -c(X), we com-
pute and store the ordering of the sources according
to the value P(Si 1 q). Each ordering also associates
a numerical utility with every source, which is consis-
tent with the ordering. At run-time, given a query
oftheformqlA...Aq,,,, the algorithm considers ev-
ery source S, and merges the relative ordering of S in
the orderings for 41,. . . , qm, using a specific merging
function. The sources returned are the k sources for
which the merged ordering is the highest. Note that
the precomputed orderings that the algorithm uses do
not take into consideration the source overlaps. The
reason for this is that an order which would take into
consideration source overlaps will not be preserved af-
ter removing a chosen source from the order, which

222

procedure merge-select(Q, SI,. . . , S,,,k,Ol,. . . ,O,, f)
// Oi is the optimal orderings for the i’th conjunct of Q.
//f:a- -+ 7C is a merging function for utilities.
begin
let S be the set of sources that appear in the first k

positions of at least one of 01 (Si), . . . , Om(Si)*
for Si E S

where Oj(Si) denotes the utility of Si in the
ordering Oj .

Let S’ I,. . . , $., be the ordering of S by descending value
Oft&.

return Si,...,SL.
end merge-select.

Figure 4: Merge algorithm for ordering sources.

happens during the merging.
Two factors make the running time of this algo-

rithm especially efficient. First, the running time de-
pends only on the value of k, and not on the number
of sources. Second, the algorithm does not perform
probabilistic computations at run-time. The intuition
behind this algorithm is that in order for a source to
be good for a conjunction q1 A . . . A q,,,, it should be
good for at least one of the conjuncts. One case in
which this fails to be true is when we have a source
S, described by a query Qs, which is a conjunction
of qi’s, S has relatively good coverage of Qs, and QS
has relatively low coverage of each of the conjuncts
composing it. For example, a source giving good cov-
erage of AIAOS may be missed, since the conjunction
is covers very little of either AI or OS. Note that in
the common case in which sources are described by a
single collection, this cannot happen.

5 Experiments

The algorithms presented in the previous section trade
off optimality of the source ordering with run-time per-
formance. In this section we briefly describe the im-
plementation of the algorithms within the Information
Manifold system [LR096] and the preliminary exper-
iments showing their utility. The goal of the experi-
ments is to test the relative running times of the dif-
ferent algorithms, and to compare the quality of the
orderings they produce w.r.t. the optimal ordering.

Our experiment considered the domain of Com-
puter Science publications. Aside for collections de-
scribing classes of authors, our mediated schema in-
cluded the hierarchy of 30 subtopics of Computer Sci-
ence. The probabilistic information about overlaps be-
tween topics in the mediated schema was determined
statistically by analyzing a corpus of labeled Computer

Science abstracts4 (i.e., each abstract was labeled with
the set of topics associated with the paper). We con-
sidered a set of 80 data sources, all of which are bib-
liography servers found on the WWW (some gleaned
from the Glimpse bibliography server [BDMS94]). The
descriptions of the sources were given manually.

We considered two different scenarios w.r.t. source
coverages. In the first, we assumed none of the sources
give high coverage of their descriptions. In this case,
all sources gave coverages of 20%-40% of their descrip-
tion. In the second scenario, 5% of the sources had
high coverage (more than 70%), and the rest had low
coverage. In each scenario, the coverages were gener-
ated randomly.

In each scenario we varied the size of the queries
between a single conjunct and 3 conjuncts, and tested
the algorithms with a value of k = 3, i.e., to choose
the three best sources. We measured the running time
of each algorithm and the value of the ordering it pro-
duced, i.e., the value of P(&V.. .V& 1 Q). We denote
this value by the function f.

The overlap between data sources was computed
based on the assumption that sources are indepen-
dent (i.e., Equation 1). The merge function used in
merge-select was a simple sum of the relative posi-
tions in each of the orderings. We also implemented an
algorithm that computes the optimal ordering by con-
sidering all subsets of k sources. For each algorithm
we measured the ratio of the utility of the resulting
ordering to that of the optimal ordering and to that
of simple-greedy. We also measured the ratio of the
running time of the algorithm to the running time of
simple-greedy.

The results for merge-select are shown in Figure 1.
The results show that the running time of merge-
select is significantly lower than that of simple-
greedy and greedy-select. The reason for this
is that merge-select does not perform probabilistic
computations at run-time. The quality of the merge
algorithm depends on the number of conjuncts in the
query. With only one or two conjuncts, there is no sur-
prise that the merge algorithm is the most appropriate.
However, the performance degrades as the number of
conjuncts increases.

The results for greedy-select are shown in Fig-
ure 2. They show that the running time of simple-
greedy is lower than that of greedy-select, by a fac-
tor of up to 10. Since in our experiments the source
overlap is computed by assuming the sources are in-
dependent of each other, there are no significant dif-
ferences between the utility of the orderings computed
by greedy-select and simple-greedy.

‘Found inftp://ftp.cs.cornell.edu/pub/smart/cacm.

Scenario 1 Scenario 2
Query size f/f(Optimal) f/f(Greedyl) time/time(Greedyl) f/f(O~timal) flf(G+eedyl) time/time(Greedyl)

1 0.92 1 0.04 0.93 1 0.04
2 0.91 0.95 0.006 0.92 0.96 0.005

3 0.80 0.7 0.02 0.79 0.72 0.02

Table 1: Experimental results for algorithm merge-select

Scenario 1 I Scenario 2 I
L Query siae f/f(Optimal) f/f(Gzeedyl) time/time(G+eedyl) f/f (Optimal) f/f(Greedyl) time/time(G+eedyl)

I

1 0.95 1 4 0.96 1 4.1

2 0.96 1 6 0.95 1 6.2
3 0.98 1 10.5 0.96 1 10

Table 2: Experimental results for algorithm greedy-select

6 Conclusions and Related Work

In this paper we have introduced the use of proba-
bilistic information to the problem of data integration.
The key import of probabilistic information is that it
enables us to order the accesses to large collections of
information sources in a way that provides answers as
soon as possible to queries. We presented a formalism
that expresses three important kinds of probabilistic
information: overlaps between collections in the me-
diated schema, coverage of information sources and
overlap between information sources. The key advan-
tage of our formalism is that it enables us to specify
a complete and consistent probability distribution by
providing a relatively small number of probabilities.
We proposed several effective algorithms for utilizing
the probabilistic information. The algorithms repre-
sent a tradeoff between computational cost and the
optimality of the resulting orderings. Finally, we dis-
cussed and evaluated experimentally the advantages
and weaknesses of our algorithms. The experiments
showed that the algorithms perform efficiently in prac-
tice and produce orderings that are close to optimal.

R is a member of the collection c, and can contain
conjuncts of the form V Y[X.R = Y a c(Y)], select-
ing objects for which all values of the attribute R are
members of the collection c. Note that such conjuncts
do not allow to specify arbitrary joins. Supporting a
more general query language would require developing
appropriate semantics, which is known to be a non-
trivial problem.

We limited each source to be described by a sin-
gle schema query (and the associated coverage). A
important extension is to enable the query describing
the source to be a union of conjunctive queries. In
practice, some sources may cover more than one col-
lection, and we do not want to describe it by the least
common ancestor of these collections, which may be an
over-generalization. Fortunately, this extension can be
supported in our framework because all the definitions
we provided apply to unions of conjunctive queries as
well.

In order to better illustrate the novel aspects of
probabilistic reasoning in mediator systems, we have
purposely simplified some aspects of our framework.
To complete the discussion, we now discuss several im-
portant extensions to the basic framework, which our
experience has shown to be of practical importance.
The extensions concern the query language, the source
descriptions, specification of source overlap, and incor-
porating costs of accessing sources.

In order not to require the specification of an expo-
nential number of probabilities, we limited the kinds
of source overlap information that we can provide.
We are currently considering an extension based on
Bayesian networks [Pea88]. Informally, the advantage
of Bayesian networks is that they cut down drastically
the number of joint probabilities that need to be spec-
ified, while still providing a unique and complete prob-
ability distribution. Informally, for a given source S,
a Bayesian network only requires to specify the com-
binations of sources for which explicit overlap with S
is given.

In our discussion we limited the user queries and The work in this paper is based on the assump-
schema queries to conjunctions of collections literals tion that the cost of accessing the data sources is the
and literals specifying the value of an attribute. The same for all sources. While our probabilistic formalism
techniques described in this paper extend (using the would not need to be changed in order to accommo-
semantics of the query language P-CLASSIC [KLP97]) date costs of sources, we would need to reconsider the
to queries containing simple kinds of existential quan- utility function we are trying to maximize and modify
tifiers. In particular, queries can contain pairs of con- our algorithms appropriately. It should be noted that
juncts of the form 3 Y[X.R = Y A c(Y)], selecting the question obtaining cost estimates for external data
objects for which at least one value for the attribute sources is still an active subject of research [ACPS96].

224

Our work can be compared with works in several
domains. In database systems, the main use of statis-
tical information about data which have been used in
the past concerns selective estimation for the purpose
of computing join orders for query plans (e.g., [IC93]).
In contrast, in our work the goal of the probabilistic
information is to order the accesses to the information
sources in such that we obtain as many answers as
possible early on, as opposed to minimizing the cost
of answering the query.

There is a large body of work in the Artificial In-
telligence community on probabilistic reasoning, using
Bayesian networks as the main representational tool.
However, as it turned out, Bayesian networks turn out
not to be well suited for representing a possibly over-
lapping collection hierarchy. The reason is that encod-
ing such a hierarchy in a Bayesian network results in
a net with a high degree of connectivity, and in this
case, computing the needed probabilities from the net
is computationally expensive. Hence, we developed a
novel tree structure that is better suited for our pur-
poses. However, it is interesting to note that our tree
structure by itself, will not scale up well if we want to
represent multiple related hierarchies. In such a case,
we obtain significant advantages by combining the tree
structures via a Bayesian network like structure.

Our work can also be contrasted with information
retrieval systems. Ideally, if the entire contents of the
external data sources were available to the mediator,
we could use an information retrieval system to eval-
uate which source best covers a set of constants given
in a query. However, in our setting we are only given
descriptions of the information sources, and not the
contents themselves. Furthermore, an information re-
trieval system would only enable us to provide a set of
keywords as a query, and not a relational query over a
schema as we would like.

An important issue in using probabilistic informa-
tion is how we obtain the values for the probabilities.
In many cases the probabilities can be derived from
statistical information. This information can come di-
rectly from the data sources, or from other corpora.
For example, in our system the probability distribu-
tion on the topics of Computer Science was obtained
from a labeled corpus of Computer Science abstracts.
Several strategies can be devised for computing val-
ues for the coverages of sources. For example, one
can compute the coverage of a source by comparing
it with a source that is known to be almost com-
plete, or with the union of the contents of the available
sources (which can be considered as an approximation
of a complete source). Furthermore, several techniques
have been developed for automatically learning prob-
abilistic models (see [Hec96] for a survey), and these
techniques can be adapted for our context as well.

References
[ACPSQG]

[AKS96]

[BDMS94]

[Buc65]

[CGMH+94]

[EW94]

[FRVQB]

[HecQG]

PC931

[KLP97]

[KW96]

[LR096]

[Pea881

[TFtV97]

[Ul197]

S. Adali, K. Candan, Y. Papakonstantinou, and
V.S. Subrahmanian. Query caching and optimiza-
tion in distributed mediator systems. In Proceed-
ings of SIGMOD-96, 1996.

Yigal Arens, Craig A. Knoblock, and Wei-Min
Shen. Query reformulation for dynamic informs-
tion integration. International Journal on Intel-
ligent and Cooperative Information Systems, (6)
2/3399-130, June 1996.

C. Mic Bowmsn, Peter B. Danzig, Udi Man-
ber, and Michael F. Schwartz. Scalable intcrnet
resource discovery: Research problems and ap-
proaches. CACM, 37(8):98-107, August 1994.

Chris Buckley. Implementation of the SMART
information retrieval system. Technical Report
TR85-686, Department of Computer Science, Cor-
nell University, Ithaca, NY 14853, May 1985.

Sudarshan Chawathe, Hector Garcia-Moline,
Joachim Hammer, Kelly Ireland, Yannis Papakon-
stantinou, Jeffrey Ullman, and Jennifer Widom.
The TSIMMIS project: Integration of heteroge-
nous information sources. In proceedings of IPSJ,
Tokyo, Japan, October 1994.

Oren Eteioni and Dan Weld. A softbot-based in-
terfcicc to the internet. CACM, 37(7):72-76,1994.

D. Florescu, L. Raschid, and P. Valduricz. A
methodology for query reformulation in cis using
semantic knowledge. Int. Journal of Intelligent d
Cooperative Information Systems, 5(4), 1996.

David Heckerman. A tutorial on learning
with bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Advanced
Technology Division, 1996. Available from

http://vw.rezearch.microzoft.com/rszearch/.

Y. Ioannidis and S. Christodoulakis. Optimal his-
tograms for limiting worst-case error propagation
in the size of join results. ACM Transactions
on Databare Systema (TODS), 18(4):709-748, De-
cember 1993.

Daphne Koller, Alon Levy, and Avi Pfeffer. P-
CLASSIC: a tractable probabilistic description
logic. Proceedings of the AAAI Fourteenth Na-
tional Conference on Artificial Intelligence, 1997.

Chung T. Kwok and Daniel S. Weld. Planning to
gather information. In Proceedinga of the AAAI
Thirteenth National Conference on Artificial In-
telligence, 1996.

Alon Y. Levy, Anand Rajaraman, and Joann J.
Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedinga
of the Hnd VLDB Conference, India., 1996.

Jude8 Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networka of PIaudible Inference.
Morgan Kaufmann Publishers, Inc., San Mateo,
California, 1988.

A. Tomssic, L. Raschid, and P. Valduriez. A data
model and query processing techniques for scaling
access to distributed heterogeneous databases in
disco. IEEE l%anaactions on Computers, special
iddue on Distributed Computing Syatema, 1997.

Jeffrey D. Ullman. Information integration using
logical views. In Proceedings of the International
Conference on Databaae Theory, 1997.

