
To Weave the Web

Paolo Atzeni Giansalvatore Mecca Paolo Merialdo
Universitk di Roma Tre UniversitL della Basilicata Universitb di Roma Tre

atzeni@inf.uniroma3.it mecca@dis.uniromal.it merialdoQinf.uniroma3.it

http://poincare.inf.uniroma3.it:8080

Abstract

The paper discusses the issue of views in the
Web context. We introduce a set of languages
for managing and restructuring data coming
from the World Wide Web. We present a spe-
cific data model, called the ARANEUS Data
Model, inspired to the structures typically
present in Web sites. The model allows us
to describe the scheme of a Web hypertext,
in the spirit of databases. Based on the data
model, we develop two languages to support a
sophisticate view definition process: the first,
called ULIXES, is used to build database views
of the Web, which can then be analyzed and
integrated using database techniques; the sec-
ond, called PENELOPE, allows the definition of
derived Web hypertexts from relational views.
This can be used to generate hypertextual
views over the Web.

1 Introduction
As a consequence of the explosion of the World Wide
Web [12], an increasing amount of information is
stored in repositories organized according to loose
structures, usually as hypertextual documents, and
data access is based on browsing and information re-
trieval techniques.

Due to their intuitive nature, browsing and search-
ing present severe limitations [lo]. Also, they offer lit-
tle or no support to a global view of information in the
Web, nor to the actual extraction and manipulation of
data: specific effort, is required to use Web data as in-
put to subsequent computations or to correlate values

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

in Web pages. A step to overcome this problem has
been made with recent proposals of query languages
for the Web in the database style [20, 21, 241. They
tend to see the Web as a huge collection of essentially
unstructured documents, organized as a graph, and
allow to pose queries based on the structure of the
graph. Little assumption is made on the inner struc-
ture of HTML documents. Other proposals [15, 221
aim at integrating data from the Web (and also other
sources).

In this paper, we present the approach to the man-
agement of Web data as attacked in the ARANEUS
project carried out by the database group at Universitg
di Roma Tre. Our approach is based on a generaliza-
tion of the notion of view to the Web framework. In
fact, in traditional databases, views represent an es-
sential tool for restructuring and integrating data to
be presented to the user. Since the Web is becom-
ing a major computing platform, we believe that also
in this field a sophisticate view mechanism is needed,
with novel features due to the semi-structured nature
of the Web. First, hypertextual views should be offered;
in fact, the Web can be considered as a uniform inter-
face for sharing data, both in Internet and Intranet
environments; thus, in this context, restructuring and
presenting data under different perspectives requires
the generation of derived Web hypertexts, in order to
re-organize and re-use portions of the Web. To do this,
data from existing Web sites must be extracted, and
then queried and integrated: these manipulations can
be better attained in a more structured framework,
in which traditional database technology can be lever-
aged to analyze and correlate information.

Therefore, there seem to be different view lev-
els in this framework: (i) at the first level, data
are extracted from the sites of interest and given a
database structure, which represents a first, structured
view over the original semi-structured data; (ii) then,
further database views can be built by means of re-
organizations and integrations based on traditional
database techniques; (iii) finally, a derived hypertext
can be generated offering an alternative or integrated
hypertextual view over the original sites. In the pro-
cess, data go from a loosely structured organization
- the Web pages - to a very structured one - the
database - and then again to Web structures.

206

In this paper, we present a data model and a set of
languages that support such a view definition process.
Since step (ii) is based on rather standard database
techniques, we focus on the other two steps. A key
point in our approach consists in the use of a specific
formalism, the ARANEUS Data Model (ADM), for de-
scribing the structure of a Web hypertext. Based on
the data model, we propose two languages to define
views over the Web: the ULIXES language, to define
database views over a site, and, symmetrically, the
PENELOPE language, to generate a derived hypertext
from a database.

The ARANEUS Data Model

To extract data from a Web site, as a very first step we
derive a scheme’ of the site. The use of a specific data
model is central in our approach: in fact, in order to
reason about hypertextual data, we need to describe
its logical organization, abstracting from the physical
organization (the pages).

We say that ADM is a page oriented model, in the
sense that the main construct of the model is that of
page scheme, used to describe the structure of a set
of homogeneous pages in a site; the main intuition
behind the model is that an HTML page can be seen
as an object with an identifier, the URL, and several
attributes, one for each relevant piece of information in
the page. The attributes in a page can be either simple,
like text, images, binary data or links to other pages, or
complex, that is, lists of items, possibly nested. ADM
also provides heterogeneous union and a form type,
specifically needed to model the organization of Web
pages.

In order to see pages as instances of page schemes
we apply suitable text extraction procedures based on
the EDITOR language [ll], a new language for search-
ing and restructuring text. EDITOR programs are a
procedural language for manipulating text, based on
“cut & paste” operations. Each page is seen as an
object with several extraction methods, one for each
attribute of the page; these methods access the HTML
source of the page and extract the value of the corre-
sponding attribute. In essence, EDITOR programs act
as “wrappers” for pages.

Based on these ideas, the scheme of a Web site can
be seen as a collection of page schemes, connected us-
ing links. This structured view of the site abstracts
some of the properties of the pages, reflecting the user’s
perspective, and provides a high-level description to be
used as a basis for successive manipulations.

It is worth noting that this approach generalizes
the models adopted in other query languages for the
Web [20, 21, 241, in which pages are considered as
essentially unstructured objects; this means that ADM
can be used also when there is little structure. How-
ever, in addition, it allows to model existing structures
and regularities, when considered interesting. In fact,
in those sites in which pages referring to similar con-
cepts can be considered as having the same scheme,

1 Following [S] we could rather use’the term data guide.

the model provides a concise and effective description
of the site’s content.2

Database Views and Hypertextual Views

Based on the scheme, ULIXES and PENELOPE support
a two-way data-restructuring process. First, we use
ULIXES to build relational views over the Web. Here,
the knowledge about the structure based on the ADM
description of the site highly facilitates the process of
extracting data. To provide a flexible paradigm to
access data, we reconsider the issue of path expres-
sions [18] in this framework. We introduce the notion
of navigational expression as a means to express a set
of navigations - i.e. paths through pages - in a site;
in fact, to access data in the Web, it is natural to start
from some entry-point, like, for example, a home page,
and navigate until data of interest are found. The
main idea, here, is that each navigation can be seen as
a tuple of values and each navigational expression as a
relation. These relations, which can be locally materi-
alized and queried using any database query language,
represent a database view over a site.

Once data has been extracted, it can be easily ma-
nipulated locally. For example, it can be correlated
with Iocal data sets, or perhaps integrated with data
coming from different sites, using known techniques
(see, for example [19]).

Finally, PENELOPE can be used to present the re-
sulting database as a derived hypertext, that is, a hy-
pertextual view over the original data sources that can
be explored using a Web browser. PENELOPE uses
ADM to describe the structure of the resulting hyper-
text, and allows to define new page schemes to present
data under the form of derived pages, which are corre-
lated using a suitable URL invention mechanism bor-
rowed from object-oriented databases in order to gen-
erate a complex hypertext.

Based on these ideas, the view definition process
can be summarized as shown in Figure 1: (i) Web
sites of interest are identified and relevant data are de-
scribed using ADM; pages are wrapped using the EDI-
TOR language in order to abstract their representation
with respect to the physical structure; (ii) the ULIXES
view language is used to define a set of database views
over the sites of interest; these views can be analyzed,
manipulated and integrated; (iii) finally, the result-
ing table-based data are restructured using PENELOPE
to generate a derived hypertext to be browsed by the
user, possibly involving existing portions of the Web.

We have chosen to model database views as rela-
tions; however, all the ideas of the paper can be eas-
ily adapted to work with object-oriented or object-
relational structures as well.

2Pages in a site can be often reconducted to a relatively small
number of different types; in fact, in order to reduce design
and maintenance costs, large sites tend to reduce the amount of
heterogeneity among their pages, trying to gain structure [6].

query language query language _ . . I query,language
Relational View/

I I-II
/

I I
Relational View /

/
Integrated Viq/

I I 1

ULIXES I PENELOPE
---_ J ____. .-w-J----. - r--- -I----,

Integrated
I

Ad

:-..--............!

Integrated Web Site

Figure 1: The view definition process in ARANEUS

Organization of the Paper

Section 2 provides a discussion of related work. Sec-
tion 3 introduces the ARANEUS data model (ADM).
The ULIXES view language is discussed in Section 4,
whereas the language PENELOPE is introduced in Sec-
tion 5. Due to space limitations, the presentation is
mainly informal. All examples in the paper refer to the
Database and Logic Programming Bibliography server
at Trier [23]. In order to simplify the presentation,
only a fragment of the corresponding site is discussed,
and some of the features have been simplified. More-
over, all names in the paper are completely fictional.
An on-line demo of a prototype of the view languages
can be found at the ARANEUS project home page [l],
where more examples on different Web sites are pre-
sented.

2 Related Work
The ARANEUS data model can be considered as a sub-
set of ODMG [14], in the sense that the notion of page-
scheme can be assimilated to the notion of class. HOW-
ever, there are some important differences, motivated
by the nature of HTML documents: first, there is only
one collection type in ADM, namely, lists; moreover,
inheritance is not present in ADM, whereas heteroge-
neous union is supported; also, identifiers in ADM -

that is, URLs - are visible to the user and can be
queried like any other value; finally, ADM provides a
form construct, which is specific of the Web frame-
work.

Several query systems for unstructured data have
been recently proposed. W3QL [20] allows for ex-
pressing both structure specifying queries, based on
the organization of the hypertext, and content queries,
mainly based on information retrieval techniques.
Moreover, the language has been designed to be highly
extensible, and tools for managing Web forms are pre-
sented. WebSQL [24] is another query language in the
spirit of W3QL, in which the effort is towards formal-
ization and some interesting ideas are introduced, such
as the one of query locality. Other interesting ideas,
like the one of restructuring, are introduced in the We-
bLog query language [21], whose syntax and semantics
are based on logic. In all of these languages there is a
very simple notion of scheme, and pages are considered
within a single type, i.e. as nodes in a graph, with at
most a fixed set of attributes. Moreover, the idea of
derived Web structures is not investigated. ARANEUS
builds on these proposals, trying to generalize them.
In fact, if needed, ADM allows to see the Web as a
collection of essentially unstructured pages connected
using links (see Section 3); however, in addition, it can
also be used to describe the inner structure of pages by

208

means of a scheme, thus providing a finer description
of data organization.

Other proposals, namely Lore1 [9] and UnQL [13],
aim at querying heterogeneous and semi-structured
information. With respect to ARANEUS, these lan-
guages adopt a lightweight data model to represent
data, based on labeled graphs, and concentrate on
the development of powerful query languages for these
structures; on the contrary, ADM provides more com-
plex structures, such as lists of tuples. Moreover, in
both these proposals, there is no notion of scheme sim-
ilar to the one of ARANEUS. In fact, we consider the
scheme very important in order to reason about data
organization and to use high-level tools for manipulat-
ing data.

In ARANEUS, unstructured HTML documents are
analyzed to extract their structure; this has several
points in common with the management of textual
data in the O&L-dot project [7]. Although O&L-dot
is not a query language designed for the Web, it shares
with ARANEUS the idea of giving structure to unstruc-
tured data, and then use high-level database languages
to pose queries. However, in O&L-dot, this activ-
ity is based on the use of context-free grammars and
structuring schemes. When dealing with HTML doc-
uments, grammars show important limitations. First,
the structure is not always completely defined; more-
over, the structure can be irregular; finally, HTML
documents often contain errors, in the sense that they
do not fully comply to HTML grammar rules; missing
tags are a common example of these errors. To over-
come these problems, we adopt a different approach,
based on the EDITOR language [ll], which, being pro-
cedural, allows for a more flexible manipulation of text
than traditional parsers.

The use of path expressions [18] in the ULIXES view
language inherits some ideas from all of the previous
languages. In fact, in Section 4 we show how it is pos-
sible to express some WebSQL queries using ULIXES.
However, while all of the previous languages allow for
expressing recursive paths, here, for the sake of sim-
plicity, we discuss only simple path expressions with-
out recursion. This is sufficient for expressing most
“real-life” navigations. However, the language can be
extended with recursion in order to enhance the ex-
pressive power.

Other proposals [15, 221 aim at integrating data
from the Web. The TSIMMIS system [15] extracts
data from heterogeneous (possibly semi-structured)
sources, and correlates them in order to generate an
integrated database representation. Specific transla-
tors are written for the various sources. Information
Manifold [22] focuses on databases accessible through
an interface based on fill-in forms, and provides a spe-
cific support for querying, on the basis of declarative
descriptions of the contents. These techniques can be
used in ARANEUS in order to correlate tabular data
and generate integrated views.

Several commercial database systems (see, for ex-
ample, [4, 21) now provide functionalities for the auto-
matic generation of pages. However, they mainly allow

for generating a single page at a time, containing a set
of database tuples; usually, the skeletons of pages are
kept inside the database; pages contain specific HTML
tags, which specify that, in order to fill one page, an
SQL query is to be run against the database: once
the query has been executed, the resulting table is in-
serted in the body of the page returned to the user.
The language PENELOPE described in this paper can
be used to this end; however, it can also generate a
whole hypertext based on the database content. Fi-
nally, the issue of hypertext structure is not addressed
in commercial products.

3 ADM: A Logical Data Model for Web
Hypertexts

The ARANEUS Data Model (ADM) is a variant of
ODMG [14], specifically tailored to the Web context.
We say that it is page oriented in the sense that it rec-
ognizes the central role that pages play in this frame-
work.

Each Web page is considered as an object with an
identifier (the URL) and a set of attributes. We in-
troduce the notion of a page scheme, which resembles
the notion of relation scheme in relational databases
or class in object-oriented databases, to model sets of
homogeneous pages. Attributes of a page may have
simple or complex type. Simple type attributes are
monovalued and correspond essentially to text, images
or links to other pages. Beside monovalued attributes,
Web pages often contain collections of objects, that
is, multivalued attributes. We model them using lists
of tuples. Component types in lists can be in turn
multivalued, and therefore nested lists may arise. It
should be noted that we have chosen lists as the only
multivalued type since repeated patterns in Web pages
are physically ordered. Consider for example the page
in Figure 2 from the DB & LP Bibliography Server
at Trier [23]. It refers to fictional publications of au-
thor Leonardo Da Vinci. The page has a monovalued
attribute, the name of the author; it also has a multi-
valued attribute, consisting of the list of works; each
item in the list can in turn be described as a tuple hav-
ing attributes such as the title, the authors and so on.
Note that, for each author in the site there is a similar
page, and all of these pages share the same structure.

There are some specific aspects in this framework
with no counterpart in traditional data models. First,
an important construct in Web pages is represented
by forms. Forms are used to execute programs on the
server and dynamically generate pages. ADM provides
a form type, which is essentially considered ~1s a virtual
list of tuples; each tuple has as many attributes as the
fill-in fields of the form, plus a link to the resulting
page;3 such lists are virtual since tuples are not stored
in the page but must be “built up” by filling out the

3Forms introduce several specific data types, such as check-
boxes, radios or seLxtiona. We ignore these aspects here for
simplicity, and consider only attributes of type text. All ideas
can be easily generalized to the most general case.

209

D:
5 : * Leonardo Da Vinci
List of publications from the B’ y ho
Roaplrnning

l Lemnrdo Da Vinci. NJ. w: Ihe Hwuna Code: A Study On
theNature ofWater. P-1485: 200-215

l Buonarroti. Leonardo Da Vinci: The Mm in the Circle. m-1486: 73-90
l Lconsdo Da Vinci, M Buontii: Algorithm for C’hcckiiNumbers in

Databases. VLDB 1487: 150-167
l Leonardo Da Vinci, U Buonarr&i: Syllogisms on the Natwx of Human Mind

-(l-2): 39-65 (1488)
l N. Coounico. Leonardo Da Viii. E&&i: Gas Dynamics nd Possible

Flyii Vehicles: A Study with Drawin@. VLDB 1489: 159-166
l Leoturdo Da Vinci, N. Cowmico: Quayiq andUpdatingR&tionaI

Databases. -1489: 101-109
.N m. Leonardo Da Vinci, G. GaMei: The Vi& of the Rw4rs: Study of

&UscofLigbt inPaintings. VLDB 1488: 159-166
l Leonxdo Da Vinci. m: On thNature of EWh, Wii pnd Fire Tm

s(2): 212-230 (1489)
l Lconardo Da Vinci, N.~ooanico: Towards I Flyin Vehicle. SIGMoD

confcmlcc 1490: 84-93
l M Buonwoti. N., Leonardo Da Vinci. 0. Galilei: Monalisa rmd the

Mwagancnt of Multimedia Data in Databases. T-(3): 291-308 (1490)

Figure 2: A page containing the publications by
Leonardo Da Vinci

form and executing the corresponding program. Sec-
ond, usually a site includes pages that have a special
role and are unique, in the sense that there are no
other pages with the same structure. Typically, at
least the home page of each site falls in this category.
For the sake of homogeneity, we also model these pages
by means of page-schemes. Both of these aspects can
be seen in the page in Figure 3 from [23]. The page
is unique since no other page in the site has the same
structure. Moreover, an essential feature of the page is
the form for searching the author database: by speci-
fying a string corresponding to the name of an author,
the list of publications of that author is returned. We
see the form as a virtual list of tuples with two at-
tributes: the first is the text entered as a string to
search; the second is a link to the page generated by
the corresponding search; each tuple associates a result
page with a search keyword; tuples in the list cannot
be directly accessed, but they must be “built up”, in
the sense that a keyword has to be specified in order
to generate a result page.

Other constructs of the model are due to the semi-
structured and heterogeneous nature of Web data; be-
sides optional attributes, which allow to describe pages
with missing features, ADM also provides a heteroge-
neous union type [17], which seems more appropriate
to this context than traditional class inheritance [S].
Consider again the page in Figure 3 from [23]. The
search form has a rather involved behavior: when a
string is specified, the database of author names is
searched; if a single name matching the query string is
found, the author’s page with his/her publications is
returned; on the contrary, if the query string matches
several names, a different page containing the list of all

Author-Index: Root Page

: *gj?!

Figure 3: The page for searching the author database

matching names, along with links to the correspond-
ing pages, is returned. Union is essential to model this
behavior: in this case, we say that the form returns
a link to a type which is the union of two different
page-schemes, one for author pages and the other for
name-index pages.

An ADM page-scheme has the form P(A1 : Tl, AZ :
T2,. . . , A, : T,,), where P is a page name, each A; is an
attribute and each Ti is an ADM type. Attributes may
be labeled optional. The page-scheme may be labeled
as unique.

Here are some examples of page-schemes from [23]
declared in the ARANEUS Data Definition Language
(DDL). Consider first page-scheme AuthorPage, which
describes pages such as the one in Figure 2. The page
has one monovalued attribute (the Name) plus a mul-
tivalued attribute (the WorkList), containing the list
of publications; this, in turn, is a set of nested tuples.
It can be described as follows:

PAGE SCHEME AuthorPage
lame : TEXT;
UorkList:LIST OF

(Authors: TEXT;
Title: TEXT;
Reference: TEXT;
Year : TEXT;
ToRefPage: LIIK TO ConferencePage

UIIOI JournalPage;
AuthorList:LIST OF

(lame : TEXT;
ToAuthorPage: LIIK TO

AuthorPage
OPTIOIAL;););

EID PAGE SCHEHE

Note how we choose to model information about pub-
lications: for each paper, we extract the title, the ref-
erence (conference or journal the paper was published
in) and the year; moreover, we also have a list of au-
thors; for each author, we report the name and a link
to the corresponding page in the site; this link is op-
tional since it is not present for all authors. However,

210

we choose to have a slightly redundant representation,
in the sense that we also extract a string containing
the names of all authors. This has several advantages
in terms of querying the site, allowing to pose con-
ditions on all author names, and can be done since
the page-scheme is only one of the possible descrip-
tions of information in the page, reflecting the user’s
personal view of the site, and can be adapted on the
basis of efficiency needs. Each citation also contains
a link, ToRefPage, to the corresponding conference or
journal page; since pages for conferences and journals
have different structure, we use a union type to model
the link.

Note that, to see actual pages in the site as in-
stances of the page-scheme, we need to access the
HTML source and apply suitable text restructuring
procedures. Attribute values are extracted from the
HTML source using the EDITOR language [ll], a for-
malism for text manipulation. In the current imple-
mentation we wrap pages using Java classes; every
page-scheme in the site corresponds to a specific class,
with one method for each attribute; each method im-
plements an EDITOR program that accesses the HTML
source and returns a complex value for the attribute.

Another example is the page-scheme
AuthorSearchPage, describing the page in Figure 3.

PAGE SCHEME AuthorSearchPage UKIQUE
URL /indices/a-tree/index.html
YameForm:FORH(lame: TEXT;

Submit: LIUK TO AuthorPage
IJKIOI IndexPage);

EKD PAGE SCHERE

The page-scheme is UNIQUE, in the sense that it has
a single instance in the site, whose URL is explicitly
mentioned. It also contains an attribute of type FORM.
The form has two attributes: the keyword to search
for, and the link to the search-result page. Note how
the link has a union type; in fact, as discussed above,
based on the seaich results, pages with different struc-
tures are returned. Note also that the actual page in
Figure 3 also contains an index of all author names
based on initials: however, we consider it irrelevant in
order to navigate the site and choose not to model it.

We define the notion of ADM scheme as a set of
page-schemes. We can represent the scheme as a di-
rected multigraph; nodes in the scheme graph are
page-schemes; each unique page-scheme in the dia-
grammatic representation is denoted as a single page,
whereas non-unique page-schemes are represented as
“stacks” of pages; edges are used to denote links. A
fragment of the DB & LP Bibliography server scheme
is shown in Figure 4, which also contains an explana-
tion of the other symbols.

Based on this perspective, at the instance level, a
site can be seen as a graph in which links connect trees
corresponding to pages. In fact, each instance of a
page-scheme is a tree (because of its nested structure),
and may contain links to other instances. Nodes of
trees (and therefore of the overall graph) are essentially
tuples; each tuple attribute may either have a simple

value or be the root of a subtree; optional attributes
may have a null value.

Note that ADM generalizes the data models used in
other Web query languages [20, 21, 241. For example,
in WebSQL [24], the Web is seen as a graph of docu-
ments connected by links; each document has a fixed
set of attributes: the URL, the title, the document
text, the type, etc. The whole Web is described using
a simple relational scheme with two (virtual) relations,
as follows:

Document(ur1, title, text, type, length, modif)
Anchorcbase, href, label)

Each tuple in relation Document describes a single
page, whereas a tuple in relation Anchor corresponds
to a link from page with URL base to page with URL
href, with the associated label.

We can easily give a similar scheme of the whole
Web using ADM. The scheme contains a page-scheme,
WebPage, used to model a generic Web page; for each
page, attributes URL, title, text, type, length
and modif, all of type TEXT are reported; a list at-
tribute, LinkList models the list of all links in the
page; for each link, the label is reported, plus the
link type, i.e. internal or external. It is worth not-
ing that all of these pieces of information can be easily
extracted from any page, with little effort. Based on
this scheme, it is possible to ask very general queries,
such as “retrieve all documents in the Web mentioning
Java”, using ULIXES. This shows that our approach
is highly scalable: ADM allows to model the organi-
zation of Web pages at different levels of granularity,
going from very general and unstructured representa-
tions, like in WebScheme, to rather tight and structured
representations for specific portions, like for example
DBLPScheme in Figure 4.

4 ULIXES: Defining Relational Views
over the Web

In this section, we present ULIXES, a language for the
definition of relational views over the Web. ULIXES
has been designed to be a simple and flexible language
for extracting data from the Web based on an ADM
scheme. The data extraction process is based on the
notion of navigation in the site. Navigations in ULIXES
are expressed using navigational expressions, i.e. path
expressions [18] denoting paths in the site graph. In
our perspective, a site offers in essence a set of nav-
igations through pages in the site; these navigations
allow to follow links between different pages, but also
to explore the hierarchical structure of a page: they
represent a natural means to query the page. Con-
sider for example the scheme in Figure 4. Suppose we
are interested in reaching all author pages in the site.
To do this, we can start from the author search page
(AuthorSearchPage), whose URL is known, submit an
empty form, and reach the search result page; this is an
index of all authors in the site, that is an instance of
page-scheme AuthorIndexPage; for each author, the

211

DBLPHomePage

B

El

klm,
< 8:

c c
I

Legenda

ConferencePage 1

Figure 4: A portion of DBLPScheme, the ADM scheme for the the DB & LP Bibliography Server

corresponding page can be reached by following the
associate link. These navigations in the site can be
specified using the following navigational expression,
in which the dot operator (.) denotes navigations in-
side pages, and the link opemtor (+) is used to follow
links:

AuthorSearchPege.IemePorm.Submit +
AuthorIndexPage.AuthorList.ToAuthorPage +

AuthorPage

The semantics of the expression can be inter-
preted as all possible paths in the site obtained
by starting from the unique instance of page-
scheme AuthorSearchPage, submitting an empty
form, traversing the AuthorIndexPage and then reach-
ing an AuthorPage. Each of these navigations can be
represented as a tuple of values, one value for each
monovalued attribute associated to nodes in the navi-

gation; thus, each navigational expression can be rep-
resented as a relation, in the relational model sense.
Based on these ideas, we can associate a relation, i.e.
a set of tuples to each navigational expression. Given
a navigational expression, N, we call SEM(N) the cor-
responding relation. We assume that attributes are
suitably renamed whenever needed.

Given the relational nature of navigations, the def-
inition of relational views over ADM schemes can be
directly based on navigational expressions. We have a
DEFINE TABLE statement to be used for this purpose,
with the form:

DEFINE TABLE R(Bi , B:!, . . . , B,)
AS N
IN S

USING Al,&,...,&
WHERE Cl,C2,. . .ck

212

where: (i) R is a relation name and &, Bz, . . . , B,
are attributes; (ii) S is an ADM scheme; (iii) N is a
navigational expression over 9, (iv) Al, AZ, . . . , A,, are
attributes of SEM(N); and (u) cl, ~2,. . . , ck are a set
of conditions over the attribute values. The seman-
tics of a DEFINE TABLE can be defined on the basis
of previous notions: relation R is the projection onto
Al, AZ, . , A,, of the selection of SEM(N) with respect
to the conjunction cl, ~2, . . . , ck, with each Ai renamed
to Bi, that is:

R = PB~+A~,...,B,~A,(~AI,...,A,(Qc~...ACLSEM(N)))

In the current implementation, we see each page as a
nested relation [8], in which list attributes are mod-
eled using tables. Due to the absence of duplicates,
our relations can be decomposed in flat relations,4 and
the semantics of navigational expressions can be ess-
ily defined using joins. To do this, for each page in a
navigation, we generate the associated table, and then
join them using a local SQL engine.

As an example, suppose we are interested in the au-
thors, titles and references for all papers by Leonardo
Da Vinci in VLDB conferences. We can generate such
a relation using the following statement:

DEFIIE TABLE VLDBPapers (Authors, Title, Reference)
AS AuthorSearchPaga.IameForm.Submit+

AuthorPage.YorkList
II DBLPScheme
USMC AuthorPage.YorkList.Authors,

AuthorPage.YorkList.Title,
AuthorPage.YorkList.Ileference

WHERE AuthorSearchPage.IameForm.Iame =
'Leonardo Da Vinci’,

AuthorPage.VorkList.Reference
LIKE WLDBY.'

In this expression, we are essentially giving a name,
VLDBPapers, to a relation corresponding to the naviga-
tional expression AuthorSearchPage . NameForm. Submit
+ AuthorPage. WorkList; the resulting relation in-
cludes only a subset of attributes, namely those listed
in the USING clause: the authors, title, and reference
for each of the selected papers. There are several
things to note with respect to this example; first, dur-
ing the navigation, data are filtered using conditions
in the WHERE clause, so that only paths ending with
a paper in a VLDB conference are considered. More-
over, the WHERE clause is also used to fill-in the form
in a completely transparent way by specifying that the
name attribute of the form must be equal to ‘Leonardo
Da Vinci’. Note also that in the navigational expres-
sion we require that the Submit link returns a page
over scheme AuthorPage, that is, we are selecting one
of the possibilities in the union type. The language
has specific mechanisms for dealing with union types,
so that, if the page returned is of the correct type,
it navigates it; otherwise, it simply returns an empty
result.

4This is due to the fact that we suppose nested structures to
be in Partitioned Normal Form (PNF) [25]

We would like to emphasize the effectiveness and
flexibility of the chosen approach. It is effective, in
the sense that it provides a high-level tool for extract-
ing data; note that computing the shown queries only
by means of browsing would require a significant ef-
fort for the user. At the same time, the approach is
flexible since, once a relational view has been defined
and a table has been generated, any high-level query
language - relational or object-oriented - can be used
to access data, provided that it can manipulate ta-
bles. These relational views can then be integrated
with other data sources, local data sets or also views
over different sites. As an example, suppose we gen-
erate a large table containing the references of all au-
thors in the DB & LP Bibliography server [23]. We
may think of applying the same process to other bib-
liography servers and then integrate the two views to
obtain a larger set of references. Based on the inte-
grated database, a new, derived site can be then gen-
erated using the language PENELOPE.

5 PENELOPE: Generating Derived Hy-
pertexts

The approach discussed in the previous section is in-
teresting but could be considered as extraneous to the
Web framework, where users access information by
navigating hypertexts. We thus would like to extend
the view paradigm in such a way that, once data have
been retrieved, they are presented to the user as a hy-
pertext. Here, we show how relational views can be
transformed back into Web hypertexts, whose pages
have a structure that does not appear in the existing
site(s). This restructuring technique can be used to
define a derived site, that is, a hypertextual view over
the input sites or over a database, but also as a support
to casual queries, where the user wants to browse the
results (this could be particularly useful with respect
to complex queries with large results).

In order to reach this goal, we introduce PENELOPE,
which allows the definition of new page-schemes ac-
cording to which data will be organized. PENELOPE
provides a DEFINE PAGE statement to specify how
to generate HTML pages starting from the database
content. DEFINE PAGE statements have the following
form:

DEFINE PAGE P [UNIUUE]
AS S
FROM R

where: (i) P is a new page-scheme name; (ii) R is
a relation; and (iii) S describes the page structure,
by specifying the page attributes, their type, and their
correspondence with attributes of R. The UNIQUE key-
word is optional; it is used to specify that the defined
page-scheme is unique.

Let us illustrate the semantics of these statements
by means of an example, again on [23]. Suppose we

213

have used ULIXES to navigate the site and build a ta-
ble, called DaVinciPapers, containing a tuple of the
form (Authors, Title, Reference, Year, ToRefPage) for
each paper by Leonardo Da Vinci. We want to re-
organize papers, dividing them on the basis of the
year of publication. To do this, for each year in the
table, we generate a page containing the list of pa-
pers published by the author in that year; moreover, a
unique page containing the list of all years is created
to provide access to year pages. We need a restruc-
tured scheme as described in Figure 5; the two page-
schemes are called DaVinciYearsPage and YearPage.
The structure of the pages can be defined using the fol-
lowing DEFINE PAGE statements. Note that attributes
of the source table DaVinciPapers are enclosed in an-
gle brackets O.

DEFIlE PAGE YearPage
AS URL URL(<Year>);

Year: TEXT <Year>;
UorkList: LIST OF

(Authors : TEXT <Authors>;
Title: TEXT <Title>;
Reference: TEXT <Reference>;
ToRefPage: LIIK TO ConferencePage

UBIDI JournalPage
<ToRefPage>);

FROH DaVinciPapers

DEFIIE PAGE DaVinciYearsPage UrIQUE
AS URL 'result.html';

YearList: LIST OF
(Year: TEXT <Year>;
ToYearPage: LIIK TO

YearPage (URL(<Year>)));
FROM DaVinciPapers

These statements generate the HTML code for the
new pages. The first statement defines YearPage as
a page-scheme with a monovalued attribute, the year,
and a multivalued attribute corresponding to the list
of papers by Leonardo published in that year. A
page will be created for each different year; clearly,
URLs for these pages have to be generated by the sys-
tem, and each time a page is created, a new, different
URL is needed. We use function terms to generate
URLs; in fact, term ID&(<Year>) specifies that the
system has to generate an URL for each page over
scheme YearPage, and that the URL must be uniquely
associated with the year value.5 The DEFINE PAGE
statement also describes how pages must be filled-in
starting from attributes in the relation. For example,
the definition of attribute Year of type TEXT in page-
scheme YearPage, specifies that its values come from
attribute Year of relation DaVinciPapers.

214

The second statement defines DaVinciYearsPage
as a unique page-scheme with a multivalued attribute
YearList, corresponding to the list of years; note how,
in this case, a local, constant URL, result. html, is
assigned to the corresponding instance. Since we de-
clare the page-scheme as unique and indicate a single

5This technique is somehow similar to the use of Skolem func-
tars to invent new OIDs in object-oriented databases [16].

DaYinciYunP~

1

U

1
wbc-~ hmmkme HbJolmlal~~ hosmckme

Figure 5: New page-schemes to organize papers by
year

URL, we are assuming that a unique page will be gen-
erated by the statement. In the page, each item in
the year list must be linked to the corresponding year
page; to do this, we use as a value for the link the same
function term used to generate URLs of years pages,
i.e. DFlL(<Year>).

Note that, for each paper in YearPage, we also want
to access the corresponding conference or journal page.
However, we do not re-create these pages in the derived
hypertext, but instead we access those in the original
site. To link these pages, we use URLs of existing
pages, i.e. values of attribute ToFlefPage in the table,
which have been extracted using ULIXES. In essence,
by using the two languages together, we generate a
hypertext made of some new pages, offering a different
perspective over data, plus an existing portion of the
original site.

DEFINE PAGE statements are based on these ideas.
Local URLs are used to identify new pages; they can be
either constant strings, or strings built using the func-
tion symbol DRL from attributes in relations. For ex-
ample result. html is a constant local URL, whereas
m(<Year>) denotes a local URL built from values of
attribute Year.

We have done several experiments using PENELOPE
to integrate different sites from the same domain. The
system effectively allows to generate an integrated
view over the existing sites. Moreover, it is possible
to choose to which extent the derived hypertext is to
be locally materialized. This has proven very useful
when dealing with multimedia data; as an example,
we have generated an integrated view over the Lou-
vre [3] and the Uffizi [5] virtual museums; in this new
site, an integrated list of works is reported for each
artist, and an image of the work is accessible. In order
to reduce the disk storage, images have not been down-
loaded, and they are accessed on the original sites. In
this way, integrated Web views can be generated by
re-using portions of existing sites.

Acknowledgments

We would like to thank Elena Tabet, Alessandro Maxi

and Salvatore Labonia for stimulating discussions on the
subject of the paper and for their contributions to the de-
velopment of the prototype. Thanks also go to Stephane
Grumbach, who provided interesting comments on an early
draft of the paper. This work was supported by Univer-
sita di Roma Tre, MURST, and Consiglio Nazionale delle
Ricerche.

References
[l] The ARANEUS Project Home Page. http://-

poincare.inf.uniroma3.it:8080/Araneus.

[2] Informix Home Page. http: //ww . inf ormix. corn.

[3] The Louvre Web server. http://vuu.louvre.fr.

[4] Oracle Home Page. http: //vwu. oracle. corn.

[5] The Uffizi Web server. http://wvu.uffizi.-
f irenze. it.

[6] S. Abiteboul. Querying semi-structured data.
In Sixth International Conference on Data Base
Theory, (ICDT’97), Delphi (Greece), Lecture
Notes in Computer Science, 1997.

[7] S. Abiteboul, S. Cluet, V. Christophides, T. Milo,
G. Moerkotte, and J. Simkon. Querying docu-
ments in object databases. Journal of Digital Li-
braries, l(l):&19, April 1997. http://vww-db.-
stanford.edu.

[S] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of databases. Addison Wesley Publ. Co., Reading,
Massachussetts, 1994.

[9] S. Abiteboul, D. Q uass, J. McHugh, J. Widom,
and J. Wiener. The Lore1 ouerv language for
semistructured data. Journal of Digital libraries,
l(l):6888, April 1997.

0] P. M. G. Apers. Identifying internet-related
database research. In Second International East-
West Database Workshop, Klagenfurt, Work-
shops in Computing, pages 183-193. Springer-
Verlag, 1994.

l] P. Atzeni and G. Mecca. Cut and Paste.
In Sixteenth ACM SIGMOD Intern. Symposium
on Principles of Database Systems (PODS’97),
Tucson, Arizona, 1997. http: //poincare. inf . -
uniroma3.it:8080/Araneus/publications.html.

[12] T. Berners-Lee, R. Cailliau, A. Lautonen, H. F.
Nielsen, and A. Secret. The World Wide Web.
Communications of the ACM, 37(8):76-82, Au-
gust 1994.

PI P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and optimiza-
tion techniques for unstructured data. In ACM
SIGMOD International Conf. on Management of
Data (SIGMOD’96), Montreal, Canada, pages
505-516, 1996.

[14] R. G. G. Cattel. The Object Database Standard
ODMG-93. Morgan Kaufmann Publishers, San
Francisco, CA, 1994.

[15] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. D. Ullman,
and J. Widom. The TSIMMIS project: Integra-
tion of heterogenous information sources. In IPSJ
Conference, Tokyo, 1994.

[16] R. Hull and M. Yoshikawa. ILOG: Declarative
creation and manipulation of object identifiers. In
Sixteenth International Conference on Very Large
Data Bases, Brisbane (VLDB’gO), pages 455-468,
1990.

[17] R.B. Hull and R. King. Semantic database
modelling: Survey, applications and research is-
sues. ACM Computing Surveys, 19(3):201-260,
September 1987.

[18] M. Kifer, W. K im, and Y. Sagiv. Querying object-
oriented databases. In ACM SIGMOD Interna-
tional Conf. on Management of Data, pages 393-
402, 1992.

[19] W. Kim, editor. Modern Database Systems: the
Object Model, Interoperability, and Beyond. ACM
Press and Addison Wesley, 1995.

[20] D. Konopnicki and 0. Shmueli. W3QS: A query
system for the world-wide web. In International
Conf. on Very Large Data Bases (VLDB’95),
Zurich, pages 54-65, 1995.

[21] L. Lakshmanan, F. Sadri, and I. N. Subramanian.
A declarative language for querying and restruc-
turing the Web. In 6th Intern. Workshop on Re-
search Issues in Data Engineering: Interoperabil-
ity of Nontraditional Database Systems (RIDE-
NDS’96), 1996.

[22] A. Y. Levy, A. Rajaraman, and J. J. Ordille.
Querying heterogeneous information sources us-
ing source descriptions. In International Conf.
on Very Large Data Bases (VLDB’96), Mum-
bai(Bombay), 1996.

[23] M. Ley. Database systems and logic programming
bibliography server. http://uvu.informatik.-
uni-trier.de/‘ley/db/index.html.

[24] A. M en e zon, d 1 G. Mihaila, and T. Milo. Query-
ing the World Wide Web. Journal of Digital Li-
braries, 1(1):54-67, April 1997.

[25] M.A. Roth, H.F. Korth, and A. Silberschatz. Ex-
tended algebra and calculus for 11NF relational
databases. ACM Transactions on Database Sys-
tems, 13(4):389-417, December 1988.

215

