
Parallel Algorithms for
High-dimensional Proximity Joins

John C. Shafer* Rakesh Agrawal

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Abstract

We consider the problem of parallelizing high-
dimensional proximity joins. We present
a parallel multidimensional join algorithm
based on an the epsilon-kdB tree and compare
it with the more common approach of space
partitioning. An evaluation of the algorithms
on an IBM SP2 shared-nothing multiprocessor
is presented using both synthetic and real-life
datasets. We also examine the effectiveness
of the algorithms in the context of a specific
data-mining problem, that of finding similar
time-series. The empirical results show that
our algorithm exhibits good performance and
scalability, as well an ability to handle data-
skew.

1 Introduction

Many emerging applications require efficient process-
ing of proximity joins on high-dimensional points[20].
Typical queries in these applications include:

l Find all pairs of similar images (often as a prelude
to clustering the images).

0 Retrieve music scores similar to a target music
score.

l Discover all stocks with similar price movements.

*Also, Department of Computer Science, University of Wis-
consin, Madison.

Permission to copy without fee all or part of this material is
granted provided that the copies an not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, o+ to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

The work presented in this paper was motivated by
the particular data-mining problem of finding similar
time-series[l][7]. In [2], an algorithm was proposed
that first finds all similar “atomic” subsequences, and
then stitches together the atomic subsequence matches
to obtain larger similar subsequences. A sliding win-
dow of size w is used to create atomic subsequences
from each time series. These atomic subsequences are
then mapped to points in w-dimensional space. Find-
ing similar atomic subsequences now corresponds to
the problem of finding all pairs of w-dimensional points
that lie within e-distance of each other, where E is a
user-specified parameter.

While parallel algorithms for performing joins on
spatial data already exists (e.g. [lg], [3], [9]), they
have mainly concentrated on joining map data where
spaces are typically limited to only two or three dimen-
sions. Furthermore, these algorithms have been de-
signed primarily to perform intersection joins on geo-
metric objects such as polygons and line segments and
are not well optimized for handling high-dimensional
point data.

We examine the issues in performing proximity joins
on high-dimensional points in parallel. We will focus
on self joins, although the ideas presented directly ap
ply to non-self joins.

Problem Definition

The proximity self-join problem is defined as follows:

l Self-join: Given a set of N w-dimensional points
and a distance metric, find all pairs of points that
are within E distance of each other.

The distance metric for two w-dimensional points
2 and ? that we consider is

\ 1 /

Lz is the familiar Euclidean distance, L1 the Manhat-
tan distance, and L, corresponds to the maximum

.76

distance in any dimension.

Paper organi5ation

The rest of this paper is organized as follows: Sec-
tion 2 discusses some of the existing serial work on
multidimensional joins. Section 3 presents related par-
allel work as well as our parallel e-kdB join algorithm
and a space-partitioning algorithm. A performance
study comparing join algorithms along with a sensitiv-
ity analysis is given in Section 4. Concluding remarks
and possible future directions are in Section 5.

2 Serial Join Algorithms

In this section, we briefly review some of the existing
multidimensional join work and discuss how they ap-
ply to our problem of performing a proximity join with
high-dimensional points. Many methods have been
proposed including a variety of index-based methods,
as well as space partitioning and multidimensional
remapping approaches. However, most of these algo-
rithms are designed for geometric rather than point
data with universes typically consisting of only two or
three dimensions.

2.1 Non-Index Based

One approach to multidimensional proximity joins is
to use space-filling curves to map objects into one-
dimensional values. This is done by partitioning the
space regularly into N cells. A space-filling curve is
drawn through the multidimensional space and cells
are numbered in the order visited. Objects to be joined
are then examined sequentially and for each cell which
an object overlaps, a <cell-number, object-pointer>
pair is created. Standard relational indices and tech-
niques for computing joins can now be used on the
tuples’ one-dimensional cell values. This approach in
[17] uses a space-filling curve known as the “Z curve”;
assigned cell-numbers are called “Z values”. Other
space-filling curves include the Gray code[6] and the
Hilbert curue[l5]. Of these three, the Hilbert curve
has been shown to cluster space better[lI]. A short-
coming of space-filling curves is that some proximity
information is always lost, so nearby objects may have
very different Z values. This complicates the join al-
gorithm. This approach works best when the join con-
dition is that two objects overlap. This reduces the
problem to an equi-join on the Z values and allows
the traditional relational join algorithms to be used
essentially unmodified.

A related approach is to do away with the space-
filling curves and one-dimensional mapping and repre-
sent each cell with a data bucket. Instead of mapping
objects to cell numbers, we store a pointer to the ob-
ject in each data bucket which is within c-distance.

We can then perform a self join by joining each indi-
vidual data bucket with itself. Non-self joins are han-
dled by using the same partitioning scheme on each
dataset and then joining corresponding data buckets.
This approach falls within the general framework pre-
sented in [14]. In that framework, an algorithm defines
bucket extents to hold data objects and an assignment
function that maps data objects to buckets. Bucket
extents may or may not be immutable and the assign-
ment function may be one-to-one or many-to one. In
the join phase, an algorithm identifies pairs of buckets
to be joined (termed join-bucket pairs) and effects each
join in turn. An example of this framework was pre-
sented in [14] where bootstrap seeding[l3] and sampling
was used to obtain the initial bucket extents.

Another space partitioning algorithm (PBSM)
was recently presented in [18] and to some degree, it
also fits within the above framework. To address data
skew, PBSM partitions the space into many tiles such
that there are more tiles than data buckets. These tiles
are then grouped together using hashing to produce
buckets that are relatively consistent in size. Objects
are mapped to the buckets depending on which tiles
they overlap. For non-self join, objects of the larger
relation are mapped to only one bucket - objects of
the smaller relation must be replicated in each bucket
whose extent is overlapped. Joins between correspond-
ing buckets are then performed using plane sweeping.
To perform the join efficiently, the number of buck-
ets is chosen such that two buckets will fit entirely in
memory.

2.2 Index Based

Considerable recent work in multidimensional joins
has focused on using indices to aid the join. This
includes R-trees as used in [4], [3] and [2], PMR
quadtrees in [9], and seeded trees in [13]. Whatever
the index used, they follow the same schema whereby
two sets of multidimensional objects are joined by do-
ing a synchronized depth-first traversal of their indices.
Intersection joins are handled by joining any two in-
dex buckets whose extents overlap. Likewise, proxim-
ity joins are handled by joining any two index buckets
whose boundaries are sufficiently near.

Most of these approaches are not well suited to
the particular problem of proximity joins on high-
dimensional points. The inadequacies include an in-
ability to scale to high-dimensions [20]. For example,
the R tree and the kdB tree both use a “minimum
bounding rectangle” (MBR) to represent the regions
covered by each node in the index. As the number of
dimensions gets large, the storage and traversal costs
associated with using MBRs increases. Most indices
also have substantial build-times. If an index required

177

ta El q q
leaves

Figure 1: e-kdB Tree

1 ,.... 0 n 0 0
leaf

for a join does not exist, the cost required to build it
can often be more than the cost of the join [18]. Many
of these algorithms therefore assume that the required
index is already available. This is not well-suited to
our motivating application of similar time-series since
the data to be joined is typically generated “on-the-
fly”.

Other drawbacks include skew-handling capabili-
ties. In the Grid File[16], skewed data can cause rapid
growth in the size of the directory structures. For other
indices such as the R tree, skew-handling typically re-
quires maintaining height-balanced trees so that range
queries can be efficiently processed. Height-balancing
with required updates and possible reinsertions is a
major reason for the high cost required to build these
indices. A data structure called the e-kdB tree was re-
cently presented in [20] to address the above concerns.

2.3 The +kdB Tree

The e-kdB tree is an attractive base for our parallel
algorithm due to it being specifically designed for per-
forming proximity joins on high-dimensional points.
Since the e-kdB tree is not a general-purpose database
index, it does not have the many overheads associated
with supporting general operations like updates and
range queries. Rather than building a persistent struc-
ture, the proximity join using the e-kdB tree builds
a main-memory data structure on-the-fly for the sole
purpose of executing a specific proximity join. This
approach works only because building the e-kdB tree
dynamically is very fast. Datasets that are too large
to fit in memory are handled by partitioning the data
and performing an in-memory e-kdB join on each in-
dividual partition in turn [20].

procedure self-join(x)
begin

if leaf-node(x) then
leaf-self-join(x);

else begin
for i = 1 to f-1 do
begin

self-join(x[i], x[i]);
join(x[i], x[i+l]);

end
self-join(x[f], x[f]);

end
end

procedure join(x, y)
begin

if leaf(x) and leaf(y) then
leaf-join(x, y);

else if leaf(x) then begin
for i = 1 to f do

join(x, YIil);
end
else if leaf(y) then begin

for i = 1 to f do
k441, Y);

end
else begin

for i = 1 to f - 1 do
begin

bin(x[il, Ail);
join(x[i], y[i+l]);
join(x[i+l], y[i]);

end
join(x[fl, dfl);

end
end

Figure 2: e-kdB join algorithm

Data Structure

In the e-kdB tree, when a leaf node becomes “full”
(a parameter that is usually a function of the fanout
f), the leaf is split and its data redistributed among
its new children. Splitting is performed on a single di-
mension to create partitions that are either E or slightly
larger than E in width. Epsilon, remember, is the user-
specified proximity distance. An example e-kdB tree
for two dimensions is shown in Figure 1.

Note that for any node x in the e-kdB tree, the data-
points belonging to G will only join with the points
belonging to the two adjacent siblings of node Z. For
example, if a is the ith child of node y (denoted y[i]),
then z can only join with its two siblings y[i - l] and
y[i + 11. Thus, determining which leaves can be joined
is quite simple and depends only on the path traversed
from the root to each leaf. Dimensions are only split
once since further partitioning would not separate non-
joining data-points any further. The e-kdB tree also
uses a global ordering of the dimensions for splitting
nodes; all nodes in a given level of the tree use the same
dimension for splitting. Global split ordering mini-
mizes the number of neighboring leaf nodes and there-
fore minimizes the number of leaves that must later be
joined[20]. Ideally, the dimension ordering should be
chosen to minimize correlations between dimensions,
but a random ordering is reasonably effective.

Join Algorithm

To perform a self join of an e-kdB tree, we begin at
the root and recursively call the self-join algorithm on
each child. We also recursively join each child with
its right-adjacent sibling. Self joins of leaves and joins
between two leaves are performed by using sort-merge

178

join. Since it is unlikely that all dimensions will be
used for splitting, a non-split dimension is used to sort
the data-points in the leaves to be joined. The self-
join(x) and join(x,y) algorithms are given as pseudo-
code in Figure 2.

To perform a non-self proximity join between two
different datasets, we build an e-kdB tree for each
dataset using the same global split ordering. This will
result in nearly identical tree structures and makes
non-self joins no more difficult to execute than self
joins. Note that each c-kdB tree is tailored to a spe-
cific value of E. However, since the e-kdB tree is cheap
to build, generating a new one for each desired e-join
is still a win.

3 Parallel Multidimensional Proximity
Join

We now examine the problem of performing high-
dimensional proximity joins in parallel. As with most
parallel algorithms, we must address issues such as
workload balance, communication costs and data repli-
cation. We assume a shared-nothing parallel environ-
ment where each of N processors has private memory
and disks. The processors are connected by a commu-
nication network and can communicate only by passing
messages. Examples of such parallel machines include
GAMMA[5] and IBM’s SP2[10]. We assume that the
data to be joined is distributed equally over the local
disks of the multiprocessor.

3.1 Previous Work

Virtually all of the existing work on parallelizing
multidimensional joins has focused on joining two-
dimensional geometric objects. For example, the au-
thors in [3] use R-trees to join spatial objects in
a hybrid shared-nothing/shared-memory architecture
where a single data processor services all I/O re-
quests. The authors in [9] compare data-parallel PMR
quadtrees with data-parallel R- and R+-trees for joins
and range queries on two-dimensional line segments.
Several unusual architectural models were explored
in that work in addition to a shared-memory model.
However, neither of these approaches deal with a pure
shared-nothing architectures or with data spaces larger
than two dimensions.

Space partitioning can be parallelized by regularly
dividing the data space into bucket extents as before,
and then assigning bucket extents to different proces-
sors. The parallelization of PBSM outlined in [la]
follows this approach. After space is partitioned, data
is redistributed accordingly and joins are effected inde-
pendently. As is pointed out in [la], data skew can by
addressed by using tiling to fine-partition multidimen-
sional space. The tiles can then be assigned to proces-

sors via hashing to balance the load. In general, the
larger the data skew, the more finely the space must
be partitioned. However, increasing the partitioning
granularity can result in a higher degree of data repli-
cation.

3.2 Parallel +kdB Algorithm

Our approach to the parallel proximity join problem,
as is explained in more detail below, is to let the e-kdB
tree handle the data skew. Regardless of the data dis-
tribution, an e-kdB tree produces data buckets with
manageable and consistent sizes. Since the e-kdB tree
is also cheap to build, we have a performance edge
over other index-based parallel join algorithms. On
the issue of workload balance, we build an e-kdB tree
using the entire dataset before we commit ourselves to
or even consider any workload assignment. This al-
lows us to base our workloads on a detailed knowledge
of the data distribution. Finally, rather than assign
workloads based on data or subspace size, we divide
the workload based on join costs, since balancing the
workload ultimately depends on the time required to
perform each join. We will focus on describing the
self-join of a single dataset; however, extending the al-
gorithm for non-self joins of two or more datasets is
straightforward.

3.2.1 Building the Tree

To maximize parallelism, we require that each proces-
sor independently build an e-kdB tree using all of its
local data. We also require that these trees be “iden-
tically structured”. Our intent is that each proces-
sor’s tree represents a portion of a common global E-
kdB tree; otherwise, we would be forced to treat each
structure separately and would face the problem of
joining N independent trees with themselves as well
as each other. Note that since each processor holds
only l/N of all the data-points, the c-kdB trees will be
smaller than if we had built a single tree using the en-
tire set of data. To build trees with identical structure,
we take advantage of the e-kdB tree’s use of a global
split ordering. Before processors begin building, they
agree on the split ordering they will use. This goal
is achieved by having a coordinator who chooses and
communicates the split-order, or by having each pro-
cessor choose the split-order “randomly” but starting
with the same random seed.

Since the data on each processor is different, there
will be leaves on some processors which on others over-
flowed and had to be split. An example of this is shown
in Figure 3; it shows two processors having built oth-
erwise identical e-kdB trees except that each processor
has split a leaf node that the other has not. This struc-
tural discrepancy can be resolved by communicating

179

Figure 3: Two-processor e-kdB Trees

tree structure at the end of the build process. Another
approach is for processors to periodically broadcast
asynchronous messages during the build phase indicat-
ing which leaves they have recently split. The latter
approach has the advantage in that processors receiv-
ing the message will be able to correctly split a node
before it becomes full with data. Since messages are
sent asynchronously and order does not matter, this
communication requires little overhead. Regardless of
the approach used, processors perform the specified
splits upon receipt of a message. This is illustrated
by the dashed subtrees in Figure 3. Since processors
build structurally identical trees and work with equal
amounts of the data, the build costs remain well bal-
anced .

3.2.2 Performing the Join

Once processors have built the c-kdB structures, we
must create and assign workloads. For that, each pro-
cessor must first know the global size of each leaf in
the e-kdB tree so that join-cost estimates can be cal-
culated. Processors therefore walk their local tree in
depth-first order and copy leaf sizes into an array.
Since the trees have identical structure, global leaf
sizes can be determined by performing a vector sum of
these arrays.

Once the global size of each leaf is known, each pro-
cessor executes the e-kdB self-join algorithm on its lo-
cal tree. However, instead of joining the leaves, the
processors simply note the join to be performed and
its cost. In our implementation, this is done by cre-
ating a small object that identifies the two leaves R
and S being joined, and then storing this join object
with a linked-list on leaf R. The cost of the join is
estimated by the potential result size: the self-join of
a single leaf R is assigned a cost of v. Joins
between two different leaves R and S are assigned a
cost of [RI * ISI. While enumerating joins, we also keep
a running total of all the join costs.

Once join enumeration is complete, we are left with
the task of assigning the joins to the different proces-
sors. As is explained further below, each processor
receives a disjoint subset of the enumerated joins with

-..-I.

a cost that is roughly l/N of the computed total cost.
We then redistribute the data so that the joins can
actually be carried out. For example, if processor Pe
is assigned the join R W S, then each processor will
send its local data for leaf R and leaf S to Pe so it
can effect the join. Data replication occurs whenever
an e-kdB leaf is required by more than one processor’s
workload. Note that instead of directly assigning data
or subspaces to each processor, we are assigning joins.
This will ensure that the amount of work and time
required for each assignment is as equal as possible.

Workload Creation

When deciding how to partition the joins among the
processors, we want to minimize replication and any
associated communication costs. One way to achieve
this is to “cluster the joins” such that joins involving
the same set of data buckets are assigned to a single
processor. We could do this by analyzing the join list,
but instead we can again exploit the e-kdB tree to our
advantage. Recall that a node in an c-kdB tree can
only join with the adjacent siblings of itself and its an-
cestors. So, we once more walk the tree in depth-first
order, and for each leaf visited, we assign the stored
join objects to one processor. Once we have created a
full assignment, we continue walking and assign joins
to the next processor. This should achieve a reason-
able clustering of data buckets with very little effort
thereby keeping replication and communication low.

As we are creating assignments, we also note which
data leaves are needed for each processor. Note
that each processor is performing this same workload-
creation algorithm so that they will each know which
leaves to send to which processors. However, aside
from keeping a running count of assignment costs and
noting which processor requires which set of leaves, a
processor will only keep its own assignment; join ob-
jects that are assigned to other processors are deleted.
Thus joins are “assigned” to the local processor by
leaving them on the linked list of the c-kdB node.

Workload Execution

Once the assignments have been created, processors
begin redistributing data asynchronously. Since we do
not want processors to flood the network by sending
their entire dataset out at once, we use flow control and
have processors send data to each recipient in depth-
first order. This ensures that processors do not wait
long between receipt of the two halves of a join. This
serves to minimize the length of time each leaf’s data
must be kept in memory, and thereby minimizes the
total memory consumed at any given time. Once a
leaf’s data has been redistributed, it is deleted by the

180

Figure 4: Second Growth Phase

sending processor if it itself does not require the leaf
for its join workload.

When all the data belonging to a leaf has been re-
ceived, a processor executes as many of the joins in-
volving that leaf as possible. This is done by exam-
ining the leaf’s linked list of joins and for each join,
checking if the other half has finished receiving its
data. If so, the join object is deleted and the join
executed. Otherwise, we remove the join object and
append it to the linked list of the other leaf. When we
are later signaled that that leaf has finished collect-
ing data, we will see the join object and execute the
join then. When all joins involving a leaf have been
executed, that leaf and its data are deleted.

3.2.3 Performance Considerations

Beyond the algorithm details described above, there
are several performance considerations that an efficient
implementation needs to take into account. First, we
note that since we have explicitly enumerated all the
joins, we no longer need to retain the internal c-kdB
structure. If we collect pointers to all of the leaves into
an array, we can delete the rest of the e-kdB tree and
free up memory. This is illustrated in Figure 4.

Another performance concern is the size of the e-
kdB leaves after data redistribution. Each leaf as-
signed to a processor will have to accommodate the
redistributed data of the corresponding leaves of N - 1
other processors. This will result in e-kdB leaves hold-
ing up to N-times as much as those of a serially-grown
e-kdB tree. This can result in considerable join time
since the processors will be executing joins that are N-
times as large as those on a serial processor. To solve
this problem, processors continue to grow the tree as
data is redistributed. For example, node B in Figure 4
is a leaf before redistribution. However, as data for leaf
B is received from other processors, it becomes full and
is split in this “second-growth” phase, resulting in the
new leaves bl and b2. This is exactly what would have
happened if this tree had been grown on a serial pro-
cessor. Thus, the joins that are finally executed by
the parallel algorithm are exactly the joins that would
be executed by the serial algorithm working with the

same dataset.
A detailed description of these performance consid-

erations and how they impact the implementation can
be found in [19].

3.3 Parallel Space Partitioning

For comparison purposes, we have also implemented
a parallel space-partitioning algorithm for performing
proximity joins. Our implementation fits within the
hash-join framework[l4] in that we divide space into a
regular multidimensional grid and join corresponding
partitions. Join work is distributed across the multi-
processor by dividing the set of bucket extents equally
among the N processors. We also employ a separate
set of buckets for holding replicated datapoints; this
allows us to avoid generating duplicates in the join re-
sults which some algorithms must later filter out. The
number of data buckets M is chosen to be fairly large
compared to the size of the multiprocessor. This not
only ensures smaller and more efficient joins, but also
allows us to balance the workload similar to how tiling
is used in PBSM [18].

3.3.1 Implementation Details

Since we will be partitioning the data space into M
subspaces (where M > N), each processor allocates
an array of M/N data buckets for storing data points.
Processors also allocate an additional array of M/N
buckets for storing data-points that have been repli-
cated across subspace boundaries. Subspaces are as-
signed to processors using round-robin. Subspace i
is therefore represented by data bucket B[i / N] on
processor Pi mod N; any data-point that is within E-
distance of subspace i will be inserted into the replica
bucket R[i / N]. A t wo-dimensional example is shown
in Figure 5. Separating the replicated data-points
from the originals avoids the generation of duplicate
matches.

The self-join algorithm proceeds as follows. As pro-
cessors scan their local dataset, each data-point is ex-
amined to determine to which subspace i the point
belongs. The data-point is then sent to the processor
responsible for that subspace, where the point is then
inserted into bucket B[i / N]. The data-point is also
sent to to any processor responsible for a subspace j
that is within e-distance of the data-point. These pro-
cessors insert the data-point into the corresponding
replica bucket R[j mod N]. Note that it is possible
for the original subspace and/or multiple neighboring
subspaces to belong to a single processor. For exam-
ple, the point ~1 in Figure 5 resides in data bucket
B[O] and is replicated in replica bucket R[2]; both of
these buckets reside on processor PO. Although a data-
point is not replicated for each instance, a pointer to

181

Processor 0

Data Space Data buckets (B)

ReDlica Buckets IR1

---+ Allowed replication

- - - * Disallowed replication

Figure 6: Replication directions in 2D

the data-point must still be inserted into each required
bucket. After the data has been redistributed, proces-
sors self join each of their data buckets B[i]. Proximity
joins across subspace boundaries are taken care of by
joining each bucket B[i] with its corresponding bucket
of replicas R[i].

3.3.2 Performance Considerations

As with the e-kdB algorithm, there are several per-
formance considerations that should be taken into ac-
count. Since a data-point is never replicated more than
once on any single processor, care must be taken to
avoid sending a datapoint more than once to any sin-
gle processor. This is done during the build phase by
enumerating all e-near subspaces of a data-point be-
fore it is redistributed. If the data-point is destined
for multiple buckets on any single processor, the data-
point is sent once along with a list of all the buckets
that should reference the data-point. Redistributed
data is packed into larger messages so that we do not
incur a communication call for each data-point. Mes-
sages are also sent and received asynchronously so that
processors do not spend time waiting.

Finally, if we actually replicate a data-point into
every subspace that is within e-distance, we will gen-
erate duplicate matches (as well as extra work). Fig-
ure 5 shows an example of this where points x3 and x6
can each potentially be replicated into the other’s sub-
space. To avoid this, we consistently replicate in only
half of all possible directions. This is illustrated for

Processor 1
1

Data buckets (B)

r7rqq-J

Replica Buckets (R)

m

I

Figure 5: Space Partitioning: 2D example for 2 processors

two-dimensions in Figure 6, where the solid lines indi-
cate allowed directions for replication and the dashed
lines indicated disallowed directions. This results in
data-point x6 being replicated across the boundary,
but not x3.

4 Performance Evaluation

We have implemented both the parallel +kdB and
space-partitioning proximity join algorithms on an
IBM SP2 [lo] using the MPI-standard communica-
tion primitives[8]. The use of MPI allows our im-
plementation to be portable to other shared-nothing
parallel architectures, including workstation clusters.
Experiments were conducted on a 16-node IBM SP2
Model 302. Each node in the multiprocessor is a Thin
Node 2 consisting of a POWER2 processor running
at 66.7MHZ with 256MB of real memory. Attached
to each node is a 1GB disk. The processors run AIX
level 4.1 and communicate with each other through
the High-Performance Switch with HPS-tb3 adapters.
See [lo] for SP2 hardware details.

To study the algorithms’ sensitivity to different
sized inputs, we generated synthetic datasets with
both uniform and Gaussian distributions. Data-points
were generated with eight dimensions with the values
in each dimension ranging from -1 .O to 1 .O. The Gaus-
sian mean and standard deviation were set at 0.0 and
0.25 respectively. All experiments use an c value of
0.1 unless otherwise noted. Further experimental re-
sults studying the performance characteristics of the
parallel c-kdB algorithm can be found in an expanded
version of this paper ([19]),

4.1 Algorithm Comparison

In this section, we compare the performance of the par-
allel +kdB algorithm with that of space-partitioning.
Due to the e-kdB tree’s ability to dynamically adjust
to data skew present in a data set, we expect it to
be a more robust algorithm than space-partitioning.
While the space-partitioning approach should do well

182

Uniform Distribution Gaussian Distribution

Figure 7: Speedup of e-kdB and space-partitioning algorithms Figure 7: Speedup of e-kdB and space-partitioning algorithms

Response Time Response Time Data Replication Data Replication

IW -

1;s ;

0 I 0
0 0 2 2 4 4 6 6 :, :, ,-2s ,-2s 12 12 ,I ,I 16 16 18 18 0 0 2 2 , 4 5 5 A,,,~ A,,,~ 12 12 (1 (1 16 16

* *

Figure 8: Speedup on Gaussian data with finer partitions Figure 8: Speedup on Gaussian data with finer partitions

when the data has a uniform distribution, we expect
its performance on skewed datasets to be sensitive to
the partitioning granularity. Furthermore, determin-
ing what is an appropriate partitioning granularity for
a given dataset is a hard problem. For our experi-
ments, we chose to divide the data space for the space-
partitioning algorithm such that the number of data
buckets is roughly equal to the number of leaves used
by the e-kdB tree. Data space is divided regularly in
all dimensions.

Since join results generally grow O(N’) with the
size of the input dataset, we fixed the dataset to be
joined and changed the size of the multiprocessor.
Since we did not implement a serial version of the
space-partitioning algorithm, performance numbers
for that algorithm begin at two processors. Graphs
show total response time, which includes the time re-
quired to load, build and join a dataset. Costs as-
sociated with each algorithm’s build and join phases
are not directly comparable as the e-kdB algorithm
redistributes data during the join phase, whereas the

space-partitioning algorithm redistributes data during
its “build” phase.

For our first experiment, we ran both algorithms
on a synthetic dataset of 500,000 data-points with
uniform distribution (see Figure 7). We then var-
ied the multiprocessor size from 1 to 16 processors.
As expected, space partitioning does well when the
data to be joined is uniformly distributed. Both al-
gorithms scale almost perfectly with the e-kdB algo-
rithm trailing slightly due to it being a more com-
plex algorithm. We then ran experiments on a syn-
thetic dataset of 500,000 points with Gaussian dis-
tribution. With this skewed dataset, the inflexibility
of the space-partitioning approach becomes apparent.
On 16 processors, the variation in each processor’s to-
tal response time varied from about six seconds to al-
most eleven-hundred. This severe workload imbalance
forces the space-partitioning approach to run several
times longer than even the serial version of the e-kdB
algorithm. In contrast, the robustness of parallel E-
kdB algorithm is readily apparent in not only overall

183

execution times, but in individual processor response
times that varied by at most 15 seconds. Furthermore,
the e-kdB algorithm continues to exhibit near-perfect
speedup on this highly skewed dataset.

Further analysis of the results revealed that the
problem with the space-partitioning algorithm was
that the data space was not partitioned finely enough
for round-robin assignment to create balanced work-
loads. This leaves a handful of processors to do most
of the work. To verify this hypothesis, we increased
the number of subspaces from 15,000 (the number au-
tomatically created by the e-kdB algorithm) to over
1.5 million. Figure 8 shows the new speedup results
on the same Gaussian dataset (the original e-kdB num-
bers are repeated for comparison). While the response
times are now comparable, space-partitioning pays a
huge penalty in replication costs. When executing par-
allel joins with such large epsilon values, we expect to
see a fair amount of replicated data; however, the repli-
cation associated with space-partitioning in Figure 8
is extremely high. Furthermore, this graph represents
only replicated data objects; with space-partitioning, a
processor may have many buckets containing pointers
that all reference a single in-memory data-point. In
this experiment, the total number of pointers present
on all processors was over 9 million. The problem
with high replication is that workloads may become
too large to fit in a processor’s memory. In Figure 8,
the 2-processor configuration aborted because of in-
sufficient memory. Thus, we cannot solve the sensitiv-
ity of space-partitioning by always running with a fine
partitioning - doing so may prevent the algorithm
from executing at all.

To summarize, the problem with space-partitioning
is that its performance depends critically on the pa-
rameter used for data-space partitioning. If we are
lucky to have chosen the right parameter for a given
data set, we will have good performance. On the other
hand, if we partition the space too coarsely, we can
have a large performance penalty due to work load
imbalance. Conversely, if we partition the space too
finely, we can overwhelm system resources with too
much replicated data. In contrast, the parallel e-kdB
algorithm is robust, as it has built-in capability for
skew handling.

4.2 Sample Application: Similar Time Series

For our last set of experiments, we return to the prob-
lem that originally motivated us - discovering similar
time-series[2]. As discussed in the Section 1, a signif-
icant part of this data-mining problem is proximity
joining points in w-dimensional space. We can per-
form this step in parallel by using our e-kdB proximity-
join algorithm. Note that the second step of match-

Figure 9: Speedup of +kdB algorithm on mutual fund
dataset

stitching can be easily parallelized by distributing the
atomic matches equally among the processors.

For our time-series data, we used a set of the daily
closing prices of 800 U.S. mutual funds for the dates
Jan 4, 1993 through March 3, 1995. Using a slid-
ing window of size 8 to generate the atomic subse-
quences, the resulting dataset to be joined consists
of about 320,000 data-points. The data was ob-
tained from the MIT AI Laboratories’ Experimen-
tal Stock Market Data Server (now StockMaster at
www.stockmaster.com). A speedup graph showing re-
sponse times for the proximity join is given in Figure 9.
Speedups using two different values of E are shown. It
should be noted that the data is highly skewed, as each
data-point is independently scaled to have a minimum
and maximum value of - 1 and 1 in any dimension.
The speedups, however, remain close to ideal.

5 Conclusions and Future Work

We have presented a new parallel algorithm for per-
forming proximity joins on high-dimensional points.
Its use of the c-kdB tree makes it a fast and robust
algorithm that automatically handles high-degrees
of data skew while maintaining near-ideal scalabil-
ity. We compared the e-kdB algorithm to a space-
partitioning implementation and showed that response
times were comparable to or better than those of
space-partitioning without that approach’s sensitivity
to dataset distributions. We also confirmed the per-
formance of the parallel +kdB algorithm on real-life
datasets from a data-mining application.

For future, it might be worthwhile to explore the
post-build workload partitioning approach used by the
parallel e-kdB algorithm in the context of space parti-
tioning. As in the c-kdB algorithm, processors could
collect local data-points into data buckets without per-
forming redistribution. After the initial load, proces-
sors would exchange data bucket information and then

184

partition the workload based on join-cost estimations.
Since workload balancing is performed after the data
has been fully examined, we can use a more sophisti-
cated assignment algorithm than round-robin to cre-
ate the join workloads. A good approach might be to
use space-filling curves such as the Hilbert curve[l5] to
create a total ordering of the data buckets. The buck-
ets would then be assigned to different processors by
partitioning the ordering into contiguous ranges. This
could take advantage of the clustering capabilities of
space-filling curves and help minimize the amount of
data replication. Of course, the problem of deciding
space partitioning granularity still remains, although
the algorithm’s sensitivity to it should be reduced due
to the explicit use of workload balancing. It may also
be advantageous to split just a few of the dimensions
into c-width partitions instead of dividing the multi-
dimensional space regularly. However, this introduces
the additional question of choosing which dimensions
to split. Ultimately, the parallel E-kdB algorithm is
likely to retain the advantage since partitioning of
space in that algorithm is dynamic and automatic.

Recently, another serial spatial-join algorithm (the
Size Separation Spatial Join) was presented in [12]. It
is a space-partitioning algorithm but differs in that it
uses multiple levels of partitioning with increasing de-
grees of granularity. The algorithm appears to perform
well on two-dimensional point data - even when that
dataset is skewed. It would be interesting to see how
well this algorithm extends to higher dimensions and
how well it can be parallelized, and then to compare
it to the parallel c-kdB tree.

References

PI

PI

[31

[41

[51

R. AgrawaI, C. Faloutsos, and A. Swami. Efficient
similarity search in sequence databases. In Proc. of the
Fourth Int? Conference on Foundations of Data Orga-
nization and Algorithms, Chicago, October 1993. Also
in Lecture Notes in Computer Science 730, Springer
Verlag, 1993, 69-84.

R. AgrawaI, K.-I. Lin, H. S. Sawhney, and K. Shim.
Fast similarity search in the presence of noise, scaling,
and translation in time-series databases. In Proc. of
the 21st Int’l Conference on Very Large Databases,
pages 490-501, Zurich, Switzerland, September 1995.

T. Brinkhoff, H. Kriegel, and B. Seeger. Parallel pro-
cessing of spatial joins using R-Trees. In Proc. of 12th
Int’l Conference on Data Engineering, New Orleans,
USA, February 1996.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. In Proc.
of the ACM-SIGMOD Conference on Management of
Data, Washington, D.C., May 1993.

D. J. Dewitt, S. Ghandeharizadeh, D. A. Scbnei-
der, A. Bricker, H.-I. Hsiao, and R. Rasmussen. The

PI

171

PI

PI

WI

Pll

WI

P31

P41

P51

PI

P71

WI

P91

PO1

Gamma database machine project. In IEEE Trans-
actions on Knowledge and Data Engineering, pages
44-62, March 1990.

C. Faloutsos. Multiattribute hashing using gray codes.
In Proc. of the ACM-SIGMOD Conference on Man-
agement of Data, May 1992.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proc. of the ACM SIGMOD Conference on Man-
agement of Data, May 1994.

M. P. I. Forum. MPI: A Message-Passing Interface
Standard, May 1994.

E. G. Hoe1 and H. Samet. Algorithms for Data-
Parallel spatial operations. Technicai Report CS-TR-
3230, University of Maryland, February 1994.

International Business Machines. Scalable POW-
ERparallel Systems, GA23-2475-02 edition, February
1995.

H. Jagadish. Linear clustering of objects with multiple
attributes. In Proc. of the ACM-SIGMOD Conference
on Management of Data, May 1990.

N. Koudas and K. C. Sevcik. Size separation spatial
join. In Proc. of the ACM SIGMOD Conference on
Management of Data, May 1997.

M. Lo and C. V. Ravishankar. Generating seeded
trees from data sets. In Proc. of the Fourth Intema-
tional Symposium on Large Spatial Databases, Port-
land, ME, August 1995.

M. Lo and C. V. Ravishankar. Spatial Hash-Joins. In
Proc. of the ACM SIGMOD Conference on Manage-
ment of Data, Montreal, Canada, May 1996.

B. Moon, H. Jagadish, C. Fsloutsos, and J. H. Saltz.
Analysis of the clustering properties of hilbert space-
filling curve. In IEEE Transactions on Knowledge and
Data Engineering, March 1996.

J. Nievergelt, H. Hinterberger, and K. Sevcik. The
grid fle: an adaptable, symmetric multikey file
structure. ACM Transactions on Database Systems,
9(1):3&71, 1984.

J. A. Orenstein and T. Merrett. A class of data
structures for associative searching. In Proc. of the
A CM SIGA CT-SIGMOD Symposium on Principles of
Database Systems, 1984.

J. M. Pate1 and D. J. Dewitt. Partition Based Spatial-
Merge Join. In Proc. of the ACM SIGMOD Con-
ference on Management of Data, Montreal, Canada,
June 1996.

J. C. Shafer and R. AgrawaI. Parallel Algo-
tithms for High-dimensionaI Proximity Joins. Re-
search Report, IBM Almaden Research Center,
km Jose, California, 1997. Available from
xttp://ava.almaden.ibm.com/cs/quest.

K. Shim, R. Srikant, and R. AgrawaI. High-
dimensional similarity joins. In Proc. of the 13th Int’l
Conference on Data Engineering, Birmingham, U.K.,
4pril 1997.

185

