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Abstract 

We consider the problem of parallelizing high- 
dimensional proximity joins. We present 
a parallel multidimensional join algorithm 
based on an the epsilon-kdB tree and compare 
it with the more common approach of space 
partitioning. An evaluation of the algorithms 
on an IBM SP2 shared-nothing multiprocessor 
is presented using both synthetic and real-life 
datasets. We also examine the effectiveness 
of the algorithms in the context of a specific 
data-mining problem, that of finding similar 
time-series. The empirical results show that 
our algorithm exhibits good performance and 
scalability, as well an ability to handle data- 
skew. 

1 Introduction 

Many emerging applications require efficient process- 
ing of proximity joins on high-dimensional points[20]. 
Typical queries in these applications include: 

l Find all pairs of similar images (often as a prelude 
to clustering the images). 

0 Retrieve music scores similar to a target music 
score. 

l Discover all stocks with similar price movements. 
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The work presented in this paper was motivated by 
the particular data-mining problem of finding similar 
time-series[l][7]. In [2], an algorithm was proposed 
that first finds all similar “atomic” subsequences, and 
then stitches together the atomic subsequence matches 
to obtain larger similar subsequences. A sliding win- 
dow of size w is used to create atomic subsequences 
from each time series. These atomic subsequences are 
then mapped to points in w-dimensional space. Find- 
ing similar atomic subsequences now corresponds to 
the problem of finding all pairs of w-dimensional points 
that lie within e-distance of each other, where E is a 
user-specified parameter. 

While parallel algorithms for performing joins on 
spatial data already exists (e.g. [lg], [3], [9]), they 
have mainly concentrated on joining map data where 
spaces are typically limited to only two or three dimen- 
sions. Furthermore, these algorithms have been de- 
signed primarily to perform intersection joins on geo- 
metric objects such as polygons and line segments and 
are not well optimized for handling high-dimensional 
point data. 

We examine the issues in performing proximity joins 
on high-dimensional points in parallel. We will focus 
on self joins, although the ideas presented directly ap 
ply to non-self joins. 

Problem Definition 

The proximity self-join problem is defined as follows: 

l Self-join: Given a set of N w-dimensional points 
and a distance metric, find all pairs of points that 
are within E distance of each other. 

The distance metric for two w-dimensional points 
2 and ? that we consider is 

\ 1 / 

Lz is the familiar Euclidean distance, L1 the Manhat- 
tan distance, and L, corresponds to the maximum 
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distance in any dimension. 

Paper organi5ation 

The rest of this paper is organized as follows: Sec- 
tion 2 discusses some of the existing serial work on 
multidimensional joins. Section 3 presents related par- 
allel work as well as our parallel e-kdB join algorithm 
and a space-partitioning algorithm. A performance 
study comparing join algorithms along with a sensitiv- 
ity analysis is given in Section 4. Concluding remarks 
and possible future directions are in Section 5. 

2 Serial Join Algorithms 

In this section, we briefly review some of the existing 
multidimensional join work and discuss how they ap- 
ply to our problem of performing a proximity join with 
high-dimensional points. Many methods have been 
proposed including a variety of index-based methods, 
as well as space partitioning and multidimensional 
remapping approaches. However, most of these algo- 
rithms are designed for geometric rather than point 
data with universes typically consisting of only two or 
three dimensions. 

2.1 Non-Index Based 

One approach to multidimensional proximity joins is 
to use space-filling curves to map objects into one- 
dimensional values. This is done by partitioning the 
space regularly into N cells. A space-filling curve is 
drawn through the multidimensional space and cells 
are numbered in the order visited. Objects to be joined 
are then examined sequentially and for each cell which 
an object overlaps, a <cell-number, object-pointer> 
pair is created. Standard relational indices and tech- 
niques for computing joins can now be used on the 
tuples’ one-dimensional cell values. This approach in 
[17] uses a space-filling curve known as the “Z curve”; 
assigned cell-numbers are called “Z values”. Other 
space-filling curves include the Gray code[6] and the 
Hilbert curue[l5]. Of these three, the Hilbert curve 
has been shown to cluster space better[lI]. A short- 
coming of space-filling curves is that some proximity 
information is always lost, so nearby objects may have 
very different Z values. This complicates the join al- 
gorithm. This approach works best when the join con- 
dition is that two objects overlap. This reduces the 
problem to an equi-join on the Z values and allows 
the traditional relational join algorithms to be used 
essentially unmodified. 

A related approach is to do away with the space- 
filling curves and one-dimensional mapping and repre- 
sent each cell with a data bucket. Instead of mapping 
objects to cell numbers, we store a pointer to the ob- 
ject in each data bucket which is within c-distance. 

We can then perform a self join by joining each indi- 
vidual data bucket with itself. Non-self joins are han- 
dled by using the same partitioning scheme on each 
dataset and then joining corresponding data buckets. 
This approach falls within the general framework pre- 
sented in [14]. In that framework, an algorithm defines 
bucket extents to hold data objects and an assignment 
function that maps data objects to buckets. Bucket 
extents may or may not be immutable and the assign- 
ment function may be one-to-one or many-to one. In 
the join phase, an algorithm identifies pairs of buckets 
to be joined (termed join-bucket pairs) and effects each 
join in turn. An example of this framework was pre- 
sented in [14] where bootstrap seeding[l3] and sampling 
was used to obtain the initial bucket extents. 

Another space partitioning algorithm (PBSM ) 
was recently presented in [18] and to some degree, it 
also fits within the above framework. To address data 
skew, PBSM partitions the space into many tiles such 
that there are more tiles than data buckets. These tiles 
are then grouped together using hashing to produce 
buckets that are relatively consistent in size. Objects 
are mapped to the buckets depending on which tiles 
they overlap. For non-self join, objects of the larger 
relation are mapped to only one bucket - objects of 
the smaller relation must be replicated in each bucket 
whose extent is overlapped. Joins between correspond- 
ing buckets are then performed using plane sweeping. 
To perform the join efficiently, the number of buck- 
ets is chosen such that two buckets will fit entirely in 
memory. 

2.2 Index Based 

Considerable recent work in multidimensional joins 
has focused on using indices to aid the join. This 
includes R-trees as used in [4], [3] and [2], PMR 
quadtrees in [9], and seeded trees in [13]. Whatever 
the index used, they follow the same schema whereby 
two sets of multidimensional objects are joined by do- 
ing a synchronized depth-first traversal of their indices. 
Intersection joins are handled by joining any two in- 
dex buckets whose extents overlap. Likewise, proxim- 
ity joins are handled by joining any two index buckets 
whose boundaries are sufficiently near. 

Most of these approaches are not well suited to 
the particular problem of proximity joins on high- 
dimensional points. The inadequacies include an in- 
ability to scale to high-dimensions [20]. For example, 
the R tree and the kdB tree both use a “minimum 
bounding rectangle” (MBR) to represent the regions 
covered by each node in the index. As the number of 
dimensions gets large, the storage and traversal costs 
associated with using MBRs increases. Most indices 
also have substantial build-times. If an index required 
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Figure 1: e-kdB Tree 
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for a join does not exist, the cost required to build it 
can often be more than the cost of the join [18]. Many 
of these algorithms therefore assume that the required 
index is already available. This is not well-suited to 
our motivating application of similar time-series since 
the data to be joined is typically generated “on-the- 
fly”. 

Other drawbacks include skew-handling capabili- 
ties. In the Grid File[16], skewed data can cause rapid 
growth in the size of the directory structures. For other 
indices such as the R tree, skew-handling typically re- 
quires maintaining height-balanced trees so that range 
queries can be efficiently processed. Height-balancing 
with required updates and possible reinsertions is a 
major reason for the high cost required to build these 
indices. A data structure called the e-kdB tree was re- 
cently presented in [20] to address the above concerns. 

2.3 The +kdB Tree 

The e-kdB tree is an attractive base for our parallel 
algorithm due to it being specifically designed for per- 
forming proximity joins on high-dimensional points. 
Since the e-kdB tree is not a general-purpose database 
index, it does not have the many overheads associated 
with supporting general operations like updates and 
range queries. Rather than building a persistent struc- 
ture, the proximity join using the e-kdB tree builds 
a main-memory data structure on-the-fly for the sole 
purpose of executing a specific proximity join. This 
approach works only because building the e-kdB tree 
dynamically is very fast. Datasets that are too large 
to fit in memory are handled by partitioning the data 
and performing an in-memory e-kdB join on each in- 
dividual partition in turn [20]. 

procedure self-join(x) 
begin 

if leaf-node(x) then 
leaf-self-join(x); 

else begin 
for i = 1 to f-1 do 
begin 

self-join(x[i], x[i]); 
join(x[i], x[i+l]); 

end 
self-join(x[f], x[f]); 

end 
end 

procedure join(x, y) 
begin 

if leaf(x) and leaf(y) then 
leaf-join(x, y); 

else if leaf(x) then begin 
for i = 1 to f do 

join(x, YIil); 
end 
else if leaf(y) then begin 

for i = 1 to f do 
k441, Y); 

end 
else begin 

for i = 1 to f - 1 do 
begin 

bin(x[il, Ail); 
join(x[i], y[i+l]); 
join(x[i+l], y[i]); 

end 
join(x[fl, dfl); 

end 
end 

Figure 2: e-kdB join algorithm 

Data Structure 

In the e-kdB tree, when a leaf node becomes “full” 
(a parameter that is usually a function of the fanout 
f), the leaf is split and its data redistributed among 
its new children. Splitting is performed on a single di- 
mension to create partitions that are either E or slightly 
larger than E in width. Epsilon, remember, is the user- 
specified proximity distance. An example e-kdB tree 
for two dimensions is shown in Figure 1. 

Note that for any node x in the e-kdB tree, the data- 
points belonging to G will only join with the points 
belonging to the two adjacent siblings of node Z. For 
example, if a is the ith child of node y (denoted y[i]), 
then z can only join with its two siblings y[i - l] and 
y[i + 11. Thus, determining which leaves can be joined 
is quite simple and depends only on the path traversed 
from the root to each leaf. Dimensions are only split 
once since further partitioning would not separate non- 
joining data-points any further. The e-kdB tree also 
uses a global ordering of the dimensions for splitting 
nodes; all nodes in a given level of the tree use the same 
dimension for splitting. Global split ordering mini- 
mizes the number of neighboring leaf nodes and there- 
fore minimizes the number of leaves that must later be 
joined[20]. Ideally, the dimension ordering should be 
chosen to minimize correlations between dimensions, 
but a random ordering is reasonably effective. 

Join Algorithm 

To perform a self join of an e-kdB tree, we begin at 
the root and recursively call the self-join algorithm on 
each child. We also recursively join each child with 
its right-adjacent sibling. Self joins of leaves and joins 
between two leaves are performed by using sort-merge 
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join. Since it is unlikely that all dimensions will be 
used for splitting, a non-split dimension is used to sort 
the data-points in the leaves to be joined. The self- 
join(x) and join(x,y) algorithms are given as pseudo- 
code in Figure 2. 

To perform a non-self proximity join between two 
different datasets, we build an e-kdB tree for each 
dataset using the same global split ordering. This will 
result in nearly identical tree structures and makes 
non-self joins no more difficult to execute than self 
joins. Note that each c-kdB tree is tailored to a spe- 
cific value of E. However, since the e-kdB tree is cheap 
to build, generating a new one for each desired e-join 
is still a win. 

3 Parallel Multidimensional Proximity 
Join 

We now examine the problem of performing high- 
dimensional proximity joins in parallel. As with most 
parallel algorithms, we must address issues such as 
workload balance, communication costs and data repli- 
cation. We assume a shared-nothing parallel environ- 
ment where each of N processors has private memory 
and disks. The processors are connected by a commu- 
nication network and can communicate only by passing 
messages. Examples of such parallel machines include 
GAMMA[5] and IBM’s SP2[10]. We assume that the 
data to be joined is distributed equally over the local 
disks of the multiprocessor. 

3.1 Previous Work 

Virtually all of the existing work on parallelizing 
multidimensional joins has focused on joining two- 
dimensional geometric objects. For example, the au- 
thors in [3] use R-trees to join spatial objects in 
a hybrid shared-nothing/shared-memory architecture 
where a single data processor services all I/O re- 
quests. The authors in [9] compare data-parallel PMR 
quadtrees with data-parallel R- and R+-trees for joins 
and range queries on two-dimensional line segments. 
Several unusual architectural models were explored 
in that work in addition to a shared-memory model. 
However, neither of these approaches deal with a pure 
shared-nothing architectures or with data spaces larger 
than two dimensions. 

Space partitioning can be parallelized by regularly 
dividing the data space into bucket extents as before, 
and then assigning bucket extents to different proces- 
sors. The parallelization of PBSM outlined in [la] 
follows this approach. After space is partitioned, data 
is redistributed accordingly and joins are effected inde- 
pendently. As is pointed out in [la], data skew can by 
addressed by using tiling to fine-partition multidimen- 
sional space. The tiles can then be assigned to proces- 

sors via hashing to balance the load. In general, the 
larger the data skew, the more finely the space must 
be partitioned. However, increasing the partitioning 
granularity can result in a higher degree of data repli- 
cation. 

3.2 Parallel +kdB Algorithm 

Our approach to the parallel proximity join problem, 
as is explained in more detail below, is to let the e-kdB 
tree handle the data skew. Regardless of the data dis- 
tribution, an e-kdB tree produces data buckets with 
manageable and consistent sizes. Since the e-kdB tree 
is also cheap to build, we have a performance edge 
over other index-based parallel join algorithms. On 
the issue of workload balance, we build an e-kdB tree 
using the entire dataset before we commit ourselves to 
or even consider any workload assignment. This al- 
lows us to base our workloads on a detailed knowledge 
of the data distribution. Finally, rather than assign 
workloads based on data or subspace size, we divide 
the workload based on join costs, since balancing the 
workload ultimately depends on the time required to 
perform each join. We will focus on describing the 
self-join of a single dataset; however, extending the al- 
gorithm for non-self joins of two or more datasets is 
straightforward. 

3.2.1 Building the Tree 

To maximize parallelism, we require that each proces- 
sor independently build an e-kdB tree using all of its 
local data. We also require that these trees be “iden- 
tically structured”. Our intent is that each proces- 
sor’s tree represents a portion of a common global E- 
kdB tree; otherwise, we would be forced to treat each 
structure separately and would face the problem of 
joining N independent trees with themselves as well 
as each other. Note that since each processor holds 
only l/N of all the data-points, the c-kdB trees will be 
smaller than if we had built a single tree using the en- 
tire set of data. To build trees with identical structure, 
we take advantage of the e-kdB tree’s use of a global 
split ordering. Before processors begin building, they 
agree on the split ordering they will use. This goal 
is achieved by having a coordinator who chooses and 
communicates the split-order, or by having each pro- 
cessor choose the split-order “randomly” but starting 
with the same random seed. 

Since the data on each processor is different, there 
will be leaves on some processors which on others over- 
flowed and had to be split. An example of this is shown 
in Figure 3; it shows two processors having built oth- 
erwise identical e-kdB trees except that each processor 
has split a leaf node that the other has not. This struc- 
tural discrepancy can be resolved by communicating 
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Figure 3: Two-processor e-kdB Trees 

tree structure at the end of the build process. Another 
approach is for processors to periodically broadcast 
asynchronous messages during the build phase indicat- 
ing which leaves they have recently split. The latter 
approach has the advantage in that processors receiv- 
ing the message will be able to correctly split a node 
before it becomes full with data. Since messages are 
sent asynchronously and order does not matter, this 
communication requires little overhead. Regardless of 
the approach used, processors perform the specified 
splits upon receipt of a message. This is illustrated 
by the dashed subtrees in Figure 3. Since processors 
build structurally identical trees and work with equal 
amounts of the data, the build costs remain well bal- 
anced . 

3.2.2 Performing the Join 

Once processors have built the c-kdB structures, we 
must create and assign workloads. For that, each pro- 
cessor must first know the global size of each leaf in 
the e-kdB tree so that join-cost estimates can be cal- 
culated. Processors therefore walk their local tree in 
depth-first order and copy leaf sizes into an array. 
Since the trees have identical structure, global leaf 
sizes can be determined by performing a vector sum of 
these arrays. 

Once the global size of each leaf is known, each pro- 
cessor executes the e-kdB self-join algorithm on its lo- 
cal tree. However, instead of joining the leaves, the 
processors simply note the join to be performed and 
its cost. In our implementation, this is done by cre- 
ating a small object that identifies the two leaves R 
and S being joined, and then storing this join object 
with a linked-list on leaf R. The cost of the join is 
estimated by the potential result size: the self-join of 
a single leaf R is assigned a cost of v. Joins 
between two different leaves R and S are assigned a 
cost of [RI * ISI. While enumerating joins, we also keep 
a running total of all the join costs. 

Once join enumeration is complete, we are left with 
the task of assigning the joins to the different proces- 
sors. As is explained further below, each processor 
receives a disjoint subset of the enumerated joins with 

-..-I. 

a cost that is roughly l/N of the computed total cost. 
We then redistribute the data so that the joins can 
actually be carried out. For example, if processor Pe 
is assigned the join R W S, then each processor will 
send its local data for leaf R and leaf S to Pe so it 
can effect the join. Data replication occurs whenever 
an e-kdB leaf is required by more than one processor’s 
workload. Note that instead of directly assigning data 
or subspaces to each processor, we are assigning joins. 
This will ensure that the amount of work and time 
required for each assignment is as equal as possible. 

Workload Creation 

When deciding how to partition the joins among the 
processors, we want to minimize replication and any 
associated communication costs. One way to achieve 
this is to “cluster the joins” such that joins involving 
the same set of data buckets are assigned to a single 
processor. We could do this by analyzing the join list, 
but instead we can again exploit the e-kdB tree to our 
advantage. Recall that a node in an c-kdB tree can 
only join with the adjacent siblings of itself and its an- 
cestors. So, we once more walk the tree in depth-first 
order, and for each leaf visited, we assign the stored 
join objects to one processor. Once we have created a 
full assignment, we continue walking and assign joins 
to the next processor. This should achieve a reason- 
able clustering of data buckets with very little effort 
thereby keeping replication and communication low. 

As we are creating assignments, we also note which 
data leaves are needed for each processor. Note 
that each processor is performing this same workload- 
creation algorithm so that they will each know which 
leaves to send to which processors. However, aside 
from keeping a running count of assignment costs and 
noting which processor requires which set of leaves, a 
processor will only keep its own assignment; join ob- 
jects that are assigned to other processors are deleted. 
Thus joins are “assigned” to the local processor by 
leaving them on the linked list of the c-kdB node. 

Workload Execution 

Once the assignments have been created, processors 
begin redistributing data asynchronously. Since we do 
not want processors to flood the network by sending 
their entire dataset out at once, we use flow control and 
have processors send data to each recipient in depth- 
first order. This ensures that processors do not wait 
long between receipt of the two halves of a join. This 
serves to minimize the length of time each leaf’s data 
must be kept in memory, and thereby minimizes the 
total memory consumed at any given time. Once a 
leaf’s data has been redistributed, it is deleted by the 
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Figure 4: Second Growth Phase 

sending processor if it itself does not require the leaf 
for its join workload. 

When all the data belonging to a leaf has been re- 
ceived, a processor executes as many of the joins in- 
volving that leaf as possible. This is done by exam- 
ining the leaf’s linked list of joins and for each join, 
checking if the other half has finished receiving its 
data. If so, the join object is deleted and the join 
executed. Otherwise, we remove the join object and 
append it to the linked list of the other leaf. When we 
are later signaled that that leaf has finished collect- 
ing data, we will see the join object and execute the 
join then. When all joins involving a leaf have been 
executed, that leaf and its data are deleted. 

3.2.3 Performance Considerations 

Beyond the algorithm details described above, there 
are several performance considerations that an efficient 
implementation needs to take into account. First, we 
note that since we have explicitly enumerated all the 
joins, we no longer need to retain the internal c-kdB 
structure. If we collect pointers to all of the leaves into 
an array, we can delete the rest of the e-kdB tree and 
free up memory. This is illustrated in Figure 4. 

Another performance concern is the size of the e- 
kdB leaves after data redistribution. Each leaf as- 
signed to a processor will have to accommodate the 
redistributed data of the corresponding leaves of N - 1 
other processors. This will result in e-kdB leaves hold- 
ing up to N-times as much as those of a serially-grown 
e-kdB tree. This can result in considerable join time 
since the processors will be executing joins that are N- 
times as large as those on a serial processor. To solve 
this problem, processors continue to grow the tree as 
data is redistributed. For example, node B in Figure 4 
is a leaf before redistribution. However, as data for leaf 
B is received from other processors, it becomes full and 
is split in this “second-growth” phase, resulting in the 
new leaves bl and b2. This is exactly what would have 
happened if this tree had been grown on a serial pro- 
cessor. Thus, the joins that are finally executed by 
the parallel algorithm are exactly the joins that would 
be executed by the serial algorithm working with the 

same dataset. 
A detailed description of these performance consid- 

erations and how they impact the implementation can 
be found in [19]. 

3.3 Parallel Space Partitioning 

For comparison purposes, we have also implemented 
a parallel space-partitioning algorithm for performing 
proximity joins. Our implementation fits within the 
hash-join framework[l4] in that we divide space into a 
regular multidimensional grid and join corresponding 
partitions. Join work is distributed across the multi- 
processor by dividing the set of bucket extents equally 
among the N processors. We also employ a separate 
set of buckets for holding replicated datapoints; this 
allows us to avoid generating duplicates in the join re- 
sults which some algorithms must later filter out. The 
number of data buckets M is chosen to be fairly large 
compared to the size of the multiprocessor. This not 
only ensures smaller and more efficient joins, but also 
allows us to balance the workload similar to how tiling 
is used in PBSM [18]. 

3.3.1 Implementation Details 

Since we will be partitioning the data space into M 
subspaces (where M > N), each processor allocates 
an array of M/N data buckets for storing data points. 
Processors also allocate an additional array of M/N 
buckets for storing data-points that have been repli- 
cated across subspace boundaries. Subspaces are as- 
signed to processors using round-robin. Subspace i 
is therefore represented by data bucket B[i / N] on 
processor Pi mod N; any data-point that is within E- 
distance of subspace i will be inserted into the replica 
bucket R[i / N]. A t wo-dimensional example is shown 
in Figure 5. Separating the replicated data-points 
from the originals avoids the generation of duplicate 
matches. 

The self-join algorithm proceeds as follows. As pro- 
cessors scan their local dataset, each data-point is ex- 
amined to determine to which subspace i the point 
belongs. The data-point is then sent to the processor 
responsible for that subspace, where the point is then 
inserted into bucket B[i / N]. The data-point is also 
sent to to any processor responsible for a subspace j 
that is within e-distance of the data-point. These pro- 
cessors insert the data-point into the corresponding 
replica bucket R[j mod N]. Note that it is possible 
for the original subspace and/or multiple neighboring 
subspaces to belong to a single processor. For exam- 
ple, the point ~1 in Figure 5 resides in data bucket 
B[O] and is replicated in replica bucket R[2]; both of 
these buckets reside on processor PO. Although a data- 
point is not replicated for each instance, a pointer to 
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Figure 6: Replication directions in 2D 

the data-point must still be inserted into each required 
bucket. After the data has been redistributed, proces- 
sors self join each of their data buckets B[i]. Proximity 
joins across subspace boundaries are taken care of by 
joining each bucket B[i] with its corresponding bucket 
of replicas R[i]. 

3.3.2 Performance Considerations 

As with the e-kdB algorithm, there are several per- 
formance considerations that should be taken into ac- 
count. Since a data-point is never replicated more than 
once on any single processor, care must be taken to 
avoid sending a datapoint more than once to any sin- 
gle processor. This is done during the build phase by 
enumerating all e-near subspaces of a data-point be- 
fore it is redistributed. If the data-point is destined 
for multiple buckets on any single processor, the data- 
point is sent once along with a list of all the buckets 
that should reference the data-point. Redistributed 
data is packed into larger messages so that we do not 
incur a communication call for each data-point. Mes- 
sages are also sent and received asynchronously so that 
processors do not spend time waiting. 

Finally, if we actually replicate a data-point into 
every subspace that is within e-distance, we will gen- 
erate duplicate matches (as well as extra work). Fig- 
ure 5 shows an example of this where points x3 and x6 
can each potentially be replicated into the other’s sub- 
space. To avoid this, we consistently replicate in only 
half of all possible directions. This is illustrated for 

Processor 1 
1 

Data buckets (B) 

r7rqq-J 

Replica Buckets (R) 

m 

I 

Figure 5: Space Partitioning: 2D example for 2 processors 

two-dimensions in Figure 6, where the solid lines indi- 
cate allowed directions for replication and the dashed 
lines indicated disallowed directions. This results in 
data-point x6 being replicated across the boundary, 
but not x3. 

4 Performance Evaluation 

We have implemented both the parallel +kdB and 
space-partitioning proximity join algorithms on an 
IBM SP2 [lo] using the MPI-standard communica- 
tion primitives[8]. The use of MPI allows our im- 
plementation to be portable to other shared-nothing 
parallel architectures, including workstation clusters. 
Experiments were conducted on a 16-node IBM SP2 
Model 302. Each node in the multiprocessor is a Thin 
Node 2 consisting of a POWER2 processor running 
at 66.7MHZ with 256MB of real memory. Attached 
to each node is a 1GB disk. The processors run AIX 
level 4.1 and communicate with each other through 
the High-Performance Switch with HPS-tb3 adapters. 
See [lo] for SP2 hardware details. 

To study the algorithms’ sensitivity to different 
sized inputs, we generated synthetic datasets with 
both uniform and Gaussian distributions. Data-points 
were generated with eight dimensions with the values 
in each dimension ranging from -1 .O to 1 .O. The Gaus- 
sian mean and standard deviation were set at 0.0 and 
0.25 respectively. All experiments use an c value of 
0.1 unless otherwise noted. Further experimental re- 
sults studying the performance characteristics of the 
parallel c-kdB algorithm can be found in an expanded 
version of this paper ([19]), 

4.1 Algorithm Comparison 

In this section, we compare the performance of the par- 
allel +kdB algorithm with that of space-partitioning. 
Due to the e-kdB tree’s ability to dynamically adjust 
to data skew present in a data set, we expect it to 
be a more robust algorithm than space-partitioning. 
While the space-partitioning approach should do well 
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Figure 8: Speedup on Gaussian data with finer partitions Figure 8: Speedup on Gaussian data with finer partitions 

when the data has a uniform distribution, we expect 
its performance on skewed datasets to be sensitive to 
the partitioning granularity. Furthermore, determin- 
ing what is an appropriate partitioning granularity for 
a given dataset is a hard problem. For our experi- 
ments, we chose to divide the data space for the space- 
partitioning algorithm such that the number of data 
buckets is roughly equal to the number of leaves used 
by the e-kdB tree. Data space is divided regularly in 
all dimensions. 

Since join results generally grow O(N’) with the 
size of the input dataset, we fixed the dataset to be 
joined and changed the size of the multiprocessor. 
Since we did not implement a serial version of the 
space-partitioning algorithm, performance numbers 
for that algorithm begin at two processors. Graphs 
show total response time, which includes the time re- 
quired to load, build and join a dataset. Costs as- 
sociated with each algorithm’s build and join phases 
are not directly comparable as the e-kdB algorithm 
redistributes data during the join phase, whereas the 

space-partitioning algorithm redistributes data during 
its “build” phase. 

For our first experiment, we ran both algorithms 
on a synthetic dataset of 500,000 data-points with 
uniform distribution (see Figure 7). We then var- 
ied the multiprocessor size from 1 to 16 processors. 
As expected, space partitioning does well when the 
data to be joined is uniformly distributed. Both al- 
gorithms scale almost perfectly with the e-kdB algo- 
rithm trailing slightly due to it being a more com- 
plex algorithm. We then ran experiments on a syn- 
thetic dataset of 500,000 points with Gaussian dis- 
tribution. With this skewed dataset, the inflexibility 
of the space-partitioning approach becomes apparent. 
On 16 processors, the variation in each processor’s to- 
tal response time varied from about six seconds to al- 
most eleven-hundred. This severe workload imbalance 
forces the space-partitioning approach to run several 
times longer than even the serial version of the e-kdB 
algorithm. In contrast, the robustness of parallel E- 
kdB algorithm is readily apparent in not only overall 
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execution times, but in individual processor response 
times that varied by at most 15 seconds. Furthermore, 
the e-kdB algorithm continues to exhibit near-perfect 
speedup on this highly skewed dataset. 

Further analysis of the results revealed that the 
problem with the space-partitioning algorithm was 
that the data space was not partitioned finely enough 
for round-robin assignment to create balanced work- 
loads. This leaves a handful of processors to do most 
of the work. To verify this hypothesis, we increased 
the number of subspaces from 15,000 (the number au- 
tomatically created by the e-kdB algorithm) to over 
1.5 million. Figure 8 shows the new speedup results 
on the same Gaussian dataset (the original e-kdB num- 
bers are repeated for comparison). While the response 
times are now comparable, space-partitioning pays a 
huge penalty in replication costs. When executing par- 
allel joins with such large epsilon values, we expect to 
see a fair amount of replicated data; however, the repli- 
cation associated with space-partitioning in Figure 8 
is extremely high. Furthermore, this graph represents 
only replicated data objects; with space-partitioning, a 
processor may have many buckets containing pointers 
that all reference a single in-memory data-point. In 
this experiment, the total number of pointers present 
on all processors was over 9 million. The problem 
with high replication is that workloads may become 
too large to fit in a processor’s memory. In Figure 8, 
the 2-processor configuration aborted because of in- 
sufficient memory. Thus, we cannot solve the sensitiv- 
ity of space-partitioning by always running with a fine 
partitioning - doing so may prevent the algorithm 
from executing at all. 

To summarize, the problem with space-partitioning 
is that its performance depends critically on the pa- 
rameter used for data-space partitioning. If we are 
lucky to have chosen the right parameter for a given 
data set, we will have good performance. On the other 
hand, if we partition the space too coarsely, we can 
have a large performance penalty due to work load 
imbalance. Conversely, if we partition the space too 
finely, we can overwhelm system resources with too 
much replicated data. In contrast, the parallel e-kdB 
algorithm is robust, as it has built-in capability for 
skew handling. 

4.2 Sample Application: Similar Time Series 

For our last set of experiments, we return to the prob- 
lem that originally motivated us - discovering similar 
time-series[2]. As discussed in the Section 1, a signif- 
icant part of this data-mining problem is proximity 
joining points in w-dimensional space. We can per- 
form this step in parallel by using our e-kdB proximity- 
join algorithm. Note that the second step of match- 

Figure 9: Speedup of +kdB algorithm on mutual fund 
dataset 

stitching can be easily parallelized by distributing the 
atomic matches equally among the processors. 

For our time-series data, we used a set of the daily 
closing prices of 800 U.S. mutual funds for the dates 
Jan 4, 1993 through March 3, 1995. Using a slid- 
ing window of size 8 to generate the atomic subse- 
quences, the resulting dataset to be joined consists 
of about 320,000 data-points. The data was ob- 
tained from the MIT AI Laboratories’ Experimen- 
tal Stock Market Data Server (now StockMaster at 
www.stockmaster.com). A speedup graph showing re- 
sponse times for the proximity join is given in Figure 9. 
Speedups using two different values of E are shown. It 
should be noted that the data is highly skewed, as each 
data-point is independently scaled to have a minimum 
and maximum value of - 1 and 1 in any dimension. 
The speedups, however, remain close to ideal. 

5 Conclusions and Future Work 

We have presented a new parallel algorithm for per- 
forming proximity joins on high-dimensional points. 
Its use of the c-kdB tree makes it a fast and robust 
algorithm that automatically handles high-degrees 
of data skew while maintaining near-ideal scalabil- 
ity. We compared the e-kdB algorithm to a space- 
partitioning implementation and showed that response 
times were comparable to or better than those of 
space-partitioning without that approach’s sensitivity 
to dataset distributions. We also confirmed the per- 
formance of the parallel +kdB algorithm on real-life 
datasets from a data-mining application. 

For future, it might be worthwhile to explore the 
post-build workload partitioning approach used by the 
parallel e-kdB algorithm in the context of space parti- 
tioning. As in the c-kdB algorithm, processors could 
collect local data-points into data buckets without per- 
forming redistribution. After the initial load, proces- 
sors would exchange data bucket information and then 
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partition the workload based on join-cost estimations. 
Since workload balancing is performed after the data 
has been fully examined, we can use a more sophisti- 
cated assignment algorithm than round-robin to cre- 
ate the join workloads. A good approach might be to 
use space-filling curves such as the Hilbert curve[l5] to 
create a total ordering of the data buckets. The buck- 
ets would then be assigned to different processors by 
partitioning the ordering into contiguous ranges. This 
could take advantage of the clustering capabilities of 
space-filling curves and help minimize the amount of 
data replication. Of course, the problem of deciding 
space partitioning granularity still remains, although 
the algorithm’s sensitivity to it should be reduced due 
to the explicit use of workload balancing. It may also 
be advantageous to split just a few of the dimensions 
into c-width partitions instead of dividing the multi- 
dimensional space regularly. However, this introduces 
the additional question of choosing which dimensions 
to split. Ultimately, the parallel E-kdB algorithm is 
likely to retain the advantage since partitioning of 
space in that algorithm is dynamic and automatic. 

Recently, another serial spatial-join algorithm (the 
Size Separation Spatial Join) was presented in [12]. It 
is a space-partitioning algorithm but differs in that it 
uses multiple levels of partitioning with increasing de- 
grees of granularity. The algorithm appears to perform 
well on two-dimensional point data - even when that 
dataset is skewed. It would be interesting to see how 
well this algorithm extends to higher dimensions and 
how well it can be parallelized, and then to compare 
it to the parallel c-kdB tree. 
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