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Abstract 

Selecting views to materialize is one of the 
most important decisions in designing a data 
warehouse. In this paper, we present a frame- 
work for analyzing the issues in selecting views 
to materialize so as to achieve the best com- 
bination of good query performance and low 
view maintenance. We first develop a heuristic 
algorithm which can provide a feasible solu- 
tion based on individual optimal query plans. 
We also map the materialized view design 
problem as O-l integer programming problem, 
whose solution can guarantee an optimal so- 
lution. 

1 Introduction 

There are two approaches towards providing inte- 
grated access to multiple, distributed, heterogeneous 
databases: (1) lazy or on-demand approach to data in- 
tegration, which often uses virtual view(s) techniques; 
and (2) data warehousing approach, where the reposi- 
tory serves as a warehouse storing the data of interest. 
One of the techniques this approach uses is material- 
ized view(s). 

The virtual view approach may be better if the in- 
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formation sources are changing frequently. On the 
other hand, the materialized approach would be supe- 
rior if the information sources change infrequently and 
very fast query response time is needed. The virtual 
and materialized view approaches represent two ends 
of vast spectrum of possibilities. We believe that it 
may be more efficient not to materialize all the views, 
but rather to materialize certain “shared” portions of 
the base data, from which the warehouse views can be 
achieved. In this paper, we present significantly new 
techniques for selecting views to be materialized. 

1.1 Related Work 

Finding common subexpressions among multiple 
queries has been examined in the past in various con- 
texts. [Jar841 discussed the problem of common subex- 
pression isolation. [Ha174, Ha1761 used operator trees 
to represent the queries and a bottom-up traversal pro- 
cedure to identify common parts. A lot of research has 
focused on the problem of multiple-query optimization 
(MQO). The effort in this area has been to find an op- 
timal execution plan for multiple queries executed at 
the same time, based on the idea that the temporary 
result sharing should be less expensive compared to a 
serial execution of queries. 

What distinguishes our problem from common 
subexpression and MQO is the following: 

l MQO is to find an optimal execution plan for mul- 
tiple queries executed at the same time by sharing 
some temporary results which are common subex- 
pressions, whereas our problem is to find a set 
of relations (which can be any intermediate re- 
sult from query processing) to be materialized so 
that that the total cost (query execution plus view 
maintenance) is minimal; 

l In MQO, a global access plan is derived from 

136 



the idea that temporary result sharing should be 
less expensive compared to a serial execution of 
queries. However, this cannot be true for every 
possible database state. In our approach, if an 
intermediate result is materialized, we can estab- 
lish a proper index on it afterwards if necessary. 
Therefore, it is guaranteed that there is a perfor- 
mance gain if an intermediate result is material- 
ized. If the intermediate result happens to be a 
common subexpression which can be shared by 
more than one query, then there is a view main- 
tenance gain as well; 

l In MQO, the ultimate goal is to achieve the best 
performance, whereas our problem has to take 
into consideration of both query and view main- 
tenance cost; 

l In MQO, the input is a set of queries and the out- 
put is a global optimal plan; in our problem, how- 
ever, the inputs are: a set of global queries and 
their access frequencies, and a set of base relations 
and their update frequencies and the output is a 
set of views to be materialized. 

In summary, some of the techniques used in com- 
mon subexpression and MQO can be applicable to our 
problem, however our problem is more general and 
thus more complicated than MQO [YKL97b]. 

Recently, some research has been done in the area 
of selecting views to materialize in the data warehous- 
ing environment. In [HRU96], the authors provide 
algorithms to select views to materialize when there 
are queries with only aggregate functions involved for 
OLAP applications. While in our work, we are deal- 
ing with more general SQL queries which include se- 
lect, project, join, and aggregation operations. In 
[Gup97], the author presented several heuristic algo- 
rithms for selecting views. Their work provides (1) 
a near-optimal polynomial time greedy algorithm for 
two special cases, i.e., AND graphs (with each query 
having a unique execution plan) and OR graphs (with 
each query having multiple execution plans); (2) a 
near-optimal exponential time greedy algorithm for 
the combined AND-OR graphs. They do not provide 
an evaluation of the algorithms in terms of the qual- 
ity of solutions. In this paper, we consider combined 
cases where each query has multiple query execution 
plans, employ both query processing and view main- 
tenance cost functions, and provide an optimal solu- 
tion using O-l integer programming formulation and a 
near-optimal heuristics based algorithm. 

1.2 Contributions and Organization of Our 
Paper 

The specific contributions of our paper are as follows: 

A framework is presented to highlight issues of 
materialized view design in a distributed data 
warehouse environment. This framework is based 
on the specification of Multiple View Processing 
Plan (MVPP) which is used to present the prob- 
lem formally. 

The cost model for materialized view design is 
provided and analyzed in terms of query perfor- 
mance as well as view maintenance. 

The algorithms for generating MVPPs and deter- 
mining the selection of views to materialize are 
presented and analyzed. We provide two algo- 
rithms to generate MVPP(s): one can generate a 
feasible solution expeditiously, the other can pro- 
vide an optimal solution by mapping the optimal 
MVPP generation problem as a O-l integer pro- 
gramming problem. 

The rest of the paper is organized as follows: Sec- 
tion 2 provides an example to illustrate different alter- 
natives for materialized view design and analyzes the 
existing work. Section 3 presents the formal specifica- 
tion of the problem and the cost models used in our al- 
gorithms. In Section 4, we describe several algorithms 
for addressing materialized view design problem. We 
conclude in section 5 by summarizing our results and 
suggesting some ideas for future work. 

2 Issues of Materialized View Design 

2.1 Motivating Application 

Our examples are taken from a data warehouse appli- 
cation which analyzes trends in sales and supply. We 
have simplified the presentation for ease of exposition. 
The relations and the attributes of the schema for this 
application are: 

Item(I-id, I-name, I-price) 
Part(P-id, P-name, I-id) 
Supplier(S-id, S-name, P-id, city, cost) 
Sales(I-id, month, year, amount) 

Suppose we have four frequently asked data ware- 
house queries as listed in Figure 1. We observe that 
these queries are defined over overlapping portions of 
the base data or intermediate query results. For ex- 
ample, Ql and Q2 can share the intermediate result of 
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Ql: Select I-id, sum(amount*I-price) 
From Item, Sales 
Where I-name like {MAZDA, NISSEN, TOYOTA) 
And year=1996 
And 1tem.Lid=Sales.I-id 
Group by I-id 

92: Select P-id, month, sum(amount*no) 
From Item, Sales, Part 
Where I-name like {MAZDA, NISSEN, TOYOTA) 
And year=1996 
And 1tem.Lid=Sales.I-id 
And Part.I-id=Item.I-id 
Group by P-id, month 

Q3: Select P-id, min(cost), max(cost) 
From Part, Supplier 
Where Part.P-id=supplier.P_id 
And P-name like {spark-plug, gas-kit) 
Group by Pid 

Q4: Select 
From 
Where 
And 
And 
And 
And 

Group by 

I-id, sum(amount*number*min-cost) 
Item, Sales, Part 
I-name like {MAZDA, NISSEN, TOYOTA) 
year=1996 
1tem.Lid=Sales.I-id 
Item.I-id=Part.I-id 
Part.P-id= 

(Select P-id, min(cost) as min-cost 
From supplier 
Group by P-id) 

I-id 

Figure 1: Example Queries 

joining Item and Sales, and 94 can use the interme- 
diate result of 93 which calculates the minimal cost of 
a part. 

2.2 Example MVPPs 

Figure 2 represents a possible global query access plan 
for the motivative example described above, in which 
the local access plan for individual queries are merged 
based on the shared operations on common data sets. 
We call it Multiple View Processing Plan (MVPP). 
The query access frequencies are labeled on the top 
of each query node. For simplicity, we assume that all 
the btie relations Item, Sales, Part and Supperlier 
are updated only once for a certain period of time. 

It is obvious from this graph that we have several 
alternatives for choosing the set of materialized views: 
e.g., (1) materialize all the application queries; (2) ma- 
terialize some of the intermediate nodes (e.g., tmpl, 
tmpS, tmp7, etc.); (3) leave all the non-leaf nodes vir- 
tual. The cost for each alternative shall be calculated 

kern sales PI Supplier 

Figure 2: A MVPP for Example Queries 
in terms of query processing and view maintenance. 
(In the annotations, we abbreviate thousand as “k”, 
million as “m” , and billion as “b” .) 

In order to calculate the cost, we make the following 
assumptions: 

l There are lk tuples in the Item relation; 

l On average each item has 10 parts, therefore there 
are 10k tuples in Part table; 

l There are 50k tuples in supplier table; 

l There are 10 years worth of sales in the Sales 
table from 1987 through 1996. On average each 
item is sold 100 times a month, resulting in 12m 
entries in the sales relation; 

l The cost of answering a query Q is the number 
of rows present in the table used to construct 
Q. Note that similar cost calculation is used in 
[HRU96]. 

l The methods for implementing select and join op- 
eration are linear search and nested loop. 

Baaed on the above assumptions, the cost for each 
operation node in Figure 2 is labeled at the right side 
of the node. 

Suppose there are some materialized intermediate 
nodes. For each query, the cost of query processing is 
query frequency multiplied by the cost of query access 
from the materialized node(s). The maintenance cost 
for materialized view is the cost used for constructing 
this view (here we assume that re-computing is used 
whenever an update of an involved base relation OC- 
curs). For example, if tmp3 is materialized, the query 
processing cost for 91 is 10 * 36.03m. The view main- 
tenance cost is 2 t (36m + 12m + lk). The total cost for 
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an MVPP is the sum of all query processing and view 
maintenance costs. Our goal is to find a set of nodes 
to be materialized, so that the total cost is minimal. 

In Table 1, we list some materialized view design 
strategies based on the above example, and their costs. 
From this table, we have the following observations: 

3 

materializing all the application views in the data 
warehouse can achieve the best performance at 
the highest cost of maintenance; 

leaving all the application views virtual will have 
the poorest performance but the lowest mainte- 
nance cost; 

if we have the intermediate results of some oper- 
ations materialized, and some virtual, especially 
when there are some shared operations on com- 
mon data involved, then we can achieve an op- 
timal result with both performance and main- 
tenance taking into account (e.g., materializing 
tmp3 and tmpi’ are the best among all the listed 
strategies). 

Specifications and Cost Analysis of 
Materialized View Design 

Materialized view design can be achieved with the help 
of an MVPP. A MVPP specifies the views that the 
data warehouse will maintain (either materialized or 
virtual). As will be defined formally below, the MVPP 
is a directed acyclic graph that represents a query pro- 
cessing strategy of warehouse views. The leaf nodes 
correspond to the base relations, and the root nodes 
correspond to warehouse queries. Analogous to query 
execution plans, there can be more than one MVPP 
for the same set of views depending upon the access 
characteristics of the applications and physical data 
warehouse parameters. 

3.1 Specifications 

An MVPP is a labeled dag M = (V, A, Cz, CL, fp, fu) 
where V is a set of vertices, A is a set of arcs over V, 
such that 

l for every relational algebra operation in a query 
tree, for every base relation, and for every distinct 
query, we create a vertex; 

l for 21 E V, T(v) is the relation generated by cor- 
responding vertex v. T(v) can be a base relation, 
an intermediate result while processing a query, 
or the final result for a query; 

for any leaf vertex v, (that is, it has no edges 
coming into the vertex), T(v) corresponds to a 
base relation, and is depicted using the 0 symbol. 
Let L be a set of leaf nodes. For any vertex v E L, 
jU(v) represents the update frequency of v; 

for any root vertex v, (that is, it has no edges 
going out of the vertex), T(v) correspond to a 
global query, and is depicted using the l symbol. 
Let R be a set of root nodes. For every vertex 
w E R, j,(w) represents the query access frequency 
of v; 

if the base relation or intermediate result relation 
T(u) corresponding to vertex u is needed for fur- 
ther processing at a node 21, we introduce an arc 
21 + v; 

for every vertex v, let S(v) denote the source 
nodes which have edges pointed to v; for any 
w E L, S(v) = 0. Let S*(w) = S(v) U 
{U,tE~(,,) S*{v’}} be the set of descendants of w; 

for every vertex w, let D(w) denote the destination 
nodes to which v is pointed; for any v E R, D(w) = 
8. Let D*(v) = D(v) U {UvtE~(v)D*{v’)} be the 
set of ancestors of v; 

for w E V, C:(v) is the cost of query q accessing 
T(v); CL(w) is the cost of maintaining T(w) based 
on changes to the base relation S*(v) rl R, if T(v) 
is materialized. 

Now the problem for materialized view design can be 
described as follows: 

Selection of Views to be Materialized from 
an MVPP: determine a set of vertices M C V, 
such that if VW E M, T(v) is materialized, then the 
sum cost of processing all the queries and main- 
taining all the views is the smallest possible. 

MVPP Generation: find all pairs of distinct 
vertices U, w E V, such that S*(U) = S*(w) and 
T(U) = T(v), then T(u) and T(v) are common 
subexpressions which can be merged to form an 
MVPP. 

For simplicity in notation, we denote the relation 
T(w) corresponding to a vertex w as just w for the rest 
of the paper. 

3.2 Cost Analysis 

3.2.1 Cost of an MVPP 

Let M be a set of views in an MVPP to be material- 
ized, jq, jiL the frequency of executing queries and fre- 
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Table 1: Costs for different view materialization strategies 
I Materialized views I Cost of auerv I Cost of I Total I 

quency of updating base relations, respectively. Fur- 
thermore for each 21 E M, let C:(v) and C&(v) denote 
the cost of access for query q using view v and the 
cost of maintenance of view u based on changes to 
base relation r, respectively (where v E R is the set of 
queries and r E L is the set of base relations). Note 
that C:(v) = 0 if query q does not access view TJ, and 
C&(v) = 0 if view v does not have base relation T as 
its descendant. 

Then the query processing cost will be 
C queryprocessing (v> = CqeR f&2(v) 

And the materialized view maintenance cost will be 
Cmaintenance (v) = CrEL fuCh(v) 

Thus the total cost of materializing a view v is 
Got al(V) = CqER f&z(v) + C& fd?Tl (v) 

Therefore, the total cost of materializing a set of 
views M is Ctotall : 

C total = c VfzM Gotal 

Our goal is to find the set M so that if the mem- 
bers of M are materialized then the value of Ctotal will 
be the smallest among all the feasible sets of materi- 
alized views. It is obvious from the last formula that 
the determination of M depends on four factors: (1) 
frequencies of global query access, (2) frequencies of 
member database relation update, (3) costs of query 
processing from materialized view(s), and (4) costs for 
materialized view maintenance from base relations. 

3.2.2 Cost for Shared Views 

For every view v in individual query access plan, we 
introduce an Ecost(v) function which represents the 
benefit of sharing a view among multiple views, and is 
defined on each view as follows: 

Ecost(v) = Eq@t f&:(v) I/% 

where n, is the number of queries which can share 
view v. For example, n, of tmp3 in Figure 2 is 3. 

This formula implies that the smaller the value is, 

‘Note that in a distributed date warehouse environment, the 
cost should also incorporate the costs of data transferring among 
different sites. 

the more likely this view should be selected in the final 
MVPP and materialized due to its high sharability and 
being cheap to produce. We will use Ecost function 
in the algorithm for generating best MVPP in section 
4.2.3. 

4 Algorithms for Materialized View 
Design 

As discussed in Section 3, there are two issues in mate- 
rialized view design: (1) selecting views to materialize 
and, (2) MVPP design. In this section, we first present 
an algorithm to select views to materialize when an 
MVPP is given, followed by two algorithms for gener- 
ating and constructing MVPP(s). 

4.1 Algorithm for selecting views to be mate- 
rialized 

Given an MVPP, we shall find a set of materialized 
views such that the total cost for query processing and 
view maintenance is minimal by comparing the cost of 
every possible combination of nodes. Suppose that 
there are n nodes in an MVPP excluding leaf nodes, 
then we have to try 2n combinations of nodes. How- 
ever, we can use some heuristics to reduce the search 
space. 

Before we present our heuristic algorithm, we shall 
introduce all the notations used in this algorithm: 

0, denotes the global queries which uses v, 0, = 
R n D* {v}; where R is the set of root nodes and 
D*(v) is the set of ancestors of v as defined in 
Section 3. 

I,, denotes the base relations which are used to 
produce v, I,, = L rl S*(v); where L is the set of 
leaf nodes and S*(v) is the set of descendants of 
v as defined in Section 3. 

w(v) denotes the weight of a node, which is cal- 
culated as 

W(V) = CPEO, fq(4)*c~(v)-c,,,~ fuzL(~)*C~(v). 
The first part of this formula indicates the saving 
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begin 
1. 
2. 

3. 
4. 
5. 

6. 

7. 

8. 
9. 

end; 

M := 0; 
create list LV for all the nodes 
(with positive value of weights) 
based on the descending order of their weights; 
pick up the first one v from LV; 
generate 0,) I,, and Sv; 
dculate G = CgEOv {fdq) * (Cl(v)- 
c u&JlM CZ(~>>l - CrEI”~fd9Cml~ 
if C, > 0, then 

6.1. insert v into M; 
6.2. remove v from LV; 

else remove v and all the nodes 
listed after v from LV who are in 
the subtree rooted at v; 
repeat step 3 until LV = 0; 
for each v E M, if D(v) c M, then 
remove v from M; 

Figure 3: HAMVD - Materialized View Design Algo- 
rithm 

if node v is materialized, the second part indicates 
the cost for materialized view maintenance. 

l LV is the list of nodes based on descending order 
of w(v); 

l S, = S*(v) is the set of nodes (leaf nodes and 
intermediate nodes) which are used to produce v; 

Without losing generality, we assume there are al- 
together k queries. Let M be the set of materialized 
views. The algorithm in Figure 3 for determining M 
is based on the following idea: whenever a new node is 
considered to be materialized, we calculate the saving 
it brings in accessing all the queries involved, subtract- 
ing the cost for maintaining this node. If this value is 
positive, then this node will be materialized and added 
into M. 

Since join is one of the most expensive operations, we 
like to find the sharable join operations among queries 
as early as possible. To do this, we have to pull up all 
the select, project, and aggregation operations along 
the query tree, and push down these operations when 
an MVPP is generated by merging common join oper- 
ations. 

Pulling up select and project operations are straight 
forward based on relational algebra or calculus. Some 
rewrite rules have been previously given in [Day87]. 
As for pushing down transformations after an MVPP 
is generated by merging common join operations, we 
introduce and/or adopt the following rules: 

In Step 5, the first part of C, is the saving if v is l pushing down select operations: if there is more 
to be materialized. The second part is the view main- than one query sharing a join operation, and these 
tenance cost for v. C, > 0 indicates that there is queries have different select conditions on the at- 
a cost gain if v is materialized. ‘&s,oM C:(u)) is tributes of two base relations of the join opera- 
the replicated saving in case of some descendants of v tion, then the select condition for a base relation 
are already chosen to be materialized. After applying attribute is the disjunction of all the select condi- 
transformation, C, becomes: tions on that attribute; 

cs = cqeo, fq(Q) * C,(v) - CT& fub-1 * CL(v) - 
c qE0, f*MCUED(t+-lM Cc!(u)) 
= w(v) - C@, (f&> * CUED(tl)“M &4 

For example, if vi is a descendant of v2, and UJ(V~) > 
2u(vs), then the second part of the above formula for 
vi and us are the same. Therefore, if materializing v1 
will not gain anything, then definitely there will not 
be any gain to materialize VZ. Applying Step 7 in the 
algorithm HAMVD we can save some search space. 

A fuller explanation and discussion of this algorithm 
run by this example is presented in [YKL97a]. 

4.2 Algorithms for multiple MVPPs design 

Normally for one query, there are several processing 
plans, among which there is one optimal plan. There- 
fore, we will have multiple MVPPs based on different 
combinations of individual plans. In the following sub- 
sections, we first discuss some transformation rules for 
query plans which are needed for our algorithms. We 
then present two algorithms for multiple MVPP de- 
sign: the first one can provide a feasible solution by 
dealing with optimal plan instead of all possible plans 
for each query; the second one provides an algorithm 
which considers all possible plans for each query to 
generate a single optimal MVPP by applying O-l inte- 
ger programming technique. 

4.2.1 Transformations 

l pushing down project operations: the attributes 
which should be projected for a base relation 
should be the union of the projection attributes 
of queries which share the common join operation, 
plus the join attribute(s) (if required); 
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l pushing down aggregations with identical group- 
by attributes: we apply the rewrite rules given 
in [CS94, Yan94J: if different queries which share 
the same join operation have different aggregation 
functions with the same group-by attributes, then 
the new aggregation functions will include all the 
individual aggregation functions; 

l pushing down aggregations with different group- 
by attributes: If different queries which share the 
same join operation have different group-by at- 
tributes on the same base relation, then we have 
to use the combination of individual group-by at- 
tributes as the new group-by attribute against the 
base relation. This will generate multiple distinct 
group-by operations on the same join result or 
base relation for queries. 

4.2.2 A Feasible Solution 

In order to reduce the search space, we start with indi- 
vidual query optimal plans, and order them based on 
query access frequency times query processing cost. 
Once the order of the optimal query plans is fixed, we 
pick up the first optimal plan, and incorporate the sec- 
ond one into it based on the idea of using the common 
subexpressions if there is any. After the first two are 
merged, the next one is picked up to be incorporated 
with the merged plan. We keep doing it until all the 
plans are merged. Then, we repeat this procedure of 
incorporating all other plans with the second expen- 
sive plan, so on and so forth, until all the plans have 
been considered. If there are k global plans, we will 
end up with k MVPPs. For every MVPP generated, 
we run HAMVD (described in the previous subsection 
4.1), compare the total cost of each MVPP, and select 
the one which gives the lowest cost. 

The algorithm for generating MVPPs is presented 
in Figure 4. In this algorithm, step 4.3 is to merge the 
current MVPP with the elements of list 1 (of optimal 
query execution plans op’s) based on the join pattern 
of current op. The idea is to reserve the join pattern 
of current MVPP, and then try to find the join oper- 
ation nodes in the MVPP which can be used in the 
individual optimal query plan op. If there is any such 
node, evolve the MVPP; otherwise the join pattern in 
the op shall be used. 

The detailed explanation of the algorithm run by 
this example is presented in [YKL97a]. 

After each MVPP is derived, we have to optimize 
it by pushing down the select and project operations 
as far as possible. What differentiates MVPP opti- 
mization with traditional heuristic query optimization 
is that in an MVPP several queries can share some in- 

begin 

4 

5. 

6. 

end; 

for each query q;, generate an optimal query 
processing plan op; 
for any query involving join operations, push up 
all the select and project operations; 
createalistZ=<opl,opz,...,opk>,inwhichthe 
elements are in the descending order of the values of 
fq(OPi) * C=(OP;); 
for n = 1 to k do 

4.1. pick up the first element from 1, 1(l), 
maintain the order of the joins in (1); 
4.2. MVPP(n) := 1(l); 
4.3. for m = 2 to k do 

4.3.1. divide the leaf node set of opm 

4.3.2. 

4.3.3. 
4.3.4. 

4.4. n := n + 

into several disjoint subsets, 
according to the following order of 
(1) the set of leaf nodes that are 

already joined conjunctively 
in MVPP(n), 
and one of the leaf nodes in this 
set is the first node of the join; 

(2) the set of leaf nodes that are not 
joined in MVPP(n), but joined 
in op,; 

find the common ancestor node of 
elements of each subset either in 
in MVPP(n) or in opm, create new 
node(s) to join these ancestors 
nodes, replace the final join operation 
node in opm with the root node of 
these new node(s), delete all the un- 
used nodes and associated edges 
in opm; 
MVPP(n) := MVPP(n) U Z(m); 
m:=m+l; 
1; 

4.5. move 1(l) to the end of the list; 
for every leaf node v E L of every MVPP, find 
all the relevant select conditions 
of queries which are members of R il S*(v), take 
the disjunction of select conditions, 
push it down to v; 
for every leaf node v E L of every MVPP, find 
all the relevant project operation 
of queries which are members of R n s’ {v}, 
of queries which are members of R fl S*(v), 
take the union of the relevant project attributes, 
plus the join attribute(s), push it down to v; 

Figure 4: HA,,, - A Heuristic Algorithm for Gener- 
ating Multiple MVPPs 

142 



termediate nodes, therefore there can be several select 
conditions and aggregations on base relations which 
are combined (as discussed in subsection 4.2.1.) 

For each MVPP obtained, we run the HAM~~ al- 
gorithm to select views for materializing, followed by 
calculating the total cost for each MVPP using the 
model defined in Section 4.3. After that, we can select 
the best MVPP which has the optimal combination of 
query processing and view maintenance cost. 

Note that the algorithm described in Figure 4 may 
not guarantee that an optimal MVPP can always be 
obtained (and not missed), since only a subset of the 
possible MVPPs (for a given set of queries) has been 
considered. Nevertheless, we believe it captures a rea- 
sonable subset of MVPPs, out of which a satisfactory 
(and balanced) solution can be found efficiently. 

4.2.3 A O-l integer programming solution 

In this subsection, we try to overcome the limitations 
of the HA,,,, by looking into all possible combina- 
tions of individual query plans and then selecting the 
most beneficial MVPP(s). In order to do this system- 
atically while incorporating the cost of processing the 
queries, we model the optimal MVPP selection prob- 
lem as O-l integer programming (IP) problem. This 
approach has two advantages. the first is the auto- 
matic formulation of IP problem given a set of queries 
and base relations. Secondly, IP problem has been well 
studied and there is lot of software available that solves 
IP problems quite efficiently. This approach is better 
than applying ad-hoc heuristics [Gup97] which are dif- 
ficult to evaluate or provide an intuition as to why the 
heuristics work. Further, IP solution procedure pro- 
vides an optimal or near-optimal solution. A point to 
note is that the optimal MVPP selection problem lends 
itself to be specified as an IP problem, a technique 
which has been applied in generating optimal query 
execution plans [BNNS96, ETB96] for distributed and 
deductive database systems. For simplicity we assume 
that all the select, project and aggregate operations 
have been pushed up and we only consider join oper- 
ations. 

Before we present our algorithm, we again introduce 
all the notations used here first: 

l there are k number of queries: ql,q2, - . . , qk; 

l for any query q, there is a set of possible join 
plans, which can be represented as binary trees 
with join operations as root nodes of (sub)tree(s). 
See Figure 5; 

a given a join plan tree of a query q, an in-order 

Figure 5: Join Plan Trees 
traversal of this plan generates an ordered list p, 
in the form of (R, S), such that R and S are two 
children of a join node in this plan tree. We denote 
a join plan tree by p, and s denotes a join pattern 
or a subtree of a plan p as shown in Figure 5. 

l let p(q) = {pi : pi is a join plan tree of q} be the 
set of all possible join plan trees of query q; 

l let P = Uf=:=,p(qi) be the set of all possible join 
plan trees for all the k queries; 

0 let s(p) = {si : si is a pattern contained in plan 
p} be the set of all join patterns of p; 

l let S = Uf,,s(qi) be the set of all possible join 
patterns for all the plans. 

According to the above definitions, we can get 
for example the following information from Figure 5 
(Note: we use abbreviation It, Sal, Pt , Sp for 
Item, Sales, part, and Supplier, respectively): 

Join Plan Trees 

Pkn) = {W, WI = {Pll 

PblZ) = {(Uh w, Jw, ((It, pt)l SaOl = {P3,P4j 

p(qs) = {(W SP)l = {PZ> 

P(Q4) = {(W, w, m SP)), ((W w, m, SP), 

((W, w, Sd, SP)) = {Ps,PsrP71 

Join Patterns 

s(p1) = {(It, Sal)) = {Sl} 

sbz) = {WY SP)l = {s51 

s(p3) = {(It, Sal), ((It, Sal, Pt)} = {a, 52) 
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Sk61 = {(It, Sal), ((It, Sal), Pt), (((It, Sal), pt), SP)) 

= {sl,sZ,s7} 

s(P7) = {(It, pt), ((It, pt), S4, (((W pt), Sal, SP)) 

= {s3,34, S6) 

List of Join Plan Trees and Join Patterns 

p = {pl,P2,P3,P4,P5,P6,P7} 

S={Sl,S2,33,34,S5,S6,S7,S6} 

Here we consider all the possible join plan trees for 
each query including those join plan trees whose pat- 
tern cannot be shared by any other queries; only those 
join patterns which will generate Cartesian products of 
relations are not considered. The IP problem formula- 
tion states: select a subset of the join plan trees such 
that all queries can be executed and the total query 
processing cost is the minimum. The join plan trees 
are selected such that the cost of processing the join 
patterns (s) in the join plan trees (p) is the least. We 
shall first present the notation and variables used in 
the formulation, and then present the IP formulation 
of the problem. 

After we get S, P, pi, and sj, we construct two 
matrices A and B as follows: 

Let pl,p2,..-, pl E P be the 1 join plan trees for 
Ic queries ql, q2,. . . , qk. Let si, , ~2,. . . , sm E S be m 
patterns derived from I join plan trees. 

Let A be a k x 1 matrix whose element oij = 1 if 
query qi can be answered by join plan tree pj. Let xi 
be a binary variable which takes value 1 if join plan 
tree pi is selected, else 0. 

Let B be a m x 1 matrix whose element bij = 1 
if pattern si is contained in join plan tree pj. Then, 
the problem of selecting an optimal MVPP reduces to 
selecting a subset of 1 join plan trees {pi,pz, . . . ,pl} so 

as to: 

minimize xo = C~~~Ecost(si) * {cqI:bij * ~j} 

subject to 

C::aij * xi = 1 for every query i 

where each xi = 0 or 1. 

Note that Ecost(si) is the estimated cost of pattern 
(node) ai defined in Section 4.3. The constraint for 
each query qi, namely, Ciz:aij * xi = 1 states that 
the query qi should be answered by exactly one of the 
join plan trees selected. The solution to the above O-l 

integer programming formulation gives the set of join 
plan trees which form the optimal MVPP. Thus the 
problem of selecting an optimal MVPP is solved by 
O-l integer programming. 

For the example in Figure 5, we have the following 
two matrixes: 

B= 

Based on our assumption in Section 2 and Figure 2, 
we get the costs and the estimated cost for each join 
pattern as shown in Table 2. 

After solving the O-l integer programming problem 
we get the optimal solution that selects join plan trees 
pl , p2, ~3, ps to form the optimal MVPP, which is the 
same as that generated by HA,,,,. 

4.2.4 The comparison of the algorithms for 
MVPP generation 

By comparing the results obtained by using the above 
two 

0 

l 

0 

algorithms, we can get the following conclusions: 

The HA,,,, algorithm is to get multiple MVPPs 
regardless of their query cost; while the O-l integer 
programming approach is to get a best MVPP in 
terms of query access efficiency. 

Although the results generated by HA,,, may 
include the best MVPP, which is the case for our 
example, it cannot guarantee that it is always the 
case. The reason for this is because HA,,, only 
works with optimal plans. For instance, if we as- 
sign different cost values for patterns in Table 2, 
the best MVPP may turn out to be the merging 
join plan trees of pi ,p2, p4, ~5, which will not be 
picked up by HAmvpp, as p4 is not an optimal 
plan for query 2. In contrast, the O-l integer pro- 
gramming approach works with all the possible 
join plan trees, therefore it can definitely get the 
best MVPP. 

The complexity of HA,,, is O(n) if there are n 
number of queries, while the complexity of the O-l 
integer programming approach is 0(2n). There- 
fore, if we just need a reasonable solution, we can 
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Table 2: Costs of Patterns 

use HA,,,,. With current O-l linear program- 
ming software package, we can get the answer 
within an acceptable period of time, as the MVPP 
generation problem can be done off line. Thus if 
we need an optimal MVPP, we could use the O-l 
integer programming approach. 

5 Conclusions 

We have addressed and designed algorithms for the 
materialized view design problem, i.e., how to select a 
set of views to be materialized so that the sum cost of 
processing a set of queries and maintaining the materi- 
alized views is minimized. Our approach relies on ana- 
lyzing the queries so as to derive common intermediate 
results which can be shared among the queries. The 
cost model takes into consideration of not only query 
access frequencies and base relation update frequen- 
cies, but also query access costs and view maintenance 
costs. The algorithms for generating MVPPs uses 
the techniques from single query optimization, cou- 
pled with query tree merging techniques which aims 
to incorporate the individual optimal query plans as 
much as possible in the MVPP. We are also able to 
successfully map the optimal MVPP generation prob- 
lem as a O-l integer programming problem so that we 
are guaranteed to have an optimal solution. 

The work presented here is the outcome of the first 
stage of research in Materialize View Design project. 
We are currently working on the combined index se- 
lection and materialized view design problem. We 
axe also extending this work towards a cost-based ap- 
proach to migrate a legacy database system onto a 
data warehousing platform based on the HODFA ar- 
chitecture [KLS95], wherein the cost of migrating the 
consistency between the legacy database and the base 
relations while maintaining consistency has to be in- 
corporated. Finally, we will focus on developing an 
analytical model for a multiple view processing envi- 
ronment to simulate different scenarios to evaluate the 
solutions for the materialized view design problem. 
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