
Algorithms for Materialized View Design in Data
Warehousing Environment

Jian Yang
School of Computer Science
University College, UNSW

Australian Defence Force Academy
Canberra ACT 2600, Australia.

jianQcsadfa.cs.adfa.oz.au

Kamalakar Karla alem
8. Dept of Computer crence

Univ. of Science & Technology
Clear Water Bay, Kowloon

Hong Kong
kamalQcs.ust.hk

Dept%%or!$t ing
Hong Kong Polytechnic Univ.

Hung Horn, Kowloon
Hong Kong

csqli@comp.polyu.edu.hk

Abstract

Selecting views to materialize is one of the
most important decisions in designing a data
warehouse. In this paper, we present a frame-
work for analyzing the issues in selecting views
to materialize so as to achieve the best com-
bination of good query performance and low
view maintenance. We first develop a heuristic
algorithm which can provide a feasible solu-
tion based on individual optimal query plans.
We also map the materialized view design
problem as O-l integer programming problem,
whose solution can guarantee an optimal so-
lution.

1 Introduction

There are two approaches towards providing inte-
grated access to multiple, distributed, heterogeneous
databases: (1) lazy or on-demand approach to data in-
tegration, which often uses virtual view(s) techniques;
and (2) data warehousing approach, where the reposi-
tory serves as a warehouse storing the data of interest.
One of the techniques this approach uses is material-
ized view(s).

The virtual view approach may be better if the in-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

formation sources are changing frequently. On the
other hand, the materialized approach would be supe-
rior if the information sources change infrequently and
very fast query response time is needed. The virtual
and materialized view approaches represent two ends
of vast spectrum of possibilities. We believe that it
may be more efficient not to materialize all the views,
but rather to materialize certain “shared” portions of
the base data, from which the warehouse views can be
achieved. In this paper, we present significantly new
techniques for selecting views to be materialized.

1.1 Related Work

Finding common subexpressions among multiple
queries has been examined in the past in various con-
texts. [Jar841 discussed the problem of common subex-
pression isolation. [Ha174, Ha1761 used operator trees
to represent the queries and a bottom-up traversal pro-
cedure to identify common parts. A lot of research has
focused on the problem of multiple-query optimization
(MQO). The effort in this area has been to find an op-
timal execution plan for multiple queries executed at
the same time, based on the idea that the temporary
result sharing should be less expensive compared to a
serial execution of queries.

What distinguishes our problem from common
subexpression and MQO is the following:

l MQO is to find an optimal execution plan for mul-
tiple queries executed at the same time by sharing
some temporary results which are common subex-
pressions, whereas our problem is to find a set
of relations (which can be any intermediate re-
sult from query processing) to be materialized so
that that the total cost (query execution plus view
maintenance) is minimal;

l In MQO, a global access plan is derived from

136

the idea that temporary result sharing should be
less expensive compared to a serial execution of
queries. However, this cannot be true for every
possible database state. In our approach, if an
intermediate result is materialized, we can estab-
lish a proper index on it afterwards if necessary.
Therefore, it is guaranteed that there is a perfor-
mance gain if an intermediate result is material-
ized. If the intermediate result happens to be a
common subexpression which can be shared by
more than one query, then there is a view main-
tenance gain as well;

l In MQO, the ultimate goal is to achieve the best
performance, whereas our problem has to take
into consideration of both query and view main-
tenance cost;

l In MQO, the input is a set of queries and the out-
put is a global optimal plan; in our problem, how-
ever, the inputs are: a set of global queries and
their access frequencies, and a set of base relations
and their update frequencies and the output is a
set of views to be materialized.

In summary, some of the techniques used in com-
mon subexpression and MQO can be applicable to our
problem, however our problem is more general and
thus more complicated than MQO [YKL97b].

Recently, some research has been done in the area
of selecting views to materialize in the data warehous-
ing environment. In [HRU96], the authors provide
algorithms to select views to materialize when there
are queries with only aggregate functions involved for
OLAP applications. While in our work, we are deal-
ing with more general SQL queries which include se-
lect, project, join, and aggregation operations. In
[Gup97], the author presented several heuristic algo-
rithms for selecting views. Their work provides (1)
a near-optimal polynomial time greedy algorithm for
two special cases, i.e., AND graphs (with each query
having a unique execution plan) and OR graphs (with
each query having multiple execution plans); (2) a
near-optimal exponential time greedy algorithm for
the combined AND-OR graphs. They do not provide
an evaluation of the algorithms in terms of the qual-
ity of solutions. In this paper, we consider combined
cases where each query has multiple query execution
plans, employ both query processing and view main-
tenance cost functions, and provide an optimal solu-
tion using O-l integer programming formulation and a
near-optimal heuristics based algorithm.

1.2 Contributions and Organization of Our
Paper

The specific contributions of our paper are as follows:

A framework is presented to highlight issues of
materialized view design in a distributed data
warehouse environment. This framework is based
on the specification of Multiple View Processing
Plan (MVPP) which is used to present the prob-
lem formally.

The cost model for materialized view design is
provided and analyzed in terms of query perfor-
mance as well as view maintenance.

The algorithms for generating MVPPs and deter-
mining the selection of views to materialize are
presented and analyzed. We provide two algo-
rithms to generate MVPP(s): one can generate a
feasible solution expeditiously, the other can pro-
vide an optimal solution by mapping the optimal
MVPP generation problem as a O-l integer pro-
gramming problem.

The rest of the paper is organized as follows: Sec-
tion 2 provides an example to illustrate different alter-
natives for materialized view design and analyzes the
existing work. Section 3 presents the formal specifica-
tion of the problem and the cost models used in our al-
gorithms. In Section 4, we describe several algorithms
for addressing materialized view design problem. We
conclude in section 5 by summarizing our results and
suggesting some ideas for future work.

2 Issues of Materialized View Design

2.1 Motivating Application

Our examples are taken from a data warehouse appli-
cation which analyzes trends in sales and supply. We
have simplified the presentation for ease of exposition.
The relations and the attributes of the schema for this
application are:

Item(I-id, I-name, I-price)
Part(P-id, P-name, I-id)
Supplier(S-id, S-name, P-id, city, cost)
Sales(I-id, month, year, amount)

Suppose we have four frequently asked data ware-
house queries as listed in Figure 1. We observe that
these queries are defined over overlapping portions of
the base data or intermediate query results. For ex-
ample, Ql and Q2 can share the intermediate result of

137

Ql: Select I-id, sum(amount*I-price)
From Item, Sales
Where I-name like {MAZDA, NISSEN, TOYOTA)
And year=1996
And 1tem.Lid=Sales.I-id
Group by I-id

92: Select P-id, month, sum(amount*no)
From Item, Sales, Part
Where I-name like {MAZDA, NISSEN, TOYOTA)
And year=1996
And 1tem.Lid=Sales.I-id
And Part.I-id=Item.I-id
Group by P-id, month

Q3: Select P-id, min(cost), max(cost)
From Part, Supplier
Where Part.P-id=supplier.P_id
And P-name like {spark-plug, gas-kit)
Group by Pid

Q4: Select
From
Where
And
And
And
And

Group by

I-id, sum(amount*number*min-cost)
Item, Sales, Part
I-name like {MAZDA, NISSEN, TOYOTA)
year=1996
1tem.Lid=Sales.I-id
Item.I-id=Part.I-id
Part.P-id=

(Select P-id, min(cost) as min-cost
From supplier
Group by P-id)

I-id

Figure 1: Example Queries

joining Item and Sales, and 94 can use the interme-
diate result of 93 which calculates the minimal cost of
a part.

2.2 Example MVPPs

Figure 2 represents a possible global query access plan
for the motivative example described above, in which
the local access plan for individual queries are merged
based on the shared operations on common data sets.
We call it Multiple View Processing Plan (MVPP).
The query access frequencies are labeled on the top
of each query node. For simplicity, we assume that all
the btie relations Item, Sales, Part and Supperlier
are updated only once for a certain period of time.

It is obvious from this graph that we have several
alternatives for choosing the set of materialized views:
e.g., (1) materialize all the application queries; (2) ma-
terialize some of the intermediate nodes (e.g., tmpl,
tmpS, tmp7, etc.); (3) leave all the non-leaf nodes vir-
tual. The cost for each alternative shall be calculated

kern sales PI Supplier

Figure 2: A MVPP for Example Queries
in terms of query processing and view maintenance.
(In the annotations, we abbreviate thousand as “k”,
million as “m” , and billion as “b” .)

In order to calculate the cost, we make the following
assumptions:

l There are lk tuples in the Item relation;

l On average each item has 10 parts, therefore there
are 10k tuples in Part table;

l There are 50k tuples in supplier table;

l There are 10 years worth of sales in the Sales
table from 1987 through 1996. On average each
item is sold 100 times a month, resulting in 12m
entries in the sales relation;

l The cost of answering a query Q is the number
of rows present in the table used to construct
Q. Note that similar cost calculation is used in
[HRU96].

l The methods for implementing select and join op-
eration are linear search and nested loop.

Baaed on the above assumptions, the cost for each
operation node in Figure 2 is labeled at the right side
of the node.

Suppose there are some materialized intermediate
nodes. For each query, the cost of query processing is
query frequency multiplied by the cost of query access
from the materialized node(s). The maintenance cost
for materialized view is the cost used for constructing
this view (here we assume that re-computing is used
whenever an update of an involved base relation OC-
curs). For example, if tmp3 is materialized, the query
processing cost for 91 is 10 * 36.03m. The view main-
tenance cost is 2 t (36m + 12m + lk). The total cost for

138

an MVPP is the sum of all query processing and view
maintenance costs. Our goal is to find a set of nodes
to be materialized, so that the total cost is minimal.

In Table 1, we list some materialized view design
strategies based on the above example, and their costs.
From this table, we have the following observations:

3

materializing all the application views in the data
warehouse can achieve the best performance at
the highest cost of maintenance;

leaving all the application views virtual will have
the poorest performance but the lowest mainte-
nance cost;

if we have the intermediate results of some oper-
ations materialized, and some virtual, especially
when there are some shared operations on com-
mon data involved, then we can achieve an op-
timal result with both performance and main-
tenance taking into account (e.g., materializing
tmp3 and tmpi’ are the best among all the listed
strategies).

Specifications and Cost Analysis of
Materialized View Design

Materialized view design can be achieved with the help
of an MVPP. A MVPP specifies the views that the
data warehouse will maintain (either materialized or
virtual). As will be defined formally below, the MVPP
is a directed acyclic graph that represents a query pro-
cessing strategy of warehouse views. The leaf nodes
correspond to the base relations, and the root nodes
correspond to warehouse queries. Analogous to query
execution plans, there can be more than one MVPP
for the same set of views depending upon the access
characteristics of the applications and physical data
warehouse parameters.

3.1 Specifications

An MVPP is a labeled dag M = (V, A, Cz, CL, fp, fu)
where V is a set of vertices, A is a set of arcs over V,
such that

l for every relational algebra operation in a query
tree, for every base relation, and for every distinct
query, we create a vertex;

l for 21 E V, T(v) is the relation generated by cor-
responding vertex v. T(v) can be a base relation,
an intermediate result while processing a query,
or the final result for a query;

for any leaf vertex v, (that is, it has no edges
coming into the vertex), T(v) corresponds to a
base relation, and is depicted using the 0 symbol.
Let L be a set of leaf nodes. For any vertex v E L,
jU(v) represents the update frequency of v;

for any root vertex v, (that is, it has no edges
going out of the vertex), T(v) correspond to a
global query, and is depicted using the l symbol.
Let R be a set of root nodes. For every vertex
w E R, j,(w) represents the query access frequency
of v;

if the base relation or intermediate result relation
T(u) corresponding to vertex u is needed for fur-
ther processing at a node 21, we introduce an arc
21 + v;

for every vertex v, let S(v) denote the source
nodes which have edges pointed to v; for any
w E L, S(v) = 0. Let S*(w) = S(v) U
{U,tE~(,,) S*{v’}} be the set of descendants of w;

for every vertex w, let D(w) denote the destination
nodes to which v is pointed; for any v E R, D(w) =
8. Let D*(v) = D(v) U {UvtE~(v)D*{v’)} be the
set of ancestors of v;

for w E V, C:(v) is the cost of query q accessing
T(v); CL(w) is the cost of maintaining T(w) based
on changes to the base relation S*(v) rl R, if T(v)
is materialized.

Now the problem for materialized view design can be
described as follows:

Selection of Views to be Materialized from
an MVPP: determine a set of vertices M C V,
such that if VW E M, T(v) is materialized, then the
sum cost of processing all the queries and main-
taining all the views is the smallest possible.

MVPP Generation: find all pairs of distinct
vertices U, w E V, such that S*(U) = S*(w) and
T(U) = T(v), then T(u) and T(v) are common
subexpressions which can be merged to form an
MVPP.

For simplicity in notation, we denote the relation
T(w) corresponding to a vertex w as just w for the rest
of the paper.

3.2 Cost Analysis

3.2.1 Cost of an MVPP

Let M be a set of views in an MVPP to be material-
ized, jq, jiL the frequency of executing queries and fre-

139

Table 1: Costs for different view materialization strategies
I Materialized views I Cost of auerv I Cost of I Total I

quency of updating base relations, respectively. Fur-
thermore for each 21 E M, let C:(v) and C&(v) denote
the cost of access for query q using view v and the
cost of maintenance of view u based on changes to
base relation r, respectively (where v E R is the set of
queries and r E L is the set of base relations). Note
that C:(v) = 0 if query q does not access view TJ, and
C&(v) = 0 if view v does not have base relation T as
its descendant.

Then the query processing cost will be
C queryprocessing (v> = CqeR f&2(v)

And the materialized view maintenance cost will be
Cmaintenance (v) = CrEL fuCh(v)

Thus the total cost of materializing a view v is
Got al(V) = CqER f&z(v) + C& fd?Tl (v)

Therefore, the total cost of materializing a set of
views M is Ctotall :

C total = c VfzM Gotal

Our goal is to find the set M so that if the mem-
bers of M are materialized then the value of Ctotal will
be the smallest among all the feasible sets of materi-
alized views. It is obvious from the last formula that
the determination of M depends on four factors: (1)
frequencies of global query access, (2) frequencies of
member database relation update, (3) costs of query
processing from materialized view(s), and (4) costs for
materialized view maintenance from base relations.

3.2.2 Cost for Shared Views

For every view v in individual query access plan, we
introduce an Ecost(v) function which represents the
benefit of sharing a view among multiple views, and is
defined on each view as follows:

Ecost(v) = Eq@t f&:(v) I/%

where n, is the number of queries which can share
view v. For example, n, of tmp3 in Figure 2 is 3.

This formula implies that the smaller the value is,

‘Note that in a distributed date warehouse environment, the
cost should also incorporate the costs of data transferring among
different sites.

the more likely this view should be selected in the final
MVPP and materialized due to its high sharability and
being cheap to produce. We will use Ecost function
in the algorithm for generating best MVPP in section
4.2.3.

4 Algorithms for Materialized View
Design

As discussed in Section 3, there are two issues in mate-
rialized view design: (1) selecting views to materialize
and, (2) MVPP design. In this section, we first present
an algorithm to select views to materialize when an
MVPP is given, followed by two algorithms for gener-
ating and constructing MVPP(s).

4.1 Algorithm for selecting views to be mate-
rialized

Given an MVPP, we shall find a set of materialized
views such that the total cost for query processing and
view maintenance is minimal by comparing the cost of
every possible combination of nodes. Suppose that
there are n nodes in an MVPP excluding leaf nodes,
then we have to try 2n combinations of nodes. How-
ever, we can use some heuristics to reduce the search
space.

Before we present our heuristic algorithm, we shall
introduce all the notations used in this algorithm:

0, denotes the global queries which uses v, 0, =
R n D* {v}; where R is the set of root nodes and
D*(v) is the set of ancestors of v as defined in
Section 3.

I,, denotes the base relations which are used to
produce v, I,, = L rl S*(v); where L is the set of
leaf nodes and S*(v) is the set of descendants of
v as defined in Section 3.

w(v) denotes the weight of a node, which is cal-
culated as

W(V) = CPEO, fq(4)*c~(v)-c,,,~ fuzL(~)*C~(v).
The first part of this formula indicates the saving

140

begin
1.
2.

3.
4.
5.

6.

7.

8.
9.

end;

M := 0;
create list LV for all the nodes
(with positive value of weights)
based on the descending order of their weights;
pick up the first one v from LV;
generate 0,) I,, and Sv;
dculate G = CgEOv {fdq) * (Cl(v)-
c u&JlM CZ(~>>l - CrEI”~fd9Cml~
if C, > 0, then

6.1. insert v into M;
6.2. remove v from LV;

else remove v and all the nodes
listed after v from LV who are in
the subtree rooted at v;
repeat step 3 until LV = 0;
for each v E M, if D(v) c M, then
remove v from M;

Figure 3: HAMVD - Materialized View Design Algo-
rithm

if node v is materialized, the second part indicates
the cost for materialized view maintenance.

l LV is the list of nodes based on descending order
of w(v);

l S, = S*(v) is the set of nodes (leaf nodes and
intermediate nodes) which are used to produce v;

Without losing generality, we assume there are al-
together k queries. Let M be the set of materialized
views. The algorithm in Figure 3 for determining M
is based on the following idea: whenever a new node is
considered to be materialized, we calculate the saving
it brings in accessing all the queries involved, subtract-
ing the cost for maintaining this node. If this value is
positive, then this node will be materialized and added
into M.

Since join is one of the most expensive operations, we
like to find the sharable join operations among queries
as early as possible. To do this, we have to pull up all
the select, project, and aggregation operations along
the query tree, and push down these operations when
an MVPP is generated by merging common join oper-
ations.

Pulling up select and project operations are straight
forward based on relational algebra or calculus. Some
rewrite rules have been previously given in [Day87].
As for pushing down transformations after an MVPP
is generated by merging common join operations, we
introduce and/or adopt the following rules:

In Step 5, the first part of C, is the saving if v is l pushing down select operations: if there is more
to be materialized. The second part is the view main- than one query sharing a join operation, and these
tenance cost for v. C, > 0 indicates that there is queries have different select conditions on the at-
a cost gain if v is materialized. ‘&s,oM C:(u)) is tributes of two base relations of the join opera-
the replicated saving in case of some descendants of v tion, then the select condition for a base relation
are already chosen to be materialized. After applying attribute is the disjunction of all the select condi-
transformation, C, becomes: tions on that attribute;

cs = cqeo, fq(Q) * C,(v) - CT& fub-1 * CL(v) -
c qE0, f*MCUED(t+-lM Cc!(u))
= w(v) - C@, (f&> * CUED(tl)“M &4

For example, if vi is a descendant of v2, and UJ(V~) >
2u(vs), then the second part of the above formula for
vi and us are the same. Therefore, if materializing v1
will not gain anything, then definitely there will not
be any gain to materialize VZ. Applying Step 7 in the
algorithm HAMVD we can save some search space.

A fuller explanation and discussion of this algorithm
run by this example is presented in [YKL97a].

4.2 Algorithms for multiple MVPPs design

Normally for one query, there are several processing
plans, among which there is one optimal plan. There-
fore, we will have multiple MVPPs based on different
combinations of individual plans. In the following sub-
sections, we first discuss some transformation rules for
query plans which are needed for our algorithms. We
then present two algorithms for multiple MVPP de-
sign: the first one can provide a feasible solution by
dealing with optimal plan instead of all possible plans
for each query; the second one provides an algorithm
which considers all possible plans for each query to
generate a single optimal MVPP by applying O-l inte-
ger programming technique.

4.2.1 Transformations

l pushing down project operations: the attributes
which should be projected for a base relation
should be the union of the projection attributes
of queries which share the common join operation,
plus the join attribute(s) (if required);

141

l pushing down aggregations with identical group-
by attributes: we apply the rewrite rules given
in [CS94, Yan94J: if different queries which share
the same join operation have different aggregation
functions with the same group-by attributes, then
the new aggregation functions will include all the
individual aggregation functions;

l pushing down aggregations with different group-
by attributes: If different queries which share the
same join operation have different group-by at-
tributes on the same base relation, then we have
to use the combination of individual group-by at-
tributes as the new group-by attribute against the
base relation. This will generate multiple distinct
group-by operations on the same join result or
base relation for queries.

4.2.2 A Feasible Solution

In order to reduce the search space, we start with indi-
vidual query optimal plans, and order them based on
query access frequency times query processing cost.
Once the order of the optimal query plans is fixed, we
pick up the first optimal plan, and incorporate the sec-
ond one into it based on the idea of using the common
subexpressions if there is any. After the first two are
merged, the next one is picked up to be incorporated
with the merged plan. We keep doing it until all the
plans are merged. Then, we repeat this procedure of
incorporating all other plans with the second expen-
sive plan, so on and so forth, until all the plans have
been considered. If there are k global plans, we will
end up with k MVPPs. For every MVPP generated,
we run HAMVD (described in the previous subsection
4.1), compare the total cost of each MVPP, and select
the one which gives the lowest cost.

The algorithm for generating MVPPs is presented
in Figure 4. In this algorithm, step 4.3 is to merge the
current MVPP with the elements of list 1 (of optimal
query execution plans op’s) based on the join pattern
of current op. The idea is to reserve the join pattern
of current MVPP, and then try to find the join oper-
ation nodes in the MVPP which can be used in the
individual optimal query plan op. If there is any such
node, evolve the MVPP; otherwise the join pattern in
the op shall be used.

The detailed explanation of the algorithm run by
this example is presented in [YKL97a].

After each MVPP is derived, we have to optimize
it by pushing down the select and project operations
as far as possible. What differentiates MVPP opti-
mization with traditional heuristic query optimization
is that in an MVPP several queries can share some in-

begin

4

5.

6.

end;

for each query q;, generate an optimal query
processing plan op;
for any query involving join operations, push up
all the select and project operations;
createalistZ=<opl,opz,...,opk>,inwhichthe
elements are in the descending order of the values of
fq(OPi) * C=(OP;);
for n = 1 to k do

4.1. pick up the first element from 1, 1(l),
maintain the order of the joins in (1);
4.2. MVPP(n) := 1(l);
4.3. for m = 2 to k do

4.3.1. divide the leaf node set of opm

4.3.2.

4.3.3.
4.3.4.

4.4. n := n +

into several disjoint subsets,
according to the following order of
(1) the set of leaf nodes that are

already joined conjunctively
in MVPP(n),
and one of the leaf nodes in this
set is the first node of the join;

(2) the set of leaf nodes that are not
joined in MVPP(n), but joined
in op,;

find the common ancestor node of
elements of each subset either in
in MVPP(n) or in opm, create new
node(s) to join these ancestors
nodes, replace the final join operation
node in opm with the root node of
these new node(s), delete all the un-
used nodes and associated edges
in opm;
MVPP(n) := MVPP(n) U Z(m);
m:=m+l;
1;

4.5. move 1(l) to the end of the list;
for every leaf node v E L of every MVPP, find
all the relevant select conditions
of queries which are members of R il S*(v), take
the disjunction of select conditions,
push it down to v;
for every leaf node v E L of every MVPP, find
all the relevant project operation
of queries which are members of R n s’ {v},
of queries which are members of R fl S*(v),
take the union of the relevant project attributes,
plus the join attribute(s), push it down to v;

Figure 4: HA,,, - A Heuristic Algorithm for Gener-
ating Multiple MVPPs

142

termediate nodes, therefore there can be several select
conditions and aggregations on base relations which
are combined (as discussed in subsection 4.2.1.)

For each MVPP obtained, we run the HAM~~ al-
gorithm to select views for materializing, followed by
calculating the total cost for each MVPP using the
model defined in Section 4.3. After that, we can select
the best MVPP which has the optimal combination of
query processing and view maintenance cost.

Note that the algorithm described in Figure 4 may
not guarantee that an optimal MVPP can always be
obtained (and not missed), since only a subset of the
possible MVPPs (for a given set of queries) has been
considered. Nevertheless, we believe it captures a rea-
sonable subset of MVPPs, out of which a satisfactory
(and balanced) solution can be found efficiently.

4.2.3 A O-l integer programming solution

In this subsection, we try to overcome the limitations
of the HA,,,, by looking into all possible combina-
tions of individual query plans and then selecting the
most beneficial MVPP(s). In order to do this system-
atically while incorporating the cost of processing the
queries, we model the optimal MVPP selection prob-
lem as O-l integer programming (IP) problem. This
approach has two advantages. the first is the auto-
matic formulation of IP problem given a set of queries
and base relations. Secondly, IP problem has been well
studied and there is lot of software available that solves
IP problems quite efficiently. This approach is better
than applying ad-hoc heuristics [Gup97] which are dif-
ficult to evaluate or provide an intuition as to why the
heuristics work. Further, IP solution procedure pro-
vides an optimal or near-optimal solution. A point to
note is that the optimal MVPP selection problem lends
itself to be specified as an IP problem, a technique
which has been applied in generating optimal query
execution plans [BNNS96, ETB96] for distributed and
deductive database systems. For simplicity we assume
that all the select, project and aggregate operations
have been pushed up and we only consider join oper-
ations.

Before we present our algorithm, we again introduce
all the notations used here first:

l there are k number of queries: ql,q2, - . . , qk;

l for any query q, there is a set of possible join
plans, which can be represented as binary trees
with join operations as root nodes of (sub)tree(s).
See Figure 5;

a given a join plan tree of a query q, an in-order

Figure 5: Join Plan Trees
traversal of this plan generates an ordered list p,
in the form of (R, S), such that R and S are two
children of a join node in this plan tree. We denote
a join plan tree by p, and s denotes a join pattern
or a subtree of a plan p as shown in Figure 5.

l let p(q) = {pi : pi is a join plan tree of q} be the
set of all possible join plan trees of query q;

l let P = Uf=:=,p(qi) be the set of all possible join
plan trees for all the k queries;

0 let s(p) = {si : si is a pattern contained in plan
p} be the set of all join patterns of p;

l let S = Uf,,s(qi) be the set of all possible join
patterns for all the plans.

According to the above definitions, we can get
for example the following information from Figure 5
(Note: we use abbreviation It, Sal, Pt , Sp for
Item, Sales, part, and Supplier, respectively):

Join Plan Trees

Pkn) = {W, WI = {Pll

PblZ) = {(Uh w, Jw, ((It, pt)l SaOl = {P3,P4j

p(qs) = {(W SP)l = {PZ>

P(Q4) = {(W, w, m SP)), ((W w, m, SP),

((W, w, Sd, SP)) = {Ps,PsrP71

Join Patterns

s(p1) = {(It, Sal)) = {Sl}

sbz) = {WY SP)l = {s51

s(p3) = {(It, Sal), ((It, Sal, Pt)} = {a, 52)

143

Sk61 = {(It, Sal), ((It, Sal), Pt), (((It, Sal), pt), SP))

= {sl,sZ,s7}

s(P7) = {(It, pt), ((It, pt), S4, (((W pt), Sal, SP))

= {s3,34, S6)

List of Join Plan Trees and Join Patterns

p = {pl,P2,P3,P4,P5,P6,P7}

S={Sl,S2,33,34,S5,S6,S7,S6}

Here we consider all the possible join plan trees for
each query including those join plan trees whose pat-
tern cannot be shared by any other queries; only those
join patterns which will generate Cartesian products of
relations are not considered. The IP problem formula-
tion states: select a subset of the join plan trees such
that all queries can be executed and the total query
processing cost is the minimum. The join plan trees
are selected such that the cost of processing the join
patterns (s) in the join plan trees (p) is the least. We
shall first present the notation and variables used in
the formulation, and then present the IP formulation
of the problem.

After we get S, P, pi, and sj, we construct two
matrices A and B as follows:

Let pl,p2,..-, pl E P be the 1 join plan trees for
Ic queries ql, q2,. . . , qk. Let si, , ~2,. . . , sm E S be m
patterns derived from I join plan trees.

Let A be a k x 1 matrix whose element oij = 1 if
query qi can be answered by join plan tree pj. Let xi
be a binary variable which takes value 1 if join plan
tree pi is selected, else 0.

Let B be a m x 1 matrix whose element bij = 1
if pattern si is contained in join plan tree pj. Then,
the problem of selecting an optimal MVPP reduces to
selecting a subset of 1 join plan trees {pi,pz, . . . ,pl} so

as to:

minimize xo = C~~~Ecost(si) * {cqI:bij * ~j}

subject to

C::aij * xi = 1 for every query i

where each xi = 0 or 1.

Note that Ecost(si) is the estimated cost of pattern
(node) ai defined in Section 4.3. The constraint for
each query qi, namely, Ciz:aij * xi = 1 states that
the query qi should be answered by exactly one of the
join plan trees selected. The solution to the above O-l

integer programming formulation gives the set of join
plan trees which form the optimal MVPP. Thus the
problem of selecting an optimal MVPP is solved by
O-l integer programming.

For the example in Figure 5, we have the following
two matrixes:

B=

Based on our assumption in Section 2 and Figure 2,
we get the costs and the estimated cost for each join
pattern as shown in Table 2.

After solving the O-l integer programming problem
we get the optimal solution that selects join plan trees
pl , p2, ~3, ps to form the optimal MVPP, which is the
same as that generated by HA,,,,.

4.2.4 The comparison of the algorithms for
MVPP generation

By comparing the results obtained by using the above
two

0

l

0

algorithms, we can get the following conclusions:

The HA,,,, algorithm is to get multiple MVPPs
regardless of their query cost; while the O-l integer
programming approach is to get a best MVPP in
terms of query access efficiency.

Although the results generated by HA,,, may
include the best MVPP, which is the case for our
example, it cannot guarantee that it is always the
case. The reason for this is because HA,,, only
works with optimal plans. For instance, if we as-
sign different cost values for patterns in Table 2,
the best MVPP may turn out to be the merging
join plan trees of pi ,p2, p4, ~5, which will not be
picked up by HAmvpp, as p4 is not an optimal
plan for query 2. In contrast, the O-l integer pro-
gramming approach works with all the possible
join plan trees, therefore it can definitely get the
best MVPP.

The complexity of HA,,, is O(n) if there are n
number of queries, while the complexity of the O-l
integer programming approach is 0(2n). There-
fore, if we just need a reasonable solution, we can

144

Table 2: Costs of Patterns

use HA,,,,. With current O-l linear program-
ming software package, we can get the answer
within an acceptable period of time, as the MVPP
generation problem can be done off line. Thus if
we need an optimal MVPP, we could use the O-l
integer programming approach.

5 Conclusions

We have addressed and designed algorithms for the
materialized view design problem, i.e., how to select a
set of views to be materialized so that the sum cost of
processing a set of queries and maintaining the materi-
alized views is minimized. Our approach relies on ana-
lyzing the queries so as to derive common intermediate
results which can be shared among the queries. The
cost model takes into consideration of not only query
access frequencies and base relation update frequen-
cies, but also query access costs and view maintenance
costs. The algorithms for generating MVPPs uses
the techniques from single query optimization, cou-
pled with query tree merging techniques which aims
to incorporate the individual optimal query plans as
much as possible in the MVPP. We are also able to
successfully map the optimal MVPP generation prob-
lem as a O-l integer programming problem so that we
are guaranteed to have an optimal solution.

The work presented here is the outcome of the first
stage of research in Materialize View Design project.
We are currently working on the combined index se-
lection and materialized view design problem. We
axe also extending this work towards a cost-based ap-
proach to migrate a legacy database system onto a
data warehousing platform based on the HODFA ar-
chitecture [KLS95], wherein the cost of migrating the
consistency between the legacy database and the base
relations while maintaining consistency has to be in-
corporated. Finally, we will focus on developing an
analytical model for a multiple view processing envi-
ronment to simulate different scenarios to evaluate the
solutions for the materialized view design problem.

References

[BNNS96] C. Bell, A. Nerode, R. T. Ng, and V. S. Sub-
rahmanian. Implementing deductive databases
by mixed integer programming. ACM !i’Fans-

[CS94]

Pay871

[ETB96]

FM-‘71

[Hal741

[Hal761

[HRU96]

[Jar841

[KLS95]

[Yan94]

actions on Database Systems, 21(2):p238-69,
1996.

S. Chaudhuri and K. Shim. Including group-by
in query optimization. In VLDB, 1994.

U. Dayal. Of nests and trees: A unified ap-
proach to processing queries that contain nested
subqueries, aggregates, and quantifiers. In
VLDB, 1987.

C. J. Egyhazy, K. P. Triantis, and B. Bhaskar.
A query processing algorithm for a system
of heterogeneous distributed databases. Dis-
tributed and Parallel Databases, 4(1):p49-79,
January 1996.

H. Gupta. Selection of views to materialized in
a data warehouse. in ICDT, 1997.

P.V. Hall. Common subexpression identifica-
tion in general algebraic systems. Tech. Rep.
VKSC 0060, IBM United Kingdom Scientific
Centre, Nov. 1974.

P.V. Hall. Optimization of a single relation ex-
pression in a relational data base system. IBM
J. Res. Dev. 20, 3, pages 244-257, May 1976.

V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. In Proc. of
the ACM SIGMOD International Conference of
Management of Data, Canada, June 1996.

M. Jarke. Common subexpression isolation in
multiple query optimization. Query Processing
in Database Systems, pages 191-205, 1984.

K. Karlapalem, Q. Li, and C. Shum. Hodfa:
An architectural framework for homogenizing
heterogeneous legacy databases. SIGMOD
RECORD, 24(1):15-20, March 1995.

W. P. Yan. Performing group-by before join. In
ICDE, 1994.

[YKL97a] J. Yang, K. Karlapalem, and Q. Li. A
framework for designing materialized views in
data warehousing environment. in the Proc.
of ICDCS’97 International Conference in Dis-
tributed Computing Systems, Baltimore, Mary-
land, USA, 1997.

[YKL97b] J. Yang, K. Karlapalem, and Q. Li. Tackling
the challenges of materialized view design in
data warehousing environment. in the Proc. of
Int’l Workshop on Research Issues in Data En-
gineering (RIDE’97), IEEE Computer Sociaty,
UK, 1997.

145

