
Data Warehouse Configuration

Dimitri Theodoratos * Timos Sellis *

Department of Electrical and Computer Engineering
Computer Science Division

National Technical University of Athens
Zographou 157 73, Athens, Greece

{dth,timos}@dblab.ece.ntua.gr

Abstract

In the data warehousing approach to the in-
tegration of data from multiple information
sources, selected information is extracted in
advance and stored in a repository. A data
warehouse (DW) can therefore be seen as a set
of materialized views defined over the sources.
When a query is posed, it is evaluated locally,
using the materialized views, without access-
ing the original information sources. The ap-
plications using DWs require high query per-
formance. This requirement is in conflict with
the need to maintain in the DW updated in-
formation. The DW configuration problem is
the problem of selecting a set of views to mate-
rialize in the DW that answers all the queries
of interest while minimizing the total query
evaluation and view maintenance cost.

In this paper we provide a theoretical frame-
work for this problem in terms of the relational
model. We develop a method for dealing with
it by formulating it as a state space optimiza-
tion problem and then solving it using an ex-
haustive incremental algorithm as well as a

*Research supported by the European Commission under
the ESPRIT Program LTR project No 22469 “DWQ: Founda-
tions of Data Warehouse Quality”

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

heuristic one. We extend this method by con-
sidering the case where auxiliary views are
stored in the DW solely for reducing the view
maintenance cost.

1 Introduction

A Data Warehouse (DW) is a repository of integrated
information available for querying and analysis [32].
Data Warehousing is an in-advance approach to the
integration of data from multiple, possibly very large,
distributed, heterogeneous databases and other infor-
mation sources [33]. In this approach:

l Selected information from each source is ex-
tracted in advance, translated and filtered as
needed, merged with relevant information from
other sources and stored in a repository.

l When a query is posed, it is evaluated directly on
the repository (DW) without accessing the origi-
nal information sources.

The information stored at the DW can be used by or-
ganizations for decision support. This activity makes
heavy use of aggregate queries and is called OLAP
(On-line Analytical Processing). Aggregations are
much more complex than in the case of OLTP (On-
Line Transaction Processing) queries [7, 5, 13, 121.
Thus, the data must be available locally at the DW
and large multisource queries are executed over the
DW.

A DW can be seen as a repository where views over
the data from multiple remote information sources are
defined and stored materialized. When changes to the
base data occur, they must be propagated to the DW.
Different update policies can be applied (e.g. imme-
diate or deferred) depending on the client’s needs for
currency on different parts of the data stored at the

126

DW. Incremental updating techniques can be more ef-
ficient, especially when changes to the base data affect
only a small part of it, as is usually the case. In order
to compute the changes to the materialized views from
the changes to the base data, in most cases, queries
must be issued against the base data. This procedure
is more time consuming when the data sources are dis-
tributed and the transmission costs are important.

1.1 The problem: Data Warehouse configura-
tion

The need for high query performance (low query pro-
cessing cost) is in conflict with the need for low view
maintenance cost. High query performance can be
achieved by storing in the DW the result of all the
queries of interest. In this case the maintenance cost
of the materialized queries might be prohibitively high.
By materializing in the DW an appropriately selected
set of views we can keep the total query processing
cost and the view maintenance cost (operational cost)
at an acceptable level.

In this paper we deal with the problem of selecting
such a set of views. The solution for a given mainte-
nance policy is a compromise between fully materializ-
ing all the queries of interest on the one side and keep-
ing replicas of all the base data needed for answering
the queries on the other side. More specifically the DW
configuration problem is formulated as follows: given a
set of queries of interest to be issued against the DW,
determine a set of views such that:

1. All the queries can be answered using exclusively
this set of views, and

2. The operational cost (i.e. the combination of
query processing and view maintenance cost) is
minimal

The DW configuration problem is more complicated
than other query or view maintenance optimization
problems using views for the following reasons:

l When views are kept materialized, in order to
minimize the query evaluation [30,4,13,12] or the
view maintenance cost [20], queries possibly need
to be answered using some materialized views. In
the context of the DW configuration problem all
the queries need to be answered using exclusively
materialized views. In other words, there is the
following additional constraint: for every query,
there must be a complete rewriting using the ma-
terialized views [15].

l The DW operational cost is the combination of
the cost of two activities. These activities affect

each other when we modify the set of views mate-
rialized in the DW: the modification may be bene-
ficial for the query evaluation process while being
harmful for the view maintenance process and vice
versa.

Even though there has been a lot of work on various
aspects of materialized views with respect to DWs,
there is little or no theoretical work at all on providing
a method for configuring a DW. As a consequence the
design of a DW is haphazard and the quality of data
is often dubious. A formalization of the problem in
[ll] neglects the fact that queries need to be answered
locally, using solely the materialized views.

1.2 Contribution and outline

In this paper we set up a theoretical basis for the DW
configuration problem. We then provide a method for
solving it for a certain class of relational queries and
views. Based on a representation of views using mul-
tiquery graphs we model the problem as a state space
search problem. Every state is a multiquery graph of
the views that are materialized in the DW plus a com-
plete rewriting of the queries over these views. A tran-
sition from one state to another transforms the multi-
query graph and rewrites completely the queries over
the new view set. We search for states having minimal
operational cost, using an exhaustive algorithm which
is also extended with heuristics for pruning the search
space. The solution is constructive. Thus, we pro-
vide both a set of views to materialize in a DW and a
complete rewriting of all the queries over it that min-
imizes the operational cost. Further, we extend this
method, and we compute states having minimal oper-
ational cost in the case where auxiliary views are addi-
tionally stored in the DW solely for reducing the view
maintenance cost [20]. An extreme solution with this
approach is when the set of all the stored views is self-
maintainable [18]. 0 ur method is general in that it
does not consider that the materialized views and the
base data are stored in the same database. Further, it,
is not dependent on the way the query evaluation and
view maintenance cost is computed.

The paper is organized as follows. In Section 2, we
briefly review related work in the area. In Section 3,
we set up a theoretical basis for the DW configuration
problem. The problem is modeled as a state space
search problem in Section 4, where a solution based
on an exhaustive algorithm is provided and the use of
heuristics. A solution that stores auxiliary views for
reducing the maintenance cost is treated in Section
5. Section 6 contains concluding remarks and possible
extensions. An extended version of this work appears
on [29].

127

2 Related work

The DW configuration problem relates to several over-
lapping research areas.

Answering queries using materialized views has
been studied in [14, 34, 30, 15, 43. The same issue, in
connection to aggregate queries and views, has been
studied in [7] while in [5], multiset semantics is addi-
tionally considered. The problem of optimizing query
evaluation in the presence of materialized views has
been studied in [30, 41.

The problem of maintaining materialized views has
also been the focus of several efforts. Incremen-
tal maintenance algorithms are given in [Z] for SPJ-
queries, in [17] for arbitrary relational algebra expres-
sions, and in [9, 281 for recursive queries. [9, 61 handle
multiset semantics while [6] handles aggregation and
[19, 91 handle grouping/aggregation queries. [3] de-
rives production rules to maintain selected SQL views.
An overview of maintenance problems and techniques
with respect to materialized views can be found in [lo].
A DW usually holds copies of part of the data of dis-
tributed sources. In [24, 231 algorithms for material-
ized view maintenance in distributed environments are
provided. [35, 361 study the problem of updates to the
DW when the sources are not database management
systems and there is an absence of centralized control.
Query independence of updates issues are addressed
in [l, 161 while view self- maintainability issues are
addressed in [l, 8, 181.

Design problems using views usually follow the fol-
lowing pattern: select a set of views to materialize
in order to optimize query evaluation cost, or view
maintenance cost or both, eventually in the presence
of some constraint. In [13] the problem is addressed
in its query optimization form in the context of aggre-
gations and multidimensional analysis under a space
constraint. This work is extended in [12] where greedy
algorithms are provided, in the same context, for se-
lecting both views and indexes. Further, it is carried
over the context of a more general class of queries in
[ll]. Selecting SQL views to optimize the cost of main-
taining an SQL view is studied in [20]. In [ll] a for-
mulation of the DW configuration problem is provided
for minimizing query evaluation and view maintenance
cost. This formulation is different from ours in that it
considers that all the base relations at the sources are
available locally for computation and in that it does
not constraint queries to be completely rewritten over
the materialized views.

Finally, another two related problems are the
multiple-query optimization problem [26, 271 the
caching problem [25, 21, 221.

3 Formal statement of the problem

In this section, we formally set up the DW configu-
ration problem, in terms of the relational model. We
first briefly explain the view maintenance procedures
and we present the query and view maintenance model
and costs. Then the problem is stated in detail and
intuitive approaches for dealing with it are presented.

3.1 View maintenance

In general, when the base relations are updated, the
materialized in the DW views must be updated too.
Different update scenarios can be envisaged. They de-
pend among others on the types of updates, on the
activeness of the data sources, on the update policy,
and on the update strategy of the views.

If differentials can be sent to the DW, or if log files
are available, or more generally, if the updates since
the last consultation of the sources from the DW can
be computed, an incremental update strategy can be
more efficient [17, 61. Otherwise, a complete remate-
rialization of the affected views from the snapshots of
the base relations can be performed.

In an incremental strategy, when updates arrive at
the DW, they are propagated up to the affected views.
This is done by: (a) issuing queries back to the base
relations, (b) computing updated views and (c) per-
forming view updates. In a rematerialization strat-
egy, a similar procedure is followed where the queries
involve only relation names but no differentials (up-
dates).

When computing updates to the views, by propa-
gating up to the affected views the updates of the base
relations performed by a transaction, multiple queries
might be issued against the base relations [35, 201.
These queries again might contain equivalent subex-
pressions or more generally, subexpressions such that
the one subsumes the other. In this case, the tech-
niques of multiple query optimization [26, 271 allow
the detection of such subexpressions and the develop-
ment of optimal global evaluation plans.

3.2 Query evaluation and view maintenance
cost

The use we make of a DW is determined by the set of
queries Q = {Qr , . . , Ql} we issue against it. These
queries are expressed over a set of base relations R =
{RI, . . , &}. Every base relation is kept in a remote
source or locally, with the DW. The DW contains a set
of materialized views, V = {VI, . . . , V,}, over R, such
that every query in Q can be rewritten (completely)
over V. Thus, all the queries in Q can be answered
locally at the DW, without accessing the base relations
in R. Let Q be a query over R. By Q”, we denote

128

a rewriting of Q over V. This notation is extended to
sets of queries. Thus, we write Q”, for a set containing
the queries in Q, rewritten over V. Given Q, a DW
configuration C is a pair < V, Qv >. Note that we do
not distinguish in the notation between view names,
view definitions and view materializations (and often,
we use the word ‘view’ for all of them).

The cost of evaluating a query Qy E Qv over the
materialized views V is denoted by E(Qv). Assess-
ing the cost of different evaluation plans, in order to
chose the cheapest one, is a standard technique in the
process of query evaluation optimization. Thus, any
query optimizer [31] could be used to assess the cost
E(Qv) of the cheapest evaluation plan. With every
query Qv E Qv, we associate a weight fZ?, indicating
the relative frequency of issuing Qi and its relative im-
portance, with respect to all the queries in Qv. The
evaluation cost of Qv, E(Qv) = &Ll,lj f%?E(Qy).

We assume a set of transaction types T =
{TI,... , Tq} that can update the data sources. In the
case of an incremental updating, as in [20], each trans-
action type determines the updated base relations in
a source, the types of updates (insertions, deletions,
modifications) to the base relations and the size of
each update to a relation. In the case of a rematerial-
ization strategy, each transaction type determines only
the updated relations. Thus, there is only a notifica-
tion for the base relations that have changed. The cost
of maintaining the views affected by a transaction type
Ti is denoted by M(Ti). This cost involves the cost
of transmitting data (update differentials, query data
and answer data), computing updates, and performing
updates to the affected views. In a distributed environ-
ment, the transmission cost is predominant while in a
centralized one, the cost of computing and performing
updates primarily determines the maintenance cost of
the materialized views.

With every transaction type Ti E T, we associate
a weight f%T, indicating the relative frequency of this
transaction type and its relative importance, with re-
spect to all the transaction types in T. The mainte-
nance cost of V, M(V) = &l,(ll fiTAd(Notice
that there might be views that are not affected by any
transaction.

Our approach is general in that it does not consider
the maintenance cost to be solely the cost of the (in-
cremental) computation of the updates to the views.
Most of the work on view maintenance is restricted
by the assumption that base relations and views are
stored in a single database which has control over the
system [lo]. Here, the cost of performing the updates
to the views and the cost of transmitting the data
needed for the updating, to and from the (remote)
sources, can also be taken into account.

Moreover, our approach and method for dealing

with the DW configuration problem is independent of
the way query evaluation and view maintenance cost is
assessed. The solutions suggested, though, do depend
on the specific cost model used.

3.3 The DW configuration problem

The operational cost, T(C), of a DW configuration
C =< V,Qv > is T(C) = E(Q’) + CM(V). The
parameter c indicates the relative importance of the
evaluation and maintenance cost.

The DW configuration problem can now be stated
as follows:
Input
A set of base relations R = {RI, . . . , R,}.
A set Q = {Q1,... , Ql} of queries over R.
For every query Qi, its weight fy.
A set of transaction types T = {TI, . . . , Tq} over the
base relations R.
For every transaction type Tj, its weight f?.
The functions E for the query evaluation cost and M
for the view maintenance cost.
A parameter c.
Output
A set of views V such that there exists a rewriting
of Q over V, Q”, such that the DW configuration
C =< V, QV > has minimal operational cost.

The DW configuration < Q, QQ > has minimal
query evaluation cost. Indeed, in this case all the
queries in Q are materialized in the DW and they can
be answered by a simple lookup. On the other hand,
the DW configuration < R, Q > has minimal update
computation cost. In this case replicas of all the base
relations appearing in Q are materialized and they can
be maintained without any update computation.

A solution to the problem is a compromise between
these two extremes.

4 A state space search based algorithm

We model the DW configuration problem as a state
space search problem for a class of relational queries
and views. In this section we consider the case where
other materialized views are not used during the main-
tenance process of a view. This assumption is re-
laxed in the next section where we treat the general
case. Thus for now we consider that in a DW con-
figuration < V, Qv > every materialized view in V
appears in the rewriting of the queries in Qv. We
then present an exhaustive incremental algorithm for
selecting the state corresponding to a DW configura-
tion having minimal operational cost, and we suggest
heuristics.

We consider the class of relational views (queries)
of the form oF(R1 X . . . x Rk). The formula F is

129

a conjunction of comparisons of the form x op y + c
or x op c where op is one of the comparison oper-
ators =, <, 5, >, 2 (but no #), c is an integer
valued constant and x, y are attribute names. Con-
juncts involving attributes from only one relation are
called selection predicates, while conjuncts involving
attributes from two relations are called join predicates.
Attributes of every Ri are involved with those of at
least one other Rj in a predicate join in F. All the
Ris are distinct.

A formula involving unequalities (#), disjunction
and negation can be handled by replacing unequalities
by disjunctions of two strict inequalities, converting
it into disjunctive normal form, and eliminating nega-
tions. Then each disjunct can be considered separately
(though this conversion may cause the number of com-
parisons to grow exponentially). Thus, in the following
we consider F to be a conjunction of comparisons as
above.

4.1 The states

A set of views V can be represented by a multiquery
graph. A multiquery graph allows the compact rep-
resentation of multiple views by merging the query
graphs of each view. For a set of views V, the cor-
responding multiquery graph, GV, is a multigraph de-
fined as follows:

1. The set of nodes of GV is the set of relations ap-
pearing in the views V E V.

2. For every join predicate FP in a view V = ‘IF(R~ x
. . x Rk) involving attributes of the relations Ri

and Rj there is an edge between Ri and Rj labeled
as V : FP. Such an edge is called join edge.

3. For every selection predicate FP in a view V in-
volving attributes of the relation Ri, there is an
edge from Ri to itself labeled as V : FP. For every
view V = Ri there is an edge from Ri to itself
labeled as V : T. The symbol T denotes here a
valid formula. Both these edges are called selec-
tion edges.

The query graph of a view V can be seen as the multi-
query graph of the view set {V} where the view name
V does not appear in the edge labels.

Example 4.1 Suppose that a view set is V =
{VI, Vz}, where the views VI and VZ (in a form using
joins) are as follows: VI = R WF; a~; (5’) W,I oc; (T)
and V2 = S WF; at:(T) WF; o~,z(U). The’base re-
lation schemas are: R(A, B), S(C, D, E), T(G, K, H)
and U(M, L). The selection and join conditions are
given below:
C; : E < 3, C; : K < H+3, C,z : K < H, C; : L > 5,

F;:A<CAB=D, F,:C=G,
F,2:C<GAC>K, F-j:G<M.
The corresponding multiquery graph GV is depicted
in Figure 1. The order of appearance of the attributes
in the join edge labels indicates also which relation
they belong to. cl

VI: E<3 v2: C<=G V2: K<H V2: L>5

Vl: B=D Vl: C=G V 1: K<H+3

Figure 1: A multiquery graph

A multiquery graph contains all the information about
the views in V. Thus, in the following we may use this
notation for sets of views. In dealing with the config-
uration of DWs, besides selecting the set of views V
to materialize in the DW, we are also interested in
finding a complete rewriting of Q over V, Qv, (i.e. a
DW configuration C =< V,Qv >) such that C has
minimal operational cost. In the rest of the paper we
address the DW configuration problem as it is stated
in the previous section where the output is a DW con-
figuration C =< V, Q” >, and not only a view set
V.

States are DW configurations < G”, Qv >. Thus
in a state < GV, Qv > every view in GV appears in
a query rewriting in Qv.

4.2 The transitions

In order to define transitions between states we in-
troduce the following three state transformation rules
that can be applied to a state s =< GV, Qv >. Each
state transformation rule consists of a transformation
rule of the multiquery graph GV and a rewrite rule of
the set of queries Qv.

Selection edge cut:
If e is a selection edge in GV of a node R labeled as
V : FP, construct a new multiquery graph as follows:
(a) if e is the unique selection edge of R labeled by V,
then replace its label by VI : T, where VI is a new view
name. (b) otherwise, remove e from GV and replace
every occurrence of V in GV by a new view name VI.
New view names should not already appear in GV.
Replace any occurrence of V in Qv, by the expression
oF,(Vl). Note that in case (a) above, VI is the base
relation R.

.30

Join edge cut:
If e is a join edge labeled as V : Fp in G”, remove
e from G” and construct a new multiquery graph, as
follows: (a) if the removal of e does not divide the
query graph of V in G” into two disconnected com-
ponents, then replace every occurrence of V in G”, by
a new view name VI. (b) otherwise, replace every oc-
currence of V in G” by a new view name VI in the one
component and by a new view name V2 in the other
component. If a component (say the first) is a single
node without edges, then add in G” a selection edge
to this node labeled as VI : T. In this case VI is a base
relation. Do similarly for the other component. Note
that the removal of edge e may not divide the query
graph of V in G” into two disconnected components
because there are also other edges between the same
nodes (labeled by V of course) or because the query
graph of view V is cyclic and e is part of a cycle.
Replace any occurrence of V in Q”, in case (a) above,
by the expression OF,(&) and in case (b), by the ex-
pression uFp (VI x vz).

View merging:
If the query graphs of two views V and VI in G”
have the same set of nodes and each predicate in their
query graphs is either implied by a predicate of the
other view or implies a predicate of the other view,
then construct a new multiquery graph as follows:
Remove from G” each edge labeled by a predicate of
one of the views that imply a predicate of the other
view and is not implied by a predicate of the first view.
Replace any occurrence of V and VI in G” by a new
view name V2. This replacement results in one edge
out of two every time an edge of V and an edge of
VI are labeled by the same predicate. A predicate p
implies a predicate p’ if p is more restrictive than p’.
Clearly the implication entails that both predicates in-
volve the same attributes.
Replace any occurrence of V in Q” by the expression
a~,, (VI), where F is the conjunction of the predicates
p in V such that: p implies a predicate in VI and is
not implied by a predicate in V. Do similarly for VI.
A special case appears when each predicate of view VI
is implied by a predicate of view V (and each predicate
of view V implies or is implied by a predicate of view
VI). In this case, remove all the edges labeled by V
from G”. Replace only any occurrence of V in Q” by
the expression aFp (VI) as previously. If additionally,
each predicate of view V is implied by a predicate of
view VI, replace only any occurrence of V in Q” by
vi .

Example 4.2 Consider the multiquery graph G” of
the example 4.1 and the query set Q” = {Qi,Qs},

where, Qi = VI and Qs = V2. We apply subsequently
different state transformation rules. New view names
may be introduced in the multiquery graph and in the
rewritings of the query definitions during the applica-
tion of these rules.

By applying the join edge cut rule to the join edge
labeled as VI : A < C, we obtain the multiquery graph
depicted in Figure 2. The query Qi is rewritten as
follows: Qi = a~<c(Vs). The query Q2 is not affected
by this transformation. In Figure 3 is depicted the

V3:E<3 v2:c<=ci V2:K<H V2:L>5

R

V3:B=D V3:C=G V3:K<H+3

Figure 2: The multiquery graph after an application
of the join edge cut rule

multiquery graph resulting after the application of the
join edge cut rule to the join edges labeled as V3 :
B = D and V2 : G < M. The queries Qi and Qs
are now rewritten as follows: Qi = VJ WF; V5 and
Qs = Vs WFz VT. Note that V, = R. In Figure 4,

V4:T V5:E<3 V6:C<=G V6:K<H VI: L>5

3
u

V5:C=ci V5:K<H+3

Figure 3: The multiquery graph after applications of
the join edge cut rule

the selection edge cut rule has been applied to the
selection edge labeled as V’ : E < 3 and the join edge
cut rule has been applied to the join edge labeled as
Vs : C > K of the multiquery graph depicted in Figure
3. The queries Qi and Qs are rewritten as follows:
&I = v, b; Q;(h) and Q2 = W>&‘b) &z” v7.

The views Vg and Vg are defined over the same set
of nodes and the join predicate C = G of Vg is more
restrictive than the join predicate C 5 G of Vg while
the selection predicate K < H of Vg is more restrictive
than the selection predicate K < H + 3 of Vg. Thus
we can apply the view merging rule on the views Vs

131

V4:T V9:C<=G V9:KcH Vl:L>5

0 a 0
R

S T U

V8:C=G V8:K<H+3

Figure 4: The multiquery graph after applications of
edge cut rules

and Vo. The multiquery graph in Figure 5 results after
the application of this rule. The final rewriting of the
queries is as follows: Qi = VI WF; ~~~~~~ (VIO) and

92 = q,c>~Mo) %z” v7. 0 -

V4: T v 10: C<=G VI: L>5

3
R

0
%

Q
U

S T

VIO:KcH+3

Figure 5: The multiquery graph after an application
of the view merging rule

Proposition 4.1 Consider a state s =< GV,QV >,
where V is a set of views over a set of base relations
R. By applying any of the three state transformation
rules to s we obtain the multiquery graph GV’ of a set
of views V’ over R and a complete rewriting of Q over
V’, i.e. a new state < G”, QV’ >. 0

Proof: The proof is obvious. cl

The previous proposition stands as a soundness
statement for the state transformation rules. In order
to provide a completeness result we need the notion of
the full form of a query 1291. When a query is in full
form, if its set of predicates F implies a predicate p,
there is a predicate in F that implies p.

Theorem 4.1 Let Q be a set of queries in full form
and C =< V, Qv > be a D W configuration such that
every V in V appears in Qv. Then there is a state
s’ =< GV’,QV’ > obtained by applying subsequently
a finite sequence of state transformation rules on the
state so =< GQ, QQ > such that:
(a) There is a 1:1 mapping f from V onto V’ such
that t/V E V, V contains f(V).
(b) For every query Qv E Qv, the query Qv’ involves

exactly the images of the views in Qv with respect to
f. 0

Let S be the set of all the states. There is a transition
T(s,s’) from state s to state s’ iff s’ can be obtained
by applying any of the three state transformation rules
to s. With every state s =< GV, Q” >, a cost is asso-
ciated through the function cost : S -+ R. This is the
operational cost of the DW configuration < V, Qv >.

Assume now a monotone cost model for evaluating
queries and maintaining views. A cost model is mono-
tone if the cost of computing a query Q defined over the
views VI, . . , V, is not greater than the cost of comput-
ing a query Q’, contained by Q, and defined over the
views Vi, . . . , VA, when Vi contains Vi, i E [l, n]. As
a consequence of theorem 4.1, if the views in the DW
are maintained by issuing queries back to the base re-
lations and multiquery optimization is not performed
on these queries, one is guaranteed to find a state cor-
responding to a DW configuration having minimal op-
erational cost, by applying the above transformations.

4.3 An exhaustive incremental algorithm

We present now an exhaustive algorithm for the DW
configuration problem. The basic outline of the algo-
rithm is shown in Figure 6. The algorithm considers
as an initial state the state SO =< GQ, QQ >. It then
produces all the subsequent states (expands the state
s). New states are expanded in their turn until no
more states are left unexpended. States are supposed
to be kept along with their cost. Two states are con-
sidered here to be identical if the one can be obtained
from the other by renaming the views and by reorder-
ing views in the Cartesian product and conjuncts in
the selection formula of the rewritten queries. Clearly
the algorithm terminates and returns a state having
minimal operational cost.

The cost of a new state can be computed incremen-
tally as follows: a state transformation rule modifies
one view or merges two views in G” delined over the
same set of base relations and produces one or two
views. Then it rewrites some queries from Qv. Usu-
ally, there is only a small subset of the queries in Qv
that are affected by the transformation. These are
the queries that are defined over the affected, by the
transformation, view(s). Also, a view in GV is usu-
ally affected only by a small subset of the transaction
types. These are the transaction types that modify a
base relation appearing in its definition. In this sec-
tion we consider that views are maintained by issuing
queries back to the base relations if necessary and that
other views are not used in the maintenance process
of a view. Let T(s, s’) be a transition from state s to
state s’. The cost of a state s =< G”, Qv > is the
composition of the evaluation cost , E, of the queries in

132

begin
compute cost(ss) ;
open = {so}; closed = 0;
while (open # 8)

consider a state 5 in open;
for every transition T(s,s’)

if s’ $ open U closed then
(incrementally) compute cost(s’)
open = open U {s’}

endif
endf or
open = open - {s} ; closed = closed U {s}

endwhile ;
return the state s E closed having the
minimal cost(s)

end.

Figure 6: An exhaustive algorithm

Qv and the maintenance cost, M, of the views in GV.
The increment AE to the query evaluation cost from
the state s to the state s’ can be determined by com-
puting only the weighted sum of the evaluation cost
of the affected queries in the states s and s’ and tak-
ing their difference. The increment AM to the view
maintenance cost from the state s to the state s’ can
be determined as follows: let 2’1,. . . , Tq be the trans-
action types that modify a base relation appearing in
the definition of the view(s) affected by the transfor-
mation. Compute the costs &l,ql f%TM(Ti) in the
states s and s’ and take their difference. These costs
represent the cost of propagating the updates of the
transaction types in T to the views of the states s and
s’. If multiquery optimization is not performed on the
queries issued for updating the views, the computa-
tion of AM can be further simplified to the following
procedure:
(a) compute the weighted sum of the maintenance cost
of the view(s) affected by the transformation for every
transaction type that affects it (them) in the state s.
(b) compute the weighted sum of the maintenance
cost of the view(s) produced by the transforma-
tion for every transaction type that affects it (them)
in the state s’.
(c) take the difference of (b) and (a).

An exhaustive algorithm as the previous one can
be very expensive for a big number of complex queries.
This should not be a problem since the configuration of
a DW is not supposed to be done very frequently. Nev-
ertheless, heuristics that can prune the search space
are discussed below.

4.4 Heuristic pruning of the search space

The algorithms presented here start with a state hav-
ing minimal query evaluation cost and follow transi-
tions that do not reduce this cost. The view mainte-
nance cost is not expected to increase when the view
merging transformation rule is applied and it is surely
reduced when the view merging rule transformation
eliminates one view. The reduction of the maintenance
cost from the application of the selection edge cut rule
or the application of the join edge cut rule when it
does not generate two separate subviews, if any, is
not important. Their contribution to the reduction
of the maintenance cost might be more visible later
if their application allows the later application of the
view merging rule. Moreover, the application of the
join edge cut rule that does not generate two separate
subviews is necessary for the application of the join
edge cut rule that generates two separate subviews.

Favoring the view merging transformation. The
previous remarks suggest for the following heuristic
rule application restrictions:
(a) Do not apply the selection edge cut rule on a se-
lection edge labeled by a view V if there is no other
view in GV defined exactly over the same nodes as V.
(b) Do not apply the join edge cut rule on a join edge
between two nodes labeled by a view V, if there is no
other view in GV defined exactly over the same nodes
as V. In this case, a new state transformation rule
can be used: the multiple join edge cut rule. This rule
removes all the edges labeled by V (there may be only
one) between these nodes and divides the query graph
of V in GV in two components. Its effect is the same
as the repeated application (in any order) of the join
edge cut rule on the edges labeled by V between these
nodes, until all these edges are removed.

The previous heuristic restrictions allow the faster
reach of states where the view merging rule can be
applied, by avoiding intermediate states.

Using only the multiple join edge cut rule. In
distributed environments, the maintenance cost de-
pends largely on the transmission costs. In this case
removing some of the connections that exist between
base relations through joins might be decisive in the
reduction of the maintenance cost. The need to query
the base relations of a remote data source, when a
materialized view must be updated, can be reduced or
eliminated. This setting can be treated heuristically
by discarding the selection and join edge cut rules and
using the multiple join edge cut rule instead. Of course
this treatment will be done at the expense of the pos-
sibility of applying the view merging rule.

133

5 Materializing more views for reduc-
ing the operational cost

Keeping auxiliary materialized views in a database
can be used to reduce the evaluation cost of queries
[25, 21, 41. But, keeping auxiliary materialized views
in a DW can be used as well to reduce the view main-
tenance cost. Indeed, we have already mentioned that
in general, when a materialized view is updated, in re-
sponse to an update to a base relation, queries must
be issued back to the base relations and the updated
view must be computed from the answers. Now, if
some materialized views are kept ad hoc in the DW,
then (a) all or some of these answers can be obtained
locally, without accessing the (remote) base relations
and (b) some of the computations can be avoided.

Example 5.1 Suppose that we have to incrementally
update the materialized view
V = R WF, UC(S) WF, T in response to the
insertion of the tuples in AT to the base rela-
tion T. Suppose that AT is available at the DW.
Then the tuples defined by the incremental expression
AV = R WF, at(S) WF, AT must be inserted into V
[17]. If the view gc(S) is additionally materialized in
the DW, there is no need to issue the query a~(,!?)
against the base relation S in order to compute AV.
Even better, if the view R WF, S is kept materialized,
AV can be computed locally. In that case, there is
no need to access the base relations R and S at all.
The set of views V and R WF, S is self maintainable
with respect to insertions into T. The precomputed
view R WF, S can be used with AT to compute the
insertions AV to If, while R WF, S is not affected
by the change. 0

Obviously, there is a cost associated with the process of
maintaining the auxiliary materialized views. But, if
this cost is less than the reduction to the maintenance
cost of the initially materialized views, it is worth keep-
ing the auxiliary views in the DW.

A set of views is self-maintainable if it can be main-
tained using only the content of the views and the
base relations changes i.e. without accessing the base
relations [18]. Even if the set of materialized views
in a DW is not self-maintainable, adding some prop-
erly selected materialized views in the DW may reduce
the overall need for accessing the base relations when
maintaining the DW. Moreover, their presence in the
DW can reduce the cost of computing the updates to
the views [20]. Thus the overall maintenance cost may
be reduced.

The module of the system that is responsible for the
view maintenance should be able to take advantage
of the presence of the auxiliary materialized views in
the DW. These views are not used for answering the

queries in Q. They are useful solely for reducing the
overall view maintenance cost. Since they do not af-
fect the query evaluation process, they also reduce the
operational cost of the DW.

In [29] we present in detail the modified algorithms
where auxiliary views are also taken into account.

6 Conclusion and possible extensions

The DW configuration problem is the problem of se-
lecting a set of views to materialize in the DW that an-
swers all the queries of interest while minimizing the
combination of the query evaluation and view main-
tenance cost. We set up a theoretical basis for this
problem in terms of the relational model. It is then
formulated as a state space optimization problem in
two cases: (a) when only views necessary for answering
the queries of interest are materialized, and (b) when
auxiliary views can be additionally materialized with
the purpose to be used in reducing the overall main-
tenance cost. The formulation of the problem allows
both: to compute the set of views and to find a com-
plete rewriting of the queries over it. We have designed
an exhaustive algorithm and we have provided heuris-
tics for pruning the search space in different cases.

Extensions of this work include considering a
broader class of queries. In particular projections can
be handled in the same context by keeping on each
node of the multiquery graph the attributes that are
projected out for every view defined over this node.
The set of state transformation rules presented here
can be extended in order to capture the new features
introduced by the projection.

Access structures have not been considered in this
work. Access structures though can be useful both for
evaluating queries and maintaining materialized views.
Their presence in the DW incurs additional mainte-
nance cost. Thus, adding them in the DW influences
the choice of views to materialize. Selecting a set of
access structures and views to store in a DW in order
to minimize the operational cost is also a subject of
big interest.

[18] derives, using key and referential integrity con-
straints, a set of auxiliary views for a given view such
that the given and the auxiliary views together are
self-maintainable. The present work can be extended
by developing methods for taking into consideration
integrity constraints in the DW configuration process.

Finally, in this work we consider that we have no
space restrictions in the DW. Actual DW systems use
secondary storage space of the size of Terabytes. Thus
we can reasonably consider that for a plethora of appli-
cations the space is not a problem. However, solving
the DW configuration problem under space restrictions
is also a topic of our current research work.

134

References

PI

PI

I31

[41

[51

PI

[71

PI

PI

WI

WI

WI

[I31

P41

1151

1161

D71

Dl

J. A. Blakeley, N. Coburn, and P. A. Larson. Up-
dating derived relations: detecting irrelevant and
autonomously computable updates. ACM TODS,
14(3):369-400, 1989.

J. A. Blakeley, P. Larson, and F. W. Tompa. Effi-
ciently updating materialized views. In Proc. ACM
SIGMOD, pages 61-71, 1986.

S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In Proc. of VLDB,
pages 577-589, 1991.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos,
and K. Shim. Optimizing Queries with Materialized
Views. In Proc. ICDE, pages 190-200, 1995.

S. Dar, H. V. Jagadish, A. Y. Levy, and D. Srivas-
tava. Answering SQL Queries with Aggregation using
Views. In Proc. of VLDB, pages 318-329, 1996.

T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In Proc. ACM SIGMOD, pages
328-339, 1995.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-
query processing in data warehousing environments.
In Proc. of VLDB, pages 358-369, 1995.

A. Gupta, H. Jagadish, and I. S. Mumick. Data
Integration using Self-Maintainable Views. In Proc.
EDBT, pages 140-144, 1996.

A. Gupta, I. Mumick, and V. Subrahmanian. Main-
taining views incrementally. In Proc. ACM SIGMOD,
pages 157-166, 1993.

A. Gupta and I. S. Mumick. Maintenance of material-
ized views: Problems, technics and applications. Data
Engineering, 18(2):3-18, 1995.

H. Gupta. Selection of Views to Materialize in a Data
Warehouse. In Proc. ICDT, pages 98-112, 1997.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Index Selection for OLAP. In Proc. ICDE,
pages 208-219, 1997.

V. Harinarayan, A. Rajaraman, and 3. D. Ullman.
Implementing Data Cubes Efficiently. In Proc. ACM
SIGMOD, 1996.

P.-A. Larson and H. Yang. Computing Queries from
Derived Relations. In Proc. of VLDB, pages 259-269,
1985.

A. Levy, A. 0. Mendelson, Y. Sagiv, and D. Srivas-
tava. Answering Queries using Views. In Proc. ACM
PODS, pages 95-104, 1995.

A. Y. Levy and Y. Sagiv. Queries Independent of
Updates. In Proc. of VLDB, pages 171-181, 1993.

X. Qian and G. Wiederhold. Incremental Recomputa-
tion of Active Relational Expressions. IEEE TKDE,
3(3):439-450, 1991.

D. Quass, A. Gupta, I. S. Mumick, and J. Widom.
Making Views Self Maintainable for Data Warehous-
ing. In Proc. PDIS, 1996.

PI

PO1

PI

P21

1231

P41

1251

P61

1271

[=I

PI

1301

1311

[321

[331

[341

I351

I361

R. Ramakrishnan, K. Ross, D. Srivastava, and S. Su-
darshan. Efficient incremental evaluation of queries
with aggregation. In International Logic Programming
Sumposium, pages 204-218, 1994.

K. A. Ross, D. Srivastava, and S. Sudarshan. Ma-
terialized View Maintenance and Integrity Constraint
Checking: Trading Space for Time. In Proc. ACM
SIGMOD, pages 447-458, 1996.

N. Roussopoulos. The Incremental Access Method of
View Cache: Concepts Algorithms and Cost Analysis.
ACM TODS, 16(3):535-563, 1991.

P. Scheurmann, J. Shim, and R. Vingralek. WATCH-
MAN: A Data Warehouse Intelligent Cache Manager.
In Proc. of VLDB, pages 51-62, 1996.

A. Segev and W. Fang. Currency-based updates to
distributed materialized views. In Proc. ICDE, pages
512-520, 1990.

A. Segev and J. Park. Updating distributed material-
ized views. IEEE TKDE, 1(2):173-184, 1989.

T. K. Sellis. Intelligent caching and indexing tech-
niques for relational database systems. Information
Systems, 13(2):175-185, 1988.

T. K. Sellis. Multiple Query Optimization. ACM
TODS, 13(1):23-52, 1988.

K. Shim, T. K. Sellis, and D. Nau. Improvements on
a heuristic algorithm for multiple-query optimization.
Data & Knowledge Engineering, 12:197-222, 1994.

M. Staudt and M. Jarke. Incremental Maintenance
of Externally Materialized Views. In Proc. of VLDB,
pages 75-86, 1996.

D. Theodoratos and T. Sellis. Configuring Data Ware-
houses. Technical Report, Knowledge and Data Base
Systems Lab., Electrical and Computer Eng. Dept.,
NTU Athens, June 1997.

0. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis.
The GMAP: A versatile tool for physical data inde-
pendence. In Proc. of VLDB, pages 367-378, 1994.

J. D. Ullman. Principles of Database and Knowledge-
Base Systems, volume 2. Computer Science Press,
1989.

J. Widom, editor. Data Engineering, Special Issue
on Materialized Views and Data Warehousing, volume
18(2). IEEE, 1995.

J. Widom. Research problems in data warehousing.
In Proc. CIKM, pages 25-30, Nov. 1995.

H. Yang and P.-A. Larson. Query Transformation for
PSJ-queries. In Proc. of VLDB, pages 245-254, 1987.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View Maintenance in a Warehousing En-
vironment. In Proc. ACM SIGMOD, pages 316-327,
1995.

Y. Zhuge, H. Garcia-Molina, and J. Wiener. The
Strobe Algorithms for Multi-Source Warehouse Con-
sistency. In Proc. PDIS, 1996.

135

