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Abstract 

In the data warehousing approach to the in- 
tegration of data from multiple information 
sources, selected information is extracted in 
advance and stored in a repository. A data 
warehouse (DW) can therefore be seen as a set 
of materialized views defined over the sources. 
When a query is posed, it is evaluated locally, 
using the materialized views, without access- 
ing the original information sources. The ap- 
plications using DWs require high query per- 
formance. This requirement is in conflict with 
the need to maintain in the DW updated in- 
formation. The DW configuration problem is 
the problem of selecting a set of views to mate- 
rialize in the DW that answers all the queries 
of interest while minimizing the total query 
evaluation and view maintenance cost. 

In this paper we provide a theoretical frame- 
work for this problem in terms of the relational 
model. We develop a method for dealing with 
it by formulating it as a state space optimiza- 
tion problem and then solving it using an ex- 
haustive incremental algorithm as well as a 
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heuristic one. We extend this method by con- 
sidering the case where auxiliary views are 
stored in the DW solely for reducing the view 
maintenance cost. 

1 Introduction 

A Data Warehouse (DW) is a repository of integrated 
information available for querying and analysis [32]. 
Data Warehousing is an in-advance approach to the 
integration of data from multiple, possibly very large, 
distributed, heterogeneous databases and other infor- 
mation sources [33]. In this approach: 

l Selected information from each source is ex- 
tracted in advance, translated and filtered as 
needed, merged with relevant information from 
other sources and stored in a repository. 

l When a query is posed, it is evaluated directly on 
the repository (DW) without accessing the origi- 
nal information sources. 

The information stored at the DW can be used by or- 
ganizations for decision support. This activity makes 
heavy use of aggregate queries and is called OLAP 
(On-line Analytical Processing). Aggregations are 
much more complex than in the case of OLTP (On- 
Line Transaction Processing) queries [7, 5, 13, 121. 
Thus, the data must be available locally at the DW 
and large multisource queries are executed over the 
DW. 

A DW can be seen as a repository where views over 
the data from multiple remote information sources are 
defined and stored materialized. When changes to the 
base data occur, they must be propagated to the DW. 
Different update policies can be applied (e.g. imme- 
diate or deferred) depending on the client’s needs for 
currency on different parts of the data stored at the 
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DW. Incremental updating techniques can be more ef- 
ficient, especially when changes to the base data affect 
only a small part of it, as is usually the case. In order 
to compute the changes to the materialized views from 
the changes to the base data, in most cases, queries 
must be issued against the base data. This procedure 
is more time consuming when the data sources are dis- 
tributed and the transmission costs are important. 

1.1 The problem: Data Warehouse configura- 
tion 

The need for high query performance (low query pro- 
cessing cost) is in conflict with the need for low view 
maintenance cost. High query performance can be 
achieved by storing in the DW the result of all the 
queries of interest. In this case the maintenance cost 
of the materialized queries might be prohibitively high. 
By materializing in the DW an appropriately selected 
set of views we can keep the total query processing 
cost and the view maintenance cost (operational cost) 
at an acceptable level. 

In this paper we deal with the problem of selecting 
such a set of views. The solution for a given mainte- 
nance policy is a compromise between fully materializ- 
ing all the queries of interest on the one side and keep- 
ing replicas of all the base data needed for answering 
the queries on the other side. More specifically the DW 
configuration problem is formulated as follows: given a 
set of queries of interest to be issued against the DW, 
determine a set of views such that: 

1. All the queries can be answered using exclusively 
this set of views, and 

2. The operational cost (i.e. the combination of 
query processing and view maintenance cost) is 
minimal 

The DW configuration problem is more complicated 
than other query or view maintenance optimization 
problems using views for the following reasons: 

l When views are kept materialized, in order to 
minimize the query evaluation [30,4,13,12] or the 
view maintenance cost [20], queries possibly need 
to be answered using some materialized views. In 
the context of the DW configuration problem all 
the queries need to be answered using exclusively 
materialized views. In other words, there is the 
following additional constraint: for every query, 
there must be a complete rewriting using the ma- 
terialized views [15]. 

l The DW operational cost is the combination of 
the cost of two activities. These activities affect 

each other when we modify the set of views mate- 
rialized in the DW: the modification may be bene- 
ficial for the query evaluation process while being 
harmful for the view maintenance process and vice 
versa. 

Even though there has been a lot of work on various 
aspects of materialized views with respect to DWs, 
there is little or no theoretical work at all on providing 
a method for configuring a DW. As a consequence the 
design of a DW is haphazard and the quality of data 
is often dubious. A formalization of the problem in 
[ll] neglects the fact that queries need to be answered 
locally, using solely the materialized views. 

1.2 Contribution and outline 

In this paper we set up a theoretical basis for the DW 
configuration problem. We then provide a method for 
solving it for a certain class of relational queries and 
views. Based on a representation of views using mul- 
tiquery graphs we model the problem as a state space 
search problem. Every state is a multiquery graph of 
the views that are materialized in the DW plus a com- 
plete rewriting of the queries over these views. A tran- 
sition from one state to another transforms the multi- 
query graph and rewrites completely the queries over 
the new view set. We search for states having minimal 
operational cost, using an exhaustive algorithm which 
is also extended with heuristics for pruning the search 
space. The solution is constructive. Thus, we pro- 
vide both a set of views to materialize in a DW and a 
complete rewriting of all the queries over it that min- 
imizes the operational cost. Further, we extend this 
method, and we compute states having minimal oper- 
ational cost in the case where auxiliary views are addi- 
tionally stored in the DW solely for reducing the view 
maintenance cost [20]. An extreme solution with this 
approach is when the set of all the stored views is self- 
maintainable [18]. 0 ur method is general in that it 
does not consider that the materialized views and the 
base data are stored in the same database. Further, it, 
is not dependent on the way the query evaluation and 
view maintenance cost is computed. 

The paper is organized as follows. In Section 2, we 
briefly review related work in the area. In Section 3, 
we set up a theoretical basis for the DW configuration 
problem. The problem is modeled as a state space 
search problem in Section 4, where a solution based 
on an exhaustive algorithm is provided and the use of 
heuristics. A solution that stores auxiliary views for 
reducing the maintenance cost is treated in Section 
5. Section 6 contains concluding remarks and possible 
extensions. An extended version of this work appears 
on [29]. 
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2 Related work 

The DW configuration problem relates to several over- 
lapping research areas. 

Answering queries using materialized views has 
been studied in [14, 34, 30, 15, 43. The same issue, in 
connection to aggregate queries and views, has been 
studied in [7] while in [5], multiset semantics is addi- 
tionally considered. The problem of optimizing query 
evaluation in the presence of materialized views has 
been studied in [30, 41. 

The problem of maintaining materialized views has 
also been the focus of several efforts. Incremen- 
tal maintenance algorithms are given in [Z] for SPJ- 
queries, in [17] for arbitrary relational algebra expres- 
sions, and in [9, 281 for recursive queries. [9, 61 handle 
multiset semantics while [6] handles aggregation and 
[19, 91 handle grouping/aggregation queries. [3] de- 
rives production rules to maintain selected SQL views. 
An overview of maintenance problems and techniques 
with respect to materialized views can be found in [lo]. 
A DW usually holds copies of part of the data of dis- 
tributed sources. In [24, 231 algorithms for material- 
ized view maintenance in distributed environments are 
provided. [35, 361 study the problem of updates to the 
DW when the sources are not database management 
systems and there is an absence of centralized control. 
Query independence of updates issues are addressed 
in [l, 161 while view self- maintainability issues are 
addressed in [l, 8, 181. 

Design problems using views usually follow the fol- 
lowing pattern: select a set of views to materialize 
in order to optimize query evaluation cost, or view 
maintenance cost or both, eventually in the presence 
of some constraint. In [13] the problem is addressed 
in its query optimization form in the context of aggre- 
gations and multidimensional analysis under a space 
constraint. This work is extended in [12] where greedy 
algorithms are provided, in the same context, for se- 
lecting both views and indexes. Further, it is carried 
over the context of a more general class of queries in 
[ll]. Selecting SQL views to optimize the cost of main- 
taining an SQL view is studied in [20]. In [ll] a for- 
mulation of the DW configuration problem is provided 
for minimizing query evaluation and view maintenance 
cost. This formulation is different from ours in that it 
considers that all the base relations at the sources are 
available locally for computation and in that it does 
not constraint queries to be completely rewritten over 
the materialized views. 

Finally, another two related problems are the 
multiple-query optimization problem [26, 271 the 
caching problem [25, 21, 221. 

3 Formal statement of the problem 

In this section, we formally set up the DW configu- 
ration problem, in terms of the relational model. We 
first briefly explain the view maintenance procedures 
and we present the query and view maintenance model 
and costs. Then the problem is stated in detail and 
intuitive approaches for dealing with it are presented. 

3.1 View maintenance 

In general, when the base relations are updated, the 
materialized in the DW views must be updated too. 
Different update scenarios can be envisaged. They de- 
pend among others on the types of updates, on the 
activeness of the data sources, on the update policy, 
and on the update strategy of the views. 

If differentials can be sent to the DW, or if log files 
are available, or more generally, if the updates since 
the last consultation of the sources from the DW can 
be computed, an incremental update strategy can be 
more efficient [17, 61. Otherwise, a complete remate- 
rialization of the affected views from the snapshots of 
the base relations can be performed. 

In an incremental strategy, when updates arrive at 
the DW, they are propagated up to the affected views. 
This is done by: (a) issuing queries back to the base 
relations, (b) computing updated views and (c) per- 
forming view updates. In a rematerialization strat- 
egy, a similar procedure is followed where the queries 
involve only relation names but no differentials (up- 
dates). 

When computing updates to the views, by propa- 
gating up to the affected views the updates of the base 
relations performed by a transaction, multiple queries 
might be issued against the base relations [35, 201. 
These queries again might contain equivalent subex- 
pressions or more generally, subexpressions such that 
the one subsumes the other. In this case, the tech- 
niques of multiple query optimization [26, 271 allow 
the detection of such subexpressions and the develop- 
ment of optimal global evaluation plans. 

3.2 Query evaluation and view maintenance 
cost 

The use we make of a DW is determined by the set of 
queries Q = {Qr , . . , Ql} we issue against it. These 
queries are expressed over a set of base relations R = 
{RI, . . , &}. Every base relation is kept in a remote 
source or locally, with the DW. The DW contains a set 
of materialized views, V = {VI, . . . , V,}, over R, such 
that every query in Q can be rewritten (completely) 
over V. Thus, all the queries in Q can be answered 
locally at the DW, without accessing the base relations 
in R. Let Q be a query over R. By Q”, we denote 
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a rewriting of Q over V. This notation is extended to 
sets of queries. Thus, we write Q”, for a set containing 
the queries in Q, rewritten over V. Given Q, a DW 
configuration C is a pair < V, Qv >. Note that we do 
not distinguish in the notation between view names, 
view definitions and view materializations (and often, 
we use the word ‘view’ for all of them). 

The cost of evaluating a query Qy E Qv over the 
materialized views V is denoted by E(Qv). Assess- 
ing the cost of different evaluation plans, in order to 
chose the cheapest one, is a standard technique in the 
process of query evaluation optimization. Thus, any 
query optimizer [31] could be used to assess the cost 
E(Qv) of the cheapest evaluation plan. With every 
query Qv E Qv, we associate a weight fZ?, indicating 
the relative frequency of issuing Qi and its relative im- 
portance, with respect to all the queries in Qv. The 
evaluation cost of Qv, E(Qv) = &Ll,lj f%?E(Qy). 

We assume a set of transaction types T = 
{TI,... , Tq} that can update the data sources. In the 
case of an incremental updating, as in [20], each trans- 
action type determines the updated base relations in 
a source, the types of updates (insertions, deletions, 
modifications) to the base relations and the size of 
each update to a relation. In the case of a rematerial- 
ization strategy, each transaction type determines only 
the updated relations. Thus, there is only a notifica- 
tion for the base relations that have changed. The cost 
of maintaining the views affected by a transaction type 
Ti is denoted by M(Ti). This cost involves the cost 
of transmitting data (update differentials, query data 
and answer data), computing updates, and performing 
updates to the affected views. In a distributed environ- 
ment, the transmission cost is predominant while in a 
centralized one, the cost of computing and performing 
updates primarily determines the maintenance cost of 
the materialized views. 

With every transaction type Ti E T, we associate 
a weight f%T, indicating the relative frequency of this 
transaction type and its relative importance, with re- 
spect to all the transaction types in T. The mainte- 
nance cost of V, M(V) = &l,(ll fiTAd( Notice 
that there might be views that are not affected by any 
transaction. 

Our approach is general in that it does not consider 
the maintenance cost to be solely the cost of the (in- 
cremental) computation of the updates to the views. 
Most of the work on view maintenance is restricted 
by the assumption that base relations and views are 
stored in a single database which has control over the 
system [lo]. Here, the cost of performing the updates 
to the views and the cost of transmitting the data 
needed for the updating, to and from the (remote) 
sources, can also be taken into account. 

Moreover, our approach and method for dealing 

with the DW configuration problem is independent of 
the way query evaluation and view maintenance cost is 
assessed. The solutions suggested, though, do depend 
on the specific cost model used. 

3.3 The DW configuration problem 

The operational cost, T(C), of a DW configuration 
C =< V,Qv > is T(C) = E(Q’) + CM(V). The 
parameter c indicates the relative importance of the 
evaluation and maintenance cost. 

The DW configuration problem can now be stated 
as follows: 
Input 
A set of base relations R = {RI, . . . , R,}. 
A set Q = {Q1,... , Ql} of queries over R. 
For every query Qi, its weight fy. 
A set of transaction types T = {TI, . . . , Tq} over the 
base relations R. 
For every transaction type Tj, its weight f?. 
The functions E for the query evaluation cost and M 
for the view maintenance cost. 
A parameter c. 
Output 
A set of views V such that there exists a rewriting 
of Q over V, Q”, such that the DW configuration 
C =< V, QV > has minimal operational cost. 

The DW configuration < Q, QQ > has minimal 
query evaluation cost. Indeed, in this case all the 
queries in Q are materialized in the DW and they can 
be answered by a simple lookup. On the other hand, 
the DW configuration < R, Q > has minimal update 
computation cost. In this case replicas of all the base 
relations appearing in Q are materialized and they can 
be maintained without any update computation. 

A solution to the problem is a compromise between 
these two extremes. 

4 A state space search based algorithm 

We model the DW configuration problem as a state 
space search problem for a class of relational queries 
and views. In this section we consider the case where 
other materialized views are not used during the main- 
tenance process of a view. This assumption is re- 
laxed in the next section where we treat the general 
case. Thus for now we consider that in a DW con- 
figuration < V, Qv > every materialized view in V 
appears in the rewriting of the queries in Qv. We 
then present an exhaustive incremental algorithm for 
selecting the state corresponding to a DW configura- 
tion having minimal operational cost, and we suggest 
heuristics. 

We consider the class of relational views (queries) 
of the form oF(R1 X . . . x Rk). The formula F is 
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a conjunction of comparisons of the form x op y + c 
or x op c where op is one of the comparison oper- 
ators =, <, 5, >, 2 (but no #), c is an integer 
valued constant and x, y are attribute names. Con- 
juncts involving attributes from only one relation are 
called selection predicates, while conjuncts involving 
attributes from two relations are called join predicates. 
Attributes of every Ri are involved with those of at 
least one other Rj in a predicate join in F. All the 
Ris are distinct. 

A formula involving unequalities (#), disjunction 
and negation can be handled by replacing unequalities 
by disjunctions of two strict inequalities, converting 
it into disjunctive normal form, and eliminating nega- 
tions. Then each disjunct can be considered separately 
(though this conversion may cause the number of com- 
parisons to grow exponentially). Thus, in the following 
we consider F to be a conjunction of comparisons as 
above. 

4.1 The states 

A set of views V can be represented by a multiquery 
graph. A multiquery graph allows the compact rep- 
resentation of multiple views by merging the query 
graphs of each view. For a set of views V, the cor- 
responding multiquery graph, GV, is a multigraph de- 
fined as follows: 

1. The set of nodes of GV is the set of relations ap- 
pearing in the views V E V. 

2. For every join predicate FP in a view V = ‘IF(R~ x 
. . x Rk) involving attributes of the relations Ri 

and Rj there is an edge between Ri and Rj labeled 
as V : FP. Such an edge is called join edge. 

3. For every selection predicate FP in a view V in- 
volving attributes of the relation Ri, there is an 
edge from Ri to itself labeled as V : FP. For every 
view V = Ri there is an edge from Ri to itself 
labeled as V : T. The symbol T denotes here a 
valid formula. Both these edges are called selec- 
tion edges. 

The query graph of a view V can be seen as the multi- 
query graph of the view set {V} where the view name 
V does not appear in the edge labels. 

Example 4.1 Suppose that a view set is V = 
{VI, Vz}, where the views VI and VZ (in a form using 
joins) are as follows: VI = R WF; a~; (5’) W,I oc; (T) 
and V2 = S WF; at:(T) WF; o~,z(U). The’base re- 
lation schemas are: R(A, B), S(C, D, E), T(G, K, H) 
and U(M, L). The selection and join conditions are 
given below: 
C; : E < 3, C; : K < H+3, C,z : K < H, C; : L > 5, 

F;:A<CAB=D, F,:C=G, 
F,2:C<GAC>K, F-j:G<M. 
The corresponding multiquery graph GV is depicted 
in Figure 1. The order of appearance of the attributes 
in the join edge labels indicates also which relation 
they belong to. cl 

VI: E<3 v2: C<=G V2: K<H V2: L>5 

Vl: B=D Vl: C=G V 1: K<H+3 

Figure 1: A multiquery graph 

A multiquery graph contains all the information about 
the views in V. Thus, in the following we may use this 
notation for sets of views. In dealing with the config- 
uration of DWs, besides selecting the set of views V 
to materialize in the DW, we are also interested in 
finding a complete rewriting of Q over V, Qv, (i.e. a 
DW configuration C =< V,Qv >) such that C has 
minimal operational cost. In the rest of the paper we 
address the DW configuration problem as it is stated 
in the previous section where the output is a DW con- 
figuration C =< V, Q” >, and not only a view set 
V. 

States are DW configurations < G”, Qv >. Thus 
in a state < GV, Qv > every view in GV appears in 
a query rewriting in Qv. 

4.2 The transitions 

In order to define transitions between states we in- 
troduce the following three state transformation rules 
that can be applied to a state s =< GV, Qv >. Each 
state transformation rule consists of a transformation 
rule of the multiquery graph GV and a rewrite rule of 
the set of queries Qv. 

Selection edge cut: 
If e is a selection edge in GV of a node R labeled as 
V : FP, construct a new multiquery graph as follows: 
(a) if e is the unique selection edge of R labeled by V, 
then replace its label by VI : T, where VI is a new view 
name. (b) otherwise, remove e from GV and replace 
every occurrence of V in GV by a new view name VI. 
New view names should not already appear in GV. 
Replace any occurrence of V in Qv, by the expression 
oF,(Vl). Note that in case (a) above, VI is the base 
relation R. 
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Join edge cut: 
If e is a join edge labeled as V : Fp in G”, remove 
e from G” and construct a new multiquery graph, as 
follows: (a) if the removal of e does not divide the 
query graph of V in G” into two disconnected com- 
ponents, then replace every occurrence of V in G”, by 
a new view name VI. (b) otherwise, replace every oc- 
currence of V in G” by a new view name VI in the one 
component and by a new view name V2 in the other 
component. If a component (say the first) is a single 
node without edges, then add in G” a selection edge 
to this node labeled as VI : T. In this case VI is a base 
relation. Do similarly for the other component. Note 
that the removal of edge e may not divide the query 
graph of V in G” into two disconnected components 
because there are also other edges between the same 
nodes (labeled by V of course) or because the query 
graph of view V is cyclic and e is part of a cycle. 
Replace any occurrence of V in Q”, in case (a) above, 
by the expression OF,(&) and in case (b), by the ex- 
pression uFp (VI x vz). 

View merging: 
If the query graphs of two views V and VI in G” 
have the same set of nodes and each predicate in their 
query graphs is either implied by a predicate of the 
other view or implies a predicate of the other view, 
then construct a new multiquery graph as follows: 
Remove from G” each edge labeled by a predicate of 
one of the views that imply a predicate of the other 
view and is not implied by a predicate of the first view. 
Replace any occurrence of V and VI in G” by a new 
view name V2. This replacement results in one edge 
out of two every time an edge of V and an edge of 
VI are labeled by the same predicate. A predicate p 
implies a predicate p’ if p is more restrictive than p’. 
Clearly the implication entails that both predicates in- 
volve the same attributes. 
Replace any occurrence of V in Q” by the expression 
a~,, (VI), where F is the conjunction of the predicates 
p in V such that: p implies a predicate in VI and is 
not implied by a predicate in V. Do similarly for VI. 
A special case appears when each predicate of view VI 
is implied by a predicate of view V (and each predicate 
of view V implies or is implied by a predicate of view 
VI). In this case, remove all the edges labeled by V 
from G”. Replace only any occurrence of V in Q” by 
the expression aFp (VI) as previously. If additionally, 
each predicate of view V is implied by a predicate of 
view VI, replace only any occurrence of V in Q” by 
vi . 

Example 4.2 Consider the multiquery graph G” of 
the example 4.1 and the query set Q” = {Qi,Qs}, 

where, Qi = VI and Qs = V2. We apply subsequently 
different state transformation rules. New view names 
may be introduced in the multiquery graph and in the 
rewritings of the query definitions during the applica- 
tion of these rules. 

By applying the join edge cut rule to the join edge 
labeled as VI : A < C, we obtain the multiquery graph 
depicted in Figure 2. The query Qi is rewritten as 
follows: Qi = a~<c(Vs). The query Q2 is not affected 
by this transformation. In Figure 3 is depicted the 

V3:E<3 v2:c<=ci V2:K<H V2:L>5 

R 

V3:B=D V3:C=G V3:K<H+3 

Figure 2: The multiquery graph after an application 
of the join edge cut rule 

multiquery graph resulting after the application of the 
join edge cut rule to the join edges labeled as V3 : 
B = D and V2 : G < M. The queries Qi and Qs 
are now rewritten as follows: Qi = VJ WF; V5 and 
Qs = Vs WFz VT. Note that V, = R. In Figure 4, 

V4:T V5:E<3 V6:C<=G V6:K<H VI: L>5 

3 
u 

V5:C=ci V5:K<H+3 

Figure 3: The multiquery graph after applications of 
the join edge cut rule 

the selection edge cut rule has been applied to the 
selection edge labeled as V’ : E < 3 and the join edge 
cut rule has been applied to the join edge labeled as 
Vs : C > K of the multiquery graph depicted in Figure 
3. The queries Qi and Qs are rewritten as follows: 
&I = v, b; Q;(h) and Q2 = W>&‘b) &z” v7. 

The views Vg and Vg are defined over the same set 
of nodes and the join predicate C = G of Vg is more 
restrictive than the join predicate C 5 G of Vg while 
the selection predicate K < H of Vg is more restrictive 
than the selection predicate K < H + 3 of Vg. Thus 
we can apply the view merging rule on the views Vs 

131 



V4:T V9:C<=G V9:KcH Vl:L>5 

0 a 0 
R 

S T U 

V8:C=G V8:K<H+3 

Figure 4: The multiquery graph after applications of 
edge cut rules 

and Vo. The multiquery graph in Figure 5 results after 
the application of this rule. The final rewriting of the 
queries is as follows: Qi = VI WF; ~~~~~~ (VIO) and 

92 = q,c>~Mo) %z” v7. 0 - 

V4: T v 10: C<=G VI: L>5 

3 
R 

0 
% 

Q 
U 

S T 

VIO:KcH+3 

Figure 5: The multiquery graph after an application 
of the view merging rule 

Proposition 4.1 Consider a state s =< GV,QV >, 
where V is a set of views over a set of base relations 
R. By applying any of the three state transformation 
rules to s we obtain the multiquery graph GV’ of a set 
of views V’ over R and a complete rewriting of Q over 
V’, i.e. a new state < G”, QV’ >. 0 

Proof: The proof is obvious. cl 

The previous proposition stands as a soundness 
statement for the state transformation rules. In order 
to provide a completeness result we need the notion of 
the full form of a query 1291. When a query is in full 
form, if its set of predicates F implies a predicate p, 
there is a predicate in F that implies p. 

Theorem 4.1 Let Q be a set of queries in full form 
and C =< V, Qv > be a D W configuration such that 
every V in V appears in Qv. Then there is a state 
s’ =< GV’,QV’ > obtained by applying subsequently 
a finite sequence of state transformation rules on the 
state so =< GQ, QQ > such that: 
(a) There is a 1:1 mapping f from V onto V’ such 
that t/V E V, V contains f(V). 
(b) For every query Qv E Qv, the query Qv’ involves 

exactly the images of the views in Qv with respect to 
f. 0 

Let S be the set of all the states. There is a transition 
T(s,s’) from state s to state s’ iff s’ can be obtained 
by applying any of the three state transformation rules 
to s. With every state s =< GV, Q” >, a cost is asso- 
ciated through the function cost : S -+ R. This is the 
operational cost of the DW configuration < V, Qv >. 

Assume now a monotone cost model for evaluating 
queries and maintaining views. A cost model is mono- 
tone if the cost of computing a query Q defined over the 
views VI, . . , V, is not greater than the cost of comput- 
ing a query Q’, contained by Q, and defined over the 
views Vi, . . . , VA, when Vi contains Vi, i E [l, n]. As 
a consequence of theorem 4.1, if the views in the DW 
are maintained by issuing queries back to the base re- 
lations and multiquery optimization is not performed 
on these queries, one is guaranteed to find a state cor- 
responding to a DW configuration having minimal op- 
erational cost, by applying the above transformations. 

4.3 An exhaustive incremental algorithm 

We present now an exhaustive algorithm for the DW 
configuration problem. The basic outline of the algo- 
rithm is shown in Figure 6. The algorithm considers 
as an initial state the state SO =< GQ, QQ >. It then 
produces all the subsequent states (expands the state 
s). New states are expanded in their turn until no 
more states are left unexpended. States are supposed 
to be kept along with their cost. Two states are con- 
sidered here to be identical if the one can be obtained 
from the other by renaming the views and by reorder- 
ing views in the Cartesian product and conjuncts in 
the selection formula of the rewritten queries. Clearly 
the algorithm terminates and returns a state having 
minimal operational cost. 

The cost of a new state can be computed incremen- 
tally as follows: a state transformation rule modifies 
one view or merges two views in G” delined over the 
same set of base relations and produces one or two 
views. Then it rewrites some queries from Qv. Usu- 
ally, there is only a small subset of the queries in Qv 
that are affected by the transformation. These are 
the queries that are defined over the affected, by the 
transformation, view(s). Also, a view in GV is usu- 
ally affected only by a small subset of the transaction 
types. These are the transaction types that modify a 
base relation appearing in its definition. In this sec- 
tion we consider that views are maintained by issuing 
queries back to the base relations if necessary and that 
other views are not used in the maintenance process 
of a view. Let T(s, s’) be a transition from state s to 
state s’. The cost of a state s =< G”, Qv > is the 
composition of the evaluation cost , E, of the queries in 
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begin 
compute cost(ss) ; 
open = {so}; closed = 0; 
while (open # 8) 

consider a state 5 in open; 
for every transition T(s,s’) 

if s’ $ open U closed then 
(incrementally) compute cost(s’) 
open = open U {s’} 

endif 
endf or 
open = open - {s} ; closed = closed U {s} 

endwhile ; 
return the state s E closed having the 
minimal cost(s) 

end. 

Figure 6: An exhaustive algorithm 

Qv and the maintenance cost, M, of the views in GV. 
The increment AE to the query evaluation cost from 
the state s to the state s’ can be determined by com- 
puting only the weighted sum of the evaluation cost 
of the affected queries in the states s and s’ and tak- 
ing their difference. The increment AM to the view 
maintenance cost from the state s to the state s’ can 
be determined as follows: let 2’1,. . . , Tq be the trans- 
action types that modify a base relation appearing in 
the definition of the view(s) affected by the transfor- 
mation. Compute the costs &l,ql f%TM(Ti) in the 
states s and s’ and take their difference. These costs 
represent the cost of propagating the updates of the 
transaction types in T to the views of the states s and 
s’. If multiquery optimization is not performed on the 
queries issued for updating the views, the computa- 
tion of AM can be further simplified to the following 
procedure: 
(a) compute the weighted sum of the maintenance cost 
of the view(s) affected by the transformation for every 
transaction type that affects it (them) in the state s. 
(b) compute the weighted sum of the maintenance 
cost of the view(s) produced by the transforma- 
tion for every transaction type that affects it (them) 
in the state s’. 
(c) take the difference of (b) and (a). 

An exhaustive algorithm as the previous one can 
be very expensive for a big number of complex queries. 
This should not be a problem since the configuration of 
a DW is not supposed to be done very frequently. Nev- 
ertheless, heuristics that can prune the search space 
are discussed below. 

4.4 Heuristic pruning of the search space 

The algorithms presented here start with a state hav- 
ing minimal query evaluation cost and follow transi- 
tions that do not reduce this cost. The view mainte- 
nance cost is not expected to increase when the view 
merging transformation rule is applied and it is surely 
reduced when the view merging rule transformation 
eliminates one view. The reduction of the maintenance 
cost from the application of the selection edge cut rule 
or the application of the join edge cut rule when it 
does not generate two separate subviews, if any, is 
not important. Their contribution to the reduction 
of the maintenance cost might be more visible later 
if their application allows the later application of the 
view merging rule. Moreover, the application of the 
join edge cut rule that does not generate two separate 
subviews is necessary for the application of the join 
edge cut rule that generates two separate subviews. 

Favoring the view merging transformation. The 
previous remarks suggest for the following heuristic 
rule application restrictions: 
(a) Do not apply the selection edge cut rule on a se- 
lection edge labeled by a view V if there is no other 
view in GV defined exactly over the same nodes as V. 
(b) Do not apply the join edge cut rule on a join edge 
between two nodes labeled by a view V, if there is no 
other view in GV defined exactly over the same nodes 
as V. In this case, a new state transformation rule 
can be used: the multiple join edge cut rule. This rule 
removes all the edges labeled by V (there may be only 
one) between these nodes and divides the query graph 
of V in GV in two components. Its effect is the same 
as the repeated application (in any order) of the join 
edge cut rule on the edges labeled by V between these 
nodes, until all these edges are removed. 

The previous heuristic restrictions allow the faster 
reach of states where the view merging rule can be 
applied, by avoiding intermediate states. 

Using only the multiple join edge cut rule. In 
distributed environments, the maintenance cost de- 
pends largely on the transmission costs. In this case 
removing some of the connections that exist between 
base relations through joins might be decisive in the 
reduction of the maintenance cost. The need to query 
the base relations of a remote data source, when a 
materialized view must be updated, can be reduced or 
eliminated. This setting can be treated heuristically 
by discarding the selection and join edge cut rules and 
using the multiple join edge cut rule instead. Of course 
this treatment will be done at the expense of the pos- 
sibility of applying the view merging rule. 
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5 Materializing more views for reduc- 
ing the operational cost 

Keeping auxiliary materialized views in a database 
can be used to reduce the evaluation cost of queries 
[25, 21, 41. But, keeping auxiliary materialized views 
in a DW can be used as well to reduce the view main- 
tenance cost. Indeed, we have already mentioned that 
in general, when a materialized view is updated, in re- 
sponse to an update to a base relation, queries must 
be issued back to the base relations and the updated 
view must be computed from the answers. Now, if 
some materialized views are kept ad hoc in the DW, 
then (a) all or some of these answers can be obtained 
locally, without accessing the (remote) base relations 
and (b) some of the computations can be avoided. 

Example 5.1 Suppose that we have to incrementally 
update the materialized view 
V = R WF, UC(S) WF, T in response to the 
insertion of the tuples in AT to the base rela- 
tion T. Suppose that AT is available at the DW. 
Then the tuples defined by the incremental expression 
AV = R WF, at(S) WF, AT must be inserted into V 
[17]. If the view gc(S) is additionally materialized in 
the DW, there is no need to issue the query a~(,!?) 
against the base relation S in order to compute AV. 
Even better, if the view R WF, S is kept materialized, 
AV can be computed locally. In that case, there is 
no need to access the base relations R and S at all. 
The set of views V and R WF, S is self maintainable 
with respect to insertions into T. The precomputed 
view R WF, S can be used with AT to compute the 
insertions AV to If, while R WF, S is not affected 
by the change. 0 

Obviously, there is a cost associated with the process of 
maintaining the auxiliary materialized views. But, if 
this cost is less than the reduction to the maintenance 
cost of the initially materialized views, it is worth keep- 
ing the auxiliary views in the DW. 

A set of views is self-maintainable if it can be main- 
tained using only the content of the views and the 
base relations changes i.e. without accessing the base 
relations [18]. Even if the set of materialized views 
in a DW is not self-maintainable, adding some prop- 
erly selected materialized views in the DW may reduce 
the overall need for accessing the base relations when 
maintaining the DW. Moreover, their presence in the 
DW can reduce the cost of computing the updates to 
the views [20]. Thus the overall maintenance cost may 
be reduced. 

The module of the system that is responsible for the 
view maintenance should be able to take advantage 
of the presence of the auxiliary materialized views in 
the DW. These views are not used for answering the 

queries in Q. They are useful solely for reducing the 
overall view maintenance cost. Since they do not af- 
fect the query evaluation process, they also reduce the 
operational cost of the DW. 

In [29] we present in detail the modified algorithms 
where auxiliary views are also taken into account. 

6 Conclusion and possible extensions 

The DW configuration problem is the problem of se- 
lecting a set of views to materialize in the DW that an- 
swers all the queries of interest while minimizing the 
combination of the query evaluation and view main- 
tenance cost. We set up a theoretical basis for this 
problem in terms of the relational model. It is then 
formulated as a state space optimization problem in 
two cases: (a) when only views necessary for answering 
the queries of interest are materialized, and (b) when 
auxiliary views can be additionally materialized with 
the purpose to be used in reducing the overall main- 
tenance cost. The formulation of the problem allows 
both: to compute the set of views and to find a com- 
plete rewriting of the queries over it. We have designed 
an exhaustive algorithm and we have provided heuris- 
tics for pruning the search space in different cases. 

Extensions of this work include considering a 
broader class of queries. In particular projections can 
be handled in the same context by keeping on each 
node of the multiquery graph the attributes that are 
projected out for every view defined over this node. 
The set of state transformation rules presented here 
can be extended in order to capture the new features 
introduced by the projection. 

Access structures have not been considered in this 
work. Access structures though can be useful both for 
evaluating queries and maintaining materialized views. 
Their presence in the DW incurs additional mainte- 
nance cost. Thus, adding them in the DW influences 
the choice of views to materialize. Selecting a set of 
access structures and views to store in a DW in order 
to minimize the operational cost is also a subject of 
big interest. 

[18] derives, using key and referential integrity con- 
straints, a set of auxiliary views for a given view such 
that the given and the auxiliary views together are 
self-maintainable. The present work can be extended 
by developing methods for taking into consideration 
integrity constraints in the DW configuration process. 

Finally, in this work we consider that we have no 
space restrictions in the DW. Actual DW systems use 
secondary storage space of the size of Terabytes. Thus 
we can reasonably consider that for a plethora of appli- 
cations the space is not a problem. However, solving 
the DW configuration problem under space restrictions 
is also a topic of our current research work. 
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