
A Foundation for Multi-Dimensional Databases

Marc Gyssens Laks V.S. Lakshmanan
Department WNI Department of Computer Science

University of Limburg (LUC) Concordia University
B-3590 Diepenbeek, Belgium. Montreal, Quebec H3G lM8, Canada
gyssensQcharlie.luc.ac.be laksQcs.concordia.ca

Abstract

We present a multi-dimensional database
model, which we believe can serve as a con-
ceptual model for On-Line Analytical Pro-
cessing (OLAP)-based applications. Apart
from providing the functionalities necessary
for OLAP-based applications, the main fea-
ture of the model we propose is a clear sepa-
ration between structural aspects and the con-
tents. This separation of concerns allows us to
define data manipulation languages in a rea-
sonably simple, transparent way. In particu-
lar, we show that the data cube operator can
be expressed easily. Concretely, we define an
algebra and a calculus and show them to be
equivalent. We conclude by comparing our ap-
proach to related work.

The conceptual multi-dimensional database
model developed here is orthogonal to its im-
plementation, which is not a subject of the
present paper.

1 Introduction

Currently, there is significant interest in multi-
dimensional database systems for developing business
analysis and decision support applications. Codd
proposed the concept of On-Line Analytical Process-
ing (OLAP) for rendering enterprise data in multi-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

dimensional perspectives, performing on-line analysis
of data using mathematical formulas or more sophisti-
cated statistical analyses, and consolidating and sum-
marizing data [Cod93, CCS93]. It is believed that re-
lational database technology is better suited for robust
transaction management and ad-hoc querying. On the
other hand, OLAP calls for sophisticated on-line anal-
ysis, something for which the traditional relational
model offers little support. To fill this need, several
vendors have already developed OLAP products in-
cluding, e.g., Arbor Software’s Essbase and Oracle Ex-
press to name just two. Many of these products suffer
from the following limitations: (i) they are ad-hoc and
they do not support a comprehensive “query” language
similar to SQL; (ii) the user interaction is often lim-
ited to one operation at a time; (iii) viewing data in
multi-dimensional perspectives involves treating cer-
tain attributes as dimensional parameters and the re-
maining ones as measures, and then analyzing them as
a “function” of the parameters; many products treat
dimensions and measures asymmetrically; and, finally,
(iv) unlike for the relational model, there is no pre-
cise, commonly agreed, conceptual model for OLAP
or the so-called multi-dimensional databases (MDD).
Much of the success of relational databases has to do
with the clear logical foundations for the data model
first laid down by Codd and developed by numerous
researchers subsequently.

In this paper, we make the following contributions.

1. We develop a simple conceptual model for OLAP
or MDD.

2. We propose a four-layered architecture for OLAP
query languages. We show that by separating the
concerns of structure versus contents, we are able
to develop a simple yet powerful algebra, and an
equivalent calculus, both possessing features cor-
responding to all four levels of the architecture.

106

11 1996 I 1997 I

SALES 1 TIME I

Figure 1: A sample two-dimensional table Sales with dimensions Category and Time. The associated parameter
sets are {Part, City} and { Year, Month}, respectively. The measure attributes are Cost and Sale.

To illustrate the above, we express in our algebra
the popular data cube operator recently proposed by
Gray et al. [GBLP95], as well as its useful and practi-
cally more attractive variants.

The paper is organized as follows. In Section 2, we
present an informal introduction to our data model
for MDD. In Sections 3 and 4, we present an algebra
and a calculus for MDD and illustrate their expres-
sive power via examples. We show both languages to
be equivalent in expressive power. In Section 5, we
conclude with a comparison with other recent related
work, and we point out directions for future research.
For brevity, we suppress all proofs and additional ex-
amples and details, all of which can be found in the
full paper [GL97].

2 A Multi-Dimensional Data Model

From a conceptual standpoint, we contend that OLAP
calls for the following four kinds of functionalities:

1. Querying: Ability to pose powerful ad-hoc queries
through a simple and declarative interface.

2. Restructuring: Ability to restructure information
in a multi-dimensional database exploiting the di-
mensionality of data and bringing out different
perspectives of the data.

3. Classification: Ability to classify or group data
sets in a manner appropriate for subsequent sum-
marization.

4. Summarization/Consolidation: This is a gener-
alization of the aggregate operators in standard
SQL. In general, summarization maps multisets
of values of a numeric type to a single, “consoli-
dated” value.

We seek a conceptual model and query language that
can support all the above functionalities, and allow
them to interact with each other in a seamless manner.

The fundamental data structure of a multi-
dimensional database is what we call an n-dimensional
table. We first give the intuition behind it. We wish to
be able to see values of certain attributes as a “func-
tion” of others, in whichever way suits us, exploiting
possibilities of multi-dimensional rendering. Drawing
on the terminology of statistical databases, we can
classify the attribute set associated with the schema
of a table into two kinds: parameters and measures.
There is no a priori distinction between parameters
and measures in that any attribute can play either
role. An example of a two-dimensional table is given
in Figure 1.

At the conceptual level, we want our model to re-
main as close to the standard relational model as
possible, whence the rich body of theory and tech-
niques well developed for the relational model will
then accrue for the OLAP model. A natural way to
realize this objective is to recognize that the multi-
dimensionality of tables is an inherently structural
feature, which is most significant when the table is
rendered to the user. The actual contents of a ta-
ble are essentially orthogonal to the associated struc-
ture, i.e., the distribution of attributes over dimen-
sions and measure. Separating both features leads to
a relational view of a table. For instance, the en-
try in the first (i.e., top left-most) “cell” of the ta-
ble in Figure 1 containing the entry (5,6) corresponds
to the tuple (PC, Montreal, 1996, Jan, 5,6) over the
scheme {Part, City, Year, Month, Cost, Sale} in a re-
lational view of that table.

We now formalize the informal description given
above, in the definition of an n-dimensional table.

107

SALES

rCATEGORY rTlME rm

Figure 2: A conceptual view of the table of Figure 1. Actual storage structures and implementation need not be
relational.

As is customary, we assume two infinite, disjoint
sets of symbols: h/, a set of names, and V, a set of
values.

Definition 2.1 (Table Schemas and Instances)
An n-dimensional table schema is a triple (D, R, par)
where D = {d~,...,d,} is a set of dimension names,
R={Al,...,A,} is a set of attributes, and par :D +
2{A17.-.*A-}, such that

(i) for all i,j = 1,. , n, i # j, par(d;)npar(dj) = 0,

and

We usually denote par (di) by Xi.
Let M = R - Ul.,i<nXi. An instance of an

n-dimensional table s&&a (D, R, par) is a set of
n + 1 finite relations of the form rdl(Tid, Xl), . . ,
rd, (Tid, X,) , rm(rdl . Tic!, . . . , rd,. Tid, M), such that

(4

(ii)

(iii)

the join rT;d(rdl) x ... x AT*d(r&) equals
7rrdl. TZd ,..., &. Tid(rm), i.e., for every combination
of Tid-values in the relations rdl, . . . , rd,, there
is at least one corresponding tuple in rm, and ev-
ery tuple in rm corresponds to some combination
of Tid-values in the relations rdl, . . . , rd,;

for all i = 1, . . , n, Tid is a key of the relation
rdi; and

for all i, j = 1, . , n, i # j, ATid(rdi) fl
RTid(rdj) = 0, i.e., the Tid-values in different re-
lations rdi and rdj are disjoint.

A multi-dimensional tabular database (MDD) is a set
of tables. 0

In Definition 2.1, a table has a set of m attributes
R and n 2 0 dimensions dl, . . . , d, associated with it.
Each dimension is characterized by a distinct subset
of attributes from R, called the parameters of that di-
mension. Those attributes in R which are not parame-
ters of any dimension are called the measure attributes
of the table.

Intuitively, we can regard tuples in the rela-
tions rdl,..., rd, as “coordinates” in the dimensions
dl, . . . , d,, respectively. From this viewpoint, a ta-
ble can intuitively be regarded as associating a set
of tuples over the measure attributes with each point
(Q,..., t,,) in the n-dimensional space, where, for
i = l,..., n, ti is the unique Tid-value associated
with a tuple in relation rdi. Conversely, for a tuple
(ti, &) E rdi, we say that & is the Xi-tuple repre-
sented by ti.

Clearly, classical relations correspond to O-
dimensional tables all of whose attributes are essen-
tially measure attributes.

We should point out that the advocated conceptual
view of multi-dimensional tables is completely inde-
pendent of the storage structures or implementation
strategies to be used for these tables.

Example 2.1 Consider the two-dimensional table
schema Sales = ({Category, Time}, {Part,
City, Year, Month, Cost, Sale}, par), where
par(Category) = {Part, City} and par(Time) =
{Year, Month}. An instance of this schema, con-
sisting of three relations rCategory(Tid, Part, City),
rTime(Tid, Year, Month), and rm((r)C(ategory).Tid,
(r)T(ime).Tid, Cost,Sale), is shown in Figure 2. It
can be seen that this instance indeed satisfies the con-
straints in Definition 2.1. This table instance actually
corresponds to the one shown in graphical form in Fig-
ure 1. 0

We next show that every MDD table can be faith-
fully represented by a classical relation, and vice-versa,
in a sense that we shall make precise below. We need
this result in Section 3 to develop simple semantics for
each of the classical algebraic operators.

Before we can show the above result, we must in-
troduce the notion of completion of a relation with
respect to a table schema.

108

Definition 2.2 (Completion) Let +%,...,Am)
be a relation, and let S = (D, {Al,. . . , A,},par) be a
table schema. As usual, we denote Xi = par(di). Then
the completion of r with respect to S, denoted 7s, is
defined as the smallest relation satisfying (i) r E FS
and (ii), for all combinations of tuple a’i, . . . , &, for
which,fori= l,..., n,&isinnx,(r), but (Zi ,..., &in)
is not in ?TX~ ,___, x,(r), we have that ($1,. . . , &, i) is
in FS. where i is a tuple of I symbols of length IMI,
matching the measure attributes. 0

Intuitively, the relation r above is equivalent to its
completion ?;s: the additional I symbols are merely
there as “not-applicable nulls” to allow for a multi-
dimension rendering of the data.

Let R be a relation scheme and, let S = (D, R, par)
be a table schema. Let R(R) be the class of all finite
relations over R, and 7(S) the class of all instances
of the table schema S. Finally, let ?E(R)s = {?;s 1
r E R(R)}. We say that the table schema S faithfully
represents the relation scheme R (and vice-versa) pro-
vided there is a one-to-one correspondence from the
class of tables 7(S) to the class of relations %?(R)s.

We now have the following theorem (proof omitted):

Theorem 2.1 Let R be a relation scheme, and let
S = (D, R, par) be a table schema. Then R faithfully
represents S (and uice uersa).

From the proof of Theorem 2.1, we retain for later
usethe existence of a one-to-one function f from 7(S)
to R(R)s , which can effectively be computed. Also its
inverse, g can effectively be computed.

It follows from the above theorem that all the clas-
sical operators from relational algebra can directly be
“imported” into the framework of multi-dimensional
tables, by considering the tabular representation of the
result of the operators applied to the relations repre-
sented by the input tabular database. This idea will
be developed in the following section.

3 Algebra

In this section, we develop an algebra for multi-
dimensional databases.

Before proceeding with the development of the ac-
tual algebra, we first illustrate with an example that
a direct approach to defining the algebraic operators
will lead to unnecessary complications.

Example 3.1 Consider the table shown in Figure 1.
Suppose we wish to select the portion of the table cor-
responding to the performance of PC in the year 1996.
Operationally, the effect of such an operation amounts
to what in the OLAP literature is referred to as “slicing
and dicing.” The resulting table is shown in Figure 3.

A direct definition of this selection would involve se-
lecting Category coordinates of the form (PC, -C) for
various cities -C, and selecting Time coordinates of the
form (1996,J) for various months 1, and semijoining
both with the measure relation rnz. A simple relational
selection becomes complicated if directly translated to
MDD tables. Moreover, if the selection involves mea-
sure attributes, its definition would be somewhat dif-
ferent and asymmetric with the above. A direct defi-
nition of selection involving parameters and measures
gets even more complicated. The reader can easily
imagine the complexity in the case of a join between
two MDD tables. cl

SALES TIME

Year 11 1996

IIJan IFebl...

Figure 3: Output of a “slicing and dicing” operation
on the table of Figure 1. Slicing and dicing is just a
special case of relational selection extended to MDD
tables.

Thus, a direct approach to defining classical alge-
braic operators will result in complicated definitions.
Our goal is to obtain a simple and elegant language
close the conceptual view of MDD tables, rather than
their formal definition. We shall obtain simple defi-
nitions of the operators of our algebra by exploiting
the one-to-one correspondence between tables and re-
lations established in Theorem 2.1, i.e, the functions
f and g, thereby effectively separating contents from
structural concerns. Let S = (D, R,par) be a table
schema. If r is a table instance with schema S, we de-
note its relational representation f(7), a relation with
scheme R, by rep(~). C onversely, if r is a relation with
scheme R, we denote its tabular representation g(r), a
table instance with schema S, by tabs(r).

Definition 3.1 (Classical Algebraic Operators)

1. Unary Operators: Let r be a table instance with
schema S = (D, R,par), and let op be either the
selection UC, the projection ?TX, or the renaming
PB+A, where C is a valid selection condition, de-
fined as usual, X is a subset of the attribute set
of the table, and A and B are attribute names.
We define op(r) = tabs(op(rep(r)).

2. Union, Intersection, and Difference: Let ri and
72 be table instances, both with schema S, and

109

SALES 1 COMPONENT I
I Part I Inkiet I... I

Figure 4: Output of the expression foldTime(unfold~~~tio”(unfold~~~Ponent(foldCate~or~(Sales)))) applied to
the input table Sales of Figure 1. The resulting table shows Year, Month, Cost, and Sale as a measure of Part
and City. It has two dimensions Location and Component, with parameters City and Part, respectively.

let op be either the union U, the intersection
n, or the difference \. We define ri op r2 =
tabs(rep(r1) op rep(rz)), where S = Si = S2.

3. Cartesian Product: Let ri and ~2 be two ta-
bles with schemas S1 = (01, Rl,par,) and S2 =
(D2, R2, para), and assume Di n 02 = 0 and
RI n R2 = Q)l. We define the schema of the
Cartesian product rl x r2 as S = (01 U D2, R1 U
R2,parlUpar2) and the instance as tabs(rep(r1) x

rep(r2)). 0

The reader should notice (i) the simplicity of the op-
erator definitions compared with the direct approach
and (ii) the symmetric treatment of parameters and
measures.

In addition to the above operators which mainly al-
ter the contents of tables, we introduce two restructur-
ing operators which only affect the structure of tables.
Using these, it is possible to drop or add a dimension,
to rename a dimension, to drop or add parameters
from or to a dimension, or to change the status of
an attribute from parameter to measure or vice-versa,
while preserving the information content.

Definition 3.2 (Restructuring Operators)

1. Unfold: Let r be a table with schema S =
(D, R, par), let d be a new name of N appearing
nowhere else in r, and let X c h4 be a set of mea-
sure attributes. We define unfolds(T) as a table
with schema S’ = (D U {d}, R, par’), where, for

‘Because of the presence of a renaming operator, there is
no loss of generality in assuming that both attribute sets do
not overlap. The restructuring operators we introduce next also
allow us to rename dimensions.

all di in D, par’(di) = par(di), and par’(d) = X,
and with instance tabs) (rep(r)).

2. Fold: Let r be a table with schema S =
(D, R, par), and let d be one of the dimensions
of D. We define foldd(T) as a table with schema
S’ = (D \ {d}, R,par’), where, for all di in
D \ {d}, par’(di) = par(di), and with instance
tabsl(rep(r)). Cl

Again, note the simplicity of operator definitions
and the uniform treatment of parameters and mea-
sures. The following example illustrates the operations
defined above.

Example 3.2 Figure 4 illustrates an application of
the fold and unfold operators to our running exam-
ple. Cl

Our next operation concerns classification. Classi-
fication is a generalization of the familiar SQL group
by operator. The following example presents a typ-
ical practically arising query involving classification.
Since the concept of classification is orthogonal to the
structure of a table, we give a relational example.

Example 3.3 Consider a relation Stocks with scheme
{Ticker, Day, Price, Vol}, containing the closing
prices and volume of trading of various stocks in the
New York Stock Exchange. A typical practically aris-
ing query is Find the S-day moving average closing
price for each stock. Even though this query involve
aggregation, notice that it also involves classifying the
data into various groups according to certain criteria,
before aggregation is applied. Concretely, the above
query involves classification using a window of three
days. cl

110

Other instances of classification involving windows
of variable width (e.g., cumulative averages) or win-
dows of data-dependent width (e.g., average stock
prices corresponding to bullish periods) are also cov-
ered by our framework.

We next formalize the notion of classification, ad-
dressing it first in the context of relations.

Definition 3.3 (Classification on Relations)
Let R = {A1,...,Am} b e a relation scheme, and let
X = {Al,..., Ak} be an arbitrary subset of R. A
classification function over X, for relations over R, is
a function

f : R(R) x dom(A1) x ..+ x dom(Ak) +
yfom(A~)x-xdom(A~)

Let r be a relation with scheme R, and let f be a
classification function over X, for relations over R. We
define the result of the classification operator, K(r, f),
as the relation with scheme

(f.Al,. . .,f.Ak,Al,. . .,Ak,Ak+l,. . .,Am)

and instance

{(al,...,ak,a:,...,a6,a~+l,...,a:,) 1

(a:,.. . , ai) E f (r, al,. . . , ak) A

(a:,.. . ,4, a6+1,. . . , a;) E r}.

Classification essentially maps tuples of a rela-
tion to one or more (thus, not necessarily dis-
joint) groups. Intuitively, we can think of the
attributes f .A1 , . . . , f.Ak as corresponding to the
“group id.” Thus, a tuple (al,. . .,ak,ai,. . .,a:,
a6+1,..., a;) in the classified relation says that the tu-
ple (a:, . . ., ai, ai+l,. . . , a&) of T belongs to the group
whose “id” is (al, . . . , ak).

Example 3.4 The classification part of the query of
Example 3.3 can be expressed as follows. Define a clas-
sification function fi : R({ Ticker, Day, Price, Vol}) x
dom(Day) + 2d”“(D”3’) by

fl(r,Day) = {(Day’) 1 (Day’ = Day) V
(Day’ = succ(Day)) V (Day = succ(succ(Day)))}.

Then apply classification using fi to Stocks. In the
resulting relation, rename fi.Day to Start. 0

To allow for efficient implementation, we shall only
consider first-order definable classification functions,
i.e., functions definable in first-order logic with equal-
ity over the vocabulary r, <, with r the predicate of
the relation to which classification is applied.

We now extend classification from relations to ta-
bles:

Definition 3.4 (Classification on Tables) Let r
be a table instance with schema S = (D, R,par), let
X = {Al,..., Ak} be an arbitrary subset of R =

{AI,...,&), and let f be a classification function
over X, for relations over R. Define S’ = (D, R U
{f.Al,... , f.Ak}, par’), such that, for i = 1,. . . , m,
f.Ai E par’(d), for some d in D, if and only if
Ai E par(d). W e e d fi ne the result of the classifica-
tion operator, K(r, f), as tabsj(K(rep(r), f)). cl

Finally, we consider summarization/consolidation,
which includes not only applications of functions such
as max, min, avg, sum, count to multisetsof values de-
fined by groups of tuples, but also statistical functions
such as variance and mode, and business calculations
such as proportions and quartiles.

To avoid the explicit handling of multisets, following
Klug [Klu82], we model summarization functions as
mapping sets of tuples of values to individual values.
As numerical type, we consider the rational numbers,
thus making it possible to apply the usual arithmetic
operations +, -, x, and /.

As for classification, we first define summarization
on relations:

Definition 3.5 (Summarization on Relations)
Let R = {Al,. . . ,A,} be a relation scheme, and let
X = {AI,... , Ak} be an arbitrary subset of R. A
summarization function over X, for relations over R,
is a function

QBtAj ’ 2
dom(Ak+l)x,..xdom(A,) + dam(B),

where Aj, for some j, k + 1 5 j 5 m, is one of the
numeric attributes of the application, over which the
actual summarization takes place, and which is of the
same type as B, the attribute corresponding to the
result. We assume B 4 {Al,. . . ,Ak}.

Let r be a relation with scheme R, and let g be a
summarization function as defined above. We define
the result of the summarization operator, A(r,g), as
the relation with scheme {Al, . . . , &, B} and instance

{(al,. . . , ak,b) I ;=g d{(ak+l,. . .,a4 I

,“‘> ak, ak+l, . . . , am) E rl)l.

Cl

Note that the exact definition of g is left open to the
application. In order to allow efficient implementation,
we will again require that the summarization functions
be first-order definable, in the extended sense of Grade1
and Gurevich [GG95], i.e., in a vocabulary including
the standard arithmetic operations +, -, X, and /,
and repeated additions C and multiplications n over
a set of items (which includes counting). Our next
examples illustrate first-order definable summarization
functions.

111

Example 3.5 Consider a relation r with scheme
{Part, City, Sale, Cost}. Assume that r in general
contains several tuples for each part (corresponding
to different cities). Consider the function

QTotproJiteSale : 2 dom(City) x dom(Sole) x dom(Cost) +

dom (Totprofit),

defined by s(S) = C(-T,s,-c)Es(S - -C). Now,
A(r,g) is the relation with scheme {Part, Totprofit}
and instance {(9,-Tp) 1 -Tp = g({(-T,S,X) 1
(1,-T, S, X) E r})}. Thus, the aggregation per-
formed computes part-wise total profit. 0

Example 3.6 Consider again the query of Exam-
ple 3.3. We illustrate how, from the classified relation
computed in Example 3.4, we can obtain the final an-
swer to the query. Let s be the classified relation. We
recall its scheme, {Start, Day, Ticker, Price, Vol}. Let
avgprAvgpr be the summarization function with do-
main 2d0m(Day)~d0m(Ti~ker)~dOm(PriCe)Xdom(VOW) and

range dom (Avgpr) , and defined by avgpr(S) =

(l/IsI)c(,,,,,,,),s 3 (IS] denotes the cardinality of
the set S). Then the query under consideration can be
expressed as A(s, avgpr). 0

We now extend summarization to tables:

Definition 3.6 (Summarization on Tables) Let
r be a table instance with schema S = (D, R,par),
let R = {Al,. . .,A,}, X = {Al,. . .,Ak} & R be
the set of all parameters of T, i.e., X = UdED par(d),
and let gB+Aj, for some j, k + 1 5 j 5 m, and
B 6 {Al,.. . , Ak}, be a summarization function over
X, for relations over R. Let S’ = (D,X U {B},par).

We define the result of the summarization operator,

A(r,g), a tab(A(rep(r),g)). 0

Note the structure of the output table is the same
as the input table, as far as the dimensions and pa-
rameters are concerned. The only change is that sets
of measure tuples are summarized according to the ag-
gregate function and transformed to single values, as
indicated above.

We conclude this section with a pair of examples
illustrating the power of the algebra. Thereto, we show
that popular OLAP operators such as data cube and
monotone roll-up [GBLP95] can be neatly expressed
in our algebra. To our knowledge, this is the first time
that such operators are being formally shown to be
expressible in a rigorous algebra.

Example 3.7 (Data Cube) Let r be a table with
schema S = ((01,. . . , D,,+i}, {Al,. . ., A,},par)
with, for i = 1,. . . , m - 1, par(di) = {Ai}. Thus,
A, is the only measure attribute. (The generalization

to arbitrary table schemas is obvious.) The following
algebraic program precisely captures the data cube op-
erator applied to r.

5.

Consider the constant table instance All over S,
whose relational representation consists of the sin-
gle m-tuple (All,. . . , All, I). The constant All
does not appear anywhere else in the database.

Form the table All U T.

Let X = {Al, . , . , A,- i}, and let r be a relation
with scheme R. Define the following classification
function over X, for relations over R:

f(r,al,..., am-l) = {(bl,. . .,b,-1) I
jb,,, :(bl,. ..,b,)ErA

vi= l,..., m - 1 : (bi = q)V (ai = All)}.

Using this function, compute the classified table
as K(f,r). At this point, for i = 1,. . .,m - 1,
dimension di has two parameters, Ai and f .Ai,
i=l . . , m - 1. Using unfold and fold, “push”
the parameters Al, . . . , A,-1 into the measure.

Define the summarization function

gA,tA,
: 2dom(&)x.-xdom(Am) + dom(A,)

bY s(S) = &,...,b,)ES, b,f&. using this1

compute the aggregate table as A(K(f, r),g), the
scheme of which is S and the relational represen-
tation of which is

{(al,..., a,-l,a,) I a, =s({(h,...,bd I
(al,..., a,-l,bl,...,h) E~~(f,r)))).

Rename the parameter attributes f.Ai to Ai.

The computation above is illustrated in pictorial form
in Figure 5, for the case m = 3. 0

As another illustration of the expressive power of
our algebra, we show next that “monotone restric-
tions” of data cube are also expressible in the algebra.

Example 3.8 (Monotone Roll-Up) In many ap-
plications, only certain fragments of the data cube are
of interest. Generally, if X is the set of parameters of
a table and Y is a subset of X, then only aggregates
with respect to Y and all its subsets may be of inter-
est. Clearly, this is a subset of the data cube, which is
sometimes referred to as the monotone roll-up. This
can be expressed by modifying the construction of Ex-
ample 3.7, by changing the single tuple of the constant
table All to I in attributes not in Y, and adapting the
subsequent steps accordingly. cl

Finally, we point out the above techniques are also
valid for applications of data cube or monotone roll-up
with other summarization operators than sum.

112

TABLLd DIMENSION2 I
I A2 II a21 l a22 I . . . I All I

TABLE1 DIMENSION2 I

(a) (b)

Figure 5: Illustration of the data cube computation in Example 3.7 for m = 3: (a) the table resulting from
Step 2; (b) the final table resulting from Step 5.

(Profit[Component(Part : -P), Location(City : X) + (Y ear : -Y, Month : J4, Cost : Xt, Sale : S)] 1
Sales[Category(Part : 1, City : X), Time(Y ear : -Y, Month : A) + (Cost : -Ct, Sale : S)] A S > Xt).

a”~Avgsale+Sale(C umulatiue[Component(Part : P), Location(City : -C), Interual(Upto : Jl) +
(Month : Jl’, Sale : S)] 1

Sales[Category(Part : 9, City : A?), Time{ Year : 1996, Month : A’) + (Sale : S)] A
Sales[Time(Year : 1996, Month : A)] A A’ 5 a).

propSharecSale(MarketShare[Category(Part : I), Time(Y ear : -Y) + (Type : -T, Month : Jl, City : X, City’ : -C’,
Sale : 3, Part : P’, Month’ : A’, Sale’ : A’)] 1

Sales[Category(Part : 9, City : X’), Time(Year : -Y, Month : 4’) + (Sale : S’)] A
Types[+ (Part : P, Type : -T)] A
Sales[Category(Part : P, City : X), Time(Year : -Y, Month : Jl) + (Sale : S)].

Figure 6: The calculus expressions of Examples 4.1, 4.2, and 4.3.

4 Calculus

In this section, we propose a calculus for multi-
dimensional databases equivalent to the algebra pre-
sented in Section 3. Whereas in the algebra, we sepa-
rated the concerns of contents and structure, we pro
vide a unified framework for the calculus, doing justice
to its logic-based nature.

A query in our calculus is of the form (A] F), with
A the output expression and F the input expression.
Intuitively, F asserts the conditions that must be sat-
isfied by the MDD database, and thus induces a set
of “answer substitutions.” The output expression A
dictates how to structure these answer substitutions
as the table, which is the result of the query.

Input expressions are constructed from built-in
predicates and database atoms, of the form

T[d&& : T1), . . . , d,(& : f,J + (g : T)],

asserting that in tqble 7, in one of the cells defined by
the coordinates (Ai : ‘?i) in dimension di, 1 5 i 5 n,
the values of the measure attributes B’ are T’. In gen-
eral, the specified dimensions, together with their spec-
ified parameter values, determine a set of cells. The

expression states that in one of those cells the values
of the specified measure attributes are as indicated.
In output expressions, database atoms are also used,
but then they completely describe the schema of the
table in which the set of answer substitutions to the
input expressions must be cast. Finally, we also allow
summarization functions to be applied to the result of
queries, according to the syntax gB+A(d [F), the in-
tuitive meaning of which is as in the algebra, when the
argument is interpreted as the answer table resulting
from the query (A] F).

For a formal definition of syntax and semantics, we
have to refer to the full version of this paper [GL97].
Here, we limit ourselves to bringing out its flavor by
means of some examples.

Example 4.1 Consider the table of Figure 1. The
first calculus query in Figure 6 computes a table con-
taining those cells of the input table where the Sales is
strictly larger than the Cost value, with the resulting
table having two dimensions Component and Location,
corresponding to Part and City, respectively. I.3

113

Example 4.2 Consider again the table of Figure 1.
The second calculus query in Figure 6 computes
monthly cumulative average sales for each part and
city, for 1996. In this expression,

aV~AvgsaletSale .
. r@n(Month)x dom(Sale) +

dom (Avgsale)

is the first-order summarization function defined by

aus = wlsoc(,~,,)Es~. 0

Example 4.3 Consider again the table of Figure 1.
Consider the query which computes, for each part, its
market share within its part type, in a given year, over
all cities. Assume that a relation Types with scheme
{Part, Type} (w ic is a O-dimensional table!) is avail- h’ h
able. The required calculus expression is the last one
shown in Figure 6. In this expression, the summariza-
tion function propShareeSale computes the proportion
of the total sales of each part within its part type. This
function is definable in the first-order language of the
calculus, as follows. Consider the coordinates Part : p
in dimension Category, Year : y in dimension Time of
the intermediate table MarketShare. Assume part p is
of type t. Then the set of measure tuples associated
with these coordinates is the set S consisting of all tu-
ples (t,m, s, p’, m’, s’) such that in month m, the sales
of p is s, and p’ is any part of type t whose sales in
some month m’ is s’. Thus

ProPShare+Sale(S) =
C3x,y,z:(t,m,s,x,y,z)ESo

CC t,m,s,p’,m’,s’)ES(S’)

is a sound definition of the required summarization
function. Note the use of existential quantifiers (a first-
order construct) for the elimination of duplicates. The
numerator computes the total sales of part p, while the
denominator corresponds to the total sales of all parts
of the same type as p. 0

The above examples show that quite sophisticated
queries can be expressed easily and elegantly in the
calculus.

We prove the following result in the full paper
[GL97].

Theorem 4.1 The algebra and calculus are equivalent
in expressive power.

Consequently, operators such as data cube or roll-
up can also be expressed in the calculus.

5 Discussion

Racing ahead of academic research, several indus-
tries have already put out their own OLAP/MDD en-
gines, and two kinds of approaches have come forth.

The first, so-called MOLAP approach (for multi-
dimensional OLAP), is based on building separate
dedicated engines based on multi-dimensional stor-
age strategies. Arbor Software’s Essbase is an exam-
ple of this. The second, so-called ROLAP (for re-
lational OLAP), approach is based on adapting re-
lational database systems. Red Brick and Oracle
are some examples. There is a wealth of indus-
try white papers on the subject of OLAP (e.g., see
[Arb93, Ban95, Co195, Eri95, Fin95, Red95]).

In terms of research, one of the significant devel-
opments is the proposal by Gray et al. [GBLP95] of
the data cube operator. Since then, much work has
gone into finding efficient data cube algorithms [A+96,
HRU96]. Relatively little work has gone into modeling.
The only two proposals we are aware of are Agrawal
et al. [AGS95] and Li and Wang [LWSG]. Since our
main contribution is a conceptual model and query
languages for MDD, we compare our work with the
latter two papers.

Both research teams work with multi-dimensional
tables, called cubes, having parameters and measures.
However, restrictions are imposed on either the num-
ber of parameters per dimension or the number of
measure attributes. Also, they see a table instance
as a function from the Cartesian product of the do-
mains of these parameters to the Cartesian product
of the measure domains, as a consequence of which
parameters and measures are treated asymmetrically.
This in turn leads to not separating concerns of struc-
ture and contents. In [AGS95], this leads to compli-
cated operator definitions, whereas, in [LW96], this
leads to a framework in which cubes and plain rela-
tion are treated asymmetrically. An elegant idea in
Li and Wang’s model are the so-called grouping rela-
tions, which are used as classification in our model, to
prepare cubes for various aggregations.

Another recent work relevant to ours is Gyssens
et al. [GLS96] which proposes a two-dimensional data
model and a complete algebraic query language for all
conceivable restructuring transformations. Although
it has some theoretical relevance for OLAP, it does
not address important features classification and sum-
marization necessary for practical applications.

Finally, we observe there are apparent similarities
between our and the so-called star schema [Star95],
as well as with statistical databases [Sho82, Sho96].
In our terminology, these models also suffer from an
asymmetric treatment of parameters and measures.

In summary, our contribution is providing a com-
prehensive, generic conceptual model for MDD, which
is neutral with respect to important design decisions,
such as whether a ROLAP or a MOLAP ‘approach
should be adopted for realizing OLAP functionalities.
Ours is the first model for MDD/OLAP where issues

114

related to structure are separated from those related
to contents. This has resulted in a simple yet powerful
algebra, much simpler and better understood than the
ones proposed above, as well as, for the first time, an
equivalent calculus. Also for the first time, important
operators like data cube and variants have been shown
to be formally expressible in a rigorous algebra.

Several questions still remain open. (i) Properties
of the algebraic operators need to be studied with a
view to finding efficient query rewrite strategies. (ii)
The expressive power of the equivalent languages pro-
posed here needs to be characterized in a language-
independent manner. (iii) We need an efficient imple-
mentation of the proposed languages, possibly exploit-
ing techniques like multi-dimensional indexing from
spatial and statistical databases. We are currently
working on these issues.

Acknowledgment

This research was supported by a grant from the Natu-
ral Sciences and Engineering Research Council of Canada
and from the University of Limburg (LUC), and was done
while the second author was visiting LUC as part of his
sabbatical.

References

[AGS95]

[A+961

[Arb93]

[Ban951

[Cod931

[CCS93]

[Co1951

[Eri95]

Agrawal, R., Gupta, A., and Sarawagi, S.
“Modeling multi-dimensional databases,” IBM
Research Report, IBM Almaden Research Cen-
ter, September 1995.

Agrawal R., et al., “On the computation of
multidimensional aggregates,” in Proceedings
.B’nd International Conference on Very Large

Databases, (Mumbai, India, September 1996).

Arbor Software Corporation, Sunnyvale, CA,
Multidimensional Analysis: Converting Corpo-
rate Data into Strategic Information., white pa-
per, 1993.

Bansal, S.K., “Real world requirements for
decision support-implications for RDBMS,”
SIGMOD Record, 242, 1995, p. 448.

Codd, E.F., “Providing OLAP (on-line analyt-
ical processing) to user-analysts: an IT man-
date,” Technical Report, E.F. Codd and Asso-
ciates, 1993.

Codd, E.F., Codd, S.B., and Salley, C.T., “Be-
yond decision support,” Computerworld, 27~30,
July 1993.

Colliat, G., “OLAP, relational and multi-
dimensional database systems,” Technical Re-
port, Arbor Software Corporation, Sunnyvale,
CA, 1995.

Erickson, C.G., “Multidimensionalism and the
data warehouse,” in The Data Warehousing
Conference (Orlando, FL, February 1995).

[Fin951

[GG95]

[GBLP95]

[GLS96]

[GL97]

[HRU96]

[Klu82]

[LW96]

[Red951

[S&95]

[Sho82]

[Sho96]

Finkelstein, R., “MDD: database reaches the
next dimension,” in Database Programming
and Design, pp. 27-28, April 1995.

GrBdel, E., and Gurevich, Y., “Metafinite
model theory,” in Proceedings Logic and Com-
putational Complexity (Indianapolis, 1994), in
Lecture Notes in Computer Science, vol. 960,
1995.

Gray, J., Bosworth, A., Layman, A., and Pira-
hesh, H. “Data cube: a relational aggregation
operator generalizing group-by, crosstabs, and
subtotals,” Proceedings of ICDE ‘96, New Or-
leans, LA, Feb. 1996.

Gyssens, M., Lakshmanan, L.V.S., and Sub-
ramanian, I.N., “Tables as a paradigm for
querying and restructuring,” Technical Report,
Concordia University, Montreal, Canada, 1996,
submitted for publication. (Preliminary ex-
tended abstract appears in Proceedings 15th
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (Montreal,
June 1996), pp. 93-103.)

Gyssens, M. and Lakshmanan, L.V.S. “A foun-
dation for multi-dimensional databases,” Tech-
nical Report, Concordia University and Uni-
versity of Limburg, February 1997.

Harinarayanan, V., Rajaraman, A., and Ull-
man, J.D., “Implementing data cubes effi-
ciently,” SIGMOD Record, 25:2, 1996, pp. 205-
227.

Klug, A., “Equivalence of relational algebra
and relational calculus query languages hav-
ing aggregate functions,” Journal of the ACM
29:3, July 1982, pp. 699-717.

Li, C. and Wang, X.S., “A data model
for supporting on-line analytical processing,”
in Proceedings Conference on Information
and Knowledge Management (Baltimore, MD,
November 1996), pp. 81-88.

Red Brick Systems White Paper. Decision
Makers, Business Data, and RI-SQL, Red
Brick Systems, Los Gatos, CA, 1995.

Red Brick Systems White Paper. Star Schemes
and Star Join Technology, Red Brick Systems,
Los Gatos, CA, September 1995.

Shoshani, A., “Statistical databases: charac-
teristics, problems, and some solutions”, in
Proceedings 8th International Conference on
Very Large Databases (Mexico City, Septem-
ber 1982), pp. 208-213.

Shoshani, A., “Statistical databases and
OLAP: similarities and differences,” invited
taIk, International Conference on Information
and Knowledge Management (Baltimore, MD,
November 1996).

115

