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Abstract 

We present a multi-dimensional database 
model, which we believe can serve as a con- 
ceptual model for On-Line Analytical Pro- 
cessing (OLAP)-based applications. Apart 
from providing the functionalities necessary 
for OLAP-based applications, the main fea- 
ture of the model we propose is a clear sepa- 
ration between structural aspects and the con- 
tents. This separation of concerns allows us to 
define data manipulation languages in a rea- 
sonably simple, transparent way. In particu- 
lar, we show that the data cube operator can 
be expressed easily. Concretely, we define an 
algebra and a calculus and show them to be 
equivalent. We conclude by comparing our ap- 
proach to related work. 

The conceptual multi-dimensional database 
model developed here is orthogonal to its im- 
plementation, which is not a subject of the 
present paper. 

1 Introduction 

Currently, there is significant interest in multi- 
dimensional database systems for developing business 
analysis and decision support applications. Codd 
proposed the concept of On-Line Analytical Process- 
ing (OLAP) for rendering enterprise data in multi- 
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dimensional perspectives, performing on-line analysis 
of data using mathematical formulas or more sophisti- 
cated statistical analyses, and consolidating and sum- 
marizing data [Cod93, CCS93]. It is believed that re- 
lational database technology is better suited for robust 
transaction management and ad-hoc querying. On the 
other hand, OLAP calls for sophisticated on-line anal- 
ysis, something for which the traditional relational 
model offers little support. To fill this need, several 
vendors have already developed OLAP products in- 
cluding, e.g., Arbor Software’s Essbase and Oracle Ex- 
press to name just two. Many of these products suffer 
from the following limitations: (i) they are ad-hoc and 
they do not support a comprehensive “query” language 
similar to SQL; (ii) the user interaction is often lim- 
ited to one operation at a time; (iii) viewing data in 
multi-dimensional perspectives involves treating cer- 
tain attributes as dimensional parameters and the re- 
maining ones as measures, and then analyzing them as 
a “function” of the parameters; many products treat 
dimensions and measures asymmetrically; and, finally, 
(iv) unlike for the relational model, there is no pre- 
cise, commonly agreed, conceptual model for OLAP 
or the so-called multi-dimensional databases (MDD). 
Much of the success of relational databases has to do 
with the clear logical foundations for the data model 
first laid down by Codd and developed by numerous 
researchers subsequently. 

In this paper, we make the following contributions. 

1. We develop a simple conceptual model for OLAP 
or MDD. 

2. We propose a four-layered architecture for OLAP 
query languages. We show that by separating the 
concerns of structure versus contents, we are able 
to develop a simple yet powerful algebra, and an 
equivalent calculus, both possessing features cor- 
responding to all four levels of the architecture. 
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Figure 1: A sample two-dimensional table Sales with dimensions Category and Time. The associated parameter 
sets are {Part, City} and { Year, Month}, respectively. The measure attributes are Cost and Sale. 

To illustrate the above, we express in our algebra 
the popular data cube operator recently proposed by 
Gray et al. [GBLP95], as well as its useful and practi- 
cally more attractive variants. 

The paper is organized as follows. In Section 2, we 
present an informal introduction to our data model 
for MDD. In Sections 3 and 4, we present an algebra 
and a calculus for MDD and illustrate their expres- 
sive power via examples. We show both languages to 
be equivalent in expressive power. In Section 5, we 
conclude with a comparison with other recent related 
work, and we point out directions for future research. 
For brevity, we suppress all proofs and additional ex- 
amples and details, all of which can be found in the 
full paper [GL97]. 

2 A Multi-Dimensional Data Model 

From a conceptual standpoint, we contend that OLAP 
calls for the following four kinds of functionalities: 

1. Querying: Ability to pose powerful ad-hoc queries 
through a simple and declarative interface. 

2. Restructuring: Ability to restructure information 
in a multi-dimensional database exploiting the di- 
mensionality of data and bringing out different 
perspectives of the data. 

3. Classification: Ability to classify or group data 
sets in a manner appropriate for subsequent sum- 
marization. 

4. Summarization/Consolidation: This is a gener- 
alization of the aggregate operators in standard 
SQL. In general, summarization maps multisets 
of values of a numeric type to a single, “consoli- 
dated” value. 

We seek a conceptual model and query language that 
can support all the above functionalities, and allow 
them to interact with each other in a seamless manner. 

The fundamental data structure of a multi- 
dimensional database is what we call an n-dimensional 
table. We first give the intuition behind it. We wish to 
be able to see values of certain attributes as a “func- 
tion” of others, in whichever way suits us, exploiting 
possibilities of multi-dimensional rendering. Drawing 
on the terminology of statistical databases, we can 
classify the attribute set associated with the schema 
of a table into two kinds: parameters and measures. 
There is no a priori distinction between parameters 
and measures in that any attribute can play either 
role. An example of a two-dimensional table is given 
in Figure 1. 

At the conceptual level, we want our model to re- 
main as close to the standard relational model as 
possible, whence the rich body of theory and tech- 
niques well developed for the relational model will 
then accrue for the OLAP model. A natural way to 
realize this objective is to recognize that the multi- 
dimensionality of tables is an inherently structural 
feature, which is most significant when the table is 
rendered to the user. The actual contents of a ta- 
ble are essentially orthogonal to the associated struc- 
ture, i.e., the distribution of attributes over dimen- 
sions and measure. Separating both features leads to 
a relational view of a table. For instance, the en- 
try in the first (i.e., top left-most) “cell” of the ta- 
ble in Figure 1 containing the entry (5,6) corresponds 
to the tuple (PC, Montreal, 1996, Jan, 5,6) over the 
scheme {Part, City, Year, Month, Cost, Sale} in a re- 
lational view of that table. 

We now formalize the informal description given 
above, in the definition of an n-dimensional table. 
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Figure 2: A conceptual view of the table of Figure 1. Actual storage structures and implementation need not be 
relational. 

As is customary, we assume two infinite, disjoint 
sets of symbols: h/, a set of names, and V, a set of 
values. 

Definition 2.1 (Table Schemas and Instances) 
An n-dimensional table schema is a triple (D, R, par) 
where D = {d~,...,d,} is a set of dimension names, 
R={Al,...,A,} is a set of attributes, and par :D + 
2{A17.-.*A-}, such that 

(i) for all i,j = 1,. , n, i # j, par(d;)npar(dj) = 0, 

and 

We usually denote par (di) by Xi. 
Let M = R - Ul.,i<nXi. An instance of an 

n-dimensional table s&&a (D, R, par) is a set of 
n + 1 finite relations of the form rdl( Tid, Xl), . . , 
rd, ( Tid, X,) , rm( rdl . Tic!, . . . , rd,. Tid, M), such that 

(4 

(ii) 

(iii) 

the join rT;d(rdl) x ... x AT*d(r&) equals 
7rrdl. TZd ,..., &. Tid( rm), i.e., for every combination 
of Tid-values in the relations rdl, . . . , rd,, there 
is at least one corresponding tuple in rm, and ev- 
ery tuple in rm corresponds to some combination 
of Tid-values in the relations rdl, . . . , rd,; 

for all i = 1, . . , n, Tid is a key of the relation 
rdi; and 

for all i, j = 1, . , n, i # j, ATid(rdi) fl 
RTid( rdj) = 0, i.e., the Tid-values in different re- 
lations rdi and rdj are disjoint. 

A multi-dimensional tabular database (MDD) is a set 
of tables. 0 

In Definition 2.1, a table has a set of m attributes 
R and n 2 0 dimensions dl, . . . , d, associated with it. 
Each dimension is characterized by a distinct subset 
of attributes from R, called the parameters of that di- 
mension. Those attributes in R which are not parame- 
ters of any dimension are called the measure attributes 
of the table. 

Intuitively, we can regard tuples in the rela- 
tions rdl,..., rd, as “coordinates” in the dimensions 
dl, . . . , d,, respectively. From this viewpoint, a ta- 
ble can intuitively be regarded as associating a set 
of tuples over the measure attributes with each point 
(Q,..., t,,) in the n-dimensional space, where, for 
i = l,..., n, ti is the unique Tid-value associated 
with a tuple in relation rdi. Conversely, for a tuple 
(ti, &) E rdi, we say that & is the Xi-tuple repre- 
sented by ti. 

Clearly, classical relations correspond to O- 
dimensional tables all of whose attributes are essen- 
tially measure attributes. 

We should point out that the advocated conceptual 
view of multi-dimensional tables is completely inde- 
pendent of the storage structures or implementation 
strategies to be used for these tables. 

Example 2.1 Consider the two-dimensional table 
schema Sales = ( {Category, Time}, {Part, 
City, Year, Month, Cost, Sale}, par), where 
par(Category) = {Part, City} and par( Time) = 
{Year, Month}. An instance of this schema, con- 
sisting of three relations rCategory( Tid, Part, City), 
rTime( Tid, Year, Month), and rm((r)C(ategory).Tid, 
(r)T(ime).Tid, Cost,Sale), is shown in Figure 2. It 
can be seen that this instance indeed satisfies the con- 
straints in Definition 2.1. This table instance actually 
corresponds to the one shown in graphical form in Fig- 
ure 1. 0 

We next show that every MDD table can be faith- 
fully represented by a classical relation, and vice-versa, 
in a sense that we shall make precise below. We need 
this result in Section 3 to develop simple semantics for 
each of the classical algebraic operators. 

Before we can show the above result, we must in- 
troduce the notion of completion of a relation with 
respect to a table schema. 
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Definition 2.2 (Completion) Let +%,...,Am) 
be a relation, and let S = (D, {Al,. . . , A,},par) be a 
table schema. As usual, we denote Xi = par(di). Then 
the completion of r with respect to S, denoted 7s, is 
defined as the smallest relation satisfying (i) r E FS 
and (ii), for all combinations of tuple a’i, . . . , &, for 
which,fori= l,..., n,&isinnx,(r), but (Zi ,..., &in) 
is not in ?TX~ ,___, x,(r), we have that ($1,. . . , &, i) is 
in FS. where i is a tuple of I symbols of length IMI, 
matching the measure attributes. 0 

Intuitively, the relation r above is equivalent to its 
completion ?;s: the additional I symbols are merely 
there as “not-applicable nulls” to allow for a multi- 
dimension rendering of the data. 

Let R be a relation scheme and, let S = (D, R, par) 
be a table schema. Let R(R) be the class of all finite 
relations over R, and 7(S) the class of all instances 
of the table schema S. Finally, let ?E(R)s = {?;s 1 
r E R(R)}. We say that the table schema S faithfully 
represents the relation scheme R (and vice-versa) pro- 
vided there is a one-to-one correspondence from the 
class of tables 7(S) to the class of relations %?(R)s. 

We now have the following theorem (proof omitted): 

Theorem 2.1 Let R be a relation scheme, and let 
S = (D, R, par) be a table schema. Then R faithfully 
represents S (and uice uersa). 

From the proof of Theorem 2.1, we retain for later 
usethe existence of a one-to-one function f from 7(S) 
to R(R)s , which can effectively be computed. Also its 
inverse, g can effectively be computed. 

It follows from the above theorem that all the clas- 
sical operators from relational algebra can directly be 
“imported” into the framework of multi-dimensional 
tables, by considering the tabular representation of the 
result of the operators applied to the relations repre- 
sented by the input tabular database. This idea will 
be developed in the following section. 

3 Algebra 

In this section, we develop an algebra for multi- 
dimensional databases. 

Before proceeding with the development of the ac- 
tual algebra, we first illustrate with an example that 
a direct approach to defining the algebraic operators 
will lead to unnecessary complications. 

Example 3.1 Consider the table shown in Figure 1. 
Suppose we wish to select the portion of the table cor- 
responding to the performance of PC in the year 1996. 
Operationally, the effect of such an operation amounts 
to what in the OLAP literature is referred to as “slicing 
and dicing.” The resulting table is shown in Figure 3. 

A direct definition of this selection would involve se- 
lecting Category coordinates of the form (PC, -C) for 
various cities -C, and selecting Time coordinates of the 
form (1996,J) for various months 1, and semijoining 
both with the measure relation rnz. A simple relational 
selection becomes complicated if directly translated to 
MDD tables. Moreover, if the selection involves mea- 
sure attributes, its definition would be somewhat dif- 
ferent and asymmetric with the above. A direct defi- 
nition of selection involving parameters and measures 
gets even more complicated. The reader can easily 
imagine the complexity in the case of a join between 
two MDD tables. cl 

SALES TIME 

Year 11 1996 

IIJan IFebl... 

Figure 3: Output of a “slicing and dicing” operation 
on the table of Figure 1. Slicing and dicing is just a 
special case of relational selection extended to MDD 
tables. 

Thus, a direct approach to defining classical alge- 
braic operators will result in complicated definitions. 
Our goal is to obtain a simple and elegant language 
close the conceptual view of MDD tables, rather than 
their formal definition. We shall obtain simple defi- 
nitions of the operators of our algebra by exploiting 
the one-to-one correspondence between tables and re- 
lations established in Theorem 2.1, i.e, the functions 
f and g, thereby effectively separating contents from 
structural concerns. Let S = (D, R,par) be a table 
schema. If r is a table instance with schema S, we de- 
note its relational representation f(7), a relation with 
scheme R, by rep(~). C onversely, if r is a relation with 
scheme R, we denote its tabular representation g(r), a 
table instance with schema S, by tabs(r). 

Definition 3.1 (Classical Algebraic Operators) 

1. Unary Operators: Let r be a table instance with 
schema S = (D, R,par), and let op be either the 
selection UC, the projection ?TX, or the renaming 
PB+A, where C is a valid selection condition, de- 
fined as usual, X is a subset of the attribute set 
of the table, and A and B are attribute names. 
We define op(r) = tabs(op(rep(r)). 

2. Union, Intersection, and Difference: Let ri and 
72 be table instances, both with schema S, and 
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Figure 4: Output of the expression foldTime(unfold~~~tio”(unfold~~~Ponent(foldCate~or~(Sales)))) applied to 
the input table Sales of Figure 1. The resulting table shows Year, Month, Cost, and Sale as a measure of Part 
and City. It has two dimensions Location and Component, with parameters City and Part, respectively. 

let op be either the union U, the intersection 
n, or the difference \. We define ri op r2 = 
tabs(rep(r1) op rep(rz)), where S = Si = S2. 

3. Cartesian Product: Let ri and ~2 be two ta- 
bles with schemas S1 = (01, Rl,par,) and S2 = 
(D2, R2, para), and assume Di n 02 = 0 and 
RI n R2 = Q)l. We define the schema of the 
Cartesian product rl x r2 as S = (01 U D2, R1 U 
R2,parlUpar2) and the instance as tabs(rep(r1) x 

rep(r2)). 0 

The reader should notice (i) the simplicity of the op- 
erator definitions compared with the direct approach 
and (ii) the symmetric treatment of parameters and 
measures. 

In addition to the above operators which mainly al- 
ter the contents of tables, we introduce two restructur- 
ing operators which only affect the structure of tables. 
Using these, it is possible to drop or add a dimension, 
to rename a dimension, to drop or add parameters 
from or to a dimension, or to change the status of 
an attribute from parameter to measure or vice-versa, 
while preserving the information content. 

Definition 3.2 (Restructuring Operators) 

1. Unfold: Let r be a table with schema S = 
(D, R, par), let d be a new name of N appearing 
nowhere else in r, and let X c h4 be a set of mea- 
sure attributes. We define unfolds(T) as a table 
with schema S’ = (D U {d}, R, par’), where, for 

‘Because of the presence of a renaming operator, there is 
no loss of generality in assuming that both attribute sets do 
not overlap. The restructuring operators we introduce next also 
allow us to rename dimensions. 

all di in D, par’(di) = par(di), and par’(d) = X, 
and with instance tabs) (rep(r)). 

2. Fold: Let r be a table with schema S = 
(D, R, par), and let d be one of the dimensions 
of D. We define foldd(T) as a table with schema 
S’ = (D \ {d}, R,par’), where, for all di in 
D \ {d}, par’(di) = par(di), and with instance 
tabsl(rep(r)). Cl 

Again, note the simplicity of operator definitions 
and the uniform treatment of parameters and mea- 
sures. The following example illustrates the operations 
defined above. 

Example 3.2 Figure 4 illustrates an application of 
the fold and unfold operators to our running exam- 
ple. Cl 

Our next operation concerns classification. Classi- 
fication is a generalization of the familiar SQL group 
by operator. The following example presents a typ- 
ical practically arising query involving classification. 
Since the concept of classification is orthogonal to the 
structure of a table, we give a relational example. 

Example 3.3 Consider a relation Stocks with scheme 
{Ticker, Day, Price, Vol}, containing the closing 
prices and volume of trading of various stocks in the 
New York Stock Exchange. A typical practically aris- 
ing query is Find the S-day moving average closing 
price for each stock. Even though this query involve 
aggregation, notice that it also involves classifying the 
data into various groups according to certain criteria, 
before aggregation is applied. Concretely, the above 
query involves classification using a window of three 
days. cl 
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Other instances of classification involving windows 
of variable width (e.g., cumulative averages) or win- 
dows of data-dependent width (e.g., average stock 
prices corresponding to bullish periods) are also cov- 
ered by our framework. 

We next formalize the notion of classification, ad- 
dressing it first in the context of relations. 

Definition 3.3 (Classification on Relations) 
Let R = {A1,...,Am} b e a relation scheme, and let 
X = {Al,..., Ak} be an arbitrary subset of R. A 
classification function over X, for relations over R, is 
a function 

f : R(R) x dom(A1) x ..+ x dom(Ak) + 
yfom(A~)x-xdom(A~) 

Let r be a relation with scheme R, and let f be a 
classification function over X, for relations over R. We 
define the result of the classification operator, K(r, f), 
as the relation with scheme 

(f.Al,. . .,f.Ak,Al,. . .,Ak,Ak+l,. . .,Am) 

and instance 

{(al,...,ak,a:,...,a6,a~+l,...,a:,) 1 

(a:,.. . , ai) E f (r, al,. . . , ak) A 

(a:,.. . ,4, a6+1,. . . , a;) E r}. 

Classification essentially maps tuples of a rela- 
tion to one or more (thus, not necessarily dis- 
joint) groups. Intuitively, we can think of the 
attributes f .A1 , . . . , f.Ak as corresponding to the 
“group id.” Thus, a tuple (al,. . .,ak,ai,. . .,a:, 
a6+1,..., a;) in the classified relation says that the tu- 
ple (a:, . . ., ai, ai+l,. . . , a&) of T belongs to the group 
whose “id” is (al, . . . , ak). 

Example 3.4 The classification part of the query of 
Example 3.3 can be expressed as follows. Define a clas- 
sification function fi : R({ Ticker, Day, Price, Vol}) x 
dom(Day) + 2d”“(D”3’) by 

fl(r,Day) = {(Day’) 1 (Day’ = Day) V 
(Day’ = succ(Day)) V (Day = succ(succ(Day)))}. 

Then apply classification using fi to Stocks. In the 
resulting relation, rename fi.Day to Start. 0 

To allow for efficient implementation, we shall only 
consider first-order definable classification functions, 
i.e., functions definable in first-order logic with equal- 
ity over the vocabulary r, <, with r the predicate of 
the relation to which classification is applied. 

We now extend classification from relations to ta- 
bles: 

Definition 3.4 (Classification on Tables) Let r 
be a table instance with schema S = (D, R,par), let 
X = {Al,..., Ak} be an arbitrary subset of R = 

{AI,...,&), and let f be a classification function 
over X, for relations over R. Define S’ = (D, R U 
{f.Al,... , f.Ak}, par’), such that, for i = 1,. . . , m, 
f.Ai E par’(d), for some d in D, if and only if 
Ai E par(d). W e e d fi ne the result of the classifica- 
tion operator, K(r, f), as tabsj(K(rep(r), f)). cl 

Finally, we consider summarization/consolidation, 
which includes not only applications of functions such 
as max, min, avg, sum, count to multisetsof values de- 
fined by groups of tuples, but also statistical functions 
such as variance and mode, and business calculations 
such as proportions and quartiles. 

To avoid the explicit handling of multisets, following 
Klug [Klu82], we model summarization functions as 
mapping sets of tuples of values to individual values. 
As numerical type, we consider the rational numbers, 
thus making it possible to apply the usual arithmetic 
operations +, -, x, and /. 

As for classification, we first define summarization 
on relations: 

Definition 3.5 (Summarization on Relations) 
Let R = {Al,. . . ,A,} be a relation scheme, and let 
X = {AI,... , Ak} be an arbitrary subset of R. A 
summarization function over X, for relations over R, 
is a function 

QBtAj ’ 2 
dom(Ak+l)x,..xdom(A,) + dam(B), 

where Aj, for some j, k + 1 5 j 5 m, is one of the 
numeric attributes of the application, over which the 
actual summarization takes place, and which is of the 
same type as B, the attribute corresponding to the 
result. We assume B 4 {Al,. . . ,Ak}. 

Let r be a relation with scheme R, and let g be a 
summarization function as defined above. We define 
the result of the summarization operator, A(r,g), as 
the relation with scheme {Al, . . . , &, B} and instance 

{(al,. . . , ak,b) I ;=g d{(ak+l,. . .,a4 I 

,“‘> ak, ak+l, . . . , am) E rl)l. 

Cl 

Note that the exact definition of g is left open to the 
application. In order to allow efficient implementation, 
we will again require that the summarization functions 
be first-order definable, in the extended sense of Grade1 
and Gurevich [GG95], i.e., in a vocabulary including 
the standard arithmetic operations +, -, X, and /, 
and repeated additions C and multiplications n over 
a set of items (which includes counting). Our next 
examples illustrate first-order definable summarization 
functions. 
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Example 3.5 Consider a relation r with scheme 
{Part, City, Sale, Cost}. Assume that r in general 
contains several tuples for each part (corresponding 
to different cities). Consider the function 

QTotproJiteSale : 2 dom( City) x dom(Sole) x dom( Cost) + 

dom ( Totprofit), 

defined by s(S) = C(-T,s,-c)Es(S - -C). Now, 
A(r,g) is the relation with scheme {Part, Totprofit} 
and instance {(9,-Tp) 1 -Tp = g({(-T,S,X) 1 
(1,-T, S, X) E r})}. Thus, the aggregation per- 
formed computes part-wise total profit. 0 

Example 3.6 Consider again the query of Exam- 
ple 3.3. We illustrate how, from the classified relation 
computed in Example 3.4, we can obtain the final an- 
swer to the query. Let s be the classified relation. We 
recall its scheme, {Start, Day, Ticker, Price, Vol}. Let 
avgprAvgpr be the summarization function with do- 
main 2d0m(Day)~d0m(Ti~ker)~dOm(PriCe)Xdom( VOW) and 

range dom ( Avgpr) , and defined by avgpr(S) = 

(l/IsI)c(,,,,,,,),s 3 (IS] denotes the cardinality of 
the set S). Then the query under consideration can be 
expressed as A(s, avgpr). 0 

We now extend summarization to tables: 

Definition 3.6 (Summarization on Tables) Let 
r be a table instance with schema S = (D, R,par), 
let R = {Al,. . .,A,}, X = {Al,. . .,Ak} & R be 
the set of all parameters of T, i.e., X = UdED par(d), 
and let gB+Aj, for some j, k + 1 5 j 5 m, and 
B 6 {Al,.. . , Ak}, be a summarization function over 
X, for relations over R. Let S’ = (D,X U {B},par). 

We define the result of the summarization operator, 

A(r,g), a tab(A(rep(r),g)). 0 

Note the structure of the output table is the same 
as the input table, as far as the dimensions and pa- 
rameters are concerned. The only change is that sets 
of measure tuples are summarized according to the ag- 
gregate function and transformed to single values, as 
indicated above. 

We conclude this section with a pair of examples 
illustrating the power of the algebra. Thereto, we show 
that popular OLAP operators such as data cube and 
monotone roll-up [GBLP95] can be neatly expressed 
in our algebra. To our knowledge, this is the first time 
that such operators are being formally shown to be 
expressible in a rigorous algebra. 

Example 3.7 (Data Cube) Let r be a table with 
schema S = ((01,. . . , D,,+i}, {Al,. . ., A,},par) 
with, for i = 1,. . . , m - 1, par(di) = {Ai}. Thus, 
A, is the only measure attribute. (The generalization 

to arbitrary table schemas is obvious.) The following 
algebraic program precisely captures the data cube op- 
erator applied to r. 

5. 

Consider the constant table instance All over S, 
whose relational representation consists of the sin- 
gle m-tuple (All,. . . , All, I). The constant All 
does not appear anywhere else in the database. 

Form the table All U T. 

Let X = {Al, . , . , A,- i}, and let r be a relation 
with scheme R. Define the following classification 
function over X, for relations over R: 

f(r,al,..., am-l) = {(bl,. . .,b,-1) I 
jb,,, :(bl,. ..,b,)ErA 

vi= l,..., m - 1 : (bi = q)V (ai = All)}. 

Using this function, compute the classified table 
as K(f,r). At this point, for i = 1,. . .,m - 1, 
dimension di has two parameters, Ai and f .Ai, 
i=l . . , m - 1. Using unfold and fold, “push” 
the parameters Al, . . . , A,-1 into the measure. 

Define the summarization function 

gA,tA, 
: 2dom(&)x.-xdom(Am) + dom(A,) 

bY s(S) = &,...,b,)ES, b,f&. using this1 

compute the aggregate table as A(K(f, r),g), the 
scheme of which is S and the relational represen- 
tation of which is 

{(al,..., a,-l,a,) I a, =s({(h,...,bd I 
(al,..., a,-l,bl,...,h) E~~(f,r)))). 

Rename the parameter attributes f.Ai to Ai. 

The computation above is illustrated in pictorial form 
in Figure 5, for the case m = 3. 0 

As another illustration of the expressive power of 
our algebra, we show next that “monotone restric- 
tions” of data cube are also expressible in the algebra. 

Example 3.8 (Monotone Roll-Up) In many ap- 
plications, only certain fragments of the data cube are 
of interest. Generally, if X is the set of parameters of 
a table and Y is a subset of X, then only aggregates 
with respect to Y and all its subsets may be of inter- 
est. Clearly, this is a subset of the data cube, which is 
sometimes referred to as the monotone roll-up. This 
can be expressed by modifying the construction of Ex- 
ample 3.7, by changing the single tuple of the constant 
table All to I in attributes not in Y, and adapting the 
subsequent steps accordingly. cl 

Finally, we point out the above techniques are also 
valid for applications of data cube or monotone roll-up 
with other summarization operators than sum. 
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TABLLd DIMENSION2 I 
I A2 II a21 l a22 I . . . I All I 

TABLE1 DIMENSION2 I 

(a) (b) 

Figure 5: Illustration of the data cube computation in Example 3.7 for m = 3: (a) the table resulting from 
Step 2; (b) the final table resulting from Step 5. 

(Profit[ Component( Part : -P), Location( City : X) + ( Y ear : -Y, Month : J4, Cost : Xt, Sale : S)] 1 
Sales[Category(Part : 1, City : X), Time( Y ear : -Y, Month : A) + (Cost : -Ct, Sale : S)] A S > Xt). 

a”~Avgsale+Sale(C umulatiue[Component(Part : P), Location( City : -C), Interual( Upto : Jl) + 
(Month : Jl’, Sale : S)] 1 

Sales[Category(Part : 9, City : A?), Time{ Year : 1996, Month : A’) + (Sale : S)] A 
Sales[ Time( Year : 1996, Month : A)] A A’ 5 a). 

propSharecSale(MarketShare[Category(Part : I), Time( Y ear : -Y) + (Type : -T, Month : Jl, City : X, City’ : -C’, 
Sale : 3, Part : P’, Month’ : A’, Sale’ : A’)] 1 

Sales[Category(Part : 9, City : X’), Time( Year : -Y, Month : 4’) + (Sale : S’)] A 
Types[+ (Part : P, Type : -T)] A 
Sales[Category(Part : P, City : X), Time( Year : -Y, Month : Jl) + (Sale : S)]. 

Figure 6: The calculus expressions of Examples 4.1, 4.2, and 4.3. 

4 Calculus 

In this section, we propose a calculus for multi- 
dimensional databases equivalent to the algebra pre- 
sented in Section 3. Whereas in the algebra, we sepa- 
rated the concerns of contents and structure, we pro 
vide a unified framework for the calculus, doing justice 
to its logic-based nature. 

A query in our calculus is of the form (A ] F), with 
A the output expression and F the input expression. 
Intuitively, F asserts the conditions that must be sat- 
isfied by the MDD database, and thus induces a set 
of “answer substitutions.” The output expression A 
dictates how to structure these answer substitutions 
as the table, which is the result of the query. 

Input expressions are constructed from built-in 
predicates and database atoms, of the form 

T[d&& : T1), . . . , d,(& : f,J + (g : T)], 

asserting that in tqble 7, in one of the cells defined by 
the coordinates (Ai : ‘?i) in dimension di, 1 5 i 5 n, 
the values of the measure attributes B’ are T’. In gen- 
eral, the specified dimensions, together with their spec- 
ified parameter values, determine a set of cells. The 

expression states that in one of those cells the values 
of the specified measure attributes are as indicated. 
In output expressions, database atoms are also used, 
but then they completely describe the schema of the 
table in which the set of answer substitutions to the 
input expressions must be cast. Finally, we also allow 
summarization functions to be applied to the result of 
queries, according to the syntax gB+A(d [ F), the in- 
tuitive meaning of which is as in the algebra, when the 
argument is interpreted as the answer table resulting 
from the query (A ] F). 

For a formal definition of syntax and semantics, we 
have to refer to the full version of this paper [GL97]. 
Here, we limit ourselves to bringing out its flavor by 
means of some examples. 

Example 4.1 Consider the table of Figure 1. The 
first calculus query in Figure 6 computes a table con- 
taining those cells of the input table where the Sales is 
strictly larger than the Cost value, with the resulting 
table having two dimensions Component and Location, 
corresponding to Part and City, respectively. I.3 
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Example 4.2 Consider again the table of Figure 1. 
The second calculus query in Figure 6 computes 
monthly cumulative average sales for each part and 
city, for 1996. In this expression, 

aV~AvgsaletSale . 
. r@n(Month)x dom(Sale) + 

dom ( Avgsale) 

is the first-order summarization function defined by 

aus = wlsoc(,~,,)Es~. 0 

Example 4.3 Consider again the table of Figure 1. 
Consider the query which computes, for each part, its 
market share within its part type, in a given year, over 
all cities. Assume that a relation Types with scheme 
{Part, Type} ( w ic is a O-dimensional table!) is avail- h’ h 
able. The required calculus expression is the last one 
shown in Figure 6. In this expression, the summariza- 
tion function propShareeSale computes the proportion 
of the total sales of each part within its part type. This 
function is definable in the first-order language of the 
calculus, as follows. Consider the coordinates Part : p 
in dimension Category, Year : y in dimension Time of 
the intermediate table MarketShare. Assume part p is 
of type t. Then the set of measure tuples associated 
with these coordinates is the set S consisting of all tu- 
ples (t,m, s, p’, m’, s’) such that in month m, the sales 
of p is s, and p’ is any part of type t whose sales in 
some month m’ is s’. Thus 

ProPShare+Sale(S) = 
C3x,y,z:(t,m,s,x,y,z)ESo 

CC t,m,s,p’,m’,s’)ES(S’) 

is a sound definition of the required summarization 
function. Note the use of existential quantifiers (a first- 
order construct) for the elimination of duplicates. The 
numerator computes the total sales of part p, while the 
denominator corresponds to the total sales of all parts 
of the same type as p. 0 

The above examples show that quite sophisticated 
queries can be expressed easily and elegantly in the 
calculus. 

We prove the following result in the full paper 
[GL97]. 

Theorem 4.1 The algebra and calculus are equivalent 
in expressive power. 

Consequently, operators such as data cube or roll- 
up can also be expressed in the calculus. 

5 Discussion 

Racing ahead of academic research, several indus- 
tries have already put out their own OLAP/MDD en- 
gines, and two kinds of approaches have come forth. 

The first, so-called MOLAP approach (for multi- 
dimensional OLAP), is based on building separate 
dedicated engines based on multi-dimensional stor- 
age strategies. Arbor Software’s Essbase is an exam- 
ple of this. The second, so-called ROLAP (for re- 
lational OLAP), approach is based on adapting re- 
lational database systems. Red Brick and Oracle 
are some examples. There is a wealth of indus- 
try white papers on the subject of OLAP (e.g., see 
[Arb93, Ban95, Co195, Eri95, Fin95, Red95]). 

In terms of research, one of the significant devel- 
opments is the proposal by Gray et al. [GBLP95] of 
the data cube operator. Since then, much work has 
gone into finding efficient data cube algorithms [A+96, 
HRU96]. Relatively little work has gone into modeling. 
The only two proposals we are aware of are Agrawal 
et al. [AGS95] and Li and Wang [LWSG]. Since our 
main contribution is a conceptual model and query 
languages for MDD, we compare our work with the 
latter two papers. 

Both research teams work with multi-dimensional 
tables, called cubes, having parameters and measures. 
However, restrictions are imposed on either the num- 
ber of parameters per dimension or the number of 
measure attributes. Also, they see a table instance 
as a function from the Cartesian product of the do- 
mains of these parameters to the Cartesian product 
of the measure domains, as a consequence of which 
parameters and measures are treated asymmetrically. 
This in turn leads to not separating concerns of struc- 
ture and contents. In [AGS95], this leads to compli- 
cated operator definitions, whereas, in [LW96], this 
leads to a framework in which cubes and plain rela- 
tion are treated asymmetrically. An elegant idea in 
Li and Wang’s model are the so-called grouping rela- 
tions, which are used as classification in our model, to 
prepare cubes for various aggregations. 

Another recent work relevant to ours is Gyssens 
et al. [GLS96] which proposes a two-dimensional data 
model and a complete algebraic query language for all 
conceivable restructuring transformations. Although 
it has some theoretical relevance for OLAP, it does 
not address important features classification and sum- 
marization necessary for practical applications. 

Finally, we observe there are apparent similarities 
between our and the so-called star schema [Star95], 
as well as with statistical databases [Sho82, Sho96]. 
In our terminology, these models also suffer from an 
asymmetric treatment of parameters and measures. 

In summary, our contribution is providing a com- 
prehensive, generic conceptual model for MDD, which 
is neutral with respect to important design decisions, 
such as whether a ROLAP or a MOLAP ‘approach 
should be adopted for realizing OLAP functionalities. 
Ours is the first model for MDD/OLAP where issues 
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related to structure are separated from those related 
to contents. This has resulted in a simple yet powerful 
algebra, much simpler and better understood than the 
ones proposed above, as well as, for the first time, an 
equivalent calculus. Also for the first time, important 
operators like data cube and variants have been shown 
to be formally expressible in a rigorous algebra. 

Several questions still remain open. (i) Properties 
of the algebraic operators need to be studied with a 
view to finding efficient query rewrite strategies. (ii) 
The expressive power of the equivalent languages pro- 
posed here needs to be characterized in a language- 
independent manner. (iii) We need an efficient imple- 
mentation of the proposed languages, possibly exploit- 
ing techniques like multi-dimensional indexing from 
spatial and statistical databases. We are currently 
working on these issues. 
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