
Logical and Physical Versioning in Main Memory
Databases

Rajeev Rastogi’ S. Seshadri2 Philip Bohannon1y3 Dennis Leinbaughl
Avi Silberschatz’

‘Bell Laboratories, Murray Hill, NJ
{rastogi,bohannon,avi)@bell-labs.com,

dleinbaugh@lucent.com

Abstract

We present a design for multi-version concur-
rency control and recovery in a main mem-
ory database, and describe logical and physical
versioning schemes that allow read-only trans-
actions to execute without obtaining data
item locks or system latches. These schemes
enable a system to guarantee that updaters
will never interfere with read-only transac-
tions, and that read-only transactions will not
be delayed as long as the operating system
provides them with sufficient cycles. Our con-
tributions include several space saving tech-
niques for the main memory implementation.
We extend the T-tree index structure (de-
signed for main-memory databases) to sup-
port concurrent access and latch-free traver-
sals, and demonstrate the performance bene-
fits of our extensions. Some of these schemes
have been implemented on a widely-used soft-
ware platform within Bell Labs., and the full
scheme is implemented in the Dali main mem-
ory storage manager.

1 Introduction

While disk-based databases exhibit improved perfor-
mance if the entire database can fit in the main mem-

PeTmission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed JOT

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, O’P to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

S. Sudarshan2

* Indian Institute of Technology
Mumbai, India

{seshadri,sudarsha}@cse.iitb.ernet.in

ory buffer cache, a main memory database (MMDB)
(e.g. [SGMSO, JLR+94]) improves performance fur-
ther by dispensing with the buffer manager, and tun-
ing algorithms to the flat storage hierarchy and the
reduced cost of indirection. Also, MMDB schemes at-
tempt to minimize space usage, of vital importance
since main memory remains about one hundred times
as expensive as disk space.

Many applications in telecommunications require
very fast and predictable response times for trans-
actions and, in particular, for read-only transactions.
Since disk I/O in an MMDB is only needed for per-
sistence of the log, no disk activity is required on be-
half of read-only transactions. As a result, response
times for read-only transactions are more predictable,
making MMDBs highly suitable for a large class of
real-time applications. However, a read-only transac-
tion may still have to wait on locks held by an update
transaction, which may in turn be waiting on a differ-
ent transaction, or on disk writes to the log. These
waits become a serious source of unpredictability for
response times.

Multiversion concurrency control methods prevent
update transactions from conflicting with read-only
transactions by providing the latter with a consistent
but somewhat out-of-date view of the database. In or-
der to provide this view, multiple versions of recently
updated data items are retained. Early multi-version
schemes used timestamps to serialize readers as well as
writers, but more recent multi-version locking schemes
[CFL+82, BC92, MPL92] use timestamps to serialize
read-only transactions with respect to updaters, allow-
ing them to use old versions without locking, while re-
quiring updaters to perform locking to serialize them-
selves with respect to other updaters.

However, none of the above techniques guaran-
tees complete isolation of read-only transactions from

3A Ph.D. candidate at Rutgers University.

86

update transactions in a system, since the access
path to the data could be modified by update trans-
actions. Thus, read-only transactions must obtain
latches (semaphores) to ensure that they read phys-
ically consistent data.

Requiring read-only transactions to obtain latches
could cause update transactions to interfere with their
execution. Furthermore, in a number of environments,
application code is often linked directly with database
code, accessing the database directly through shared
memory for speed. This introduces the possibility that
a processes could fail while holding latches or locks,
leading to long delays in any transaction waiting on
one of these latches or locks while the death of the first
process is detected and handled. By avoiding latches,
read-only transactions will never encounter this delay.
Finally, in a main memory database system, the use of
latches imposes a substantial overhead [GL92] and, by
avoiding their use, significant performance gains can
be obtained for read-only transactions.

In this paper, we present schemes that eliminate
the need for both locking and latching by read-only
transactions without sacrificing recency, since read-
only transactions see all committed updates as of their
start-times. Locks are eliminated by versioning of data
items (which we refer to as logical versioning). Our
implementation is optimized for main memory, and
reduces the storage space overhead of keeping track of
versions as compared to versioning schemes for disk
databases. Latches are eliminated by a mechanism we
call physical versioning [KL80], that is applied to the
access paths to data items. Updates to these access
paths are not made in place - instead, the updates are
made on a new copy of the node, called a “physical ver-
sion”. The new version of the node is linked into the
access path using an atomic word-write (an operation
which is universally supported on standard architec-
tures). This enables read-only transactions to traverse
data structures without acquiring latches. By free-
ing them from getting any latches, the performance of
read-only transactions is completely de-coupled from
that of update transactions, and becomes a simple
function of available CPU resources, making it rela-
tively easy to guarantee the response times of these
transactions.

The remainder of the paper is organized as follows.
In sections 2 and 3, we provide an overview of logi-
cal and physical versioning, respectively. In Section 4,
we develop concurrency control schemes for operations
on T-trees. In Section 5 we compare the performance
of T-tree algorithms with and without physical ver-
sioning. In Section 6, we discuss related work, and in
Section 7, we give our conclusions and directions for
future work.

We do not address recovery issues in this paper -

a comprehensive treatment of this can be found in
[BLR+95].

2 Logical Versioning

We refer to the (well-known) idea of maintaining mul-
tiple versions of data items for concurrency control
as logical versioning. In a system that supports logi-
cal versioning, transactions are classified as read-only
transactions - those that only read items, and update
transactions- those that update or write some item, or
simply want access to the most current data. When an
update transaction updates a data item, a new version
of that item is created. Update transactions follow the
two-phase locking protocol by locking items they read
or write. When an update transaction, T, commits,
it is assigned a timestamp denoted by tsn(T) which
is obtained by incrementing a global logical timestamp
counter. As part of commit processing, before any
locks held by the transaction are released, the trans-
action stamps each version it has created with tsn(T).
Thus, the versions of an item can be ordered accord-
ing to their timestamps. A read-only transaction is as-
signed a timestamp by reading (but not incrementing)
the logical timestamp counter when it starts. Subse-
quently, for each item, the read-only transaction reads
the latest version whose timestamp is less than or equal
to its timestamp.

When a version of a data item is no longer needed
by any (current or future) read-only transaction, it
can be deleted and the space reclaimed. This action
is called aging that version. A version can be aged
safely if no read-only transaction exists which has a
timestamp equal to or larger than that of the version
in question, but smaller than the next newer version
of the item.

2.1 Assigning Timestamps

To meet our design goal of read-only transactions
never even acquiring a latch, read-only transactions
must read the logical timestamp counter without any
latching. To do so consistently,

1. the counter itself must fit in a word,i ensur-
ing that a read which does not obtain latches is
atomic with respect to the update,

2. the timestamp counter must be incremented by
a transaction only after the stamping process is
complete and the transaction has committed.

Updater transactions modify the logical timestamp
counter during commit processing. Every such trans-
action must obtain an X latch (ignored by read-only

‘Longer counters can be handled by indirecting through a
pointer and not modifying the counter in place.

07

Version List Entry

Figure 1: Structure of a Version List Entry
transactions) on the logical timestamp counter before
accessing it. The latch must be held until all the ver-
sions have been stamped and the counter has been
incremented.

2.2 Version List Entries

In most disk-based schemes [BC92, MPL92], storage
space for a certain number of versions is pre-allocated
on each page for efficient access, which could result in
under-utilization of storage space (e.g., each item on a
page has a single version). In our design, on the other
hand, space for versions is dynamically allocated as
they are created. Furthermore, since a database could
consist of millions of “cold” items that have only one
version, and space is an important constraint in main-
memory databases, our goal was to impose essentially
zero space overhead on data items due to versioning.

Our design uses an auxiliary data structure called a
Version List Entry (VLE), shown in Figure 1, to main-
tain the bookkeeping information and link the versions
of an item together. A VLE contains the timestamp
of the transaction that created it, and a pointer to
the version itself. The VLEs of an item are linked to-
gether as a doubly linked list ordered by timestamp.
Read-only transactions traverse the VLE chain of an
item in order to find the required version. Each VLE
is also on a list of versions created by the same trans-
action while the transaction is active; this facilitates
easy update of timestamps of versions created by the
transaction when it commits. Also, if a transaction
aborts, the versions created by the transaction can be
efficiently determined and deleted.

It is important that we can determine if a pointer
points to a data item or a VLE. In our implementa-
tion, data and VLE are stored on distinct segments
(alternatively, distinct pages can be used) and a single
bit per segment lets us determine whether the pointer
is to a data item or a VLE. An item that has only
one version is stored as is without a VLE, resulting in
no space overhead (except the per-segment bit) due to
versioning on cold items. VLEs are dynamically allo-
cated as subsequent versions of the item are created,

Access Paths (Indices)

Vurbns
ofanllm

Figure 2: Pointers to Items from Indexes
and for items with more than one version, a VLE ex-
ists to represent each version. A pointer to an item
could be a direct pointer or a pointer to a VLE. The
code to dereference an item determines the type of the
pointer, and fetches the appropriate version, if more
than one version exists.

We do not discuss the implementation of logical ag-
ing (which detects when a version is no longer needed)
due to lack of space - see [BLR+95] for details. When
a version is deleted, the corresponding VLE is also
deleted. One remaining detail is to handle the case
when only one version of an item is left. In this case,
all pointers to the VLE must be updated to point to
the data item, and then the VLE can be deleted.

2.3 Interaction with Indices

We next discuss how our logical versioning scheme for
items can be combined with indices. The index stores
entries for all existing versions of an item. An index
entry for an item stores a pointer to an item, or to
the VLE of the version if more than one version of the
item exists (see Figure 2). As discussed earlier, when
dereferencing an item, the pointer type is determined,
and an extra level of indirection used if required. If
more than one of an item’s versions have the same key
value, then the index entry points to the latest version
with the key value. The index need not store key val-
ues - the key values can be obtained from the data
item version that is being pointed to, since in-memory
pointer dereferencing is inexpensive [DK0+84].

Update to an item causes a new VLE to be allocated
that points to the newly allocated version. The new
VLE is linked at the (rightmost) end of the VLE chain

88

for the item. For every index, for the key value in the
new version, if a pointer to a previous version of the
item with the same key value is contained in the index,
then the pointer is updated to point to the new VLE;
else, a new pointer to the new VLE is inserted into the
index.

Read-only transactions traverse the index to obtain
a pointer to an item or a VLE with the appropriate key
value. If the pointer is a direct pointer to an item, then
the item pointer is returned. Else, if the pointer is to
a VLE, say ~1, then the VLE chain for the data item
is traversed to determine the VLE, say 212, with the
largest timestamp less than or equal to the timestamp
for the transaction. If no such VLE exists or the key
value for 212 differs from the key value for vi, then in the
transaction consistent database state for the read-only
transaction, the item does not have a key value equal
to that for vi. Else, the version pointer in vz is re-
turned. A small extension consisting of VLEs with null
pointers is used to handle deletes. More details about
interaction with indices can be found in [BLR+95].

3 Physical Versioning

Physical versioning is a technique that permits read-
only transactions to access data structures without
getting any latches or locks, even while other update
transactions are updating the data structure. Phys-
ical versioning is based on atomic reads and writes
of words, operations which are universally supported
on current generation architectures. Trees structures,
in particular, lend themselves to efficient physical ver-
sioning, allowing readers to see an operation-consistent
state of the tree without obtaining any latches. In
other words, the operations are each performed atom-
ically with respect to readers.

We assume nodes in the tree are fixed size entities
and for every edge out of the node, a pointer to the
other node in the edge is stored within the node it-
self. We define a component to be any connected set
of nodes of the tree. Given an update operation, the
component aflected by the operation is the set of nodes
changed by the operation, plus any other nodes which
may be necessary to connect the changed nodes. The
root of the component is defined in the obvious way
as the root of the smallest subtree that contains the
component.

Let N be the root of the component affected by an
operation. Then, physical versioning is performed as
follows:

1. First copy the component; let N’ be the copy of
N. The data in each node in the copy is exactly
the same as the data in the corresponding nodes
in the original tree, except that pointers to nodes

in the component now point to the new copies of
the nodes.

Perform the update on the new copy of the com-
ponent. This can create new nodes, and update
or delete existing nodes in the new copy of the
component. However, no node in the original tree
(including the old copy of the component) is af-
fected by the update.

Atomically update the pointer to N to point to
N’ instead (if N is the root, the pointer to N is
the root pointer for the tree, otherwise it is from
the parent of N).

The final atomic update of the original pointer to N
to point to N’ exposes the update to read-only transac-
tions, and it is easy to see that read-only transactions
do not see partial updates. The affected component
for many well known operations on B-trees and T-trees
can be easily defined. For example, the affected com-
ponent in a B-tree split would be the path between the
node in which the insert took place and the highest
node in the tree to which the split propogated. Phys-
ical versioning can also be used on hash-tables with
chaining, since they can be considered as a forest of
lists, and a list is a special case of a tree.

We use the term physical aging to denote the pro-
cess of reclaiming space occupied by older copies of
data that have been physically versioned. The old
physical versions of the data have to be preserved as
long as a read-only transaction can attempt to read
the data. We assume that each operation traverses an
access structure afresh and pointers to nodes are not
cached across operations. Therefore, a piece of data
that is visible to a read-only transaction during an op-
eration cannot be physically aged for the duration of
the reading operation. Contrast physical aging with
logical aging, where a version of a data item cannot be
aged as long as a transaction may need to access it.

We associate a physical timestamp with each read-
only transaction. The physical timestamp is co if the
transaction is not currently performing any operation.
It is set to the the value of a global physical timestamp
counter before starting an operation and reset to 00
afterwards.

An updater, after making an update that physically
versions a piece of data and makes it unreachable for
future read-only transactions, increments the global
physical timestamp counter while holding a latch. The
updater also adds the older physical version into a
physical ager’s list by appending to the list an entry
containing a pointer to the physical version being aged
and the value of the physical timestamp counter when
the version was aged (that is, after the older version
was unlinked and the physical timestamp counter was

89

incremented). The ager then can de-allocate the space
for an older physical version once no transaction has a
physical timestamp smaller than the version’s physical
timestamp.

4 T-trees

In this section, we describe the algorithms for perform-
ing lookups, inserts and deletes from a T-tree index
with logical and physical versioning. The salient fea-
tures of our concurrency control scheme for T-trees
are:

l

l

l

l

4.1

Read-only transactions do not obtain any latches
or locks.

The tree traversals of update transactions do not
obtain latches while locating the node to be up-
dated and obtain latches only when actually per-
forming the update. Thereby, the number of
latches acquired by tree updates can be reduced, a
useful property in a main memory database where
latch acquisition may be relatively expensive.

Update operations that result in modifications to
a single T-tree node can execute concurrently.

Rotations due to inserts can take place concur-
rently.

Overview of T-trees

In [LC86], the authors proposed T-trees as a storage
efficient data structure for main memory databases.
T-trees are based on AVL trees proposed in [AHU74].
In this subsection, we provide an overview of T-trees.
For a detailed description, the reader is referred to
[LC86]. Like AVL trees, the height of each node’s sub-
trees may differ by at most one. A T-tree differs from
an AVL tree in that each node, instead of storing a
single key value, stores multiple key values in a sorted
order. The leftmost and the rightmost key value in
a node define the range of key values contained in
the node. Thus, the left subtree of a node contains
only key values less than the leftmost key value, while
the right subtree contains key values greater than the
rightmost key value in the node. A node with both a
left and a right child is referred to as an internal node,
a node with only one child is referred to as a semi-leaf,
and a node with no children is referred to as a leaf. In
order to keep occupancy high, every internal node has
a minimum number of key values that it must contain
(typically k: - 2, if k is the maximum number of keys
that can be stored in a node). However, there is no
occupancy condition on the leaves or semi-leaves.

Searching for a key value in a T-tree is relatively
straightforward. Beginning with the root node, a

check is made to see if the key value is bounded by
the leftmost and the rightmost key value in the node;
if this is the case, then the key value is returned if it is
contained in the node (else, the key value is not con-
tained in the tree). Otherwise, if the key value is less
than the leftmost key value, then the left child node
is searched; else the right child node is searched. The
process is repeated until either the key is found or the
node to be searched is null.

Insertions and deletions into the T-tree are a bit
more complicated. For insertions, first a variant of the
search described above is used to find the node that
bounds the key value to be inserted. If such a node
exists, then if there is room in the node, the key value
is inserted into the node. If there is no room in the
node, then the key value is inserted into the node and
the leftmost key value in the node is inserted into the
left subtree of the node (if the left subtree is empty,
then a new node is allocated and the leftmost key value
is inserted into it). If no bounding node is found then
let N be the last node encountered by the failed search.
If N has room, the key value is inserted into N; else,
it is inserted into a new node that is either the right
or left child of N depending on the key value and the
leftmost and rightmost key values in N.

Deletion of a key value begins by determining the
node containing the key value, and the key value is
deleted from the node. If deleting the key value re-
sults in an empty leaf node, then the node is deleted.
If deleting the key value results in an empty semi-leaf
node, then the node is merged with its child. If the
deletion results in an internal node containing fewer
than the minimum number of key values, then the
deficit is made up by moving the largest key in the left
subtree into the node, or by merging the node with its
right child.

In both insert and delete, allocation/de-allocation
of a node may cause the tree to become unbalanced
and rotations (e.g., RR, RL) may need to be performed
in a manner similar to rotations in AVL trees. Balanc-
ing starts from the newly allocated node (or the parent
of the deleted node), proceeds upwards towards the
root, and stops on reaching a node that is balanced,
or a node where the heights differ by one, and can be
made equal by rotation. Rotations occur at the inter-
mediate nodes. Details may be found in [LC86].

4.2 Latches and Versioning

Each node in the tree has a latch associated with it
which is obtained in exclusive mode to prevent con-
current updates to the node. Due to physical version-
ing, the latch on a node is never obtained in shared
mode. The tree itself has a tree latch, which is ob-
tained (instead of node latches) in exclusive mode by

90

certain operations. All update operations acquire the
tree latch in shared mode.

Each node contains a version bit that indicates if
the node is versioned (physical versioning). This bit
is 1 if a newer copy of this node has been linked into
the tree in its place. Only updaters read and write the
version bit. The act of marking a node as versioned
consists of setting its versioned bit to 1 and adding the
node to the physical ager’s list. The node is then said
to be versioned.

A new version of a node is created only when a
key value is inserted or deleted from the node, or the
node is involved in a rotation. Updates to balance in-
formation and child pointers in a node are performed
directly on the node, and no new version is created
since read-only transactions never look at the balance
information and the child pointers are changed atom-
ically.

4.3 Find

Find is the algorithm for traversing the tree to find
the smallest key greater than or equal to a search key
(see Figure 3). (Other search modes such as > or =)
can be supported via straightforward extensions.) Find
takes the following arguments: stack, which contains
the nodes on the path from the root to the current
node of Find (Find starts tree traversal from the top
node of the stack; if the stack is empty, the root of
the tree is assumed); search-key, the key value being
sought; lock-mode, a flag which indicates whether an
exclusive lock, shared lock, or neither should be ob-
tained on the key returned by Find; and latch-mode,
a flag which if True indicates that the node at which
Find terminates should be latched exclusively.

When Find is called on behalf of a read-only trans-
action lock-mode is None (indicating no lock), and
latch-mode is False. In this case, no latches or locks
are obtained, and no checks are made to determine
if nodes are versioned. The reason for this is that
a read-only transaction only needs to see the effects
of updates that completed before it began. Update
transactions, on the other hand, look up a key value
in the index by invoking Find with lock-mode set to
Shared and latch-mode set to False. In procedure
Find, right_ancestor(stack) is the topmost node in stack
whose left child is also in stack.

Whether called on behalf of updaters or readers,
the Find procedure performs a “fuzzy” traversal of the
tree. By fuzzy, we mean that the Find algorithm does
not obtain latches on its way down and does not check
whether a node has been versioned until it reaches
the node containing the satisfying key (sat-key) or a
leaf or a semi-leaf node that should contain the search
key (recall that all searches are greater than or equal

Find(stack, search-key, lock-mode, latch-mode) {
Proceed down the tree, beginning with the topmost

node in stack, pushing nodes onto stack until a node
bounding search-key is found, or until the next node
to be visited is null;

node = top of stack; /* at end of the above traversal */
If search-key <= maxkey(node) Then

sat-key = smallest key in node >= search-key;
Else satkey = smallest key in right-ancestor(stack);
If lock-mode == None and latch-mode == False Then

return (sat-key, ptr in index entry for satkey);
If lock-mode not equal to None Then

obtain appropriate lock on sat-key;
If latch-mode == True Then

obtain S latch on tree;
obtain X latch on node;

/* Validate node before returning */
If (node is versioned)

or (search-key < minkey(node) and
left child not equal to null)

or (search-key > maxkey(node) and
(right child not equal to null or

right-ancestor(stack) is versioned)) Then
Release lock and latches just obtained;
Return Find(LSA(stack), search-key, lock-mode,

latch-mode);
Else return (sat-key, ptr in index entry for sat-key);

1
Figure 3: The basic find algorithm

to). After obtaining appropriate locks and latches
based on input parameters (note that the lock is ob-
tained before the latch is obtained to prevent dead-
locks involving latches and locks), validation is per-
formed to determine if the satisfying key value is in-
deed the key value to be returned. The reason to per-
form validation is that concurrent updaters may have
inserted/deleted index entries while Find was obtain-
ing locks/latches. Since every updater creates a new
version of a node when inserting/deleting an index en-
try into/from the node, Find first checks to see if node
has been versioned. Even if node were not versioned, if
search-key < min_key(node), then a non-null left child
of node could contain a newly inserted key value be-
tween search-key and min_key(node), and this (instead
of min_key(node)) would be the appropriate key value
to be returned by Find. Similarly, if search-key >
max-key(node), then a right child may be added to
node or the smallest key value in right-ancestor(stack)
may be deleted, and thus it would no longer be the
appropriate key value to return.

If any of the three validation conditions do not hold,
Find restarts from the Lowest Stable Ancestor (LSA)
in stack. The LSA is the node farthest from the root
of the tree (and thus the highest node in stack) that

91

has not been versioned since it was visited by the find.
LSA(stack) is obtained from stack by popping each
node and checking it’s versioned bit until an unver-
sioned node is found (in case all nodes in stack are
versioned, then they are all popped and the latest ver-
sion of the root node is pushed onto stack). Restarting
from the LSA is an optimization (we could restart at
any node on the stack), and the intuition for it is based
on the observation that no target key could “escape”
from a subtree without modifying, and therefore ver-
sioning, the root of that subtree.

Find can be further optimized by checking if node is
versioned before obtaining any locks or latches - this
way, if node was versioned, the overhead of obtaining
locks and latches can be avoided, and Find can restart
earlier.

Index scans can be implemented by caching the key
value returned by the last Find call and the value of
stack at the end of the last Find operation (in an itera-
tor structure), and then repeatedly invoking FindGT, a
variant of Find which locates a strictly larger key, with
the cached values of stack and the key value (lock-mode
and latch-mode are set as for the first Find call for read-
only and update transactions).

We describe the insert operation next; the delete
operation and correctness arguments for all the oper-
ations can be found in [BLR+95].

4.4 Insert

We next describe the insert procedure along with con-
currency control and details of physical versioning.
The concurrency control scheme described provides a
high degree of concurrency; however, there are sim-
plifications that provide lower concurrency but have
lower latching overheads. A performance comparison
of these albernatives is described in Section 5.

Insert first invokes Find with the key value to be
inserted key-val, and input parameters lock-mode set
to exclusive (this is to implement next hey [acting
[MohSO]) and latch-mode set to True (stack is set to
the root of the tree). This ensures that an X lock on
the next key value is obtained and a latch on the node
involved in the insert is also held. Note that an X lock
on key-val is already held when the insert call is made.

Let N be the node on which Find obtains an X latch.
We consider the following three cases:

1. N bounds key-val and has room:
A copy of N, say N’, is created and key-val is inserted
into it. A latch on N’s parent is then obtained.

Note that N’s parent can be determined from stack.
In order to ensure that updates are reflected in the
most current version of the tree, it is important that
N’s parent must not be an old version. Thus, after the
latch on N’s parent is obtained, it is checked to see if

it has been versioned. If this is the case, then (after
releasing the latch), the tree is retraversed from the
root to N to determine N’s most current parent, and
a latch on N’s most current parent is obtained. This
process is repeated until N’s parent is found to be not
versioned.

Finally the pointer to N is updated to point to N’.
Node N is then marked as versioned and all latches
are released.

2. N does not bound key-val:
In this case the node is a leaf or a semi-leaf. If there
is room in N, then key-val is inserted as described in
Case 1. Else, a new node containing key-val is allo-
cated, a latch on the node is obtained and the left/right
child of N (as appropriate) is set to point to the newly
allocated node.

3. N bounds key-val and does not have room:
If the left child of N is null, then two nodes Ni and Nz
are allocated: Ni is a copy of N containing key-val but
not containing the leftmost key in N and the left child
of Ni is set to Nz. Nz simply contains the leftmost key
in N. Latches are obtained on both Nr and Nz. After
obtaining a latch on N’s parent, the pointer to N is
updated to point to Nr and N is marked as versioned.

If the left child of N is not null, then after releasing
the latch on N, the tree latch is obtained in exclusive
mode. Now if N has been versioned or its left child has
become null in between releasing the latch on N and
obtaining the tree latch, the tree latch is released and
insert restarts again by invoking Find from the LSA
with latch-mode equal to True and lock-mode equal to
None (a lock on the next key value is already held).
Otherwise (i.e., N has not been versioned and its left
child remains non-null) the following actions are taken.

Let Nr be the node that contains the largest key
value in the left subtree of N. If Nr has room, then
a copy of Ni is made, the leftmost key value in N
is inserted into the copy, the pointer in Nr’s parent is
updated to point to the new version, and Nr is marked
as versioned (we do not need a node latch here since we
already hold the tree latch.) If Ni has no room, then
a new node containing only the leftmost key value in
N is allocated and Nr’s right child is set to point to
the newly allocated node. After this is completed, a
copy of N is made from which the leftmost key value
is deleted, key-val is inserted and N’s parent’s pointer
to N is updated to point to the new copy, following
which N is marked as versioned.

The lock on the next key value is released at the end
of the insert procedure once the key has been inserted,
as in [MohSO].

Note in Step 3 above that, by inserting the leftmost
key value in N into N’s left subtree before deleting it
from N, we ensure that any Find traversing the tree

92

will see the key. A Find or an index scan may however
see the key twice. For Find, this is not a problem
since the traversal would have followed the same path
irrespective of whether it encountered N or its new
copy. For an index scan, this case can be handled by
ignoring key values that are less than or equal to the
previous key value returned.

4.4.1 Balancing

In case a new node that is not a version of an existing
node is allocated, the T-tree may need to be balanced.
Balancing is done by traversing the tree upwards from
the lowest unbalanced node, and performing rotations
as appropriate.

The insert procedure described above ensures that
every time a new node is allocated, latches are ob-
tained and held on both the newly allocated node and
the parent, or a tree latch is held. In case a tree latch
is held, the traversal upwards toward the root is sim-
ply performed as described earlier in Section 4.1 (the
only difference is that every time a parent node is ac-
cessed, a check is made to see if it is versioned, and if
it is, then the tree is retraversed in order to determine
the parent). In the case that the tree latch is not held,
then before a parent node is examined to determine if
it can be rotated, a latch is obtained on it (retravers-
ing may be required if, after obtaining the latch, it is
determined that the parent has been versioned).

Note that latches on tree nodes are obtained in a
bottom-up fashion. Furthermore, no node latches are
held when an attempt is made to acquire the tree latch.
Thus, a deadlock involving only latches is not possible.
(Locks are not acquired while holding a latch, so latch-
lock deadlocks are not possible either.)

While traversing the tree upwards toward the root,
balances on the appropriate nodes on the path are
adjusted to account for the newly allocated node.
Note that balance information can be updated in
place, since readers never examine balance informa-
tion. While performing a rotation, physical versioning
only requires that the three nodes involved in the ro-
tation are copied.

5 Performance Results

In order to determine the effects of physical version-
ing and latching overheads on performance, we imple-
mented four variations of the T-Tree operations find,
insert, and the rotation operations needed for rebal-
ancing. (In each case, insert invokes find to determine
the target node.) The four variations corresponded to
whether physical versioning was used or not and the
granularity at which latches were obtained (node level
as is common in disk based systems or tree level as
suggested by [LCSS]) and are described below:

Tree latch with no versioning: A single latch
at the granularity of the tree itself is obtained in X
mode by inserts and S mode by finds. No physical
versions of nodes are created by inserts.

Node latch with no versioning: In addition
to the tree latch, a latch per node is maintained.
Find obtains the tree latch in shared mode and
performs latch crabbing when traversing the tree
(obtaining each node latch in shared mode). For
simple inserts that require no structure modifica-
tion, a shared latch is obtained on the tree and
exclusive latches are obtained on the nodes being
modified. If a structure modification such as a ro-
tation is required, an exclusive latch on the tree
is obtained instead of node latches. No physical
versions of nodes are created.

Tree latch with physical versioning: Physical
versions of nodes are created - as a result, finds
do not obtain any latches. Inserts, however, do
obtain an exclusive latch on the tree before per-
forming any updates.

Node latch with physical versioning: Physi-
cal versions of nodes are created and finds do not
obtain any latches. Inserts obtain an exclusive
latch on the tree if structure modifications take
place; else, they simply obtain a shared latch on
the tree and an exclusive latch on the updated
node(s).

In each case, the T-Tree was configured to have 10
keys in each node. The keys for insert and find were in-
tegers uniformly chosen from the range 0 to 2,000,OOO.
The percentage of inserts was varied from 1% to 75%.
For each percentage of inserts value, the rurming time
was 5 minutes, and the throughput measured was the
sum of the total number of lookups and inserts per-
formed. The experiments were performed on a Sun
SPARCstation 20 with 2 processors and 256 MB of
RAM.

In order to estimate the overhead of obtaining
latches and performing physical versioning, we first
conducted our experiments with a single process. For
very low percentage of inserts (1, 2 and 4%), the
physical versioning schemes perform the best since no
latches are obtained by tree traversals. However, as
the percentage of inserts goes beyond 4%, their perfor-
mance falls below that of the tree latch and no version-
ing scheme, due to the high cost of creating versions.
The node latch with no versioning scheme performs
the worst inserts due to the high cost of latch crab-
bing when traversing the tree.

With 4 processes, we are also in a position to mea-
sure the effects of the increased concurrency that re-
sults due to node level latches and physical versioning.

93

1.6e+O6
Number of processes - 1

1.4e+O6

Tree latch wlh no Versioning -
Tree latch with physical Versioning ------

Node latch with no Venioning ..-..
Node latch wtih physical Versioning

5 2 le+O6

9
e c6ooooO
l-

Percentage of inserts

3e+o6

2Se+O6

le+O6

0

Number of processes - 4

Tree latch with no Versioning -
Tree latch wtih physical Venioning -.----

Node latch with no Versioning
Node latch with physical Versioning -.-..-.

20 30 40 50 60 70
Percentage of inserts

Figure 4: Throughput v/s percentage of inserts
The tree latch and physical versioning scheme outper-
forms all the other schemes due to latch-free traver-
sals and low latching overheads for inserts. Further-
more, as long as the percentage of inserts is below 30%,
the node latch and physical versioning scheme outper-
forms the tree latch and no versioning scheme due to
the enhanced concurrency and decreased latching over-
heads (since tree traversals do not obtain latches when
physical versioning is used). Beyond 30% inserts, how-
ever, due to the overhead of creating versions and ad-
ditional latches obtained by inserts, the performance
of the node latch and physical versioning scheme falls
below that of the tree latch and no versioning scheme.
The node latch and no versioning scheme performs the
worst due to excessive latching overheads.

area” and clustering the versions of an item together
on the same page [BC92, MPL92]. However, the opti-
mization of clustering versions in the same page as the
stable copy of the item is not required in a main mem-
ory database since there is no extra cost to accessing a
different page and thus the schemes in [BC92, MPL92]
would be wasteful of storage space in a main memory
environment.

6 Related Work

In this section, we discuss related work on main
memory databases, multi-version concurrency control
schemes and concurrency control schemes for indices.
A number of versioning schemes have been proposed
for disk-based databases [CFL+82, MPL92, BC92].
Our logical versioning scheme is tailored for main
memory systems since it eliminates storage space over-
heads for items with a single version, and allows latch-
free traversal of version control information by read-
only transactions. In addition, our schemes include
the interaction between versioning and index manage-
ment.

Of the disk-based schemes, our logical versioning
scheme is most similar to [CFL+82], in which a linked
list of versions is maintained and aged versions are col-
lected from a single pool. However, versioning in this
design is at the page level, the garbage collection is
very simplified for disk I/O considerations, and index-
ing problems are not considered. In [BC92], the au-
thors extend the scheme in [CFL+82] to record-level
versioning by allocating part of each page as a “version

Among the multi-versioning schemes proposed, only
[MPL92] considers the interaction between versioning
and indexing. However, the scheme in [MPL92] preal-
locates space for information about a fixed number of
versions in index nodes, adding a substantial amount
of space overhead even for non-versioned items.

We next shift our attention to schemes for perform-
ing concurrent operations on B trees and binary trees
that have been proposed in the literature, such as
[SG88, BS77, Moh90, ML92, KL80, ML82]. All of the
schemes, excepting [KL80, ML821 and [SG88] require
traversals to obtain latches on each node.

These two schemes implement forms of physical ver-
sioning. However, the index techniques of [KL80] do
not address concurrency control issues needed to im-
plement transaction semantics, while the treatment of
[ML821 requires preordering by key value all of a trans-
action’s accesses to a tree.

The idea of using atomic updates to avoid latches
while performing lookups in binary trees was origi-
nally proposed in [KL80]. We extend this work to T-
trees and general tree structures, address transaction
level concurrency control issues (ignored in [KL80])
and show additional advantages from using these tech-
niques in a multi-version concurrency control system.
Schemes similar to our physical aging scheme have
been presented in [ML82, SG88]. Our requirement
of completely non-blocking readers distinguishes our
work. In [BLR+95] we describe techniques to inter-
rupt long operations (e.g., scans) to allow old physical
versions to be reclaimed earlier.

94

The notion of performing next key locking and val-
idation after obtaining a lock was presented for B+
trees in [MohSO, ML92]. However, in order to prevent
insert/delete operations from taking place in a sub-
tree that is involved in a structure modification (e.g.,
split) and at the same time, to permit traversals (that
obtain latches) to execute concurrently on the sub-
tree, a tree latch is obtained in exclusive mode during
structure modifications. This could hurt concurrency
since no two structure modification operations can ex-
ecute concurrently. In our scheme, on the other hand,
many structure modifications (e.g., balancing during
inserts) obtain and retain only local latches on updated
nodes until the structure modification completes, and
all could do so since our tree latch is an optimization
to reduce the number of latches, and is not otherwise
involved in correctness. Further, stucture modification
does not block traversals since in our scheme, traver-
sals do not obtain any latches.

7 Conclusion

We have presented a design for multi-version concur-
rency control and index management in a main mem-
ory database system. We show how to support real-
time performance for read-only transactions by freeing
them from obtaining locks, by using logical versioning,
and also latches, by using physical versioning.

We have applied these techniques to design a con-
current implementation of T-trees, an index structure
for main memory systems, and demonstrated experi-
mentally the performance improvement due to physi-
cal versioning. Some of the salient features of our de-
sign are 1) read-only transactions do not obtain latches
while performing lookups, 2) update transactions per-
form latch-free traversals on the tree, and 3) concur-
rent rotations on the tree are possible. Our perfor-
mance results indicate that latch-free traversals enable
our scheme to outperform other schemes. Both the
logical and physical versioning schemes have been im-
plemented in the Dali main memory storage manager.

References

[AHU74] A. Aho, J. Hopcroft, and J. D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[BC92] P. Bober and M. Carey. On mixing queries and
transactions via multiversion locking. In Procs. IEEE
Intl. Conf. on Data Engineering, February 1992.

[BLRt95] P. Bohannon, D. Leinbaugh, R. Rastogi, S. Se-
shadri, A. Silberschatz, and S. Sudarshan. Logical and
physical versioning in main memory databases. Tech-
nical Report 113880-951031-12, AT&T Bell Laborato-
ries, Murray Hill, 1995.

[BS77] R. Bayer and M. Schkolnick. Concurrency of oper-
ations on B-trees. Acta Informatica, 9(1):1-21, 1977.

[CFLt82] A. Chan, S. Fox, W-T.K. Lin, A. Nori, and D.R.
Ries. The implementation of an integrated concur-
rency control and recovery scheme. In Procs. of the
ACM SIGMOD Conf. on Management of Data, pages
184-191, June 1982.

[DKOt84] D. J. Dewitt, R. Katz, F. Olken, D. Shapiro,
M. Stonebraker, and D. Wood. Implementation tech-
niques for main memory database systems. Procs. of
the ACM SIGMOD Conf. on Management of Data,
pages l-8, June 1984.

[GL92] V. Gottemukkala and T. Lehman. Locking and
latching in a memory-resident database system. In
Procs. of the International Conf. on Very Large
Databases, pages 533-544, August 1992.

[JLR+94] H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi,
Avi Silberschatz, and S. Sudarshan. Dali: A high per-
formance main-memory storage manager. In Procs.
of the International Conf. on Very Large Databases,
1994.

[KL80] H.T. Kung and P.L. Lehman. Concurrent manip
ulation of binary search trees. ACM Transactions on
Database Systems ., 5(3):354-382, September 1980.

[LC86] T.J. Lehman and M.J. Carey. A study of in-
dex structures for main memory database management
systems. In Procs. of the International Conf. on Very
Large Databases, pages 294-303, August 1986.

[ML821 U. Manber and G.D. Ladner. Concurrency control
in dynamic search structures. ACM Proc.on Database
Systems, Boston., pages 268-282, April 1982.

[ML921 C. Mohan and F. Levine. Aries/im an efficient
and high concurrency index management method us-
ing write- ahead logging. In Procs. of the ACM SIG-
MOD Conf. on Management of Data, June 1992.

[MohSOJ C. Mohan. Aries/kvI: A key-value locking
method for concurrency control of multiaction trans-
actions operating on btree indexes. In Procs. of the In-
ternational Conf. on Very Large Databases, September
1990.

[MPL92] C. Mohan, H. Pirahesh, and R. Lorte. Efficient
and flexible methods for transient versioning of records
to avoid locking by read-only transactions. In Procs.
of the ACM SIGMOD Conf. on Management of Data,
June 1992.

[SG88] D. Shasha and N. Goodman. Concurrent search
structure algorithms. ACM Transactions on Database
Systems , no.1., 13:53-90, March 1988.

[SGMSO] K. Salem and H. Garcia-Molina. System M:
A transaction processing testbed for memory resident
data. IEEE Transactions on Knowledge and Data En-
gineering, 2(1):161-172, March 1990.

95

