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Abstract 

We present a design for multi-version concur- 
rency control and recovery in a main mem- 
ory database, and describe logical and physical 
versioning schemes that allow read-only trans- 
actions to execute without obtaining data 
item locks or system latches. These schemes 
enable a system to guarantee that updaters 
will never interfere with read-only transac- 
tions, and that read-only transactions will not 
be delayed as long as the operating system 
provides them with sufficient cycles. Our con- 
tributions include several space saving tech- 
niques for the main memory implementation. 
We extend the T-tree index structure (de- 
signed for main-memory databases) to sup- 
port concurrent access and latch-free traver- 
sals, and demonstrate the performance bene- 
fits of our extensions. Some of these schemes 
have been implemented on a widely-used soft- 
ware platform within Bell Labs., and the full 
scheme is implemented in the Dali main mem- 
ory storage manager. 

1 Introduction 

While disk-based databases exhibit improved perfor- 
mance if the entire database can fit in the main mem- 
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ory buffer cache, a main memory database (MMDB) 
(e.g. [SGMSO, JLR+94]) improves performance fur- 
ther by dispensing with the buffer manager, and tun- 
ing algorithms to the flat storage hierarchy and the 
reduced cost of indirection. Also, MMDB schemes at- 
tempt to minimize space usage, of vital importance 
since main memory remains about one hundred times 
as expensive as disk space. 

Many applications in telecommunications require 
very fast and predictable response times for trans- 
actions and, in particular, for read-only transactions. 
Since disk I/O in an MMDB is only needed for per- 
sistence of the log, no disk activity is required on be- 
half of read-only transactions. As a result, response 
times for read-only transactions are more predictable, 
making MMDBs highly suitable for a large class of 
real-time applications. However, a read-only transac- 
tion may still have to wait on locks held by an update 
transaction, which may in turn be waiting on a differ- 
ent transaction, or on disk writes to the log. These 
waits become a serious source of unpredictability for 
response times. 

Multiversion concurrency control methods prevent 
update transactions from conflicting with read-only 
transactions by providing the latter with a consistent 
but somewhat out-of-date view of the database. In or- 
der to provide this view, multiple versions of recently 
updated data items are retained. Early multi-version 
schemes used timestamps to serialize readers as well as 
writers, but more recent multi-version locking schemes 
[CFL+82, BC92, MPL92] use timestamps to serialize 
read-only transactions with respect to updaters, allow- 
ing them to use old versions without locking, while re- 
quiring updaters to perform locking to serialize them- 
selves with respect to other updaters. 

However, none of the above techniques guaran- 
tees complete isolation of read-only transactions from 
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update transactions in a system, since the access 
path to the data could be modified by update trans- 
actions. Thus, read-only transactions must obtain 
latches (semaphores) to ensure that they read phys- 
ically consistent data. 

Requiring read-only transactions to obtain latches 
could cause update transactions to interfere with their 
execution. Furthermore, in a number of environments, 
application code is often linked directly with database 
code, accessing the database directly through shared 
memory for speed. This introduces the possibility that 
a processes could fail while holding latches or locks, 
leading to long delays in any transaction waiting on 
one of these latches or locks while the death of the first 
process is detected and handled. By avoiding latches, 
read-only transactions will never encounter this delay. 
Finally, in a main memory database system, the use of 
latches imposes a substantial overhead [GL92] and, by 
avoiding their use, significant performance gains can 
be obtained for read-only transactions. 

In this paper, we present schemes that eliminate 
the need for both locking and latching by read-only 
transactions without sacrificing recency, since read- 
only transactions see all committed updates as of their 
start-times. Locks are eliminated by versioning of data 
items (which we refer to as logical versioning). Our 
implementation is optimized for main memory, and 
reduces the storage space overhead of keeping track of 
versions as compared to versioning schemes for disk 
databases. Latches are eliminated by a mechanism we 
call physical versioning [KL80], that is applied to the 
access paths to data items. Updates to these access 
paths are not made in place - instead, the updates are 
made on a new copy of the node, called a “physical ver- 
sion”. The new version of the node is linked into the 
access path using an atomic word-write (an operation 
which is universally supported on standard architec- 
tures). This enables read-only transactions to traverse 
data structures without acquiring latches. By free- 
ing them from getting any latches, the performance of 
read-only transactions is completely de-coupled from 
that of update transactions, and becomes a simple 
function of available CPU resources, making it rela- 
tively easy to guarantee the response times of these 
transactions. 

The remainder of the paper is organized as follows. 
In sections 2 and 3, we provide an overview of logi- 
cal and physical versioning, respectively. In Section 4, 
we develop concurrency control schemes for operations 
on T-trees. In Section 5 we compare the performance 
of T-tree algorithms with and without physical ver- 
sioning. In Section 6, we discuss related work, and in 
Section 7, we give our conclusions and directions for 
future work. 

We do not address recovery issues in this paper - 

a comprehensive treatment of this can be found in 
[BLR+95]. 

2 Logical Versioning 

We refer to the (well-known) idea of maintaining mul- 
tiple versions of data items for concurrency control 
as logical versioning. In a system that supports logi- 
cal versioning, transactions are classified as read-only 
transactions - those that only read items, and update 
transactions- those that update or write some item, or 
simply want access to the most current data. When an 
update transaction updates a data item, a new version 
of that item is created. Update transactions follow the 
two-phase locking protocol by locking items they read 
or write. When an update transaction, T, commits, 
it is assigned a timestamp denoted by tsn(T) which 
is obtained by incrementing a global logical timestamp 
counter. As part of commit processing, before any 
locks held by the transaction are released, the trans- 
action stamps each version it has created with tsn(T). 
Thus, the versions of an item can be ordered accord- 
ing to their timestamps. A read-only transaction is as- 
signed a timestamp by reading (but not incrementing) 
the logical timestamp counter when it starts. Subse- 
quently, for each item, the read-only transaction reads 
the latest version whose timestamp is less than or equal 
to its timestamp. 

When a version of a data item is no longer needed 
by any (current or future) read-only transaction, it 
can be deleted and the space reclaimed. This action 
is called aging that version. A version can be aged 
safely if no read-only transaction exists which has a 
timestamp equal to or larger than that of the version 
in question, but smaller than the next newer version 
of the item. 

2.1 Assigning Timestamps 

To meet our design goal of read-only transactions 
never even acquiring a latch, read-only transactions 
must read the logical timestamp counter without any 
latching. To do so consistently, 

1. the counter itself must fit in a word,i ensur- 
ing that a read which does not obtain latches is 
atomic with respect to the update, 

2. the timestamp counter must be incremented by 
a transaction only after the stamping process is 
complete and the transaction has committed. 

Updater transactions modify the logical timestamp 
counter during commit processing. Every such trans- 
action must obtain an X latch (ignored by read-only 
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Version List Entry 

Figure 1: Structure of a Version List Entry 
transactions) on the logical timestamp counter before 
accessing it. The latch must be held until all the ver- 
sions have been stamped and the counter has been 
incremented. 

2.2 Version List Entries 

In most disk-based schemes [BC92, MPL92], storage 
space for a certain number of versions is pre-allocated 
on each page for efficient access, which could result in 
under-utilization of storage space (e.g., each item on a 
page has a single version). In our design, on the other 
hand, space for versions is dynamically allocated as 
they are created. Furthermore, since a database could 
consist of millions of “cold” items that have only one 
version, and space is an important constraint in main- 
memory databases, our goal was to impose essentially 
zero space overhead on data items due to versioning. 

Our design uses an auxiliary data structure called a 
Version List Entry (VLE), shown in Figure 1, to main- 
tain the bookkeeping information and link the versions 
of an item together. A VLE contains the timestamp 
of the transaction that created it, and a pointer to 
the version itself. The VLEs of an item are linked to- 
gether as a doubly linked list ordered by timestamp. 
Read-only transactions traverse the VLE chain of an 
item in order to find the required version. Each VLE 
is also on a list of versions created by the same trans- 
action while the transaction is active; this facilitates 
easy update of timestamps of versions created by the 
transaction when it commits. Also, if a transaction 
aborts, the versions created by the transaction can be 
efficiently determined and deleted. 

It is important that we can determine if a pointer 
points to a data item or a VLE. In our implementa- 
tion, data and VLE are stored on distinct segments 
(alternatively, distinct pages can be used) and a single 
bit per segment lets us determine whether the pointer 
is to a data item or a VLE. An item that has only 
one version is stored as is without a VLE, resulting in 
no space overhead (except the per-segment bit) due to 
versioning on cold items. VLEs are dynamically allo- 
cated as subsequent versions of the item are created, 

Access Paths (Indices) 

Vurbns 
ofanllm 

Figure 2: Pointers to Items from Indexes 
and for items with more than one version, a VLE ex- 
ists to represent each version. A pointer to an item 
could be a direct pointer or a pointer to a VLE. The 
code to dereference an item determines the type of the 
pointer, and fetches the appropriate version, if more 
than one version exists. 

We do not discuss the implementation of logical ag- 
ing (which detects when a version is no longer needed) 
due to lack of space - see [BLR+95] for details. When 
a version is deleted, the corresponding VLE is also 
deleted. One remaining detail is to handle the case 
when only one version of an item is left. In this case, 
all pointers to the VLE must be updated to point to 
the data item, and then the VLE can be deleted. 

2.3 Interaction with Indices 

We next discuss how our logical versioning scheme for 
items can be combined with indices. The index stores 
entries for all existing versions of an item. An index 
entry for an item stores a pointer to an item, or to 
the VLE of the version if more than one version of the 
item exists (see Figure 2). As discussed earlier, when 
dereferencing an item, the pointer type is determined, 
and an extra level of indirection used if required. If 
more than one of an item’s versions have the same key 
value, then the index entry points to the latest version 
with the key value. The index need not store key val- 
ues - the key values can be obtained from the data 
item version that is being pointed to, since in-memory 
pointer dereferencing is inexpensive [DK0+84]. 

Update to an item causes a new VLE to be allocated 
that points to the newly allocated version. The new 
VLE is linked at the (rightmost) end of the VLE chain 
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for the item. For every index, for the key value in the 
new version, if a pointer to a previous version of the 
item with the same key value is contained in the index, 
then the pointer is updated to point to the new VLE; 
else, a new pointer to the new VLE is inserted into the 
index. 

Read-only transactions traverse the index to obtain 
a pointer to an item or a VLE with the appropriate key 
value. If the pointer is a direct pointer to an item, then 
the item pointer is returned. Else, if the pointer is to 
a VLE, say ~1, then the VLE chain for the data item 
is traversed to determine the VLE, say 212, with the 
largest timestamp less than or equal to the timestamp 
for the transaction. If no such VLE exists or the key 
value for 212 differs from the key value for vi, then in the 
transaction consistent database state for the read-only 
transaction, the item does not have a key value equal 
to that for vi. Else, the version pointer in vz is re- 
turned. A small extension consisting of VLEs with null 
pointers is used to handle deletes. More details about 
interaction with indices can be found in [BLR+95]. 

3 Physical Versioning 

Physical versioning is a technique that permits read- 
only transactions to access data structures without 
getting any latches or locks, even while other update 
transactions are updating the data structure. Phys- 
ical versioning is based on atomic reads and writes 
of words, operations which are universally supported 
on current generation architectures. Trees structures, 
in particular, lend themselves to efficient physical ver- 
sioning, allowing readers to see an operation-consistent 
state of the tree without obtaining any latches. In 
other words, the operations are each performed atom- 
ically with respect to readers. 

We assume nodes in the tree are fixed size entities 
and for every edge out of the node, a pointer to the 
other node in the edge is stored within the node it- 
self. We define a component to be any connected set 
of nodes of the tree. Given an update operation, the 
component aflected by the operation is the set of nodes 
changed by the operation, plus any other nodes which 
may be necessary to connect the changed nodes. The 
root of the component is defined in the obvious way 
as the root of the smallest subtree that contains the 
component. 

Let N be the root of the component affected by an 
operation. Then, physical versioning is performed as 
follows: 

1. First copy the component; let N’ be the copy of 
N. The data in each node in the copy is exactly 
the same as the data in the corresponding nodes 
in the original tree, except that pointers to nodes 

in the component now point to the new copies of 
the nodes. 

Perform the update on the new copy of the com- 
ponent. This can create new nodes, and update 
or delete existing nodes in the new copy of the 
component. However, no node in the original tree 
(including the old copy of the component) is af- 
fected by the update. 

Atomically update the pointer to N to point to 
N’ instead (if N is the root, the pointer to N is 
the root pointer for the tree, otherwise it is from 
the parent of N). 

The final atomic update of the original pointer to N 
to point to N’ exposes the update to read-only transac- 
tions, and it is easy to see that read-only transactions 
do not see partial updates. The affected component 
for many well known operations on B-trees and T-trees 
can be easily defined. For example, the affected com- 
ponent in a B-tree split would be the path between the 
node in which the insert took place and the highest 
node in the tree to which the split propogated. Phys- 
ical versioning can also be used on hash-tables with 
chaining, since they can be considered as a forest of 
lists, and a list is a special case of a tree. 

We use the term physical aging to denote the pro- 
cess of reclaiming space occupied by older copies of 
data that have been physically versioned. The old 
physical versions of the data have to be preserved as 
long as a read-only transaction can attempt to read 
the data. We assume that each operation traverses an 
access structure afresh and pointers to nodes are not 
cached across operations. Therefore, a piece of data 
that is visible to a read-only transaction during an op- 
eration cannot be physically aged for the duration of 
the reading operation. Contrast physical aging with 
logical aging, where a version of a data item cannot be 
aged as long as a transaction may need to access it. 

We associate a physical timestamp with each read- 
only transaction. The physical timestamp is co if the 
transaction is not currently performing any operation. 
It is set to the the value of a global physical timestamp 
counter before starting an operation and reset to 00 
afterwards. 

An updater, after making an update that physically 
versions a piece of data and makes it unreachable for 
future read-only transactions, increments the global 
physical timestamp counter while holding a latch. The 
updater also adds the older physical version into a 
physical ager’s list by appending to the list an entry 
containing a pointer to the physical version being aged 
and the value of the physical timestamp counter when 
the version was aged (that is, after the older version 
was unlinked and the physical timestamp counter was 
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incremented). The ager then can de-allocate the space 
for an older physical version once no transaction has a 
physical timestamp smaller than the version’s physical 
timestamp. 

4 T-trees 

In this section, we describe the algorithms for perform- 
ing lookups, inserts and deletes from a T-tree index 
with logical and physical versioning. The salient fea- 
tures of our concurrency control scheme for T-trees 
are: 

l 

l 

l 

l 

4.1 

Read-only transactions do not obtain any latches 
or locks. 

The tree traversals of update transactions do not 
obtain latches while locating the node to be up- 
dated and obtain latches only when actually per- 
forming the update. Thereby, the number of 
latches acquired by tree updates can be reduced, a 
useful property in a main memory database where 
latch acquisition may be relatively expensive. 

Update operations that result in modifications to 
a single T-tree node can execute concurrently. 

Rotations due to inserts can take place concur- 
rently. 

Overview of T-trees 

In [LC86], the authors proposed T-trees as a storage 
efficient data structure for main memory databases. 
T-trees are based on AVL trees proposed in [AHU74]. 
In this subsection, we provide an overview of T-trees. 
For a detailed description, the reader is referred to 
[LC86]. Like AVL trees, the height of each node’s sub- 
trees may differ by at most one. A T-tree differs from 
an AVL tree in that each node, instead of storing a 
single key value, stores multiple key values in a sorted 
order. The leftmost and the rightmost key value in 
a node define the range of key values contained in 
the node. Thus, the left subtree of a node contains 
only key values less than the leftmost key value, while 
the right subtree contains key values greater than the 
rightmost key value in the node. A node with both a 
left and a right child is referred to as an internal node, 
a node with only one child is referred to as a semi-leaf, 
and a node with no children is referred to as a leaf. In 
order to keep occupancy high, every internal node has 
a minimum number of key values that it must contain 
(typically k: - 2, if k is the maximum number of keys 
that can be stored in a node). However, there is no 
occupancy condition on the leaves or semi-leaves. 

Searching for a key value in a T-tree is relatively 
straightforward. Beginning with the root node, a 

check is made to see if the key value is bounded by 
the leftmost and the rightmost key value in the node; 
if this is the case, then the key value is returned if it is 
contained in the node (else, the key value is not con- 
tained in the tree). Otherwise, if the key value is less 
than the leftmost key value, then the left child node 
is searched; else the right child node is searched. The 
process is repeated until either the key is found or the 
node to be searched is null. 

Insertions and deletions into the T-tree are a bit 
more complicated. For insertions, first a variant of the 
search described above is used to find the node that 
bounds the key value to be inserted. If such a node 
exists, then if there is room in the node, the key value 
is inserted into the node. If there is no room in the 
node, then the key value is inserted into the node and 
the leftmost key value in the node is inserted into the 
left subtree of the node (if the left subtree is empty, 
then a new node is allocated and the leftmost key value 
is inserted into it). If no bounding node is found then 
let N be the last node encountered by the failed search. 
If N has room, the key value is inserted into N; else, 
it is inserted into a new node that is either the right 
or left child of N depending on the key value and the 
leftmost and rightmost key values in N. 

Deletion of a key value begins by determining the 
node containing the key value, and the key value is 
deleted from the node. If deleting the key value re- 
sults in an empty leaf node, then the node is deleted. 
If deleting the key value results in an empty semi-leaf 
node, then the node is merged with its child. If the 
deletion results in an internal node containing fewer 
than the minimum number of key values, then the 
deficit is made up by moving the largest key in the left 
subtree into the node, or by merging the node with its 
right child. 

In both insert and delete, allocation/de-allocation 
of a node may cause the tree to become unbalanced 
and rotations (e.g., RR, RL) may need to be performed 
in a manner similar to rotations in AVL trees. Balanc- 
ing starts from the newly allocated node (or the parent 
of the deleted node), proceeds upwards towards the 
root, and stops on reaching a node that is balanced, 
or a node where the heights differ by one, and can be 
made equal by rotation. Rotations occur at the inter- 
mediate nodes. Details may be found in [LC86]. 

4.2 Latches and Versioning 

Each node in the tree has a latch associated with it 
which is obtained in exclusive mode to prevent con- 
current updates to the node. Due to physical version- 
ing, the latch on a node is never obtained in shared 
mode. The tree itself has a tree latch, which is ob- 
tained (instead of node latches) in exclusive mode by 
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certain operations. All update operations acquire the 
tree latch in shared mode. 

Each node contains a version bit that indicates if 
the node is versioned (physical versioning). This bit 
is 1 if a newer copy of this node has been linked into 
the tree in its place. Only updaters read and write the 
version bit. The act of marking a node as versioned 
consists of setting its versioned bit to 1 and adding the 
node to the physical ager’s list. The node is then said 
to be versioned. 

A new version of a node is created only when a 
key value is inserted or deleted from the node, or the 
node is involved in a rotation. Updates to balance in- 
formation and child pointers in a node are performed 
directly on the node, and no new version is created 
since read-only transactions never look at the balance 
information and the child pointers are changed atom- 
ically. 

4.3 Find 

Find is the algorithm for traversing the tree to find 
the smallest key greater than or equal to a search key 
(see Figure 3). (Other search modes such as > or =) 
can be supported via straightforward extensions.) Find 
takes the following arguments: stack, which contains 
the nodes on the path from the root to the current 
node of Find (Find starts tree traversal from the top 
node of the stack; if the stack is empty, the root of 
the tree is assumed); search-key, the key value being 
sought; lock-mode, a flag which indicates whether an 
exclusive lock, shared lock, or neither should be ob- 
tained on the key returned by Find; and latch-mode, 
a flag which if True indicates that the node at which 
Find terminates should be latched exclusively. 

When Find is called on behalf of a read-only trans- 
action lock-mode is None (indicating no lock), and 
latch-mode is False. In this case, no latches or locks 
are obtained, and no checks are made to determine 
if nodes are versioned. The reason for this is that 
a read-only transaction only needs to see the effects 
of updates that completed before it began. Update 
transactions, on the other hand, look up a key value 
in the index by invoking Find with lock-mode set to 
Shared and latch-mode set to False. In procedure 
Find, right_ancestor(stack) is the topmost node in stack 
whose left child is also in stack. 

Whether called on behalf of updaters or readers, 
the Find procedure performs a “fuzzy” traversal of the 
tree. By fuzzy, we mean that the Find algorithm does 
not obtain latches on its way down and does not check 
whether a node has been versioned until it reaches 
the node containing the satisfying key (sat-key) or a 
leaf or a semi-leaf node that should contain the search 
key (recall that all searches are greater than or equal 

Find(stack, search-key, lock-mode, latch-mode) { 
Proceed down the tree, beginning with the topmost 

node in stack, pushing nodes onto stack until a node 
bounding search-key is found, or until the next node 
to be visited is null; 

node = top of stack; /* at end of the above traversal */ 
If search-key <= maxkey(node) Then 

sat-key = smallest key in node >= search-key; 
Else satkey = smallest key in right-ancestor(stack); 
If lock-mode == None and latch-mode == False Then 

return (sat-key, ptr in index entry for satkey); 
If lock-mode not equal to None Then 

obtain appropriate lock on sat-key; 
If latch-mode == True Then 

obtain S latch on tree; 
obtain X latch on node; 

/* Validate node before returning */ 
If (node is versioned) 

or (search-key < minkey(node) and 
left child not equal to null) 

or (search-key > maxkey(node) and 
(right child not equal to null or 

right-ancestor(stack) is versioned)) Then 
Release lock and latches just obtained; 
Return Find(LSA(stack), search-key, lock-mode, 

latch-mode); 
Else return (sat-key, ptr in index entry for sat-key); 

1 
Figure 3: The basic find algorithm 

to). After obtaining appropriate locks and latches 
based on input parameters (note that the lock is ob- 
tained before the latch is obtained to prevent dead- 
locks involving latches and locks), validation is per- 
formed to determine if the satisfying key value is in- 
deed the key value to be returned. The reason to per- 
form validation is that concurrent updaters may have 
inserted/deleted index entries while Find was obtain- 
ing locks/latches. Since every updater creates a new 
version of a node when inserting/deleting an index en- 
try into/from the node, Find first checks to see if node 
has been versioned. Even if node were not versioned, if 
search-key < min_key(node), then a non-null left child 
of node could contain a newly inserted key value be- 
tween search-key and min_key(node), and this (instead 
of min_key(node)) would be the appropriate key value 
to be returned by Find. Similarly, if search-key > 
max-key(node), then a right child may be added to 
node or the smallest key value in right-ancestor(stack) 
may be deleted, and thus it would no longer be the 
appropriate key value to return. 

If any of the three validation conditions do not hold, 
Find restarts from the Lowest Stable Ancestor (LSA) 
in stack. The LSA is the node farthest from the root 
of the tree (and thus the highest node in stack) that 
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has not been versioned since it was visited by the find. 
LSA(stack) is obtained from stack by popping each 
node and checking it’s versioned bit until an unver- 
sioned node is found (in case all nodes in stack are 
versioned, then they are all popped and the latest ver- 
sion of the root node is pushed onto stack). Restarting 
from the LSA is an optimization (we could restart at 
any node on the stack), and the intuition for it is based 
on the observation that no target key could “escape” 
from a subtree without modifying, and therefore ver- 
sioning, the root of that subtree. 

Find can be further optimized by checking if node is 
versioned before obtaining any locks or latches - this 
way, if node was versioned, the overhead of obtaining 
locks and latches can be avoided, and Find can restart 
earlier. 

Index scans can be implemented by caching the key 
value returned by the last Find call and the value of 
stack at the end of the last Find operation (in an itera- 
tor structure), and then repeatedly invoking FindGT, a 
variant of Find which locates a strictly larger key, with 
the cached values of stack and the key value (lock-mode 
and latch-mode are set as for the first Find call for read- 
only and update transactions). 

We describe the insert operation next; the delete 
operation and correctness arguments for all the oper- 
ations can be found in [BLR+95]. 

4.4 Insert 

We next describe the insert procedure along with con- 
currency control and details of physical versioning. 
The concurrency control scheme described provides a 
high degree of concurrency; however, there are sim- 
plifications that provide lower concurrency but have 
lower latching overheads. A performance comparison 
of these albernatives is described in Section 5. 

Insert first invokes Find with the key value to be 
inserted key-val, and input parameters lock-mode set 
to exclusive (this is to implement next hey [acting 
[MohSO]) and latch-mode set to True (stack is set to 
the root of the tree). This ensures that an X lock on 
the next key value is obtained and a latch on the node 
involved in the insert is also held. Note that an X lock 
on key-val is already held when the insert call is made. 

Let N be the node on which Find obtains an X latch. 
We consider the following three cases: 

1. N bounds key-val and has room: 
A copy of N, say N’, is created and key-val is inserted 
into it. A latch on N’s parent is then obtained. 

Note that N’s parent can be determined from stack. 
In order to ensure that updates are reflected in the 
most current version of the tree, it is important that 
N’s parent must not be an old version. Thus, after the 
latch on N’s parent is obtained, it is checked to see if 

it has been versioned. If this is the case, then (after 
releasing the latch), the tree is retraversed from the 
root to N to determine N’s most current parent, and 
a latch on N’s most current parent is obtained. This 
process is repeated until N’s parent is found to be not 
versioned. 

Finally the pointer to N is updated to point to N’. 
Node N is then marked as versioned and all latches 
are released. 

2. N does not bound key-val: 
In this case the node is a leaf or a semi-leaf. If there 
is room in N, then key-val is inserted as described in 
Case 1. Else, a new node containing key-val is allo- 
cated, a latch on the node is obtained and the left/right 
child of N (as appropriate) is set to point to the newly 
allocated node. 

3. N bounds key-val and does not have room: 
If the left child of N is null, then two nodes Ni and Nz 
are allocated: Ni is a copy of N containing key-val but 
not containing the leftmost key in N and the left child 
of Ni is set to Nz. Nz simply contains the leftmost key 
in N. Latches are obtained on both Nr and Nz. After 
obtaining a latch on N’s parent, the pointer to N is 
updated to point to Nr and N is marked as versioned. 

If the left child of N is not null, then after releasing 
the latch on N, the tree latch is obtained in exclusive 
mode. Now if N has been versioned or its left child has 
become null in between releasing the latch on N and 
obtaining the tree latch, the tree latch is released and 
insert restarts again by invoking Find from the LSA 
with latch-mode equal to True and lock-mode equal to 
None (a lock on the next key value is already held). 
Otherwise (i.e., N has not been versioned and its left 
child remains non-null) the following actions are taken. 

Let Nr be the node that contains the largest key 
value in the left subtree of N. If Nr has room, then 
a copy of Ni is made, the leftmost key value in N 
is inserted into the copy, the pointer in Nr’s parent is 
updated to point to the new version, and Nr is marked 
as versioned (we do not need a node latch here since we 
already hold the tree latch.) If Ni has no room, then 
a new node containing only the leftmost key value in 
N is allocated and Nr’s right child is set to point to 
the newly allocated node. After this is completed, a 
copy of N is made from which the leftmost key value 
is deleted, key-val is inserted and N’s parent’s pointer 
to N is updated to point to the new copy, following 
which N is marked as versioned. 

The lock on the next key value is released at the end 
of the insert procedure once the key has been inserted, 
as in [MohSO]. 

Note in Step 3 above that, by inserting the leftmost 
key value in N into N’s left subtree before deleting it 
from N, we ensure that any Find traversing the tree 
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will see the key. A Find or an index scan may however 
see the key twice. For Find, this is not a problem 
since the traversal would have followed the same path 
irrespective of whether it encountered N or its new 
copy. For an index scan, this case can be handled by 
ignoring key values that are less than or equal to the 
previous key value returned. 

4.4.1 Balancing 

In case a new node that is not a version of an existing 
node is allocated, the T-tree may need to be balanced. 
Balancing is done by traversing the tree upwards from 
the lowest unbalanced node, and performing rotations 
as appropriate. 

The insert procedure described above ensures that 
every time a new node is allocated, latches are ob- 
tained and held on both the newly allocated node and 
the parent, or a tree latch is held. In case a tree latch 
is held, the traversal upwards toward the root is sim- 
ply performed as described earlier in Section 4.1 (the 
only difference is that every time a parent node is ac- 
cessed, a check is made to see if it is versioned, and if 
it is, then the tree is retraversed in order to determine 
the parent). In the case that the tree latch is not held, 
then before a parent node is examined to determine if 
it can be rotated, a latch is obtained on it (retravers- 
ing may be required if, after obtaining the latch, it is 
determined that the parent has been versioned). 

Note that latches on tree nodes are obtained in a 
bottom-up fashion. Furthermore, no node latches are 
held when an attempt is made to acquire the tree latch. 
Thus, a deadlock involving only latches is not possible. 
(Locks are not acquired while holding a latch, so latch- 
lock deadlocks are not possible either.) 

While traversing the tree upwards toward the root, 
balances on the appropriate nodes on the path are 
adjusted to account for the newly allocated node. 
Note that balance information can be updated in 
place, since readers never examine balance informa- 
tion. While performing a rotation, physical versioning 
only requires that the three nodes involved in the ro- 
tation are copied. 

5 Performance Results 

In order to determine the effects of physical version- 
ing and latching overheads on performance, we imple- 
mented four variations of the T-Tree operations find, 
insert, and the rotation operations needed for rebal- 
ancing. (In each case, insert invokes find to determine 
the target node.) The four variations corresponded to 
whether physical versioning was used or not and the 
granularity at which latches were obtained (node level 
as is common in disk based systems or tree level as 
suggested by [LCSS]) and are described below: 

Tree latch with no versioning: A single latch 
at the granularity of the tree itself is obtained in X 
mode by inserts and S mode by finds. No physical 
versions of nodes are created by inserts. 

Node latch with no versioning: In addition 
to the tree latch, a latch per node is maintained. 
Find obtains the tree latch in shared mode and 
performs latch crabbing when traversing the tree 
(obtaining each node latch in shared mode). For 
simple inserts that require no structure modifica- 
tion, a shared latch is obtained on the tree and 
exclusive latches are obtained on the nodes being 
modified. If a structure modification such as a ro- 
tation is required, an exclusive latch on the tree 
is obtained instead of node latches. No physical 
versions of nodes are created. 

Tree latch with physical versioning: Physical 
versions of nodes are created - as a result, finds 
do not obtain any latches. Inserts, however, do 
obtain an exclusive latch on the tree before per- 
forming any updates. 

Node latch with physical versioning: Physi- 
cal versions of nodes are created and finds do not 
obtain any latches. Inserts obtain an exclusive 
latch on the tree if structure modifications take 
place; else, they simply obtain a shared latch on 
the tree and an exclusive latch on the updated 
node(s). 

In each case, the T-Tree was configured to have 10 
keys in each node. The keys for insert and find were in- 
tegers uniformly chosen from the range 0 to 2,000,OOO. 
The percentage of inserts was varied from 1% to 75%. 
For each percentage of inserts value, the rurming time 
was 5 minutes, and the throughput measured was the 
sum of the total number of lookups and inserts per- 
formed. The experiments were performed on a Sun 
SPARCstation 20 with 2 processors and 256 MB of 
RAM. 

In order to estimate the overhead of obtaining 
latches and performing physical versioning, we first 
conducted our experiments with a single process. For 
very low percentage of inserts (1, 2 and 4%), the 
physical versioning schemes perform the best since no 
latches are obtained by tree traversals. However, as 
the percentage of inserts goes beyond 4%, their perfor- 
mance falls below that of the tree latch and no version- 
ing scheme, due to the high cost of creating versions. 
The node latch with no versioning scheme performs 
the worst inserts due to the high cost of latch crab- 
bing when traversing the tree. 

With 4 processes, we are also in a position to mea- 
sure the effects of the increased concurrency that re- 
sults due to node level latches and physical versioning. 
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Figure 4: Throughput v/s percentage of inserts 
The tree latch and physical versioning scheme outper- 
forms all the other schemes due to latch-free traver- 
sals and low latching overheads for inserts. Further- 
more, as long as the percentage of inserts is below 30%, 
the node latch and physical versioning scheme outper- 
forms the tree latch and no versioning scheme due to 
the enhanced concurrency and decreased latching over- 
heads (since tree traversals do not obtain latches when 
physical versioning is used). Beyond 30% inserts, how- 
ever, due to the overhead of creating versions and ad- 
ditional latches obtained by inserts, the performance 
of the node latch and physical versioning scheme falls 
below that of the tree latch and no versioning scheme. 
The node latch and no versioning scheme performs the 
worst due to excessive latching overheads. 

area” and clustering the versions of an item together 
on the same page [BC92, MPL92]. However, the opti- 
mization of clustering versions in the same page as the 
stable copy of the item is not required in a main mem- 
ory database since there is no extra cost to accessing a 
different page and thus the schemes in [BC92, MPL92] 
would be wasteful of storage space in a main memory 
environment. 

6 Related Work 

In this section, we discuss related work on main 
memory databases, multi-version concurrency control 
schemes and concurrency control schemes for indices. 
A number of versioning schemes have been proposed 
for disk-based databases [CFL+82, MPL92, BC92]. 
Our logical versioning scheme is tailored for main 
memory systems since it eliminates storage space over- 
heads for items with a single version, and allows latch- 
free traversal of version control information by read- 
only transactions. In addition, our schemes include 
the interaction between versioning and index manage- 
ment. 

Of the disk-based schemes, our logical versioning 
scheme is most similar to [CFL+82], in which a linked 
list of versions is maintained and aged versions are col- 
lected from a single pool. However, versioning in this 
design is at the page level, the garbage collection is 
very simplified for disk I/O considerations, and index- 
ing problems are not considered. In [BC92], the au- 
thors extend the scheme in [CFL+82] to record-level 
versioning by allocating part of each page as a “version 

Among the multi-versioning schemes proposed, only 
[MPL92] considers the interaction between versioning 
and indexing. However, the scheme in [MPL92] preal- 
locates space for information about a fixed number of 
versions in index nodes, adding a substantial amount 
of space overhead even for non-versioned items. 

We next shift our attention to schemes for perform- 
ing concurrent operations on B trees and binary trees 
that have been proposed in the literature, such as 
[SG88, BS77, Moh90, ML92, KL80, ML82]. All of the 
schemes, excepting [KL80, ML821 and [SG88] require 
traversals to obtain latches on each node. 

These two schemes implement forms of physical ver- 
sioning. However, the index techniques of [KL80] do 
not address concurrency control issues needed to im- 
plement transaction semantics, while the treatment of 
[ML821 requires preordering by key value all of a trans- 
action’s accesses to a tree. 

The idea of using atomic updates to avoid latches 
while performing lookups in binary trees was origi- 
nally proposed in [KL80]. We extend this work to T- 
trees and general tree structures, address transaction 
level concurrency control issues (ignored in [KL80]) 
and show additional advantages from using these tech- 
niques in a multi-version concurrency control system. 
Schemes similar to our physical aging scheme have 
been presented in [ML82, SG88]. Our requirement 
of completely non-blocking readers distinguishes our 
work. In [BLR+95] we describe techniques to inter- 
rupt long operations (e.g., scans) to allow old physical 
versions to be reclaimed earlier. 
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The notion of performing next key locking and val- 
idation after obtaining a lock was presented for B+ 
trees in [MohSO, ML92]. However, in order to prevent 
insert/delete operations from taking place in a sub- 
tree that is involved in a structure modification (e.g., 
split) and at the same time, to permit traversals (that 
obtain latches) to execute concurrently on the sub- 
tree, a tree latch is obtained in exclusive mode during 
structure modifications. This could hurt concurrency 
since no two structure modification operations can ex- 
ecute concurrently. In our scheme, on the other hand, 
many structure modifications (e.g., balancing during 
inserts) obtain and retain only local latches on updated 
nodes until the structure modification completes, and 
all could do so since our tree latch is an optimization 
to reduce the number of latches, and is not otherwise 
involved in correctness. Further, stucture modification 
does not block traversals since in our scheme, traver- 
sals do not obtain any latches. 

7 Conclusion 

We have presented a design for multi-version concur- 
rency control and index management in a main mem- 
ory database system. We show how to support real- 
time performance for read-only transactions by freeing 
them from obtaining locks, by using logical versioning, 
and also latches, by using physical versioning. 

We have applied these techniques to design a con- 
current implementation of T-trees, an index structure 
for main memory systems, and demonstrated experi- 
mentally the performance improvement due to physi- 
cal versioning. Some of the salient features of our de- 
sign are 1) read-only transactions do not obtain latches 
while performing lookups, 2) update transactions per- 
form latch-free traversals on the tree, and 3) concur- 
rent rotations on the tree are possible. Our perfor- 
mance results indicate that latch-free traversals enable 
our scheme to outperform other schemes. Both the 
logical and physical versioning schemes have been im- 
plemented in the Dali main memory storage manager. 
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