
The Case for Enhanced Abstract Data Types

Praveen Seshadri Miron Livny
Computer Science Department Computer Sciences Department
Cornell University, Ithaca, NY U.Wisconsin, Madison WI

praveen@cs.come//.edu miron@cs.wisc.edu

Raghu Ramakrishnan
Computer Sciences Department

U.Wisconsin, Madison WI
raghu@cs. wisc.edu

Abstract

The explosion in complex multi-media content
makes it crucial for database systems to support
such data efficiently. We make the case that
the next generation of object-relational database
systems should be based on Enhanced Abstract
Data Type (E-ADT) technology, rather than on the
“blackbox” ADTs used in current systems. An
E-ADT is an abstract data type that exposes the
semantics of its methods. Query optimizations are
performed using these semantics, resulting in ef-
ficient query processing. The added functionality
does not compromise the modularity of data types
and the extensibility of the type system. Funda-
mental architectural changes are required to build
such a database system; these have been explored
through the implementation of E-ADTs in Predu-
tor. Initial performance results demonstrate an
order of magnitude in performance improvements.

1 Introduction

We are witnessing an explosion in the volume and com-
plexity of digital information that people want to access and
analyze. If a DBMS is to appeal to application developers,
it must support complex data types like geographic entities,
chemical and biological structures, financial time-series and
multi-media objects. Further, the level of functionality and
performance should be comparable to special-purpose sys-
tems. Many relational database vendors are currently build-
ing “object-relational” extensions to support complex data.

Permksion to cop-v without,fke all or part of’ this material b granted
provided that the copies are not made or distributed,ftir direct commemial
advantage, the VLDB copyright notice and the title oj’the publication and
its date appear; and notice i.k given that copying is by permksion o/‘ the
Very Large Data Base Endowment. To copy otherwise. or to republkh,
requires a.fke and/or special permi.ssion,fi-om the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

Current object-relational databases (OR-DBMSs) model
complex content as “blackbox” abstract data types (ADTs),
with procedural methods that can be used within SQL
queries. While the DBMS optimizes relational operations
like joins, there is hardly any optimization for ADT me&
ods. Obviously, queries perform poorly if most of the exe-
cution cost occurs in expressions involving ADT methods.
Instead, we propose the concept of Enhanced Abstract Data
Types (E-ADTs) which expose the semantics of their meth-
ods to the DBMS. This allows the system to choose any
specific implementation of each method, and importantly,
to optimize expressions involving a combination of method
invocations. For example, Sharpen(Clip(Image, Region))
is likely to be more efficient than Clip(Sha?pen(Image), Re-
gion). Essentially, the use of E-ADT methods in an SQL
query becomes declarative, rather than procedural. While
E-ADTs are a simple idea, it is a non-trivial task to build a
system that supports them. Several questions arise: what is
the right architecture?, what are the right abstractions?, what
are the appropriate internal interfaces? We are building the
Predator object-relational database system to address these
questions. Several E-ADTs have been developed for com-
plex types like images, audio, video, rasters, polygons, etc.
Our implementation indicates that E-ADTs are practical, and
our experiments suggest the orders of magnitude in resulting
performance improvements.

This paper has three goals: (1) to make the case that
object-relational databases should be based on E-ADTs ,
(2) to demonstrate that E-ADTs are practical, based on the
Predator implementation, (3) to open up new research op-
portunities on ways to improve and extend the functionality
of E-ADTs.

1.1 Background
Most OR-DBMSs support type extensibility; new data types
can be added to the system without changes to the exist-
ing code. The basic technology used is that of Abstract
Data Types (ADTs), which was adapted from program-
ming language concepts [Gut77, LZ74] to databases in the
1980s [SRG83, St0861 in the Postgres [SRH90] system. The
DBMS maintains a table of ADTs, and new ADTs may be
added by a database developer. Each ADT implements a

66

common internal interface through which the system can
access and manipulate values of that type. The internal
interface includes dictions for the storage and indexed re-
trieval of values. Each ADT can also declare primitive
methods for manipulating or querying values of the type.
For example, an ADT for images might provide methods
Sharpen(I), Clip@, Region), and Overlay(Il,I2). Complex
data types like images usually define a large number ofprim-
itive methods, that can be composed to form meaningful ex-
pressions. For example, Overlay(Sharpen(II), Clip(I2, { 0,
0, IOO,200})) is an expression over images II and 12. Such
expressions can be embedded within an SQL query, thereby
providing an expressive query capability over image data.
Libraries of primitive methods for each ADT are sometimes
called “datablades” (Informix), “data extenders” (IBM), or
“data cartridges” (Oracle).

There are two characteristics of the current support for
ADTs that we should note. (1) Each ADT, along with its
methods, is built modularly, so that it can be added to or
removed from the OR-DBMS without affecting the rest of
the system. In other words, each ADT is a “blackbox”.
(2) The DBMS understands minimal semantics about each
method of the ADT. The method is merely a name and type
signature for a function, often written in C or C++’ . Existing
systems also allow some simple semantics about methods
to be defined: does it have side effects or not?, what is the
cost of the method?, etc. Beyond this, each ADT method is
a “blackbox” to the DBMS. This is the current state-of-the-
art, which we refer to in this paper as the “blackbox” ADT
approach. The proposed E-ADT paradigm eliminates the
second cbaract&stic (blackbox methods) while retaining
the first characteristic (modular ADTs).

Several commercial database systems are adding support
for blackbox ADTs. In practice, while many simple ADTs
are added by database users, the important complex ADTs
(like images) and their method libraries are usually written
by experienced system developers. As the standardization
of methods on these complex ADTs occurs2, one can expect
more efforts to be directed at building efficient implemen-
tations of them.

Two important issues not dealt with in this work are
search and indexing techniques for complex data types, and
delivery systems for continuous media types. These are
topics of ongoing and future work.

2 Motivation
E-ADTs are motivated by a simple observation: meth-
ods on complex ADTs can be expensive (for example,
Sharpen(‘mage)). In fact, the cost of ADT methods of-
ten dominates the overall execution cost of a query. Clearly,

‘SQL-3 will allow functions to be written using SQL too
*The SQL3 Multi-Media standards group is currently defining meth-

ods for full-text, spatial data and general mathematical data. Future data
types to be standardized include still-images, still-graphics, animation,
full-motion video, audio, seismic data, and music.

query processing and optimization should attempt to reduce
the cost of ADT methods. There are two issues to con-
sider:
l What are possible optimizations on ADT methods?

l How can the optimizations be applied systematically?

2.1 Possible Optimizations

Consider an OR-DBMS based on blackbox ADTs, and as-
sume that an image ADT has been added with the methods
Sharpen(l) and Clip(I, Region). While image data is stored
on disk in a compressed format (like JPEG), the ADT meth-
ods are implemented on an uncompressed main-memory
image data structure (like an RGB array). Consequently,
the image argument of any method is converted to its main-
memory uncompressed form before an method is invoked
on it.

An earth scientist maintains a table of geographic data,
each entry having a satellite photograph and several other
columns. An SQL query posed against this database may
include an expression over the photographs:

SELECT Clip(Sharpen(G.Photo), 0, 0, 100,200)
FROM GeoData G
WHERE G.Region = ‘arctic’

The query asks for a sharpened portion of each photograph
of the arctic region. The cost of this cpler)8 is dominated by
the methods on the images. We now describe the evaluation
of this query using the biackbox ADT approach. For every
data entry corresponding to the arctic region, the Photo
attribute is retrieved from disk and decompressed into a
main-memory image. The Sharpen method is then applied
to it, and the resulting image is written to a compressed
disk-resident form. The CZip method is then applied with
the intermediate result image as its input. This input image
is decompressed to a main-memory form, it is clipped to
the desired dimensions, and the resulting image is written
out to disk. Current OR-DBMSs like Illustra [I11941 and
Paradise [DKL+94] use essentially this approach with some
individual modifications; we mention these variations at
length in Section 5.

One could improve this execution strategy as follows:
l It is unnecessary for Sharpen to compress and write its re-
sult to disk. Instead, it could be passed directly in memory
to Clip. This requires that the methods not be evaluated in
isolation; instead, the system should recognize that these
methods are part of a larger image query expression. This
is a change to the blackbox ADT approach, which treats
methods as isolated black-boxes3.

l Sharpen is an expensive method, whose cost depends on
the size of the image. It would be cheaper to evaluate the
equivalent expression Sharpen(Clip(G.Photo, (0, 0, 200,

3Section 5 describes how Paradise uses caching to support this without
visibly changing the ADT approach.

67

100))). By performing Clip early, there can be signifi-
cant reductions in the cost of Sharpen. This requires the
entire image query expression to be “optimized”. The op-
timizations could be applied heuristically, but preferably
in a cost-based manner. To the best of our knowledge,
no existing OR-DBMS can apply such optimizations in a
heuristic manner, let alone in a cost-based manner. An
obvious question might be: why not require that the user
write the query in an efficient manner? The answer is
two-fold: (1) the choice of the most efficient expression
may depend on costs and statistics that users may not
be aware of, (2) queries are often created automatically,
through GUIs, involving the merging of several views. It
is, therefore, quite likely that inefficient E-ADT method
expressions will exist in queries.

l If Clip is applied before Sharpen, the entire image does
not need to be retrieved from disk. Only the appropriate
portion of the image is needed4. Performing such opti-
mizations requires a further enhancement to the system:
the ADT methods should control the retrieval of the un-
derlying ADT values.
The blackbox ADT approach violates a basic principle

of database systems: queries should be declarative. The
textual representation of an expression should not specify
an evaluation plan. When the expression is treated declara-
tively, the combination of these optimization strategies can
lead to performance improvements of an order of magnitude.
Similar improvements can be applied to ADT expressions
involving other complex data types. The actual optimiza-
tions are drawn from the semantics of the data type. When
we apply these semantics in a database environment, we can
identify four broad categories of optimizations:
l Algorithmic: Using different algorithms for each method
depending on the data characteristics. For example, the
best algorithm to use for the Multiply method on two ma-
trices depends on the sizes of the matrices and the amount
of memory available.

l Transformational: Changing the order of methods. The
motivating example shows how Clip can be applied before
Sharpen. In fact, the entire equational theory of the data
type can be augmented with cost information to specify
transformational optimizations.

l Constraint: Pushing physical constraints through the ex-
pression. The constraints may involve selecting a portion
of the data, specifying a certain data resolution, or requir-
ing a particular physical property. Consider the expres-
sion on images: ChangeResolution(Sharpen(l), Res). The
knowledge of the desired resolution can be used to ensure
that Sharpen is applied to a low resolution image.

4When compression is used in storing the images, it is not always
possible to retrieve a random portion of an image. For example, with the
popular JPEG compression technique, the entire image needs to be retrieved
sequentially. There are other compression techniques and variants ofJPEG
that allow a selective portion ofthe image to be retrieved and decompressed.
[DKL+94] discusses these issues in more detail.

l Pipelining: Pipelining execution of methods to avoid
materializing intermediate results. This is crucial for large
data types like audio and video. It may not be possible to fit
an entire uncompressed audio (or video) object in memory.
The only reasonable way to access the data is to iterate over
it (i.e. to treat it as a stream). When a sequence of methods
has to be applied to such a large object (for example,
IncrTreble(DecrVolume(Audio))), pipelining the methods
is clearly better than generating entire intermediate results
for each method.
As an analogy, consider how a “Relation” ADT would be

supported. The relational algebra primitives would be the
ADT methods. Queries on relations would be formed syn-
tactically as relational algebra expressions and executed in
the order specified, without any query optimization! Yet it is
accepted today that relational queries should be declarative.
The choice of join algorithms is an Algorithmic optimiza-
tion. The choice of join order, and selection pushdown
are Transformational optimizations. The use of “interest-
ing order” in join optimization is a Constraint optimization.
Pipelined join execution is a Pipelining optimization. We
know that these query optimizations can greatly improve
performance. Likewise, in next-generation applications,
ADT expressions that dominate query execution cost should
be treated declaratively and optimized.

2.2 A Framework to Apply the Optimizations

It is not sufficient to observe that these optirnizations are
possible. There must also be an architectural framework to
specify and apply them in a correct and cost-based manner.
At the same time, the type system should remain extensible,
so that new types can be added incrementally. Continuing
with the example using images, we note that:
l The best algorithms used for each method can depend
on the size of the input image, the amount of memory
available, the storage format of the image, and the values
of arguments to the method.

l For any complex expression involving multiple image
methods, there are several possible evaluation plans.

l Deciding between different plans requires cost-based op-
timization of the image expression.

l The image expression may be evaluated several times
during the course of the query. Its evaluation plan should
be chosen before the query starts executing, because it is
unreasonable to repeatedly explore the options at runtime.

l The cost of the chosen plan is used by the SQL optimizer
to “place” the evaluation of the expression at the appro-
priate position in the join evaluation tree [He195, CS96].

l In order to perform compile-time optimization, collec-
tive meta-information like the storage formats and size
statistics need to be maintained over all the pertinent im-
ages (in this case, over all photographs in the GeoData
table).

68

l The me&information maintained and the optimizations
to be applied are specific to each individual ADT.
Current OR-DBMSs do not perform such optimizations;

further, they lack the structural framework to do so. In
contrast, Predator is a practical demonstration of an archi-
tectural framework in which E-ADT optimizations may be
applied. While the low-level implementation details are
described in [SLR97], this paper describes the high-level
system design.

3 Predator and E-ADTs

An Enhanced Abstract Data Type (E-ADT) enhances the
concept of blackbox ADTs in database systems to improve
the performance of query processing. The E-ADT paradigm
has the following components:
l The methods of every E-ADT should be declarative
(rather than procedural) expressions.

l The combinations of E-ADT methods should be declar-
ative expressions.

l The optimization and execution of these declarative ex-
pressions should involve the semantics of the E-ADT.

l The modularity and extensibility of the database type
system should not be compromised.

The last criterion (modularity) leads to a design requirement
that the new capabilities or enhancements for complex data
types be encapsulated behind standard interfaces. Specifi-
cally, in addition to providing the standard ADT functional-
ity, each E-ADT may support one or more of the following
enhancements through a uniform internal interface.
a Query Operators and Optimization: An E-ADT can pro-
vide an optimization interface that will translate a method
expression into a query evaluation plan in its own evalua-
tion algebra.

l Query Evaluation: An E-ADT can provide routines to
execute the optimized plan.

l Catalog Management: An E-ADT can provide catalog
routines so that schema information can be stored and
statistics maintained on values of that E-ADT .

l Storage Management: An E-ADT can provide multiple
physical implementations of values of its type. Some
existing OR-DBMS systems already support this feature.
PredatoG is a client-server OR-DBMS in which the

server is a loosely-coupled system of E-ADTs. A detailed
description of the system is presented in [SLR97]. The
high-level picture of the system is shown in Figure 1. The
core of the system is a main-memory table in which E-
ADTs are registered. The server is built on top of a layer
of common database utilities that all E-ADTs can use. An
important component of the utility layer is the SHORE Stor-
age Manager [CDF+94] library, which provides facilities for

‘Predaror stands for the PRedator Enhanced DAta Type Object Rela-
tional DBMS

m.-----------------------------ww------ew

I

SERVER LAYER SDCKElATktEADSUPPDRT
I

I QUERY PRDCESSNG ENDINES I

I I

I I

I

L ------ 1 1 ------- -------- 1 --______ 1 ------I

Figure 1: Predator System Architecture
persistent storage, concurrency control, recovery and buffer
management.

Some of the basic types like integers do not support
any enhancements. The figure shows two E-ADTs that do
support enhancements: relations and images. Note that
relations are also modeled as just another E-ADT! Several
other E-ADTs including audio, polygon and raster have been
added. A complex value like an image can be a field within
a relational tuple. Since the type “relation” is also modeled
as an E-ADT, nested relations can be supported. Object-
oriented concepts like identity and inheritance are mostly
orthogonal to the issues addressed by this research.

Queries are processed by one of a collection of query
processing engines, that use the E-ADTs. In this paper, we
focus on the SQL query processing engine. An important
feature of the system design is that E-ADTs are modular,
with all E-ADTs presenting an identical internal interface.
This serves a dual purpose:
l The development of optimizations for each E-ADT can
proceed independently. The extensibility of the system
would be compromised if each E-ADT had to be aware of
all the other E-ADTs in the system.

l The interaction between the E-ADTs (especially between
the SQL query processing engine and the individual E-
ADT expressions) is crucial. Because of the uniform
internal interface of E-ADTs, the design of this interaction
is independent of the details of each E-ADT.

3.1 Interaction between Data Types in Predator

Let us revisit the example query:

SELECT Clip(Sharpen(G.Photo), 0, 0, 100,200)
FROM GeoData G
WHERE G.Region = ‘arctic’

69

This query has an image expression embedded in the SE-
LECT clause. How is this image expression handled? We
present a simplified discussion. When the SQL engine
parses the query, it passes the image expression to the im-
age E-ADT , which performs type checking and returns an
opaque parse structure (ParseStruct).

Query Optimization: The optimization of an SQL
query uses cost-based techniques to search for a cheap eval-
uation plan from a large space of options. Typically, all
sub-expressions need to be optimized before the SQL query
can be optimized. To optimize the image sub-expression,
the following interface of the image E-ADT is invoked:

Optimize(in: ParseStruct, in: ArgPlans, out: PlanStruct);

Optimize0 takes the ParseStruct generated by parsing the
image expression, and evaluation plans for its arguments,
and returns a generic PlanStruct that represents an evalua-
tion plan for that expression. The PlanStruct will only be
interpreted by the image E-ADT. The PlanStruct has a well-
known Cost0 interface. The SQL optimizer uses this cost
estimate to help determine the best plan for evaluating the
SQL query. If the image expression is very expensive, it
may be preferable to apply it as few times as possible.

Query Evaluation: The SQL query is evaluated based
on its execution plan. While executing the SELECT clause,
the image expression is evaluated through the following
interface of the image E-ADT :

Evaluate(in: PlanStruct, in: ArgValues, out: ReturnValue);

Evaluate0 is passed the plan for the image expression and
the value of its argument (G.Photo). The image E-ADT ex-
ecutes the optimized image expression, and the return value
is used to continue with the computation of the SQL query.

To summarize, the query is broken into components that
correspond to method expressions of each E-ADT. Each
method expression is treated as a declarative query and is
optimized, and executed by its own E-ADT .

3.2 Opportunities for Optimization

Where do opportunities for E-ADT optimizations arise? As
in the example, E-ADT method expressions in the SELECT
and WHERE clauses of SQL queries are obvious candidates
for optimization. Several commonly used data types have
libraries of methods that form an algebra. Consequently,
opportunities to optimize method expressions often exist.

There are two other cases where E-ADT optimizations
can be beneficial.
l Aggregates: Aggregate methods are very important
in “summarization” queries involving multi-media data
types. For example, the Sequoia benchmark [SFGM93]
includes a query that computes a weighted average of a
number of clipped raster images. The query might equiva-
lently be have been expressed as computing the average of
the entire images, followed by a clip of the desired region
of the averages.

l Function Path Indexing: Indexes in object-relational
systems are often created on complex “paw expressions
involving composed functions. The creation time for the
index depends on the cost of computing the indexing ex-
pression. E-ADT optimizations enable the expression to
be executed efficiently, thereby accelerating index cre-
ation.

4 Initial Performance Results

The purpose of this section is to demonstrate the orders of
magnitude ofperformance improvements that arise from the
E-ADT paradigm. While the results are not unexpected, it
is nonetheless interesting to observe the dramatic effects of
simple optimizations. We use an image E-ADT as the pri-
mary example to demonstrate performance improvements.

We use a simple data set containing 74 images of cars,
compressed using JPEG. A Curs relation is created, with a
name assigned to each image. Each image column value
contains an Id for the image and its bounding box infor-
mation. The size of the compressed images ranges from
23K to 266% with an average of 65K. This is a relatively
small amount of data, but it serves to demonstrate the issues
involved. The average size of the uncompressed images
in memory is 0.8MB representing more than a lo-fold in-
crease from the size on disk. Standard JPEG libraries are
used to perform compression and decompression. Experi-
ments were run on a Sparc20 machine with 8 ME! used as
a database buffer pool (a small size to match the small data
set). The buffer space was sufficient to hold the compressed
data, and each individual uncompressed image easily fit in
physical memory. The system is CPU-bound in all these
experiments, since the image methods are expensive. The
queries were chosen to be the simplest possible demonstra-
tions of different optimizations. Real queries are likely to
be more complex than these. All queries were run several
times and average execution times were recorded.

Experiment 1: The fhst experiment examines the effects
of the Pipelining optimizations. We noted in Section 2 that in
the ADT approach, each method reads (and decompresses)
its input from a disk-based representation, and writes (and
compresses) its output. We call this strategy DISK. An
improvement is to pass intermediate results in their main-
memory form. We call this strategy MEM. Finally, if there
is a sequence of methods, we could pipeline their execution
by establishing an image row iterator. We call this strategy
PIPE. We expect PIPE to be significantly better than MEM
only when the intermediate results are larger than main-
memory. This is not the case for these images.

SELECT Height(Negative(C.picture))
FROM Cars C;

In the query above, Negutiveo, which inverts the pixel val-
ues, is a relatively cheap method. For all three strategies,
C.picture must be read and decompressed. The DISK strat-
egy compresses and writes the result out, whereas the MEM

70

strategy does not. The Height method is applied so that
the display time for the result does not distort the mea-
surements. The height is obtained from the image bound-
ing box, so the actual image is not required. We disable
any optimizations that move Height ahead of other meth-
ods. We gradually vary the query by introducing addi-
tional invocations of Negative(). For instance, SELECT
Height(Negative(Negative(C.picture))) requires one addi-
tional compression and decompression using the DISK strat-
egy. The results are shown in Figure 2. Along the X-axis
is the number of Negative methods in the SELECT clause.
The Y-axis shows the execution time.

As the number of methods in the image expression in-
creases, the effect of the compression and decompression at
the image boundaries dominates. Consequently, the MEM
strategy which avoids these unnecessary costs is signifi-
cantly cheaper than DISK. PIPE performs only marginally
better than MEM, since the intermediate results fit easily in
memory. For the rest of the image experiments, the MEM
strategy has been used as the default.

Experiment 2: The second experiment examines the
effects of Transformational and Constraint optimizations.
The following query is used:

400

3
300

1

+ DISK
- MEM
--f PIPE

L m--- @

0
0

I.'.',..'.,."'..,..,...."".,..~
1 2 3 4 5

of operations

Figure 2: Effect of Pipelining

?

FROM Cars C;
SELECT Height(Clip(Blur(C.picture, <radius>), <region>))

The result of a Blur method is an image in which every
pixeI’s vahte is the average of the pixels within radius of it
in the input image. Blur is an expensive method, especially
when radius is large. In the standard ADT approach, the
images will first be blurred, then clipped to the appropriate
region. We call this the STD strategy. Using the transforma-
tional optimization of reordering, Clip could be performed
before Blur. We call this the ORD strategy. Finally, if Cl@
is being performed first, it can use the region to constrain
the retrieval and decompression of the images. We call this
the ORD+ strategy.

-- ORD+

.
.-

. , ’ I ’ I , 1

0 20 40 60 80 100
clip %

Figure 3: Effect of Varying Clip Size
4oo ! -.- STD

i -0RD

s
3o01 -- ORD+

E 2001

2 1003

Figure 3 shows how these strategies perform when the
Blur radius is fixed at 2 and the size of the Clip region is
varied as a percentage of the image size. Since blurring
an image is expensive, both ORD and ORD+ perform very
much better than STD when a small region needs to be
clipped. Further, it is evident that ORD+ is also significantly
better than ORD because it requires a smaller portion of
each image to be retrieved an decompressed. As the size of
the Clip region increases, the absolute difference between
ORD and ORD+ decreases because the savings due to the
Constraint optimization are reduced. The relative difference
also decreases because Blur starts to dominate the cost.

Figure 4 fixes the Clip region at 10% of the image size,
and varies the Blur radius from 1 to 5. As the radius
increases, the cost of the blurring grows quadratically. For
the STD strategy, since this is the dominant cost, the overall
execution time also grows quadratically. In comparison,
in ORD and ORD+, the clips are performed early. The

,-c--- e-- ------
I 1 I

0 2 4 6
blur radius

Figure 4: Effect of Varying Blur Radius
Without Optimization With Optimization
79.5 sets 0.58 sets

Figure 5: Effect of Optimization

71

difference between ORD and ORD+ is the difference in
the retrieval costs; it is evident that the execution time of
ORD is dominated by the retrieval and decompression time.
Consequently, the exponential change in the Blur cost is not
apparent.

Experiment 3: The third experiment demonstrates a
very simple optimization. Consider the query below: it
needs to find the area of overlap between pairs of images.
There is really no physical requirement to compute the actual
overlap of the images; their bounding boxes contain the
necessary information to find the area of overlap. This
can be thought of as either a Transformational optimization
(changing Overlap to a different function), or a Constraint
optimization (pushing the physical requirements into the
computation of Overlap). The result is greatly improved
performance. Figure 5 shows the difference.

SELECT Area(Overlap(C 1 .picture, C2.picture))
FROM Cars C 1, Cars C2
WHERE CZ.name = “Alfa-RomeoSC-2300”;

Summary of Experiments: Each of the demonstrated
optimizations can result in very significant improvements.
Their combination clearly leads to orders of magnitude in
performance gains. It is clear that even for these extremely
simple queries, the E-ADT optimizations are radically more
effective than the blackbox ADT approach. In practice,
queries tend to be more complex than our examples, and the
effects of optimization are even greater.

5 Discussion of the E-ADT Paradigm
We now conduct a short discussion of the proposed E-
ADT paradigm. There are several complex data types
that are amenable to optimizations. We are in the pro-
cess of building E-ADTs for several of them. Prominent
among these are the multi-media types like images, audio
and video, and the geographic types like points, polygons
and rasters. Optimization opportunities also exist for math-
ematical data types like matrices, financial types like time-
series, and chemical structures like molecules. Due to lack
of space, we do not describe them in further detail.

Creating a New E-ADT : An important concern is that
the new enhancements might require a deep understanding
of the workings of the DBMS, the internal interfaces, the
cost metrics, etc. We have pushed much of this complex-
ity into the Utility layer of Predator, and present suitable
templates for data type developers. A developer takes the
following steps to build a new data type like Image in Preda-
tor:
l Start with a template for a new E-ADT. The template
contains a C++ header file with the appropriate class defi-
nition and member function declarations. There is also a
C++ source file with stubs for all the member tinctions.

l Define Read0 and Write0 interfaces. This determines
how the data wil be stored in the database, and involves

72

very little actual new code. With images, the entire image
would be loaded into the storage manager, and a handle to
it (its OID) would be stored within a record.

0 Specify the structure of me&information, if any, that
this E-ADT requires.

l Write code for each of the actual methods that will be
supported on Images. This is usually the most time-
consuming component, but existing libraries can often
be used (for example, free JPEG libraries exist).

l Ensure that the method code is “registered” with the E-
ADT ; this requires one line of code for each method.

l Specify individual optimization rules. Each rule has a
precondition and an action. Existing rule templates pro-
vide the rule structure for the common categories of rules.
Often, all that needs to be changed is the names of the
methods that the rules match. More complex optimiza-
tions require that new rules be written.

l Register the rules with a rule engine. The utility layer
pre-defines a simple rule engine class, so all that the E-
ADT developer must do is register each rule (1 line of
code each), and choose a search strategy (1 line of code).

l Add the new E-ADT to the Makefiles and register it in the
system-wide table of E-ADTs. The system must then be
recompiled. We could extend Predator to allow dynamic
loading of the E-ADTs instead.

Of course, there are some other details involved, but they are
not very significant or time-consuming. As class projects at
Cornell in Fall 96, students built several E-ADTs using the
image E-ADT as a template. One of our ongoing efforts is
to build an E-ADT toolkit or “wizard” that will make it even
simpler to develop new data types. The gdal is that most
of the specification must happen through a point-and-click
interface. Currently, a data type like Image uses a standard
template and requires a few hundred lines of code (in ad-
dition to the purely image-related algorithm code). All of
the E-ADT enhancements are purely optional. The effort
required to add a traditional ADT (with no E-ADT enhance-
ments) to Predator is just the same as the effort required to
add an ADT to a standard OR-DBMS.

Postgres, Illusfra, and Informix: The issue of sup-
port for ADTs in relational database systems was first ex-
plored in [SRG83] and [Sto86]. This led to the devel-
opment of the Postgres research DBMS [SRI-I901 and its
commercial version, Illustra [11194]. The Postgres project
explored issues dealing with the storage and indexed re-
trieval of ADTs. It also stressed that functions associated
with ADTs could be expensive, and that special relational
optimization techniques are necessary when such dictions
are present [Hel95]. The basic ADT approach described in
Section 2 corresponds closely to Illustra’s support for ADTs.
The results of every ADT method are written to disk, and no
inter-method optimizations are considered [Ols96]. While
Illustra does have a rule engine, it is not used to apply op-
timization rules. Currently, Illustra’s technology has been

integrated with the Informix Universal Server and extended
to exploit parallelism. Several modifications are being made
to improve the evaluation of ADT expressions [Ols96]. The
main improvements allow functions to retain the results in
main-memory, or to present an iterator interface that helps
pipelined execution as well as parallel execution. Tmnsfor-
mational and Constraint optimizations are not supported.

The Paradise System: Among current research systems,
the Paradise client-server DBMS [DKL+94] is developing
ADT extensions for the parallel execution of methods on
spatial, geographic, and scientific data. This work concen-
trates on issues of scalable parallelism and the use of tertiary
storage for large ADTs. The importance of parallelism for
ADTs arises from the large size of complex data types, and
the high cost of methods on them. The approach used is
to partition large objects into “tiles” and define frmctions
to work on one tile at a time. From the E-ADT viewpoint,
parallelism is yet another benefit of declamtive ADT expres-
sions. Paradise also reduces the overhead of passing results
between functions by allowing each ADT to manage its own
main-memory buffer of data; temporary results do not have
to be written to disk. This approach has limitations for large
data types like audio and video that do not fit in memory.
Paradise does not support the re-ordering of ADT methods
in either a heuristic or a cost-based manner. However, the
tiling of objects allows a Clip function to simply retrieve the
appropriate tiles rather than the whole image.

Object-Oriented Databases: Early work on semantic
data models incorporated domain semantics into relational
query optimization. More recently, the 00-DBMS com-
munity has been exploring techniques to optimize queries
involving complex objects. Much of the work in object-
oriented query optimization has focused on issues like path
expressions [CD921 and not on method expressions, al-
though [CD921 recognizes that methods can be very ex-
pensive and merit further attention. While the OQL query
language [Cat941 for 00 databases does permit a method to
have several implementations, it does not suggest a mech-
anism for choosing between these implementations. We
direct readers to [MDK+94] for an excellent survey of
work on query optimization for complex data types in OO-
DBMSs. Most closely related to E-ADTs is the REVE-
LATION project wK+94] which correctly identifies that
the semantics of methods should be revealed to the query
optimizer. There is a notion of a common object algebra,
and every complex type expands (or “reveals”) its methods
into expressions in the common algebra. In contrast, E-
ADTs can use individual algebras to represent query plans
for their expressions, since there is no notion of a global
query optimizer. In [AF95], the actual method code was
analyzed to determine the “meaning” of the method, which
was then used in query optimization. We believe that this
approach is not viable; most complex data types will be
developed in some imperative programming language like
C++ or Java. Instead, we allow the E-ADT developer to

explicitly specify the method semantics.
Other Related Work: Rule-based query optimizers

have received much attention recently [GM93, CZ96]. A
common misconception is that a rule-based optimizer in-
stantiated with the appropriate rules (in this case, with rules
for E-ADT optimizations) provides all that E-ADTs do. This
ignores several crucial aspects of E-ADTs - the mainte-
nance of meta-information, the support for multiple algo-
rithms for the same method, the ability to define multiple
storage formats, etc. Rules provide one specific structuring
mechanism for optimization semantics - in fact, Preda-
tor uses a rule engine to actually execute the optimizations
for each E-ADT . An important distinction is that we pro-
mote local spheres of optimization for each E-ADT , with
possibly different control strategies, different kinds of rules,
etc. On the other hand, conventional rule-based optimizer
proposals do not have such notions of optimization locality.
The closest in spirit are the “region” architecture for query
optimizers proposed in [MDZ93], the “module” architec-
ture proposed in [SSSO], and other research on extensible
search strategies [RH87, LV91]. Our work differs in that
it is focused on complex data type expressions, rather than
relational expressions. In fact, we can make the interesting
case that the E-ADT paradigm provides an excellent argu-
ment in favor of optimizer toolkits in general, and rule-based
optimizer toolkits [GM931 in particular! Since the DBMS
has several mini-optimizers, one in each E-ADT, a toolkit
for optimizer generation is needed.

[CS93] suggests that queries involving “foreign” rela-
tions can be optimized by specifying the semantics of the
foreign relations through high-level rules. The rules are
syntactic, and cost-based optimization is performed after an
exhaustive application of the rules.

Several distributed object broker architectures like
CORBA and OLE have recently emerged. The capabili-
ties of distributed objects are described using a common
interface. The OLE-DB standard being promoted by Mi-
crosoft [Bla96] supports the notion of a component database
system with well-defined interfaces between different mod-
ular components. However, there is a distinction between
exporting query capabilities, and exposing query optimiza-
tion semantics (as E-ADTs do).

We should note that method transformations of the kind
suggested in this paper are common in the functional pro-
gramming community. The pipelining optimizations are
similar to the use of lazy evaluation [Jon87]. While the
early work on ADTs [Gut771 did emphasize the equational
theory of the methods, this aspect was not carried into the
use of ADTs in database systems. Our work corrects this
oversight, and focused on optimizations based on statistics
and costs in a database environment.

Local vs Global Approach?: In contrast to our loosely-
coupled approach of E-ADTs , others have taken a holistic
approach. Instead of breaking a query into many compo-
nents with local query optimization on each E-ADT ex-

73

pression, these approaches try to find a global solution.
This requires that the entire query be modeled in an in-
tegrated framework. AQUA [SLVZ95] and KOLA [CZ96]
are algebraic frameworks proposed for this purpose, while
CPLKleisli [Won941 is a framework based on comprehen-
sions as a query language and monadic operations. These
are all frameworks for collection types (like sets, bags, lists,
and arrays). However, many important complex data types
including multi-media types do not fall in this category.

In theory, an integrated framework is bound to find at
least as good an evaluation strategy as the E-ADT ap-
proach, if not a better one, because the space of possible
evaluation plans is at least as large. A DBMS specially
built for relations and images should be able to perform
better than Predator. We have localized the optimizations
to the E-ADT boundaries, purely in order to preserve the
modularity of the data types. If we are willing to break
this modularity (for instance, if we wish to have rules that
span multiple data types), then this is a trivial extension
of the E-ADT paradigm (in fact, the Predator implementa-
tion does support such extensions). However, any practical
OR-DBMS must establish type modularity at some bound-
ary, whether it corresponds to a single data type or a group
of them. Any truly holistic query optimization approach
compromises the extensibility of the system.

6 Future Work

SQL Query Optimization with E-ADT expressions: We
have seen that E-ADT expressions can dominate the cost
of an SQL query. One category of research issues deals
with mechanisms to exploit interactions between relational
query optimization and E-ADT query optimization. The
blackbox ADT approach for executing expensive methods
in SQL is to execute them once for each new combination
of arguments. As an example using images, oVerlap(Il,
I2) and Overlap(Il,I3) would be executed separately. If it
were possible to execute the overlap of I1 with both 12 and
13 at the same time, we could exploit locality by reading
II only once from disk. As a generalization of this idea,
any function can be executed with individual arguments,
or can be called on a set of argument instantiations. The
blackbox ADT approach cannot exploit this set-at-a-time
strategy because the semantics of the ADT functions are not
known to the DBMS. However, with E-ADTs , this is indeed
feasible.

Since E-ADT expressions are expensive, where should
they be placed in the SQL query evaluation plan? Expensive
function placement has traditionally been studied purely
in a tnple-at-a-time execution context [He195, CS96], with
caching offunction results (an exception to this is [CDY95]).
The assumption has been that every ADT function has a
fixed cost specified in the system catalogs. This assumption
is not valid when ADT expressions are being optimized.
Since these expressions may be able to provide more details
on their evaluation plans (for example, the main-memory

requirements), the SQL optimizer should be able to find
better overall execution strategies (possible requiring set-
at-a-time evaluation).

Optimization across E-ADTs: It is possible to im-
prove the interaction between E-ADTs using a mechanism
whereby each E-ADT specifies its query processing capabil-
ity. For example, if an E-ADT specifies that it understands
the notion of a boolean corrective (AND or OR), the ex-
pression f(X) AND g(x) in the WHERE clause of an SQL
query could be replaced by the expressionfand-gfl). This is
more efficient because X is only accessed once. In general,
constraints and other such information should flow across
the query optimization interfaces. It is an open problem to
design such a mechanism and the appropriate E-ADT inter-
faces.

Open Issues: While the basic E-ADT paradigm has
been presented here, many implementation details of Predu-
tor have been omitted. There are several unresolved issues
with respect to the systems design- how are statistics main-
tained on E-ADTs?, how should recursive nesting of E-
ADTs work?, how is cost information generated?. While
we do have some existing solutions, these are topics that we
are currently exploring further.

7 Conclusion

The E-ADT paradigm is a novel yet simple approach to
database systems design. Every data type is given the op-
portunity to share the semantics of its methods with the
DBMS. This allows several types of complex data to be ef-
ficiently supported within a single general-purpose DBMS.
This paper makes the case that the next-generation of object-
relational database systems should be based on E-ADTs.
The Predator database system has been built as a demon-
stration of the E-ADT paradigm. Initial performance re-
sults provide empirical evidence of an order of magnitude
increase in performance.

Acknowledgments
Mike Zwilling and Nancy Hall helped greatly with details of
SHORE. lllustra Information Technologies, Inc. give us a free
version of their database and time-series datablade. Kurt Brown,
Mike Carey, David Dewitt, Joe Hellerstein, Navin Kabra, Jignesh
Patel, Kristin Tufte, and Scott Vandenberg provided useful discus-
sions on the subject of E-ADTs . Fred Schneider commented ex-
haustively on a large part of this material, and greatly improved its
presentation. Mike Olson discussed the techniques used to support

ADTs in Illustra and lnformix Universal Server. The implemen-
tation of Predator has been greatly aided by Fabian Camargo,
Ed Chao, Dave Koster, Chee-Keong Liau, Mark Paskin, Anil
Sachdeva, Sunil Srivastava, and Sandeep Tamhankar. Praveen
Seshadri was supported by an IBM Cooperative Fellowship and
by NASA Research Grant NAGW-3921. Miron Livny and Raghu
Ramakrishnan were supported by NASA Research Grant NAGW-
3921.

74

References

[AF95] Karl Aberer and Gisela Fischer. Semantic Query Opti-
mization for Methods in Object Oriented Database Systems. In
Proceedings of the Eleventh IEEE Conference on Data Engi-
neering, Taipei, Taiwan, pages 70-79, 1995.

[Bla96] Jose Blakeley. Data Access for the Masses through OLE-
DB. In Proceedings of ACM SlGMoD ‘96 International Con-

ference on Management of Data, Montreal, Canada, pages
161-172, 1996.

[Cat941 R.G.G. Cattell. The Object Database Standard:ODMB-
93. Morgan-Kaufman, 1994.

[CD921 S. Cluet and C. Delobel. A General Framework for the
Optimization of Object-Oriented Queries. In Proceedings of
ACM SIGMOD ‘92 International Conference on Management
of Data, San Diego, CA, pages 383-392,1992.

[CDF+94] M.J. Carey, D.J. Dewitt, M.J. Franklin, N.E. Hail,
M. McAuliffe, J.F. Naughton, D.T. Schuh, M.H. Solomon, C.K.
Tan, 0. Tsatalos, S. White, and M.J. Zwilling. Shoring Up Per-
sistent Objects. In Proceedings of ACM SIGMOD ‘94 Interna-
tional Conference on Management of Data, Minneapolis, MN,
pages 526-54 I, I 994.

[CDY95] Surajit Chaudhuri, Umeshwar Dayal, and Tak Yan. Join
Queries with External Text Sources: Execution and Optimiza-
tion Techniques. In Proceedings of ACM SIGMOD ‘95 Inter-
national Conference on Management of Data, San Jose, CA,
pages 41 w22, 1995.

[CS93] Surajit Chaudhuri and Kyuseok Shim. Query Optimiza-
tion in the Presence of Foreign Functions. In Proceedings ofthe
Nineteenth International Conference on Vey Large Databases
(VLDB). Dublin, Ireland, pages 526-541, 1993.

[CS96] Surajit Chaudhuri and Kyuseok Shim. Optimization of
Queries with User-Defined Predicates. In Proceedings of
the Twenty Second International Conference on Very Latge
Databases (VLDB). Bombay India, pages 87-98, September
1996.

[CZ96] Mitch Chemiak and Stanley Zdonik. Rule Languages and
Internal Algebras for Rule-Based Optimizers. In Proceedings of
ACM SIGMOD ‘96 International Conference on Management
of Data. Montreal, Canada, 1996.

[DKL+94] D.J. Dewitt, N. Kabra, J. Luo, J.M. Pate], and J. Yu.
Client-Server Paradise. In Proceedings ofthe Twentieth Interna-
tional Conference on Vey Large Databases (VLDB), Santiago,
Chile, September 1994.

[GM931 G. Graefe and W. J. McKenna. The Volcano optimizer
generator: Extensibility and efficient search. In Proceedings
of the Ninth IEEE Conference on Data Engineering, Taipei,
Taiwan, 1993.

[Gut771 J. Guttag. Abstract Data Types and the Development of
Data Structures. Communications of the ACM, June 1977.

[He1951 Joseph M. Hellerstein. Optimization and Execution Tech-
niques for Queries With Expensive Methods. PhD thesis, Uni-
versity of Wisconsin, August 1995.

[11194] lllustra Information Technologies, Inc, I I 1 I Broadway,
Suite 2000, Oakland, CA 94607. Illustra User S Guide, June
1994.

[Jon871 S.L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice Hall, 1987.

[LV9 I] R.S.G. Lanzelotte and P Valduriez. Extending the Search
Strategy in a Query Optimizer. In Proceedings of the Sev-
enteenth International Conference on Very Large Databases,
pages 363-373, I99 I.

[LZ74] B. Liskov and S. Zilles. Programming with Abstract Data
Types. In SIGPLAN Notices, April 1974.

[MDK+94] D. Maier, S. Daniels, T. Keller, B. Vance, G. Graefe,
and W. McKenna. Challenges for Quey Processing in Object-
Oriented Databases, chapter 12. Query Processing for Ad-
vanced Database Systems. Morgan Kaufmann, 1994. Editor:
Freytag, Maier and Vossen.

[MDZ93] Gail Mitchell, Umeshwar Dayal, and Stanley Zdonik.
Control of an Extensible Query Optimizer: A Planning-Based
Approach. In Proceedings ofthe Nineteenth International Con-
ference on Very Large Databases (VLDB). Dublin, Ireland,
pages 5 I7-528,1993.

[Ols96] Mike Olson, 1996. Personal Communication.

[RH87] A. Rosenthal and P. Helman. Understanding and Extend-
ing Transformation-Based Optimizers. Database Engineering,
9(4):4&5 I, December 1987.

[SFGM93] Michael Stonebraker, James Frew, Kenn Gardels, and
Jeff Meredith. The Sequoia 2000 Storage Benchmark. In Pro-
ceedings of ACM SIGMOD ‘93 International Conference on
Management of Data, Washington, DC, pages 2-l I, 1993.

[SLR97] Praveen Seshadri, Miron Livny, and Raghu Ramakrish-
nan. The Case for Enhanced Abstract Data Types. Technical
Report TR-97- I61 9, Cornell University, Computer Science De-
partment, February 1997.

[SLVZ95] Bharati Subramaniam, Theodore Leung, Scott Vanden-
berg, and Stanley Zdonik. The AQUA Approach to Querying
Lists and Trees in Object-Oriented Databases. In Proceedings
of the Eleventh IEEE Conference on Data Engineen’ng, Taipei,
Taiwan, March 1995.

[SRG83] M. Stonebraker, B. Rubenstein, and A. Guttman. Ap-
plication of Abstract Data Types and Abstract Indices to CAD
Data Bases. In hvceedings of the Engineering Applications
Stream of Database Week, San Jose, CA, May 1983.

[SRH90] Michael Stonebraker, Lawrence Rowe, and Michael Hi-
rohama. The Implementation of POSTGRES. IEEE Trans-
actions on Knowledge and Data Engineering, 2(I): 125-l 42,
March 1990.

[SS90] Edward Sciore and John Sieg. A Modular Query Opti-
mizer Generator. In Proceedings of the Sixth IEEE Conference
on Data Engineering, pages 146-l 53, 1990.

[Sto86] Michael Stonebraker. Inclusion of New Types in Rela-
tional Data Base Systems. In Proceedings of the Second /EEE
Conference on Data Engineering, pages 262-269, 1986.

[Won941 Limsoon Wong. Querying Nested Collections. PhD
thesis, U.Pennsylvania, 1994.

75

