
Incremental Organization for Data Recording and 
Warehousing 

H. V. Jagadishl P. P. S. Narayan2t4 S. Seshadri3 
Rama Kanneganti2 

S. Sudarshan3t5 

‘AT&T Labs ’ Bell Laboratories 
180 Park Avenue, Murray Hill, NJ 07974 

Florham Park, NJ 07932-0636 ppsn@research.bell-labs.com 
jag@research.att.com rama@emailbox.lucent .com 

31ndian Institute of Technology, 
Mumbai 400 076, India 

{seshadri,sudarsha}@cse.iitb.ernet.in 

Abstract 

Data warehouses and recording systems typ- 
ically have a large continuous stream of in- 
coming data, that must be stored in a manner 
suitable for future access. Access to stored 
records is usually based on a key. Organizing 
the data on disk as the data arrives using stan- 
dard techniques would result in either (a) one 
or more I/OS to store each incoming record (to 
keep the data clustered by the key), which is 
too expensive when data arrival rates are very 
high, or (b) many I/OS to locate records for a 
particular customer (if data is stored clustered 
by arrival order). 

We study two techniques, inspired by exter- 
nal sorting algorithms, to store data incremen- 
tally as it arrives, simultaneously providing 
good performance for recording and querying. 
We present concurrency control and recovery 
schemes for both techniques. We show the 
benefits of our techniques both analytically 
and experimentally. 

1 Introduction 

A fundamental characteristic of many data warehouses 
and data recording systems ([JMS95]) is that they 
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record data by appending new data observations to 
a database. Examples of such systems include point- 
of-sale data collection systems used in large retail busi- 
nesses, tracking and billing of telephone calls, collec- 
tion of stock trading data, and operational-data col- 
lection systems in factories and computer networks, 
which record data from a large number of sensors. 

A challenge for these systems is to support very 
high recording rates (of the order of millions of record- 
ings an hour) while simultaneously providing efficient 
access, based on a pre-specified search key, to the 
recorded data. For instance, a system recording tele- 
phone calls must not only be able to record information 
fast, but must also be able to efficiently retrieve all call 
information for a specified customer. 

There are two ways of organizing the records: clus- 
tered by search key, or clustered by arrival order. Clus- 
tering by arrival order results in records for a particu- 
lar search key being scattered at random locations on 
disk, and therefore does not meet our requirements. 

The standard way to implement clustering by a 
search key is to organize the records into a B+-tree 
file (or hash file) organization, with the search key at- 
tributes as the clustering/indexing attributes, and to 
insert records into the tree (respectively, hash index) 
as they arrive. In the application domains mentioned 
above, the values of the indexed attribute of the incom- 
ing records are typically randomly distributed over the 
population. As a result, each successive record in the 
input stream is likely to end up in a different leaf of 
the B+-tree (different hash bucket). Since buffer space 
is likely to be much smaller than the size of the index, 
at least one I/O is needed for fetching the appropriate 
leaf node (hash bucket) for each incoming record, one 
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I/O for writing it back, and possibly more I/OS for 
internal nodes. Performing disk I/O for each record in 
the input stream is very costly, greatly reducing the 
rate at which data can be recorded. 

A commonly used work-around in data warehouses 
is to collect the records and update the database only 
periodically (such as each night) using bulk-load tech- 
niques. The obvious drawback is that the database 
is significantly out-of-date. Further, bulk loading is 
done off-line, during which time the database is typi- 
cally unavailable. 

Our goal is to design a technique that supports both 
insertion and queries with reasonable efficiency, and 
without the delays of periodic batch processing. 

In this paper we study two techniques, based on ex- 
ternal sorting algorithms, to achieve these objectives: 

1. The first technique stores the records lazily in a 
B+-tree file organization (clustered by the speci- 
fied key), and is based on external merge-sort. In- 
stead of inserting records into a B+-tree as they 
arrive, they are organized in-memory into sorted 
runs. Runs are written to disk when memory is 
full, and runs on disk are merged to get larger 
runs. After several levels of merging, when the 
merged runs have grown relatively large, they are 
merged into the final B+-tree file organization. 

This technique is based on the same idea as the 
Log-Structured Merge tree (LSM tree) proposed 
by O’Neil et al [OCG096]. However there are sig- 
nificant differences, which we discuss in Section 8. 

2. The second technique stores records lazily in a 
hash file organization, and is based on external 
distribution sort with several levels of partition- 
ing. The hashing based technique is conceptually 
a dual of the merging based technique, but the 
implementation details are very different. 

As compared to direct insertion, both techniques 
reduce the number of blocks of data that must be read 
from and written to disk for insertion and further, per- 
form mainly sequential I/O, rather than random I/O, 
thereby reducing seek costs as well. 

Although the techniques are based on well-known 
external sorting algorithms, there are important dif- 
ferences from sorting: 

1. Unlike external sorting, where an entire file is 
sorted, records must be organized incrementally, 
as they arrive. 

2. Queries must be allowed on the records, and must 
be able to retrieve all relevant records that have 
already been inserted. 

3. Concurrency control and recovery must be han- 
dled efficiently; neither of these is an issue for 
external sorting algorithms. We present effi- 
cient concurrency control and recovery schemes 
for both our techniques. 

We compare our schemes with the standard scheme 
of directly inserting records into a B+-tree (respec- 
tively, hash file) analytically, as well as empirically by 
implementing our techniques in a relational storage 
manager called Brahma developed at IIT Bombay. 

Our performance results show that, over a wide 
range of parameters, our techniques can significantly 
reduce the cost of insertion as compared to direct inser- 
tion, while not impacting queries unduly. The results 
also show that the sorting-based technique outper- 
forms the hashing-based technique-a somewhat un- 
expected result. Both techniques are of greatest value 
when the records are small compared to the page size; 
record sizes of tens to a few hundred bytes, with a page 
size of 4KB to 8KB, are typical examples. 

2 Stepped-Merge Algorithm 

Incoming records are stored lazily in a relation whose 
records are organized in a Bt-tree file organization. 
We call the Bt-tree in which the records must finally 
reside as the root Bt-tree or more simply, the root 
relation. There are also several intermediate B+-trees, 
organized into multiple levels, as we will see below. 

2.1 Insertion 

The insertion algorithm is shown below. The values 
K and N are parameters to the algorithm. 

Algorithm Stepped-Merge-Insertion 

1. 

2. 

3 

Collect incoming data in memory in a current run, 
organized as an in-memory tree. When memory is 
full, call it the previous run. Start a new run (initially 
empty) and make it the current run. 

Write out the previous run to disk, constructing a 
Bt-tree on the run as it is written out. The B+- 
tree is constructed bottom up since the data is 
sorted. Both the in-memory run and the one just 
constructed are called Level 0 runs. 

When Ii Level i runs, for 0 5 i < N - 1, accu- 
mulate on disk read back the sorted runs from disk, 
perform a (K-way) merge and write back a single 
larger sorted run to disk, calling it a Level i+ 1 run. 
Delete the old Level i runs. As before, the run is 
stored in a Bt-tree file organization. 

When Ii Level N - 1 runs accumulate, merge them, 
but instead of writing them to a new run, insert the 
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entries into the root relation. The root relation is 
also organized using a B+-tree file organization. 

The rationale behind the above algorithm is that 
a large number of records are inserted at a time, in 
sorted order, into the root B+-tree. As a result mul- 
tiple records would end up in each leaf, and the num- 
ber of I/O operations per record is reduced, at the 
(smaller) cost of increased I/O to create the interme- 
diate runs. A more detailed analysis is presented later. 

A run-index stores pointers to all the runs currently 
in existence, including the run currently being con- 
structed in memory. When Ii runs are merged to get 
a single run at a higher level, pointers to the Ii runs are 
deleted from the run-index, and replaced by a pointer 
to the single higher-level run. And when a new run 
is created in memory, a pointer to it is added to the 
run-index. All the trees together with the run index 
constitute a multi-tree index. 

We now consider some simple optimizations. While 
creating the li’th run of a Level i, instead of writing 
it out to disk and reading it back again for merging, 
it can be directly merged with the other Level i runs. 
As a result of recursively applying this optimization, 
runs of several different levels may get merged simulta- 
neously. Applying the optimization to multiple levels, 
one in-memory run of level 0, and Ii - 1 runs of each 
of levels 0.. . i on disk, will get merged to form a sin- 
gle run of level i + 1 on disk. With li’ = 2, this will 
save about half the I/O operations required otherwise 
for merging. Furthermore, no level (except level 0) 
will have more than li’ - 1 runs at a time with this 
optimization. 

The average length of a Level 0 run in Stepped- 
Merge can be increased to double the size of memory 
by using the run length doubling trick developed for 
external merge-sort (see, e.g., [Knu73]). All disk ac- 
cesses, except for the writes to the root relation, in 
Step 3, are sequential writes. If more than one run is 
allocated on the same disk, the disk arm may have to 
move to fetch from or write to different runs. This seek 
overhead is easily reduced by using large disk buffers, 
and can be eliminated by using multiple disks, with a 
careful allocation of runs to different disks. Further 
implementation details are described in the full version 
of this paper. 

The idea of having intermediate levels of B+-trees 
and merging them is the same as that used in the 
LSM tree [OCG096]. H owever, Stepped-Merge and 
the LSM tree differ in significant details; Section 8 de- 
scribes the differences. 

2.2 Queries 

Queries can be executed even as data is being orga- 
nized into runs. In general, there are up to Ii’ - 1 runs 

at each level 0 < i < N. Further, there is newly in- 
serted data in memory that has not yet been inserted 
into a run. We store the data in memory indexed by 
the specified key; for simplicity, we assume it is indexed 
by a B+-tree, although this is not essential and other 
in-memory tree structures or hash structures may be 
used. 

Instead of looking up a single relation, queries have 
to (a) lookup the root relation and (b) search the run- 
index to find (up to) I( - 1 runs at each of the N levels 
(including the current in-memory run), and perform 
a lookup on each of these runs. (Assuming that the 
optimization of merging runs from multiple levels at 
once is used.) This is an acceptable price if (K - 1). N 
is not too large, and lookups are relatively infrequent. 

2.3 Deletion 

Aged records must be deleted from a data warehouse 
(and possibly archived). Fortunately in most such ap- 
plications, deletion can be done lazily, and does not 
have an impact on correctness - either the applications 
themselves may ensure that logically deleted records 
are not accessed, or a view mechanism may be used 
to filter out these records from the applications. Ei- 
ther way, applications do not query data that is old, 
and could have been deleted. In such an environment 
deletion can be done efficiently in the background by 
a batch process that sequentially scans the root rela- 
tion. If user transactions perform deletions, the idea of 
having special records to indicate deletions described 
in [OCG096] could be used. 

2.4 Analysis 

We derive an estimate of the number of I/OS incurred 
for each insertion by the Algorithm Stepped-Merge. 
Table 1 lists the parameters we use in estimating the 
I/O costs of various operations. We assume that the 
root relation is large enough that we can assume its 
height remains constant during one round of the algo- 
rithm. We have the following theorem: 

Theorem 2.1 The total I/O cost of Algorithm 
Stepped-Merge for inserting S pages-full records into a 
@-tree of (final) height h, with L pages and a fanout 
of d, with s being the size of the final level run and N 
the number of levels of runs before insertion into the 
root relation, is 

(2 + ;) * N .s. Tt + (ch + 5 ci) . (s/s) . (T, + z) 
i=l 

where Ci denotes the number of node I/OS from level 
i of the root P-tree, and is obtained as 

ci=r+ l.(l-(I- ,&,I 
m 

) 
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IndeDendent Parameters (Both Algorithms\ 
M Size of memory in pakes ” ’ 

E 
Number of records per page 
Time to seek to a specified (random) lo- 
cation on disk 

Tt Time to transfer one page to/from disk 
Size of input stream, in pages (in the pe- 
riod of interest) 

N Maximum levels before records are in- 
serted into root relation 

Independent Parameters (Stepped-Merge) 

Average fanout of internal nodes of B+- 

Number of memory pages reserved for 

Dependent Parameters (Stepped-Hash) 

440 Number of memory pages available for 
managing insertions (A40 = A4 - R) 

X Number of ways final level bucket is par- 
titioned when inserted into root relation 
(X = Number of buckets in the root rela- 
tion / (M~li’~)) 

Table 1: Parameters Used in Analysis 
where m is the number of distinct keys in the s pages 
of records inserted at a time into the root relation. •I 

The first term in the formula measures the cost of 
insertion of a record into the various intermediate runs. 
The second term measures the cost of insertion into the 
root relation. Details of the derivations are presented 
in the full version of the paper. 

Consider now the cost of direct insertion of records 
into a B+-tree, without using Algorithm Stepped- 

Merge. Since the order of insertion of records is ran- 
dom, and the final B+-tree is likely to be much larger 
than memory, the probability of finding a page in 
memory is very small. However, to be conservative 
in our comparison, we will assume that the root node 
of the B+-tree as well as the next level node are in 
memory; the rest must be read from disk, and coupled 
with a write of the leaf page, the cost of inserting S 
pages worth of records directly into a B+-tree of height 
h is S. T. (h - 1) . (T, + G). 

Numerical comparisons of the two costs will quickly 
demonstrate the benefit of Stepped-Merge over direct 
insertion, for a wide range of parameter values. This is 
borne out by experiment as we will discuss in Section 7. 

2.5 Cost of Look-Up 

Now let us consider the I/O cost of looking up records 
when using algorithm Stepped-Merge. Instead of look- 
ing up a single relation, queries have to look up the 
root relation and up to li runs at each level. (This is 
conservative; (Ii - 1)/2 is a better average-case esti- 
mate.) We assume for simplicity that the index on 
each run has the same height as the root B+-tree, 
the root node of each is in memory, and records with 
the specified key value fit into a single leaf page in 
each tree. Thus the total cost of a single lookup is 
(Ii . N + 1) . (h - 1) . (T, +x). 

Contrast this with the cost of (h - 1) . (T, + Z) 
in a single B+-tree index. For a fixed value of s, 
N depends on Ii, and it can be shown that Ii . N = 
K[logK(s/M)l, h’ h. w ic is an increasing function of Ii’, 
for li’ > 2. Therefore, it is minimum at Ii’ = 2. This is 
experimentally confirmed by our performance analysis 
in Section 7, which also shows that the actual increase 
in cost with a small number of levels is quite low. 

3 Concurrency Control and Recovery 
in Stepped-Merge 

To implement the Stepped-Merge algorithm in a 
database system, the transactional issues of concur- 
rency control and recovery must be handled. We deal 
with these issues in the next two subsections. 

3.1 Concurrency Control 

There are two aspects to concurrency control for 
Stepped-Merge - that between normal transactions 
(by which we mean inserts and queries), and between 
normal transactions and reorganization. 

Concurrency control between insertions and queries 
can be handled in the traditional manner, through 
key-value locking or interval locking, with a few mi- 
nor caveats. 

For example, some techniques, such as next-key 
locking [MohSO], are not efficient in our context, since 
they require inserters to traverse a B+-tree, which in- 
curs I/O that we are trying to avoid. 

Alternatively multi-version 2PL can be used to en- 
sure that reads do not interfere with updates (see 
database textbooks, such as [SKS96], for details). Ver- 
sioning is particularly simplified because update trans- 
actions in our environment merely append new records 
and thus there exists only one version for each record. 
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If multi-versioning 2PL is used, records must con- 
tain a timestamp corresponding to the time when the 
transaction that inserted them committed. Read-only 
transactions read the system timestamp as of when 
they start, and see all and only relevant records with 
a timestamp less than their start timestamp. 

Concurrency control between normal transactions 
and index reorganization cannot be handled as eas- 
ily, since index reorganization is time consuming and 
potentially involves large parts of the database. We 
discuss below the interaction between index reorgani- 
zation and normal transactions, first for updates, and 
then for queries. 

The only type of update performed by normal trans- 
actions (in our model) is an insertion into the current 
in-memory run. Before performing such an insert, the 
updater finds and shared-locks the pointer to the cur- 
rent in-memory run. The shared-lock is held until 
transaction commit. Reorganization acquires an ex- 
clusive lock on the pointer before transferring the con- 
tents of the run to disk; the lock can be released early, 
after creating an empty in-memory run and updating 
the pointer in the run-index to point to it. 

Queries access the run-index to find what runs they 
have to search, in addition to the root relation. Con- 
currency control on the run-index must ensure that: 

1. A transaction does not search a given run as well 
as one of the runs that was merged to get the given 
run, since a record could then be found twice. 

2. A transaction does not miss data in a run be- 
cause the run got deleted, due to absorption in a 
higher level run that was accessed by the transac- 
tion prior to the absorption. 

A naive solution is for query transactions to shared- 
lock the run-index, and reorganization to exclusive- 
lock the run-index so that no reorganizations can occur 
while a transaction is running. However this would 
result in very poor concurrency since reorganizations 
take time. 

A better alternative is to use versioning of the run- 
index. When runs are reorganized, instead of updat- 
ing the existing run-index, a new version is made and 
is updated. Thus each version of the run-index con- 
tains pointers to a consistent set of runs, which cover 
all data that has been inserted when the run-index 
version was created, and without any duplication of 
records in two or more runs pointed to by the ver- 
sion. A pointer to the current run-index cur-index is 
also maintained. Versioning of the run-index, and can 
be performed whether or not the data itself is being 
versioned. 

Runs (including the current in-memory run) can 
be deleted only after (a) all the records in them have 

been inserted into later runs, (b) the current version of 
the run-index does not contain the run, (c) no further 
transactions will find the run, and (d) no transaction 
is using the run. Straightforward latching mechanisms 
are used to enforce these rules. 

Whereas versioning of the run-index ensures that a 
consistent set of runs is accessed by a query, it does 
not ensure that the root relation is accessed in a state 
consistent with the runs - without additional mech- 
anisms, a query could find records in the root relation 
that it saw earlier in some run. We have two alter- 
natives. The first solution is based on key-value lock- 
ing; the basic idea is that queries share-lock the range 
of key values accessed, while reorganization exclusive 
locks them. However, this solution provides less con- 
currency. See the full version of the paper for details. 

The second solution, which we call epoch numbering, 
requires insertions into the root relation to be done as 
follows: all records in some set of runs are inserted into 
the root relation, and then the set of runs is deleted 
from (a new version of) the run-index. The epoch 
number starts from 0, when the first run-index is cre- 
ated. The epoch number is incremented when a new 
version of the run-index is created such that some set 
of final-level runs from the previous version have been 
deleted (because all the records in the runs have been 
added to the root relation). Thus, multiple versions of 
the run-index may have the same epoch number. 

Further, the records inserted into the root relation 
have an epoch number stored with them, which indi- 
cates the epoch during when they were inserted. The 
first version of the run-index where the runs have been 
deleted will have an epoch number higher than the 
epoch number stored with these records. 

Given the above property, a lookup reads the epoch 
number of its version of the run-index, and simply re- 
jects a record if its epoch is greater than or equal to 
the epoch of run-index version; any such record would 
either have been read from the runs in which they 
were stored earlier, or would have been inserted af- 
ter the transaction started and due to the serialization 
requirements they should not be retrieved. 

3.2 Recovery for Stepped-Merge 

We assume that records are inserted by update trans- 
actions, which each insert one or more records. Then 
each transaction merely inserts its records into the 
current run transactionally. Logging of the insertion 
is straightforward. We assume that some recovery 
technique, such as Aries [MHL+92], is used. The in- 
memory run is reconstructed from the log records upon 
recovery from a system crash. 

When a new run is created by either merging old 
runs, or by copying an in-memory run to disk, logging 
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can be suppressed since a crash during the run creation 
will not lead to information about the records getting 
lost; on restart recovery, we can delete the partially 
constructed run and restart the merge/copy. Hence, 
instead of logging the creation of the run, it is more 
efficient to create the run without any logging, and 
flush the run to disk to make it persistent. 

Finally, merging of runs into the root relation can be 
executed as a normal transaction, logging the changes 
to the root relation. 

All versions of the run-index must be recoverable, 
since (a) they may point to data that has not yet been 
moved to the root relation, and (b) they may point to 
runs that no other run-index points to. Hence updates 
to the run-index must be logged in the usual fashion. 

Now consider the logging overhead for our tech- 
niques. Each record gets logged once when it is first 
inserted into the database, and once when it is inserted 
into the root relation. Thus, the total logging overhead 
is about twice that of direct insertion into a relation. 
The I/O for logging is sequential, and only full blocks 
of data are written. Overall, the extra cost of logging 
is not a big overhead. 

If records are transferred incrementally from a run 
to the root relation (using the key-value locking tech- 
nique) the deletion from the run has to be logged as 
well, so that, records get inserted into the root relation 
at most once. 

4 Stepped-Hash Algorithm 

The Stepped-Hash algorithm, presented in this section 
is the equivalent of Stepped-Merge algorithm for the 
case when the final clustering of data is based on a hash 
file organization. Data finally resides in a root hash 
table, which is also referred to as the root relation. The 
insertion algorithm is similar in spirit to an external 
distribution sort and is shown below. 

Algorithm Stepped-Hash-Insertion 

1. When a record is received, compute its hash value 
h, and store it in an initial hash table, which we call 
the Level 0 hash table. That is, add the record to 
bucket h mod MO of the hash table. 

Each bucket consists of up to K blocks, the last of 
which is in-memory. In-memory blocks are written 
out only when they are full, and the blocks for a 
bucket on disk are kept doubly-linked. 

2. When a bucket Bi,j of Level i, where 0 5 i < N - 
1 accumulates K full blocks of data, partition the 
bucket Ii ways into Level i + 1 buckets. A record 
with hash value h is added to bucket Bi+l,m where 
m = h mod (Alo. K’“+l). 

Each of the Ii buckets to which records in Bi,j may 
be distributed has one block in the memory buffer. 
After processing all records of Bi,j, all h’ in-memory 
buffer blocks are flushed to disk, even if they are 
not full. After records in bucket Bij have been 
partitioned, the blocks in Bi,j are freed. 

3. When a bucket at Level N-l, BN-l,j, accumulates 
I< blocks, the data is inserted into the root hash 
table using a hash function h mod (it40 . KN . X), 
where X can be any value. 

X can be chosen such that each bucket in the root 
hash table does not have more than K blocks. X 
can be dynamically changed, for instance with ex- 
tensible hashing. 

Intuitively, the hash tables form a tree, where nodes 
are hash tables. During partitioning, records move 
from a node to its children; which child a record goes 
to is based on its hash value. Each final level bucket 
is partitioned X ways when inserting into the root re- 
lation. The number of buckets in the root relation is 
MrJ . Ii’N . x. 

An extra data structure, which we call the bucket- 
index, is used to keep track of the last block (on disk) of 
each bucket. Available memory (M pages) is divided 
into two parts: R pages are reserved for partitioning 
of buckets, and the remaining Ms = M - R pages are 
available to hold the Level 0 hash table. 

Queries calculate the hash value h for the lookup 
key and search the appropriate hash buckets at each 
level, before searching the root hash table. The bucket- 
index is used to find the hash buckets at each level. 

4.1 Cost of Insertions 

Table 1 lists the parameters we use in the cost esti- 
mate for Stepped-Hash. For simplicity, we assume that 
the directory on each intermediate level has the same 
height as the directory for the root hash table, and the 
height is represented by Hd for all the hash tables. 

Some of the blocks of a partition at level i + 1 may 
overflow as records are inserted into it during parti- 
tioning at Level i. The fraction of overflow blocks to 
K is represented by the term 6. 

Theorem 4.1 The total I/O cost of Algorithm 
Stepped-Hash for inserting S pages-full of records, into 
a root hash table of directory height Hd is, 

S*(T, +Tt) 
+~.(T,+li’.T,+(Ii.(2+6)+Hd).(T,+Tt)).(N-1) 
+~.(T,+Ii.~+(x.(2+6)+Hd).(T,+Tt)) 

where N is the number of levels before records are in- 
serted into the hash table and A’ is the maximum num- 
ber of disk blocks for a hash bucket. cl 
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The three components of the formula above respec- 
tively estimate costs for: (a) insertion into the Level 
0 hash table, (b) insertion into the intermediate hash 
tables, and (c) insertion into the root relation. Al- 
though the value of 6 is non-trivial to compute, we can 
overestimate it as 1. 

Consider now the cost of direct insertion of records 
into the root hash table without using Algorithm 
Stepped-Hash. The cost of inserting S pages worth of 
records directly into a root hash table is S . T . (Hd + 
1) . (T, + Tt). 

The analytical formulae here are even more involved 
than for Stepped-Merge, but once more through nu- 
merical substitution it is possible to convince oneself 
of the benefit of Stepped-Hash over direct insertion into 
a hash table. This expectation is confirmed by exper- 
iments we performed, as we will present in Section 7. 

4.2 Cost of Look-Up 

Now let us consider the I/O cost of looking up records 
when using Stepped-Hash. Apart from looking up the 
root relation, the hash tables on each of the interme- 
diate levels will also have to be looked up. Instead of 
looking up a single relation, queries have to look up 
the root relation and up to Ii’ blocks at each level. So, 
we get a total of K . (N + 1) operations to scan the 
buckets and Hd . N to read the directories. (Level 0 
directory need not be read). 

Thus the total cost of a single lookup, assuming that 
records with the specified key value fit into a single 
bucket and no partitioning is in progress is ((K + Hd) . 
N + Ii) . (T, + Tt). 

5 Concurrency Control and Recovery 
for Stepped-Hash 

As in the case of Stepped-Merge, concurrency control 
between transactions is straightforward, and is han- 
dled by conventional means such as key-value locking. 

Although concurrency control between normal 
transactions and reorganization in the case of Stepped- 
Hash bears some similarity to the corresponding 
scheme for Stepped-Merge, the schemes are different 
since during reorganization records are inserted into a 
hash table that already contains other records. For the 
same reason recovery is also a little more complicated 
in the case of Stepped-Hash. For lack of space we do 
not describe either: see the full version of the paper 
for details. 

6 Discussion 

Bloom filters (bitmap filters) can be used to avoid 
looking up many of the runs that do not contain any 
records for a query key, as is done in, e.g., [SL76]. 

The direct insert algorithm clearly benefits from a 
parallel disk system, since such a system supports a 
larger number of seeks per second. Parallel I/O can 
also be used with our techniques. The output runs or 
buckets can be striped across multiple disks, so that 
they transfer data out in parallel. Since I/O units are 
large (multiple pages) the main benefit here is from 
the increased disk bandwidth due to striping, rather 
than the larger number of seeks that can be supported. 

Although our cost formulae give a single time esti- 
mate, they can be decomposed into the number of I/O 
operations (terms multiplied by T,) and the amount of 
data transferred (terms multiplied by Tt). The compo- 
nents can then be used to derive time estimates for a 
parallel disk system, assuming requests are distributed 
uniformly across all disks. 

Both Algorithm Stepped-Merge and Stepped-Hash 
can handle temporary periods of high insertion loads 
very well, by simply postponing the merging of runs 
or partitioning of buckets at intermediate levels. In 
such a situation inserters are favored at the expense 
of queries, which have to perform more I/OS at inter- 
mediate levels. Conversely, at times when the insert 
load is less, the number of levels can be dynamically 
reduced, thereby making queries faster. 

Although our techniques are described for a pri- 
mary index organization which stores records, it can 
equally well be used for secondary indices, storing in- 
dex entries instead of records. If our techniques are 
used on a primary index of a relation, the entries in 
a secondary index should store the primary key of the 
record rather than a disk pointer, since the disk loca- 
tion of the record keeps changing. 

It is possible to create a hybrid of the B+-tree and 
hash schemes: Attach one or more “bins” to the “in- 
ternal” nodes of a B+-tree, into which records could be 
inserted, rather than carrying them all the way to the 
leaves. When a bin gets full, distribute the contents 
over the bins of the child nodes (as happens with hash 
buckets between levels) l. 

7 Performance Study 

In order to measure the actual benefits of Stepped- 
Merge and Stepped-Hash, we implemented them on top 
of the Brahms database storage manager developed 
at IIT Bombay. We used the existing B+-tree im- 
plementation, which supports bottom-up building of 
the trees, for run creation. For Stepped-Hash, a sim- 
ple hash table implementation on top of the database 
storage manager was used. 

We have not yet implemented the concurrency con- 
trol schemes, but we ran insertions and lookups seri- 

‘This enhancement was suggested by David Maier, to whom 
we express our gratitude 
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ally, intermixed with each other. With multi-version 
concurrency control, queries will cause minimal inter- 
ference with on-going transactions, so there should be 
no significant effects due to lock contention. We have 
not yet implemented the recovery schemes. However, 
the logging overheads of our schemes are low, and with 
a separate disk for logs our performance results should 
not be affected excessively. 

The datasets we used for the experiments comprised 
a sequence of 20-byte records, each with an eight byte 
primary key consisting of a search key value and a 
unique identifier to distinguish records with the same 
key value. Insertions were generated using a uniform 
random distribution of key values. The page size was 
fixed at 4KB. 

The total buffer memory was 328KB. In the case 
of direct insert, all 328KB was used for the database 
buffer, while in the caSe of Stepped-Merge, 128KB was 
used for in-memory runs. While the buffer memory 
size is a small number, it was purposely kept so, to 
stay in scale with the size of the datasets we have used 
for experimentation. In Stepped-Hash, MO wits fixed at 
32 buckets and the final hash table was fixed at 8192 
buckets. 

7.1 Cost of Insertion 

Our first set of experiments measured the cost of in- 
serting records. The cost of inserts was measured 
at each stage as the root relation grew from 0 to 3.2 
million records during the course of the experiment. 

In Figures 1 and 2 we compare the total cost of 
record insertion for Stepped-Merge and Stepped-Hash 

(with different values for h’ and N) with direct inser- 
tion into a B+-tree and hash table respectively as the 
size of the B+-tree/hash table grows. The costs are 
averages of the insertion cost from the beginning up 
to the measurement point. The graphs show that the 
I/OS per record for direct inserts in both cases are sig- 
nificantly higher than the stepped algorithms. Observe 
that the I/OS per record for direct insertion starts off 
at around 1 when the height of the root B+-tree is 
around 1, and increases quickly to over 2. 

Although both the stepped algorithms are much 
better than direct insert, the Stepped-Merge algorithm 
had a significantly lower number of I/OS per record, 
almost half the number of I/OS as Stepped-Hash in the 
case of It’ = 2,N = 2. The curve for the Stepped-Merge 

algorithm shows a steady increase in the cost of inserts 
as the size of the root relation increases, whereas the 
Stepped-Hash algorithm shows a near constant cost. 
This is mainly an artifact of our implementation of 
hashing, where we start off with a fixed number of 
buckets, which does not grow. The relevant numbers 
to study are towards the end of the curves, where the 

number of leaves in the B+-tree is roughly the same as 
the number of blocks in the hash table. 

As N, the number of intermediate levels, and Ii, 
the fanoutlfanin increase, the I/OS per record decrease 
significantly with both the stepped algorithms. 

Figures 3 and 4 highlight the cost of inserting into 
the root relation, ignoring the cost of creating of the 
intermediate levels, for Stepped-Merge and Stepped- 

Hash respectively. (Unlike the previous two graphs, 
the values in these are not averages from the begin- 
ning but are costs at the measurement point.) It can 
be seen that these costs are just a little over 1 even 
at a ratio of 122 of root relation size to final run size 
(for Ii’ = 2,N = 2), for Stepped-Merge. The costs are 
lower for smaller ratios (that is, with higher K and N). 
The results are similar for Stepped-Hash. In contrast, 
the cost is about 2 for direct insert even at fairly small 
sizes of the root relation. 

7.2 Cost of Querying 

The next set of experiments were designed to find 
the overhead of querying data using our technique. 
Batches of 20 record lookups (with records present 
in the data set) were repeatedly performed as more 
records were inserted. As a result, for Algorithm 
Stepped-Merge queries were forced to look up interme- 
diate runs. For the case of Algorithm Stepped-Hash, 

queries were forced to look up buckets being parti- 
tioned. 

Twenty queries were run after every 16000 records 
were inserted, and this was repeated until an addi- 
tional 1,600,OOO records had been inserted into an ex- 
isting root relation of 3.2 million records. For A’ = 2 
and 3, the value of N was varied such that the size of 
the final run went from 250 pages to 8000 pages. For 
Ii = 4 it is not possible to get such an N, so we have 
points at 128 and 512 pages. The Bloom filters used 
a bitmap per run with 4 times as many bits as records 
in the first level run. 

The results in Figure 5 show that the number of 
I/OS with our Stepped-Merge technique, especially 
with the Bloom filter optimization, are within reason- 
able distance of the number of I/OS with a single B+- 
tree lookup for smaller Ii’ and N. The number of 
I/OS for Ii’ = 2, N = 3 without Bloom filters works 
out to a little over four I/OS per look up, but reduced 
to 3.125 with Bloom filters, which is about one I/O 
more than the cost with a single B+-tree. Comparing 
the results in Figure 5 and Figure 6 clearly show that 
Stepped-Hash performs significantly worse on lookups 
than Stepped-Merge. 
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Figure 3: Stepped-Merge: Cost of Insertion into Root 
Relation 

7.3 Sensitivity to Record Size 

The final set of experiments were designed to study the 
sensitivity of insertion costs to the size of the records. 
As expected, the benefit of our techniques decreases 
as the number of records that fit in a page decreases. 
But even with as few as 16 records per page, Stepped- 
Merge continues to outperform direct insertion; for 
Stepped-Hash, the crossover point is around 45 records 
per page. For lack of space we omit details. 

In summary, our experimental results demonstrate 
that Stepped-Merge and Stepped-Hash provide a signif- 
icant win with respect to insertion costs over the cor- 
responding direct insertion algorithms, in return for 
a small increase in look-up cost. Stepped-Merge has a 
slight edge in terms of insertion cost over Stepped-Hash 
and a considerable benefit in terms of look-up cost. 

8 Related Work 

The idea of maintaining a log of recent changes sep 
arately from the main data file is quite old; see for 
example [SL76], which discusses differential files. The 
idea of using Bloom filters has also been explored in 
[SL76]. However, their goal was not to save I/O as 
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Relation 

compared to standard structures like B+-trees, but to 
avoid changing the main file. They do not consider 
issues of multi-level organization of differentials, and 
concurrency control and recovery issues. 

Lists of updates-to-be-applied are maintained by 
online index construction/reorganization techniques 
(e.g., [SCSl]). Th ese, however, are temporary struc- 
tures, existing only while the index is being con- 
structed/reorganized, and are not used by queries; im- 
proving insert speeds is not a goal. 

The work that is most closely related to ours is the 
LSM-tree, described by O’Neil et af [OCG096]. Our 
first technique, Stepped-Merge, although developed in- 
dependently, can be seen as a variant of the LSM tree: 
both are based on the same core idea of a multi-level 
organization of B+-trees. Our hash-based algorithm 
is, however, novel. 

An important difference is that the LSM tree has 
a single B+-tree at each level whereas Stepped-Merge 
has up to K B+-trees at each level. The LSM tree is 
therefore better for queries, since only one tree need 
be looked up at each level whereas Ii’ trees may need 
to be looked up in Stepped-Merge. However, the LSM 
tree is likely to be costlier for inserts since data may 
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Figure 5: Stepped-Merge: Cost of Lookups 

be read and written back up to Ii times at each level. 
[OCG096] t d s u ies issues of how much memory and 
how many disks should be used to support a given 
load at the cheapest cost; we do not consider this is- 
sue, and measure instead the number of I/O operations 
and data volume to be transferred. The analytical for- 
mulae for Stepped-Merge and the LSM tree therefore 
measure different quantities, and cannot be compared 
directly. 

The LSM tree handles updates, whereas we have 
not addressed updates so far. Conversely, we have 
described a concurrency control scheme, whereas 
[OCG096] does not - it only outlines features that 
a concurrency control scheme must have. Transfer of 
data from one level to another is more incremental for 
the LSM tree but the price paid is that concurrency 
control is more complicated. We believe our recovery 
technique makes fewer changes to standard recovery 
techniques and should be easier to implement. 

Unlike [OCG096], we have presented a performance 
study of our techniques based on an actual implemen- 
tation. Future work includes implementing the LSM 
tree in our system and empirically comparing its per- 
formance with Stepped-Merge. 

9 Conclusions and Future Work 

We studied two techniques to cluster data incremen- 
tally as it arrives, one based on sort-merge and the 
other on hashing. We have presented efficient con- 
currency control and recovery schemes for both tech- 
niques. We have demonstrated the benefits of our 
techniques both analytically and through an empiri- 
cal performance study of an actual implementation. 
One contribution of this paper has been to show that 
a well-designed sort-merge based scheme performs bet- 
ter than hashing. 

We believe it should be reasonably easy to integrate 
our techniques into an existing database system. Fu- 
ture work includes extending our techniques beyond 
insert-only environments, to allow updates of existing 
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Figure 6: Stepped-Hash: Cost of Lookups 

data. We believe our techniques will play an impor- 
tant role in the design of data recording systems and 
data warehouses in the future. 
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