
Cache Coherency in Oracle Parallel Server 

B.Klots(bklots@us.oracle.com) 
Oracle Corporation 

Oracle Parallel Server (OPS) is a relational 
database system running on-a shared disk cluster. 
OPS allows a concurrent direct access of multiple 
users from multiple instances to all the data in the 
database. Shared disk architecture employed by 
Oracle has a number of advantages: 

High availability: when one node fails then 
other nodes can proceed uninterrupted, with 
all the data still available to them. 

Aggregate CPU and memory resources 

Enhanced throughput 

Load balancing 

These advantages do not come for free. The 
challenge of this architecture (as of any clustered 
or distributed architecture) is to provide data co- 
herency for the independent users of the system. 
The way to do that is to use locking. Oracle uses 
multiple level locking: row locks on transaction 
levels, instance locks within instances, and global 
locks among the instances. The latter are specific 
to Oracle Parallel Server. 

In a nutshell the cache coherency protocol for Or- 
acle Parallel Server is as follows. If a unit of data 
is being used at an instance and these data are re- 
quested at another instance, a conflict may occur. 
Global locks are used to resolve these conflicts. 
Before accessing the data unit instance acquires 
a lock on it. Another instance which wants to 
access same data unit asks for another lock on 
the data. This request can be either compatible 

Permission to copy without fee all or part of this muterid is grunted 
provided that the copies ure not mude or distributed,for direct commercial 
udvantuge, the VLDB copyright notice and Ihe title of the publication und 
its dute appear, und notice is given thut copying is by permission of the 
Very Lurge Data Buse Endowment. To copy otherwise, or to republish, 
requires a,fee and/or speck1 permission,frr,m the Endowment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

or incompatible with the lock held by the first in- 
stance. If it is compatible (e.g. both instances 
want to read current data) the lock is granted to 
the requester and it proceeds with the operation. 
If the request is incompatible (e.g. the first in- 
stance writes and another instance wants also to 
modify the data) then the requester blocks. First 
instance is signaled with a request/order to finish 
its processing and flush the data to the shared disk 
storage. When it does so, it also releases the lock. 
Now the requester can be granted the requested 
lock, it reads the current copy of the block from 
the disk and proceeds. The global lock operations 
and all the communication involved in that are 
performed by Distributed Lock Manager (DLM). 

In the talk we analyze two basic problems associ- 
ated with the architecture of a locking scheme: 

Locking granularity. The trade off here ia 
as following: the more data is covered by a 
single lock, the more substantial is the amorti- 
zation of locking performance overhead. On 
the other hand, increased granularity reduces 
the concurrency and consequently the global 
throughput of the system. A large granule 
size may lead to false conflicts. The proper 
optimization is a very challenging problem 
here. 

Dynamic versus static binding of data to 
locks. There are two basic schemes of match- 
ing data and locks in OPS: hash locking is 
a static locking scheme and fine grain lock- 
ing is a dynamic locking scheme. These two 
schemes represent a special set of trade offs.. 
While hash locking is a good scheme for par- 
titioned or DSS types of loads, the fine grain 
locking presents a good choice for OLTP. 

583 


