
Supporting Procedural Constructs in SQL Compilers 

Nelson Mattos 

IBM Santa Teresa Laboratory, 555 Bailey Avenue, San Jose, CA 95141 

mattosQvnet .ibm.com 

Abstract - In this presentation, the author 
will describe an integrated approach that extends 
existing query compilers to support SQL/PSM-like 
procedural extensions. This work was a joint devel- 
opment at the IBM Santa Teresa Lab. with Gene 
Fuh, Jyh-Herng Chow, and Brian Tran who also co- 
author a more complete publication of this work 
[FCMT95]. In the presentation, it will be shown 
how the existing SQL compiler infrastructure can 
be generalized to accommodate the new procedural 
constructs and described how one can implement 
this approach as part of an existing DBMS. 

The draft of the SQL/PSM standard has defined a 
procedural extension to the existing SQL92 language. 
An essential part of this extension is the support of 
procedural constructs such as BEGIN/END blocks, local 
variables, assignment statements, conditional state- 
ments, different forms of loops, etc. 

Such an extension introduces new challenges to ex- 
isting SQL compilers. Most (if not all) SQL compilers 
exiting in the marketplace today were built based on 
the declarativeness of SQL. The question is how these 
procedural extensions can be best implemented in a 
relational DBMS without losing the power of existing 
query optimization mechanisms. So far, most imple- 
mentations of the SQL procedural extensions rely on 
the use of a separate interpreter to handle the pro- 
cedural statements so that the existing SQL compiler 
can be left untouched. Although this approach is quite 
easy to implement (as it follows the paradigm currently 
used between SQL and host languages), it does not 
provide the best possible performance. 

To achieve the required performance, we. have fol- 
lowed a different approach to support the execution 
of SQL procedural statements. Instead of relying on 
a separate interpreter, we have extended an existing 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

SQL compiler to handle the procedural extensions in 
an integrated fashion. 

We have observed that SQL/PSM statements are 
“skeletons” which ultimately specify a well defined ex- 
ecution sequence over a set of SQL92 statements. To 
be more specific, for instance, the SQL/PSM while 
statement defines a conditional repetition of state- 
ments which are encapsulated in the loop body: the 
loop construct is basically a control skeleton gluing 
the other statements. A natural consequence following 
this observation is that every SQL/PSM statement can 
be handled by an extended SQL compiler in the follow- 
ing way: each SQL non-procedural statement can be 
extracted and compiled into an execution plan by the 
existing SQL query compiler with minimum enhance- 
ments (except for extensions to deal with the nesting 
of scopes of local variables and the support of global 
optimizations); the control skeleton is translated into 
an abstract representation by a new compiler compo- 
nent; finally, the abstract representation of the control 
skeleton is used by the code generator to synthesize 
the plan of the control statement with those of the 
non-procedural statements and produce a single plan. 
Local variables can be treated as internal host vari- 
ables that do not involve any data movements or type 
conversions and have scopes associated with them. 

The proposed approach has the following advan- 
tages. First, it minimizes the impact on the existing 
query compiler. Second, it results in efficient execu- 
tion plans. Since all statements are compiled into a 
single plan, there is no communication overhead be- 
tween the SQL interpreter and the interpreter for the 
procedural language, no unnecessary data movement 
between the two interpreters, data conversions, and/or 
bind-in/bind-out operation taking place during the ex- 
ecution. Third, it facilitates the use of modern op- 
timization technologies from traditional programming 
languages, and provides a general framework for global 
optimization across query and control boundaries. 

References 
[FCMT95] Gene F’uh, Jgh-Herng Chow, Nelson Mattos 

and Brian Tram Extending SQL Query CompiIer 
for Control Statements. IBM Technical Report 
TR03.626. Santa Teresa Lab, August 1995. 

581 


