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Abstract 

This paper describes a model that integrates 
the execution of triggers with the evaluation 
of declarative constraints in SQL database sys- 
tems. This model achieves full compatibility 
with the 1992 international standard for SQL 
(SQL92). It preserves the set semantics for 
declarative constraint evaluation while allow- 
ing the execution of powerful procedural trig- 
gers. It was implemented in DB2 for common 
servers and was recently accepted as the model 
for the emerging SQL standard (SQW). 

1 Introduction 

Active databases are taking a prominent role in com- 
mercial database applications [6, 30, 29, 131. With 
client/server solutions, applications are being devel- 
oped by small, autonomous groups of developers with 
narrow views of the overall enterprise; the enterprise 
information system is very vulnerable to integrity vi- 
olations because it lacks strict enforcement of the en- 
terprise business rules. Active data proactively moni- 
tors events and, without user intervention, protects its 
own integrity or invokes actions either within or ex- 
ternal to the database. Active data features can be 
used to bind frequently used application logic to data 
for invocation directly within the server, decreasing 
client/server communication. 

As the SQL standard progresses to its next re- 
lease (SQL3)[21], t . i is under pressure to include a 
well-defined model for active data. Prior research 
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[3, 11, 341 promotes event condition action (ECA) rules 
as the uniform mechanism to support constraints, au- 
thorisation and application logic. The only prior work 
that considers the simultaneous existence of separate 
specifications and models for the execution of ECA 
rules and declarative constraints is [16]. However, 
most commercial DBMSs support a rich set of declar- 
ative constraint constructs compliant with SQL92, and 
commercial applications rely on the fact that this spec- 
ification will not change. Hence, the active database 
model that will be used in practice must integrate pro- 
cedural triggers (one form of ECA rules) with the ex- 
isting model for declarative constraints defined by the 
SQL international standard (SQL92) [20, 27, 71. 

There are many practical reasons why, when appli- 
cable, declarative constraints should be used in lieu 
of triggers. However, declarative constraints alone are 
not powerful enough to support all the active data- 
base requirements of applications. Most popular ac- 
tive database models developed thus far bear some 
resemblance to either OPS5 [2] style production rule 
systems or deductive logic. Unfortunately, the trigger- 
ing mechanisms emerging in the commercial DBMSs 
[24, 12, 35, 171 d o not follow this approach. Instead, 
they are procedural in nature, and lack many reason- 
ing advantzges inherent in such rule-based systems. 
However, this procedural model is a natural mapping 
of existing commercial application logic. 

This paper describes the first integrated model for 
reconciling the execution of triggers with the evalua- 
tion of SQL92 declarative constraints. It resolves the 
problems with the co-existence of triggers and declar- 
ative constraints introduced in [16], and it is the only 
model that (a) allows triggers to coexist with deferred 
constraints and cascading referential constraints, (b) 
incorporates before-triggers, after-triggers, row-level 
triggers, and statement-level triggers in a uniform 
framework that is integrated with the set semantics for 
modifications required by SQL92 (not previously un- 
derstood), and (c) defines scoping rules for transition 
variables and tables in the context of the aforemen- 
tioned types of triggers. 

SQL3 [21] 1 d mc u es advanced database features and 
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has started the final publication process. Until now, 
SQL3 has received little input from the active database 
community. Yet there is increasing interest from both 
commercial SQL vendors and customers for a well- 
defined specification of SQL triggers. Our model was 
recently accepted as the model for SQL3 triggers [5], 
and we hope~that this paper will stimulate further con- 
tribution from the research community. 

The structure of the paper is as follows. Section 2 
discusses the relative advantages of declarative con- 
straints and triggers. Section 3 presents declarative 
constraints and their fixpoint evaluation model as de- 
fined in SQL92. Section 4 proposes our model for 
SQL3 triggers and defines their execution in the ab- 
sence of declarative constraints. Our model for in- 
tegrating the evaluation of declarative constraints and 
the execution of triggers in SQL is presented 3 sections: 
Section 5 formally describes the integrated execution 
model, demonstrated by an example in Section 6, and 
discussed further in Section 7 which highlights the con- 
tributions of our work with respect to other products 
and prototypes. 

2 Constraints or Triggers? 

An active database system (DBMS) should support 
constraints as well as event-driven application logic. 
However, declarative constraints should be used in lieu 
of triggers whenever possible. First, several triggers 
are required to enforce one declarative constraint; even 
then, the system has no way of guaranteeing the valid- 
ity of the constraint in all cases. Consider the database 
load utilities in which the database checks the declar- 
ative constraints against the loaded data before it can 
be accessed. There is no way to determine which trig- 
gers should be checked since triggers are also used for 
transitional constraints and for event-driven applica- 
tion logic. This behavior also applies when constraints 
and triggers are added to a database with pre-existing 
data. 

The database engine can use knowledge of declara- 
tive specifications to optimally evaluate constraints. 
For example, concurrency control hot spots can be 
avoided during referential integrity enforcement by 
reducing the isolation level to cursor stability [28]. 
Guaranteeing the presumed semantic intent of trig- 
gers, in general, requires an isolation level of repeat- 
able read [lo]. Furthermore, semantic query optimiza- 
tion is not possible if the declarative semantics are 
hidden in triggers. Tool vendors may also take advan- 
tage of declarative constraints for pre-checking entries 
at the client (e.g. a mobile laptop) before sending data 
to the server. 

The declarative constructs provided by most sys- 
tems and defined in SQL92 only support a small, al- 

beit useful, set of static constraints that define the 
acceptable states of the value of the database, e.g. 
salary > commission+honrlyYage* hoursWorked. They do 
not support transitional constraints that restrict the 
way in which the database value can transition from 
one state to the next e.g. salary increases must be 1~s 

than IOX. They also do not support event-driven invo- 
cation of application and business logic. Hence, trig- 
gers are required to enhance the declarative constraint 
constructs and to capture application specific business 
rules. Triggers provide a procedural means for defining 
implicit activity during database modifications. They 
are used to support event-driven invocation of appli- 
cation logic, which can be tightly integrated with a 
modification and executed in the database engine by 
specifying a trigger on the base table of the modifica- 
tion. Triggers should not be used as a replacement for 
declarative constraints. However, they extend the con- 
straint logic with transitional constraints, data con- 
ditioning capabilities, exception handling, and user- 
defined repairing actions. 

In summary, there are advantages to using both 
declarative constraints and procedural triggers, and 
both types of constructs are available in many com- 
mercial systems. It is not feasible to expect applica- 
tions providers to either migrate their existing appli- 
cations to use only triggers or partition the tables in 
their database according to the type of constraints and 
triggers that are required. It is therefore imperative to 
define and understand the interaction of constraints 
and triggers. 

3 Declarative Constraints in SQL92 

Declarative constraints in SQL92 include two forms 
of static constraints: check constraints and referen- 
tial constraints.l SQL92 also supports the definition 
of symmetric views (sometimes referred to as the with 

check option), which are transitional constraints ap- 
plied to updates and inserts through a view. 

Although declaratively specified, each constraint 
implies a set of events for which the constraint is 
checked and>n action to be taken if the constraint is 
not satisfied (or, more accurately, evaluates to false). 
When a static constraint is defined, the system verifies 
it against the existing data, and once defined, guar- 
antees that the constraint is always satisfied. After 
load utilities are used, the system verifies all declara- 
tive static constraints before the loaded data can be 
accessed. 

A check constraint, typically used to validate in- 
put data, is a condition that is true for every row in 
a given table. In general, a check constraint can be 

‘In X&92, primary keys, unique keys, and NOT NULL are 
viewed as special cases of check constraints. 
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any SQL condition, including multi-table assertions. 
Since such assertions are extremely expensive to sup- 
port, this feature is practically restricted to the special 
case key constraints and one variable aggregate-free 
check constraints, i.e., value constraints, in most ex- 
isting products. These constraints allow the definition 
of uniqueness constraints, value restrictions and intra- 
row value checks on a single table. In object-oriented 
extensions of SQL, check constraints can contain func- 
tions applied to the values as long as the functions are 
deterministic and do not have side-effects. Value con- 
straints need only be evaluated when the constraint is 
defined, after special load utilities are run, or when any 
table on which the constraint is defined is modified by 
an UPDATE or INSERT statement. In addition, multi- 
table assertions may also need to be checked when any 
table referenced in the condition is modified. If the 
constraint evaluates to false for any updated or in+ 
serted rows (or, for a multi-table assertion, any row in 
any referenced table), then the statement that caused 
the modification2 is rejected and any changes made by 
the statement are undone. 

A referential integrity (RI) constraint establishes a 
relationship between a set of columns designated as a 
foreign key and a unique key such that the non-null val- 
ues of the foreign key must also appear as values in the 
unique key. The foreign key’s table is the constraint’s 
child table and the unique key’s table is the constraint’s 
parent table. Note that the parent table and child ta- 
ble can be the same, referred to as a self-referencing RI 
constraint. Like check constraints, RI constraints must 
also be checked when the constraint is defined and af- 
ter special load utilities are run. However, since there 
are two tables involved in the constraint, there are four 
modifications that cause constraint evaluation: (a) in- 
sertions into the child table, (b) updates a foreign key 
column, (c) deletions from the parent table, and (d) 
updates of a unique key column. Whenever modifica- 
tions to the child table violate the constraint, the state- 
ment that caused the modification is rejected and any 
changes made by the statement are undone. However, 
the action to be taken when the parent is modified by 
a DELETE or UPDATE statement is one of a set of 
pre-defined actions that is specified with a delete rule 
or update rule, respectively, when the constraint is de- 
fined. This pre-defined set includes: NO ACTION and 
RESTRICT, which reject the violating statement3; SET 
NULL, which sets the nullable columns of the foreign 
key of any child rows that match the modified parent 
rows to null; SET DEFAULT, which sets the foreign 

2we refer to UPDATE, DELETE and INSERT statements 
collectively as modifications. 

‘NO ACTION and RESTRICT have very subtle differences 
which are not illuminated here as these distinctionsdo not affect 
the model presented in this paper. 

key columns for any child rows that match the mod- 
ified parent to their default values; and CASCADE, 
which deletes any matching child rows. 

A symmetric view is defined by specifying the WITH 
CHECK OPTION clause during the creation of the 
view. It defines a transitional constraint that is eval- 
uated whenever the view is modified by an INSERT 
or UPDATE statement. The most general form of this 
clause indicates that any row modified through an UP- 
DATE or INSERT statement on a symmetric view must 
remain in the view after the modification. If the mod- 
ification causes the row to disappear from the view, 
then the statement causing the modification is rejected 
and any changes made by the statement are undone. 

Constraint Evaluation In the Absence of Fr”riggers 

The evaluation of declarative constraints, well-defined 
by SQL92, is complex and if done incorrectly can lead 
to anomalous non-deterministic behavior [26]. Dif- 
ficulties arise when an SQL statement modifies sev- 
eral rows or causes the evaluation of multiple RI con- 
straints. The result of the statement must not depend 
on the order in which the rows are modified or the or- 
der in which the constraints are applied. Hence, sev- 
eral existing products restrict the combinations of con- 
straints that can be defined and the classes of updates 
and deletions allowed on unique keys [1914. According 
to SQL92, the constraints must effectively be processed 
only after all modifications of the original statement 
are applied. However, there is a common optimiza- 
tion employed that evaluates constraints in-flight as 
the rows are modified. This optimization must only 
be used when the success or failure of the statement is 
not dependent on the order in which the rows or the 
constraints are processed. 

The interaction of simultaneously enforcing check 
constraints, RI constraints, and symmetric views when 
the update or delete rule of one of the RI constraints 
is either SET NULL or CASCADE is another potential 
source of non-determinism. This ambiguity was re- 
moved by a run-time marking algorithm defined in [15] 
which defines a fixpoint computation for enforcement 
of the declarative constraints. With a few subtle ex- 
ceptions, this run-time algorithm results in the follow- 
ing evaluation order for constraints: 

1. Evaluate the original statement’s modifications. 

2. Evaluate all constraints with RESTRICT semantics. 
If any are violated, return an error after undoing 
any changes made by the original statement. 

3. Perform all cascaded modifications, including SET 
NULL. As modifications are cascaded, any fur- 

4DB2 for Common Servers Version 2 has removed these 
restrictions. 
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4. 

5. 

ther activated RESTRICT constraints must also be 
checked. 

Perform all cascaded deletes. As deletes are cas- 
caded, any further activated RESTRICT and cas- 
caded modifications must be checked. 

Evaluate all constraints with NO ACTION seman- 
tics, including check constraints, symmetric views, 
unique keys and not-null constraints. If any of these 
constraints are violated, raise an error and undo any 
changes made by the original statement and any re- 
sulting cascaded actions. 

Thus, SQL92 has a very explicit specification for 
deterministic evaluation of constraints with respect to 
database modifications. This specification defines a 
fixpoint evaluation that is independent of the order in 
which rows or constraints are processed. Not only has 
this evaluation model been published as the SQL stan- 
dard for over four years, but more than a dozen SQL 
database vendors have a conforming implementation 
of SQL92 constraints. 

4 A Proposal for SQL Triggers 

In contrast to declarative constraints, triggers are pro- 
cedural. The event governing the execution of a trigger 
is explicitly specified in its definition. This triggering 
event is an UPDATE, DELETE or INSERT statement 
applied to a base table. An optional column list can 
be specified in the case of updates to further restrict 
the set of update events that activate the trigger. 

The trigger also has an activation time that specifies 
if the trigger is executed before or after its event and a 
granularity that defines how many times the trigger is 
executed for the event. Before-triggers execute before 
their event and are extremely useful for conditioning 
of the input data before modifications are applied to 
the database and the relevant constraints evaluated. 
After-triggers execute after their event and are typi- 
cally used to embed application logic, which typically 
runs after the modification completes. 

The granularity of a trigger can be specified as ei- 
ther FOR EACH ROW or FOR EACH STATEMENT, 
referred to as row-level and statement-level triggers re- 
spectively. When the event of a row-level trigger oc- 
curs, the trigger is executed once for each row affected 
by the event. If no rows are affected, then the trigger 
is never evaluated. However, a statement-level trigger 
is executed exactly once whenever its event occurs, 
even if the event does not modify any rows. Like to 
constraints, both row-level and statement-level after- 
triggers must (appear to) execute only after the trig- 
gering event finishes executing; before-triggers must 
appear to execute entirely before the triggering event’s 

modifications are applied. Note that the granularity 
does not dictate when the trigger executes. Obviously, 
there are many cases when row-level triggers can be 
safely and optimally processed in-flight. However, if 
they or any constraints that must be evaluated require 
access to either the base table of the triggering event 
or any table that is modified by the trigger or the con- 
straints, then row-level triggers can only be processed 
in a set-oriented fashion. E.g., if a row-level update 
trigger on table T accesses the average of a column in 
T, then the average must not be computed in the mid- 
dle of the triggering update; it must either be com- 
puted entirely before or after the application of any 
modifications to T. 

Each trigger has access to the before-transition val- 
ues and after-transition values of the event through the 
declaration of transition variables and transition ta- 
bles. The declaration “referencing NEW as N” de- 
fines N as a single row correlation variable that contains 
the value of a row in the database immediately after 
the modification is applied. Similarly, “referencing 
OLD as 0” declares 0 as a single row correlation vari- 
able containing the value of the same row in the data- 
base before the modification is applied. If both OLD 
and NEW transition variables are declared as above, 
then the new and old values of a given row can be 
compared. For example, if the trigger’s table is EMP, 
and EMP has column salary, then we can check if the 
modification was a raise by comparing 0. salary with 
N. salary. Transition tables are similarly declared us- 
ing keywords NEW-TABLE and OLD-TABLE. If NT is 
declared as a new transition table, it is a virtual table 
containing the values of all modified rows immediately 
after the modification is applied. Similarly, if OT is 
declared as an old transition table, it is a virtual ta- 
ble containing the values of all modified rows before 
the modification is applied. The contents of transition 
tables is operationally defined in Section 5, 

Not all types of transition variables and transition 
table references are valid for each type of trigger. In 
particular, triggers defined on insert events can only 
see new values and triggers defined on delete events 
can only see old values while triggers defined on up- 
date events can see both old and new values Further- 
more, transition variables are only accessible at the 
granularity of one row, and hence, can only be refer- 
enced by row-level triggers. As will be described in 
Section 5, both statement-level and row-level before- 
triggers participate in a fixpoint computation of the 
transition tables; during the computation of this fix- 
point, inherently, the entire content of’the transition 
tables is not yet computed. Hence, before-triggers can- 
not reference transition tables. However, both row- 
level and statement-level after-triggers can reference 
transition tables. Such references allow row-level after- 
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triggers to compare a single transition row value with 
aggregations on the transition tables, e.g., how the new 
salary in a given row compares with total impact of the 
salary increase. 

Each trigger has an action that is optionally 
guarded by a condition; the action is only executed 
when the triggering event occurs and, if specified, the 
condition is satisfied. The condition is a single, unre- 
stricted search condition and the action is a procedure 
containing a sequence of SQL statements. Both the 
action and the condition can query the transition vari- 
ables and tables as well as the current value of the 
database, and these queries can invoke user-defined 
functions. Since before-triggers appear to execute en- 
tirely before the event occurs, any queries of the data- 
base in their conditions or actions must appear to read 
the database state prior to any modifications made by 
the event. Similarly, the conditions and actions of all 
after-triggers must appear to read the database state 
after all of the event’s modifications are applied. If the 
after-trigger needs to query the state of the database 
prior to the event, then it can reconstruct it using the 
transition tables. For example, if T is modified by the 
triggering event, NT is the new transition table and OT 
is the old transition table, then the state of T prior to 
the event can be approximated by (T \ NT) U OT. 

The trigger action is an atomic procedure, e.g., SQL 
Procedural Stored Module (PSM), that may contain 
SQL statements combined with other procedural con- 
structs. The SQL statements are executed in the order 
in which they occur in the evaluation of the proce- 
dure. If any one of the SQL statements fail, the entire 
trigger action is rolled-back, including the triggering 
event. After-triggers, used primarily to embed applica- 
tion logic in the database, can contain any data manip 
ulation SQL, including SELECT, UPDATE, INSERT, 
and DELETE statements. Before-triggers can contain 
condition data using an assignment statement that al- 
lows the trigger body to set the values of transition 
variables declared as NEW. Note that this statement 
is not allowed in after-triggers since the modification is 
already applied to the database, and the NEW transi- 
tion variable is no longer maleable. Conversely, before- 
triggers cannot modify the database using UPDATE, 
DELETE, or INSERT statements since this leads to a 
nested model of unapplied modifications. 

Triggers can indirectly cause a statement-level roll- 
back by raising an error, e.g., using the SQL signal 
statement. When this occurs, the containing SQL 
statement fails and, as described above, the entire 
trigger action is rolled-back, including the triggering 
event. 

Several triggers can have the same event and acti- 
vation time. Hence, multiple triggers can be simulta- 
neously eligible for execution. When this occurs, the 

eligible triggers must be executed according to some 
discernible total order global to the entire set of trig- 
gers. Our execution model assumes the existence of 
some global ordering of the entire set of triggers, a la 
Postgres [33] or Starburst [l]. 

lPrigger Execution in the Absence of Constraints 

The execution of an after-trigger may activate other 
triggers, recursively activate itself, or activate the eval- 
uation of constraints. Triggers that activate other trig- 
gers are executed in a nested procedural fashion. If a 
modification statement S in trigger action A causes an 
event E, and there are no constraints defined in the 
system, S is processed as follows. 

1. 

2. 

3. 

4. 

5. 

Execution of A is temporarily suspended, saving all 
local state on a stack. New and old transition tables 
for S are computed. 

All before-triggers activated by E are executed in 
sequence according to their creation order. If a 
before-trigger contains an assignment statement, 
then the appropriate fields in the new transition ta- 
ble are modified for the row associated with the new 
transition variable. 

The current values in the new transition table are 
applied to the database. 

All after-triggers activated by E are executed in se- 
quence according to their creation order. If any 
such execution causes another event, then the state- 
ment causing the event is processed recursively 
starting in step 1. 

A’s state is recovered from the stack and processing 
resumes with the statement that follows S in A. 

Recalling that an event is the entire SQL statement, 
the event-to-condition binding is deferred (with the 
exception of the first trigger executed), and condition- 
to-action binding is immediate. The difference is that 
in these prototype systems, the event is a modification 
to a single row and in SQL systems the event is an 
entire SQL statement that may involve modifications 
to several rows. 

In the above model, there is at most one SQL state- 
ment being applied to the database at any given point. 
That is, there is only one set of transitions being com- 
puted for a given event. Recall that we do not al- 
low-before-triggers to modify the database. If we did, 
many statements could be in progress simultaneously. 
Because before-triggers execute prior to the applica- 
tion of their triggering modification, allowing modifi- 
cations causes an endless chain of unapplied modifica- 
tions to build up. These modifications are not visible 
to the nested invocations of other triggers and result in 
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an ambiguity as to what persists in the database when 
the before-triggers and any cascaded actions due to 
such statements complete. 

5 An Integrated Model 

This section defines a model that integrates the exe- 
cution of before-triggers and after-triggers defined in 
Section 4 with the fix-point evaluation of SQL92 con- 
straints summarized in Section 3. This model is incor- 
porated in the IBM DB2 for Common Servers Version 
2 product and was recently proposed and accepted as 
the model for trigger execution in SQLJ. 

One of the motivating principles behind the design 
of our execution model is to minimize the window in 
which the declarative constraints of the database are 
not guaranteed. This is particularly important for ap- 
plication logic that is embedded in after-triggers. Ap- 
plication logic is more easily written and debugged if 
one can assume that the declarative constraints are 
enforced. Furthermore, many semantic optimization 
techniques can only be applied if the declarative con- 
straints are enforced. Otherwise, the resulting plans 
may yield erroneous results. Our model guarantees 
that any statement issued externally by an application 
or internally by an after-trigger will only read database 
states that are consistent with respect to the declar- 
ative constraints. 

Figure 1 depicts the execution of an SQL modifica- 
tion statement S. During the processing of S, data is 
conceptually stored in two different repositories: the 
database and the working storage. The database rep- 
resents the persistent repository of the enterprise data 
that is shared among applications and whose visibility 
is protected by the authorization and locking mecha- 
nisms of the DBMS. On the other hand, the worlcing 
storage is local to and contains transitions computed 
during the execution of S. A transition associates the 
before-value and after-value of a single row resulting 
from an event. If 0 is a transition representing a mod- 
ification of a row for some event E, then 6.new (appli- 
cable for insert and update events) is the value of the 
row to be applied to the database and e.old (applica- 
ble for delete and update events) is the value of the 
row before E is executed. Transitions are grouped into 
sets Al, . . . . A,, according to their event type, which 
is update, delete or insert 5 qualified by a single table. 

A trigger is activated by a transition set if the event 
type of the trigger is the same as the event type of the 
transition set. When a row-level trigger is executed 
for a transition, the value of the new and old transi- 

61n the case of update, the event type is further partitioned 
by column sets if there are triggers whose event specifies a col- 
umn list. This level of detail is omitted for the purposes of this 
description. 

tion variables are derived directly from the new and 
old values of the transition. When either a row-level 
trigger or statement-level trigger is executed, the value 
of the new and old transition tables are computed from 
the trigger’s activating A. The new transition table is 
a table containing one row for each transition in A 
whose value is the new value of the transition. Sim- 
ilarly, the old transition table is computed from the 
old values of the transitions. 

An Update, Delete, or Insert statement S is exe- 
cuted by the procedure ExecuteSJDI as depicted in 
Figure 1 and described below. 
Compute A, for S. The execution of statement S 
begins with the initialization of A,, which represents 
transitions made by S or by any resulting cascaded ac- 
tions with the same modification type and table as S’s 

event. The values of A, are determined based on the 
current values of the database and the semantics of S. 
If S is a DELETE(T), then A, is initialized as the set 
of all transitions for all rows that satisfy the search 
condition of S. If 8 is a transition in A,, &old is the 
value of the row that is to be deleted, and B.new is 
not applicable. If S is INSERT(T), then Ai is initial- 
ized as the set of transitions for all rows identified by 
the VALUES clause or query expression of S. If B is a 
transition in A,, B.new contains the new values to be 
inserted into the database and &old is not applicable. 
If S is UPDATE(T), then ‘A, is initialized as the set of 
transitions for all rows that satisfy the search condi- 
tion of S. If B is a transition in Ai, &old is the value 
of the row before the update and B.new is the value of 
the row after the update. 
Execute before-triggers for S. Let Bl, B2, . . ., BP 
be all of the before-triggers activated by Al’s event 
in increasing order according to the global trigger or- 
dering. B1 is considered first. If B1 is a row-level 
trigger, it is executed once for each row in A,, which 
implies that it is not executed if A, is empty. If BI is 
a statement-level trigger, it is executed exactly once. 
Note that a statement-level trigger is executed even if 
Ai is empty, because the triggering event, S, occurred. 
All statements in a row-level trigger are executed for 
a given row before proceeding to the next row. The 
remaining before-triggers B2, . . ., BP are considered in 
turn. Before-triggers can read data from the database. 
A row-level before-trigger can also use an assignment 
statement to modify columns of a given rows new tran- 
sition value. Because restrictions on before-triggers 
prevent them from modifying the database, they can- 
not cause cascaded execution of triggers or cascaded 
evaluation of constraints. However, a triggered action 
may explicitly request an error to be returned. There 
is no need to rollback any changes made by S since AI 
has not yet been applied to the database. 
Apply A, to the database. This is the first point 
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Figure 1: Execution of a Database Modification Statement 
in the processing of S when S’s modifications are made 
to the database. Note that any changes made to Ai 
by row-level before-triggers are reflected in the modi- 
fications applied to the database. 

Evaluate the declarative constraints for S. If A, 
is empty, this step does not have any effect. Otherwise, 
constraints (referential constraints, check constraints 
and symmetric views) are evaluated for all modifica- 
tions made by S according to the SQL92 semantics 
summarized in Section 3. The figure refers to a fix- 
point, which is reached only when (a) no constraints 
are violated and (b) statement-level before-triggers for 
all cascaded actions of the evaluated constraints are 
executed. This is symmetric with the execution of 
statement-level before-triggers for statements that do 
not actually perform any modifications. If the fix- 
point is not reached because of the evaluation of some 
constraint C, then either C is not satisfied or C is sat- 
isfied and has a cascading action for which statement- 
level before triggers must be processed. So, if C does 
not have a cascading action, then an error must be re-’ 
turned. If the evaluation of C requires a cascading ac- 
tion Si (CASCADE, SET NULL, SET DEFAULT), then 
all before-triggers activated by Si must be processed 
before the Si’s modifications are applied to the data- 
base. First, transitions for Si’s modifications are com- 
puted and stored in a temporary transition set Si If C 

is satisfied, then Si will be empty. But we must still ex- 
ecute statement-level before-triggers for Si. We must 
also create Ai for Si if it does not already exists to 
schedule the execution of the corresponding statement- 
level after-triggers. 

Let Bil, Bi2, ., Bip be the before-triggers acti- 
vated by 6;‘s event in increasing order according to 
the global trigger ordering. Bil is considered first. 
If it is a newly activated statement-level trigger, i.e., 
it was not activated previously by S or by any other 
cascading action, then it is executed once. If it is a 
row-level trigger, then it is executed once for each row 
in Si. The remaining before-triggers Bi2, . . ., Bip are 
similarly considered in turn. Note that a statement- 
level before-trigger Bstmt is evaluated at most once 
for a statement and its cascading actions. If Bstmt is 
activated by S’s event, then it is never executed by.a 
cascading action of a declarative constraint for S. Oth- 
erwise, it is executed the first time it is activated by a 
cascaded action. 

The modifications of & are then applied to the data- 
base. If there does not already exist a transition table 
Ai in the working storage with the same event as &, 
then Ai is created and initialized with the values of 
Si. Otherwise, the transitions in & are appended to 
&. The declarative constraint processing continues in 
this manner until a fixpoint is reached, i.e., all of the 
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declarative constraints are satisfied and all statement- 
level before-triggers for cascaded actions required for 
the evaluation of a constraints are executed. 

If the evaluation of a constraint causes an error to be 
returned, then any modifications made to the database 
by Execute-UDI are first undone. These modifications 
are represented by the transitions in Ai, ., A,, in 
the working storage. Processing for Execute-UDI ter- 
minates and returns an error. 
Execute after-triggers for S and its cascading 
actions. Let Al, AZ, . . ., A, be all statement and 
row-level after-triggers activated by events of Ai, ., 
A, in increasing order according to the global trigger 
ordering. Processing of the after-triggers is the same 
as previously described for before-triggers, with the 
following exceptions: (a) the set of simultaneously ac- 
tivated triggers contain triggers with different events 
(rather than a single event) since the entire contents of 
the working storage is considered, (b) statement-level 
triggers execute once for the transition set Ai of their 
respective activating event, (c) after-triggers cannot 
change the new values of A;, and (d) any explicit er- 
ror returned by the action of a trigger must first undo 
changes made to the database by Execute-UDI. Be- 
cause the action of an after-trigger can contain SQL 
statements that modify the database, such statements 
must be processed in a recursive manner. When a 
DELETE, UPDATE, or INSERT statement S’ is en- 
countered during the execution of after-trigger Ai, the 
current contents of the working storage is pushed on a 
stack clearing its current contents, and Execute-UDI is 
recursively invoked to process S’. After Execute-UDI 
finishes executing S’, the saved contents of the working 
storage is popped from the stack. If the recursive in- 
vocation causes an error, all modifications made to the 
database by Execute-I-ID1 are undone and processing 
terminates in error. 
Return. If the above processing of the before-triggers, 
declarative constraints, and after-triggers completes 
successfully with no explicit errors during trigger ex- 
ecution, constraint violation errors, or errors caused 
from recursive invocations of Execute-UDI, then pro- 
cessing returns successfully. Otherwise, processing re- 
turns an error after restoring the database to its state 
prior to this execution of Execute-UDI. Note that, as 
described, when any error occurs, the database will 
eventually be restored to the state of the database be- 
fore the execution of the outermost modification event 
(i.e. to the beginning of the original statement). 

6 Our Model in Action 
Consider an application that with the following tables, 
constraints, and a symmetric view: 

DISTRIBUTORS(id,location) 

AUDITPARTS(modtype, updated-by, moddate, numrecs) 
PARTS(codenum, supplier, cost, super-part, 

updated-by,record-date) 

HIBVAL: check (cost >= 10.0) 
VALIDDIST: PARTS(supp1i-x) references DISTRIBUTOR(id) 

on delete set null 
PARTSUPPART: PARTS(super-part) references PARTS(codenum) 

on delete cascade 

EOUCAPITAL view: (select * from PARTS 
where COST < 500) with check option 

Check constraint MINVAL verifies that only parts 
with cost greater than 10 are tracked. The RI con- 
straint VALIDDIST ensures that any non-null value 
of PARTS.suppher is a valid distributor. Because the 
delete rule is SET NULL, the deletion of a distribu- 
tor will set the supplier field for any part supplied by 
the deleted distributor to NULL. The self-referencing 
RI constraint PARTSUPPART ensures that all values 
of super-parts are also listed as parts. The delete rule 
of cascade will delete a part whenever its super part 
is deleted. Symmetric view NONCAPITAL selects only 
parts that are not classified as capital equipment. Any 
insertion of capital equipment or update that reclas- 
sifies non-capital equipment as capital is not allowed 
through this view. 

The following row-level before-trigger ensures that 
the supplier field is never updated to any value other 
than NULL. If this occurs the originating statement is 
rolled-back and an error is reported. 

create trigger OHESUPPLIER 
before update of supplier on PARTS 
referencing new as B 
for each row 
when (II.supplier IS ROT BULL) 

signal sqlstate '70005' ('Cannot change supplier'); 

The following row-level before-trigger computes the 
time and user of each update. 

create trigger USERDATE 
before update on PARTS 
referencing new as B 
for each row 

set B.updated-by = USER, 
B.record-data = CURREBT DATE; 

The following statement-level after-trigger uses a tran- 
sition table to audit the number of parts updated. 
Assume there is a similar statement-level trigger 
RECORDDEL after deletions on PARTS. 

create trigger RECORDUPD 
after update on PARTS 
referencing old-table as OT 
for each statement 

insert into AUDITPARTS 
values('U', USER, CURREBT DATE, 

(select count(*) from OT)); 
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When all suppliers located in California are deleted 
from table DISTRIBUTOR, the referential constraint 
VALIDDIST will be evaluated, causing the supplier 
column for all rows in PART whose supplier column 
matches the id of any of the deleted distributors to be 
set to NULL. This update, in turn, activates the two 
before-triggers ONESUPPLIER and USERDATE, which 
are then executed. Assume that the global order is the 
same as the creation time order of the triggers, so that 
ONESUPPLIER is executed before USERDATE First, 
the new value for supplier is checked. Because it is 
NULL, the condition of trigger ONESUPPLIER is not 
satisfied, so the error is not returned. Second, update 
values for columns updated-by and record-date are com- 
puted from the environment values for the current user 
and date. Once these triggers are evaluated for all of 
the identified rows, the resulting updates are applied 
to the database, which activates the statement-level 
trigger RECORDUPD. This trigger will insert one row 
into table AUDITPARTS to record number of rows in 
PARTS updated as a result of a statement issued by 
the current user. 

Now, suppose that all parts with NULL suppliers are 
deleted. The referential constraint PARTSUPPART is 
evaluated and subsequently deletes any row in PART 
whose super-part was deleted. This process continues 
until there are no rows left in PART with either a NULL 
supplier or a super-part value that does not match some 
codenum value of a remaining row in PART. Once the 
evaluation of PARTSUPPART reaches this fixpoint, the 
statement-level trigger RECORDDEL is activated and 
inserts one record in table AUDITPARTS to record the 
total number of rows deleted from PARTS by the issued 
delete statement and the resulting cascading actions. 

To demonstrate symmetric views in this scenario, 
consider an update to the cost column of the view 
NONCAPITAL. This update will first activate before- 
triggers. In this case, only.USERDATE is activated be- 
cause ONESUPPLIER is only activated on updates to 
the supplier column. Then, the update is applied with 
the value of cost specified in the original statement and 
the values for updated-by and record-date computed by 
trigger USERDATE. Subsequently, the check constraint 
MINVAL and the symmetric view are evaluated to ver- 
ify the new cost value is between 10 and 500; a value 
less than 10 indicates the part is not valuable enough 
to record, and a value of 500 or more would cause the 
updated rows to be reclassified as capital equipment 
and disappear from the view. 

‘7 Discussion of our Model 

The main contributions of our model are as follows. 

l It is integrated with the set semantics of SQL and 
the fixpoint semantics for the evaluation of declara- 

tive constraints, achieving full compatibility with 
SQL92, the standard to which commercial SQL 
DBMSs are committed. Assumptions made in pre- 
vious models are either incompatible with SQL or 
compromise the generality and expressive power of 
SQL, which is unacceptable. 

It allows both before-triggers and after-triggers and 
distinguishes between them. After-triggers are used 
primarily as an extension to the application logic 
while before-triggers are primarily used to extend 
the constraint logic. 

It incorporates the before-triggers as data condi- 
tioners and extensions to the constraint logic into 
the fixpoint computation. 

It ensures that application logic embedded in after- 
triggers see a constraint-consistent database. 

It clearly defines the contents and scoping rules for 
both transition tables and transition variables. 

It recognizes that triggers with different events may 
be triggered simultaneously and hence, supports a 
global ordering of all triggers. 

Prior to the acceptance of our model, SQL3 con- 
tained a specification for triggers that was incomplete, 
did not address any of the above issues [5], and im- 
posed many arbitrary restrictions. For instance, it 
explicitly disallowed the definition of any trigger on 
a table that was the target of a cascading referential 
action. 

We integrate trigger execution in the context of the 
set-semantics of SQL by defining the triggering event 
as a single SQL statement, even for row-level triggers. 
We also make this model upward compatible with the 
evaluation of constraints defined by SQL92. We rec- 
ognize that the integration of triggers in the presence 
of this fixpoint constraint model requires certain re- 
strictions for before-triggers that are not required for 
after-triggers. 

An important aspect of the model described in this 
paper is that it distinguishes between before-triggers 
and after-triggers. Before-triggers participate in the 
fixpoint computation of declarative constraints, and 
consequently, the fixpoint computation of the transi- 
tion tables. After-triggers execute only after declara- 
tive constraints are satisfied. By definition, a before- 
trigger must be executed before the activating mod- 
ifications are applied to the database, but any such 
before-trigger executed during the fixpoint evaluation 
of constraints may be exposed to an inconsistent data- 
base. One way to prevent this is to simulate the eval- 
uation of constraints, e.g., using the run-time marking 
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algorithms defined in [15], to pre-compute the transi- 
tion tables before executing any of the before-triggers 
or applying any of the modifications. The disadvan- 
tage of this approach is that it prevents the use of 
before-triggers to condition the data as the transition 
tables would be pre-computed before the triggers are 
executed. Because we view data conditioning as one of 
the primary advantages of before-triggers, we clearly 
distinguish between the uses and properties of before- 
triggers and after-triggers as previously described. 

Like declarative constraints, the execution of 
before-triggers must be monotonic because they par- 
ticipate in the fixpoint computation of transition ta- 
bles. Consequently, neither statement-level nor row- 
level before-triggers can use aggregate information, 
e.g., total number of employees deleted, computed 
from transition tables; this information is meaningless 
until the fixpoint computation is complete. Because 
aggregation is the main reason for including transition 
tables, we restrict their use entirely in before-triggers. 
Our model also does not allow before-triggers to mod- 
ify the database because such modifications can lead 
to non-monotonic behavior. Furthermore, such mod- 
ifications may cause the activation of further triggers 
which may lead to confusing behavior due to the nest- 
ing of modifications yet to be applied to the data- 
base. Clearly, these restrictions on before-triggers are 
conservative, and identifying the situations in before- 
triggers in which transition table references or mod- 
ifications do not lead to non-monotonic behavior are 
topics for further investigation. 

Our model evaluates declarative constraints before 
executing any after-triggers. This concurs with exist- 
ing implementations of triggers in the marketplace [24, 
Ii’]. However, these implementations have fundamen- 
tal limitations. Some only support statement-level 
after-triggers, leading to very verbose triggers for re- 
peatedly performing operations on each row modified 
by the triggering event. Others intermix the execution 
of row-level after-triggers with the evaluation of con- 
straints in a way that does not maintain the SQL92 
constraint evaluation model and does not guarantee 
that application logic in an after-trigger operates on 
a consistent database. A previous proposal [16] pro- 
vides a detailed analysis of the difficulties in specifying 
a model for simultaneously evaluating declarative con- 
straints and procedural triggers in SQL. In contrast to 
our model, this proposal attempts to define a model 
in which constraints are evaluated only after all of the 
triggers are executed. Hence logic embedded in after- 
triggers is possibly exposed to inconsistent data. Un- 
fortunately, application libraries require a consistent 
database and, as such, cannot be used by trigger bod- 
ies. Interestingly, such semantics may also lead to 
a severe performance degradation of trigger execution, 

and, as highlighted in [32], this is an important concern 
in the employment of active features. Many optimiz- 
ers use uniqueness and referential constraints to reduce 
duplicate elimination and access to parent tables; such 
semantic optimization techniques can only be applied 
when declarative constraints are guaranteed. 

Non-determinism is inherent in row-level after- 
triggers due to the order in which rows are processed. 
Consider an update of two rows r-1 and r2 in T, and a 
row-level after-trigger for updates to T that inserts the 
value of the new transition variable into table S, and 
subsequently appends table S to table R. If rl is pro- 
cessed first, then two copies of rl will be appended to 
R and only one copy of r2. If r2 is processed first, then 
two copies of rs will be appended to R and only one 
copy of rl. It is enlightening to notice that most row- 
level after-triggers can be simulated with a statement- 
level after-trigger in which the trigger program iterates 
through each row of the transition table if trigger ac- 
tions support iteration. In addition, these statement- 
level after-triggers could use the “order by” clause to 
sort the rows in the transition tables and guarantee 
a deterministic behavior. Another topic for future re- 
search is to support an ordering clause to help users 
control the processing of row-level triggers. Row-level 
triggers are an important feature because they greatly 
simplify trigger actions. In addition to providing a 
convenient short-hand for processing actions once per 
each row, they inherently provide a mechanism for 
pairing the new and old transition values of an up- 
dated row. Simulating this mechanism in statement- 
level triggers requires a join of the old and new tran- 
sition tables using the columns of non-updatable pri-, 
mary keys. Furthermore, row-level before-triggers can- 
not be simulated with statement-level before-triggers 
because the statement-level before-triggers cannot ref- 
erence transition tables. 

Our model is unique in considering the semantics 
and scoping rules for transition table and transition 
variable references within the context of all the vari- 
ous flavors of triggers. Transition tables can be refer- 
enced in the conditions and actions of both row-level 
and statement-level after-triggers, and facilitate appli- 
cations that perform actions based on the aggregate 
information about the transition. Furthermore, a tran- 
sition table collects all transitions of an event type for 
the execution of a statement and the evaluation of its 
constraints. This is particularly advantageous in the 
case of cyclic RI, as it delivers the full transition table 
to the application logic, allowing it to reason about the 
net-effect of a given statement. Consider a deletion 
for a department table that causes cascaded deletes 
of all employees in the deleted department, which in 
turn causes cascaded deletes of any departments man- 
aged by the deleted emp!oyees. At the end of the 
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constraint evaluation, the OLD transition table of a 
delete-trigger for the department table contains all of 
the deleted departments, and the OLD transition ta- 
ble of a delete-trigger for the employee table contains 
all of the deleted employees. Assuming no other after- 
trigger modifies the database, these transition tables 
can be unioned with the existing database to recon- 
struct its contents prior to the original delete state- 
ment 

Our model utilizes a global trigger ordering when 
the fixpoint execution of constraints executes many 
events causing the simultaneous activation of several 
after-triggers with different event types. A global trig- 
ger ordering is also required for the execution of de- 
ferred constraints and triggers. SQL3 currently does 
not provide a mechanism for a user defined global or- 
dering, and, in the implementation of DB2, we define 
the global ordering according to the creation times- 
tamp. Extending the standards to allow user speci- 
fied global ordering among all triggers, similar to the 
Starburst Rule System [l], and extending our model 
to support deferred triggers and constraints are topics 
for future work. 

Although there has been considerable research ac- 
tivity for active DBMSs, prior to this paper the im- 
portant problem of completely integrating declarative 
constraints and active rules without restrictions has 
not been addressed. The execution models of many 
prototype active database systems, e.g., Ariel [14], 
HiPac [8, 181, RDL [22], RPL [9], and Starburst [36], 
consider only ECA rules and are more in the style of 
OPS5; the activation of triggers is considered only at 
preset activation points, the execution of trigger ac- 
tions are non-interruptible, and trigger activation is 
determined based on the net-effect of multiple events. 
Because declarative constraints are supported using 
rules, these systems cannot benefit from the important 
semantic query optimization techniques [23]. In con- 
trast to the OPS5 models, triggers appearing in the 
marketplace are more procedural, & la Postgres [33], 
Alert [31] and Update Dependencies [4, 251. Once ac- 
tivated, a trigger will be eventually executed, and if a 
trigger action causes an event that activates another 
trigger, the newly activated triggers are executed im- 
mediately. The burden for controlling triggering based 
on the net-effect of database modifications is placed on 
the user who can program this explicitly in the trigger 
condition and action. 

8 Summary 

Support for active data is crucial to the management of 
the world’s information. Declarative constraints and 
triggers are two essential features that have been in- 
troduced to support user requirements in relational 

DBMSs. Given the differing expressive powers of 
declarative constraints and triggers, support for both 
is required for today’s applications. 

The semantics of the interaction of triggers and 
declarative constraints must be carefully defined to 
avoid inconsistent execution and to provide users a 
comprehensive model for understanding such interac- 
tion. This is the first paper that defines such a model. 
Our model is unique in that it maintains the set seman- 
tics for evaluating declarative constraints as defined by 
SQL92 while allowing the execution of powerful proce- 
dural triggers. This model integrates trigger execution 
with all forms of constraints defined in the SQL92 stan- 
dard: primary keys, unique keys, NOT NULL specifi- 
cations, check constraints, referential constraints, and 
symmetric views. The main advantage of this model, 
as described in Section 7 “Discussion of the Model”, 
is that it maintains the SQL92 fixpoint semantics for 
the evaluation of constraints and incorporates before- 
triggers into this fixpoint computation while ensuring 
that application logic embedded in after-triggers op- 
erates with a consistent database. This work is also 
the first to define the semantics and scoping rules of 
both transition tables and transition variables in the 
context of row-level and statement-level triggers. 
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