
Integrating Triggers and Declarative Constraints in SQL
Database Systems

Roberta Cochrane Hamid Pirahesh Nelson Mattos

IBM Almaden Research Center, San Jose, CA
{bobbiec, pirahesh, mattos}Qalmaden.ibm.com

Abstract

This paper describes a model that integrates
the execution of triggers with the evaluation
of declarative constraints in SQL database sys-
tems. This model achieves full compatibility
with the 1992 international standard for SQL
(SQL92). It preserves the set semantics for
declarative constraint evaluation while allow-
ing the execution of powerful procedural trig-
gers. It was implemented in DB2 for common
servers and was recently accepted as the model
for the emerging SQL standard (SQW).

1 Introduction

Active databases are taking a prominent role in com-
mercial database applications [6, 30, 29, 131. With
client/server solutions, applications are being devel-
oped by small, autonomous groups of developers with
narrow views of the overall enterprise; the enterprise
information system is very vulnerable to integrity vi-
olations because it lacks strict enforcement of the en-
terprise business rules. Active data proactively moni-
tors events and, without user intervention, protects its
own integrity or invokes actions either within or ex-
ternal to the database. Active data features can be
used to bind frequently used application logic to data
for invocation directly within the server, decreasing
client/server communication.

As the SQL standard progresses to its next re-
lease (SQL3)[21], t . i is under pressure to include a
well-defined model for active data. Prior research

Permission to copy without fee all OP part of this material is
granted provided that the copies, are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, o+ to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

[3, 11, 341 promotes event condition action (ECA) rules
as the uniform mechanism to support constraints, au-
thorisation and application logic. The only prior work
that considers the simultaneous existence of separate
specifications and models for the execution of ECA
rules and declarative constraints is [16]. However,
most commercial DBMSs support a rich set of declar-
ative constraint constructs compliant with SQL92, and
commercial applications rely on the fact that this spec-
ification will not change. Hence, the active database
model that will be used in practice must integrate pro-
cedural triggers (one form of ECA rules) with the ex-
isting model for declarative constraints defined by the
SQL international standard (SQL92) [20, 27, 71.

There are many practical reasons why, when appli-
cable, declarative constraints should be used in lieu
of triggers. However, declarative constraints alone are
not powerful enough to support all the active data-
base requirements of applications. Most popular ac-
tive database models developed thus far bear some
resemblance to either OPS5 [2] style production rule
systems or deductive logic. Unfortunately, the trigger-
ing mechanisms emerging in the commercial DBMSs
[24, 12, 35, 171 d o not follow this approach. Instead,
they are procedural in nature, and lack many reason-
ing advantzges inherent in such rule-based systems.
However, this procedural model is a natural mapping
of existing commercial application logic.

This paper describes the first integrated model for
reconciling the execution of triggers with the evalua-
tion of SQL92 declarative constraints. It resolves the
problems with the co-existence of triggers and declar-
ative constraints introduced in [16], and it is the only
model that (a) allows triggers to coexist with deferred
constraints and cascading referential constraints, (b)
incorporates before-triggers, after-triggers, row-level
triggers, and statement-level triggers in a uniform
framework that is integrated with the set semantics for
modifications required by SQL92 (not previously un-
derstood), and (c) defines scoping rules for transition
variables and tables in the context of the aforemen-
tioned types of triggers.

SQL3 [21] 1 d mc u es advanced database features and

567

has started the final publication process. Until now,
SQL3 has received little input from the active database
community. Yet there is increasing interest from both
commercial SQL vendors and customers for a well-
defined specification of SQL triggers. Our model was
recently accepted as the model for SQL3 triggers [5],
and we hope~that this paper will stimulate further con-
tribution from the research community.

The structure of the paper is as follows. Section 2
discusses the relative advantages of declarative con-
straints and triggers. Section 3 presents declarative
constraints and their fixpoint evaluation model as de-
fined in SQL92. Section 4 proposes our model for
SQL3 triggers and defines their execution in the ab-
sence of declarative constraints. Our model for in-
tegrating the evaluation of declarative constraints and
the execution of triggers in SQL is presented 3 sections:
Section 5 formally describes the integrated execution
model, demonstrated by an example in Section 6, and
discussed further in Section 7 which highlights the con-
tributions of our work with respect to other products
and prototypes.

2 Constraints or Triggers?

An active database system (DBMS) should support
constraints as well as event-driven application logic.
However, declarative constraints should be used in lieu
of triggers whenever possible. First, several triggers
are required to enforce one declarative constraint; even
then, the system has no way of guaranteeing the valid-
ity of the constraint in all cases. Consider the database
load utilities in which the database checks the declar-
ative constraints against the loaded data before it can
be accessed. There is no way to determine which trig-
gers should be checked since triggers are also used for
transitional constraints and for event-driven applica-
tion logic. This behavior also applies when constraints
and triggers are added to a database with pre-existing
data.

The database engine can use knowledge of declara-
tive specifications to optimally evaluate constraints.
For example, concurrency control hot spots can be
avoided during referential integrity enforcement by
reducing the isolation level to cursor stability [28].
Guaranteeing the presumed semantic intent of trig-
gers, in general, requires an isolation level of repeat-
able read [lo]. Furthermore, semantic query optimiza-
tion is not possible if the declarative semantics are
hidden in triggers. Tool vendors may also take advan-
tage of declarative constraints for pre-checking entries
at the client (e.g. a mobile laptop) before sending data
to the server.

The declarative constructs provided by most sys-
tems and defined in SQL92 only support a small, al-

beit useful, set of static constraints that define the
acceptable states of the value of the database, e.g.
salary > commission+honrlyYage* hoursWorked. They do
not support transitional constraints that restrict the
way in which the database value can transition from
one state to the next e.g. salary increases must be 1~s

than IOX. They also do not support event-driven invo-
cation of application and business logic. Hence, trig-
gers are required to enhance the declarative constraint
constructs and to capture application specific business
rules. Triggers provide a procedural means for defining
implicit activity during database modifications. They
are used to support event-driven invocation of appli-
cation logic, which can be tightly integrated with a
modification and executed in the database engine by
specifying a trigger on the base table of the modifica-
tion. Triggers should not be used as a replacement for
declarative constraints. However, they extend the con-
straint logic with transitional constraints, data con-
ditioning capabilities, exception handling, and user-
defined repairing actions.

In summary, there are advantages to using both
declarative constraints and procedural triggers, and
both types of constructs are available in many com-
mercial systems. It is not feasible to expect applica-
tions providers to either migrate their existing appli-
cations to use only triggers or partition the tables in
their database according to the type of constraints and
triggers that are required. It is therefore imperative to
define and understand the interaction of constraints
and triggers.

3 Declarative Constraints in SQL92

Declarative constraints in SQL92 include two forms
of static constraints: check constraints and referen-
tial constraints.l SQL92 also supports the definition
of symmetric views (sometimes referred to as the with

check option), which are transitional constraints ap-
plied to updates and inserts through a view.

Although declaratively specified, each constraint
implies a set of events for which the constraint is
checked and>n action to be taken if the constraint is
not satisfied (or, more accurately, evaluates to false).
When a static constraint is defined, the system verifies
it against the existing data, and once defined, guar-
antees that the constraint is always satisfied. After
load utilities are used, the system verifies all declara-
tive static constraints before the loaded data can be
accessed.

A check constraint, typically used to validate in-
put data, is a condition that is true for every row in
a given table. In general, a check constraint can be

‘In X&92, primary keys, unique keys, and NOT NULL are
viewed as special cases of check constraints.

568

any SQL condition, including multi-table assertions.
Since such assertions are extremely expensive to sup-
port, this feature is practically restricted to the special
case key constraints and one variable aggregate-free
check constraints, i.e., value constraints, in most ex-
isting products. These constraints allow the definition
of uniqueness constraints, value restrictions and intra-
row value checks on a single table. In object-oriented
extensions of SQL, check constraints can contain func-
tions applied to the values as long as the functions are
deterministic and do not have side-effects. Value con-
straints need only be evaluated when the constraint is
defined, after special load utilities are run, or when any
table on which the constraint is defined is modified by
an UPDATE or INSERT statement. In addition, multi-
table assertions may also need to be checked when any
table referenced in the condition is modified. If the
constraint evaluates to false for any updated or in+
serted rows (or, for a multi-table assertion, any row in
any referenced table), then the statement that caused
the modification2 is rejected and any changes made by
the statement are undone.

A referential integrity (RI) constraint establishes a
relationship between a set of columns designated as a
foreign key and a unique key such that the non-null val-
ues of the foreign key must also appear as values in the
unique key. The foreign key’s table is the constraint’s
child table and the unique key’s table is the constraint’s
parent table. Note that the parent table and child ta-
ble can be the same, referred to as a self-referencing RI
constraint. Like check constraints, RI constraints must
also be checked when the constraint is defined and af-
ter special load utilities are run. However, since there
are two tables involved in the constraint, there are four
modifications that cause constraint evaluation: (a) in-
sertions into the child table, (b) updates a foreign key
column, (c) deletions from the parent table, and (d)
updates of a unique key column. Whenever modifica-
tions to the child table violate the constraint, the state-
ment that caused the modification is rejected and any
changes made by the statement are undone. However,
the action to be taken when the parent is modified by
a DELETE or UPDATE statement is one of a set of
pre-defined actions that is specified with a delete rule
or update rule, respectively, when the constraint is de-
fined. This pre-defined set includes: NO ACTION and
RESTRICT, which reject the violating statement3; SET
NULL, which sets the nullable columns of the foreign
key of any child rows that match the modified parent
rows to null; SET DEFAULT, which sets the foreign

2we refer to UPDATE, DELETE and INSERT statements
collectively as modifications.

‘NO ACTION and RESTRICT have very subtle differences
which are not illuminated here as these distinctionsdo not affect
the model presented in this paper.

key columns for any child rows that match the mod-
ified parent to their default values; and CASCADE,
which deletes any matching child rows.

A symmetric view is defined by specifying the WITH
CHECK OPTION clause during the creation of the
view. It defines a transitional constraint that is eval-
uated whenever the view is modified by an INSERT
or UPDATE statement. The most general form of this
clause indicates that any row modified through an UP-
DATE or INSERT statement on a symmetric view must
remain in the view after the modification. If the mod-
ification causes the row to disappear from the view,
then the statement causing the modification is rejected
and any changes made by the statement are undone.

Constraint Evaluation In the Absence of Fr”riggers

The evaluation of declarative constraints, well-defined
by SQL92, is complex and if done incorrectly can lead
to anomalous non-deterministic behavior [26]. Dif-
ficulties arise when an SQL statement modifies sev-
eral rows or causes the evaluation of multiple RI con-
straints. The result of the statement must not depend
on the order in which the rows are modified or the or-
der in which the constraints are applied. Hence, sev-
eral existing products restrict the combinations of con-
straints that can be defined and the classes of updates
and deletions allowed on unique keys [1914. According
to SQL92, the constraints must effectively be processed
only after all modifications of the original statement
are applied. However, there is a common optimiza-
tion employed that evaluates constraints in-flight as
the rows are modified. This optimization must only
be used when the success or failure of the statement is
not dependent on the order in which the rows or the
constraints are processed.

The interaction of simultaneously enforcing check
constraints, RI constraints, and symmetric views when
the update or delete rule of one of the RI constraints
is either SET NULL or CASCADE is another potential
source of non-determinism. This ambiguity was re-
moved by a run-time marking algorithm defined in [15]
which defines a fixpoint computation for enforcement
of the declarative constraints. With a few subtle ex-
ceptions, this run-time algorithm results in the follow-
ing evaluation order for constraints:

1. Evaluate the original statement’s modifications.

2. Evaluate all constraints with RESTRICT semantics.
If any are violated, return an error after undoing
any changes made by the original statement.

3. Perform all cascaded modifications, including SET
NULL. As modifications are cascaded, any fur-

4DB2 for Common Servers Version 2 has removed these
restrictions.

569

4.

5.

ther activated RESTRICT constraints must also be
checked.

Perform all cascaded deletes. As deletes are cas-
caded, any further activated RESTRICT and cas-
caded modifications must be checked.

Evaluate all constraints with NO ACTION seman-
tics, including check constraints, symmetric views,
unique keys and not-null constraints. If any of these
constraints are violated, raise an error and undo any
changes made by the original statement and any re-
sulting cascaded actions.

Thus, SQL92 has a very explicit specification for
deterministic evaluation of constraints with respect to
database modifications. This specification defines a
fixpoint evaluation that is independent of the order in
which rows or constraints are processed. Not only has
this evaluation model been published as the SQL stan-
dard for over four years, but more than a dozen SQL
database vendors have a conforming implementation
of SQL92 constraints.

4 A Proposal for SQL Triggers

In contrast to declarative constraints, triggers are pro-
cedural. The event governing the execution of a trigger
is explicitly specified in its definition. This triggering
event is an UPDATE, DELETE or INSERT statement
applied to a base table. An optional column list can
be specified in the case of updates to further restrict
the set of update events that activate the trigger.

The trigger also has an activation time that specifies
if the trigger is executed before or after its event and a
granularity that defines how many times the trigger is
executed for the event. Before-triggers execute before
their event and are extremely useful for conditioning
of the input data before modifications are applied to
the database and the relevant constraints evaluated.
After-triggers execute after their event and are typi-
cally used to embed application logic, which typically
runs after the modification completes.

The granularity of a trigger can be specified as ei-
ther FOR EACH ROW or FOR EACH STATEMENT,
referred to as row-level and statement-level triggers re-
spectively. When the event of a row-level trigger oc-
curs, the trigger is executed once for each row affected
by the event. If no rows are affected, then the trigger
is never evaluated. However, a statement-level trigger
is executed exactly once whenever its event occurs,
even if the event does not modify any rows. Like to
constraints, both row-level and statement-level after-
triggers must (appear to) execute only after the trig-
gering event finishes executing; before-triggers must
appear to execute entirely before the triggering event’s

modifications are applied. Note that the granularity
does not dictate when the trigger executes. Obviously,
there are many cases when row-level triggers can be
safely and optimally processed in-flight. However, if
they or any constraints that must be evaluated require
access to either the base table of the triggering event
or any table that is modified by the trigger or the con-
straints, then row-level triggers can only be processed
in a set-oriented fashion. E.g., if a row-level update
trigger on table T accesses the average of a column in
T, then the average must not be computed in the mid-
dle of the triggering update; it must either be com-
puted entirely before or after the application of any
modifications to T.

Each trigger has access to the before-transition val-
ues and after-transition values of the event through the
declaration of transition variables and transition ta-
bles. The declaration “referencing NEW as N” de-
fines N as a single row correlation variable that contains
the value of a row in the database immediately after
the modification is applied. Similarly, “referencing
OLD as 0” declares 0 as a single row correlation vari-
able containing the value of the same row in the data-
base before the modification is applied. If both OLD
and NEW transition variables are declared as above,
then the new and old values of a given row can be
compared. For example, if the trigger’s table is EMP,
and EMP has column salary, then we can check if the
modification was a raise by comparing 0. salary with
N. salary. Transition tables are similarly declared us-
ing keywords NEW-TABLE and OLD-TABLE. If NT is
declared as a new transition table, it is a virtual table
containing the values of all modified rows immediately
after the modification is applied. Similarly, if OT is
declared as an old transition table, it is a virtual ta-
ble containing the values of all modified rows before
the modification is applied. The contents of transition
tables is operationally defined in Section 5,

Not all types of transition variables and transition
table references are valid for each type of trigger. In
particular, triggers defined on insert events can only
see new values and triggers defined on delete events
can only see old values while triggers defined on up-
date events can see both old and new values Further-
more, transition variables are only accessible at the
granularity of one row, and hence, can only be refer-
enced by row-level triggers. As will be described in
Section 5, both statement-level and row-level before-
triggers participate in a fixpoint computation of the
transition tables; during the computation of this fix-
point, inherently, the entire content of’the transition
tables is not yet computed. Hence, before-triggers can-
not reference transition tables. However, both row-
level and statement-level after-triggers can reference
transition tables. Such references allow row-level after-

570

triggers to compare a single transition row value with
aggregations on the transition tables, e.g., how the new
salary in a given row compares with total impact of the
salary increase.

Each trigger has an action that is optionally
guarded by a condition; the action is only executed
when the triggering event occurs and, if specified, the
condition is satisfied. The condition is a single, unre-
stricted search condition and the action is a procedure
containing a sequence of SQL statements. Both the
action and the condition can query the transition vari-
ables and tables as well as the current value of the
database, and these queries can invoke user-defined
functions. Since before-triggers appear to execute en-
tirely before the event occurs, any queries of the data-
base in their conditions or actions must appear to read
the database state prior to any modifications made by
the event. Similarly, the conditions and actions of all
after-triggers must appear to read the database state
after all of the event’s modifications are applied. If the
after-trigger needs to query the state of the database
prior to the event, then it can reconstruct it using the
transition tables. For example, if T is modified by the
triggering event, NT is the new transition table and OT
is the old transition table, then the state of T prior to
the event can be approximated by (T \ NT) U OT.

The trigger action is an atomic procedure, e.g., SQL
Procedural Stored Module (PSM), that may contain
SQL statements combined with other procedural con-
structs. The SQL statements are executed in the order
in which they occur in the evaluation of the proce-
dure. If any one of the SQL statements fail, the entire
trigger action is rolled-back, including the triggering
event. After-triggers, used primarily to embed applica-
tion logic in the database, can contain any data manip
ulation SQL, including SELECT, UPDATE, INSERT,
and DELETE statements. Before-triggers can contain
condition data using an assignment statement that al-
lows the trigger body to set the values of transition
variables declared as NEW. Note that this statement
is not allowed in after-triggers since the modification is
already applied to the database, and the NEW transi-
tion variable is no longer maleable. Conversely, before-
triggers cannot modify the database using UPDATE,
DELETE, or INSERT statements since this leads to a
nested model of unapplied modifications.

Triggers can indirectly cause a statement-level roll-
back by raising an error, e.g., using the SQL signal
statement. When this occurs, the containing SQL
statement fails and, as described above, the entire
trigger action is rolled-back, including the triggering
event.

Several triggers can have the same event and acti-
vation time. Hence, multiple triggers can be simulta-
neously eligible for execution. When this occurs, the

eligible triggers must be executed according to some
discernible total order global to the entire set of trig-
gers. Our execution model assumes the existence of
some global ordering of the entire set of triggers, a la
Postgres [33] or Starburst [l].

lPrigger Execution in the Absence of Constraints

The execution of an after-trigger may activate other
triggers, recursively activate itself, or activate the eval-
uation of constraints. Triggers that activate other trig-
gers are executed in a nested procedural fashion. If a
modification statement S in trigger action A causes an
event E, and there are no constraints defined in the
system, S is processed as follows.

1.

2.

3.

4.

5.

Execution of A is temporarily suspended, saving all
local state on a stack. New and old transition tables
for S are computed.

All before-triggers activated by E are executed in
sequence according to their creation order. If a
before-trigger contains an assignment statement,
then the appropriate fields in the new transition ta-
ble are modified for the row associated with the new
transition variable.

The current values in the new transition table are
applied to the database.

All after-triggers activated by E are executed in se-
quence according to their creation order. If any
such execution causes another event, then the state-
ment causing the event is processed recursively
starting in step 1.

A’s state is recovered from the stack and processing
resumes with the statement that follows S in A.

Recalling that an event is the entire SQL statement,
the event-to-condition binding is deferred (with the
exception of the first trigger executed), and condition-
to-action binding is immediate. The difference is that
in these prototype systems, the event is a modification
to a single row and in SQL systems the event is an
entire SQL statement that may involve modifications
to several rows.

In the above model, there is at most one SQL state-
ment being applied to the database at any given point.
That is, there is only one set of transitions being com-
puted for a given event. Recall that we do not al-
low-before-triggers to modify the database. If we did,
many statements could be in progress simultaneously.
Because before-triggers execute prior to the applica-
tion of their triggering modification, allowing modifi-
cations causes an endless chain of unapplied modifica-
tions to build up. These modifications are not visible
to the nested invocations of other triggers and result in

571

an ambiguity as to what persists in the database when
the before-triggers and any cascaded actions due to
such statements complete.

5 An Integrated Model

This section defines a model that integrates the exe-
cution of before-triggers and after-triggers defined in
Section 4 with the fix-point evaluation of SQL92 con-
straints summarized in Section 3. This model is incor-
porated in the IBM DB2 for Common Servers Version
2 product and was recently proposed and accepted as
the model for trigger execution in SQLJ.

One of the motivating principles behind the design
of our execution model is to minimize the window in
which the declarative constraints of the database are
not guaranteed. This is particularly important for ap-
plication logic that is embedded in after-triggers. Ap-
plication logic is more easily written and debugged if
one can assume that the declarative constraints are
enforced. Furthermore, many semantic optimization
techniques can only be applied if the declarative con-
straints are enforced. Otherwise, the resulting plans
may yield erroneous results. Our model guarantees
that any statement issued externally by an application
or internally by an after-trigger will only read database
states that are consistent with respect to the declar-
ative constraints.

Figure 1 depicts the execution of an SQL modifica-
tion statement S. During the processing of S, data is
conceptually stored in two different repositories: the
database and the working storage. The database rep-
resents the persistent repository of the enterprise data
that is shared among applications and whose visibility
is protected by the authorization and locking mecha-
nisms of the DBMS. On the other hand, the worlcing
storage is local to and contains transitions computed
during the execution of S. A transition associates the
before-value and after-value of a single row resulting
from an event. If 0 is a transition representing a mod-
ification of a row for some event E, then 6.new (appli-
cable for insert and update events) is the value of the
row to be applied to the database and e.old (applica-
ble for delete and update events) is the value of the
row before E is executed. Transitions are grouped into
sets Al, A,, according to their event type, which
is update, delete or insert 5 qualified by a single table.

A trigger is activated by a transition set if the event
type of the trigger is the same as the event type of the
transition set. When a row-level trigger is executed
for a transition, the value of the new and old transi-

61n the case of update, the event type is further partitioned
by column sets if there are triggers whose event specifies a col-
umn list. This level of detail is omitted for the purposes of this
description.

tion variables are derived directly from the new and
old values of the transition. When either a row-level
trigger or statement-level trigger is executed, the value
of the new and old transition tables are computed from
the trigger’s activating A. The new transition table is
a table containing one row for each transition in A
whose value is the new value of the transition. Sim-
ilarly, the old transition table is computed from the
old values of the transitions.

An Update, Delete, or Insert statement S is exe-
cuted by the procedure ExecuteSJDI as depicted in
Figure 1 and described below.
Compute A, for S. The execution of statement S
begins with the initialization of A,, which represents
transitions made by S or by any resulting cascaded ac-
tions with the same modification type and table as S’s

event. The values of A, are determined based on the
current values of the database and the semantics of S.
If S is a DELETE(T), then A, is initialized as the set
of all transitions for all rows that satisfy the search
condition of S. If 8 is a transition in A,, &old is the
value of the row that is to be deleted, and B.new is
not applicable. If S is INSERT(T), then Ai is initial-
ized as the set of transitions for all rows identified by
the VALUES clause or query expression of S. If B is a
transition in A,, B.new contains the new values to be
inserted into the database and &old is not applicable.
If S is UPDATE(T), then ‘A, is initialized as the set of
transitions for all rows that satisfy the search condi-
tion of S. If B is a transition in Ai, &old is the value
of the row before the update and B.new is the value of
the row after the update.
Execute before-triggers for S. Let Bl, B2, . . ., BP
be all of the before-triggers activated by Al’s event
in increasing order according to the global trigger or-
dering. B1 is considered first. If B1 is a row-level
trigger, it is executed once for each row in A,, which
implies that it is not executed if A, is empty. If BI is
a statement-level trigger, it is executed exactly once.
Note that a statement-level trigger is executed even if
Ai is empty, because the triggering event, S, occurred.
All statements in a row-level trigger are executed for
a given row before proceeding to the next row. The
remaining before-triggers B2, . . ., BP are considered in
turn. Before-triggers can read data from the database.
A row-level before-trigger can also use an assignment
statement to modify columns of a given rows new tran-
sition value. Because restrictions on before-triggers
prevent them from modifying the database, they can-
not cause cascaded execution of triggers or cascaded
evaluation of constraints. However, a triggered action
may explicitly request an error to be returned. There
is no need to rollback any changes made by S since AI
has not yet been applied to the database.
Apply A, to the database. This is the first point

572

Figure 1: Execution of a Database Modification Statement
in the processing of S when S’s modifications are made
to the database. Note that any changes made to Ai
by row-level before-triggers are reflected in the modi-
fications applied to the database.

Evaluate the declarative constraints for S. If A,
is empty, this step does not have any effect. Otherwise,
constraints (referential constraints, check constraints
and symmetric views) are evaluated for all modifica-
tions made by S according to the SQL92 semantics
summarized in Section 3. The figure refers to a fix-
point, which is reached only when (a) no constraints
are violated and (b) statement-level before-triggers for
all cascaded actions of the evaluated constraints are
executed. This is symmetric with the execution of
statement-level before-triggers for statements that do
not actually perform any modifications. If the fix-
point is not reached because of the evaluation of some
constraint C, then either C is not satisfied or C is sat-
isfied and has a cascading action for which statement-
level before triggers must be processed. So, if C does
not have a cascading action, then an error must be re-’
turned. If the evaluation of C requires a cascading ac-
tion Si (CASCADE, SET NULL, SET DEFAULT), then
all before-triggers activated by Si must be processed
before the Si’s modifications are applied to the data-
base. First, transitions for Si’s modifications are com-
puted and stored in a temporary transition set Si If C

is satisfied, then Si will be empty. But we must still ex-
ecute statement-level before-triggers for Si. We must
also create Ai for Si if it does not already exists to
schedule the execution of the corresponding statement-
level after-triggers.

Let Bil, Bi2, ., Bip be the before-triggers acti-
vated by 6;‘s event in increasing order according to
the global trigger ordering. Bil is considered first.
If it is a newly activated statement-level trigger, i.e.,
it was not activated previously by S or by any other
cascading action, then it is executed once. If it is a
row-level trigger, then it is executed once for each row
in Si. The remaining before-triggers Bi2, . . ., Bip are
similarly considered in turn. Note that a statement-
level before-trigger Bstmt is evaluated at most once
for a statement and its cascading actions. If Bstmt is
activated by S’s event, then it is never executed by.a
cascading action of a declarative constraint for S. Oth-
erwise, it is executed the first time it is activated by a
cascaded action.

The modifications of & are then applied to the data-
base. If there does not already exist a transition table
Ai in the working storage with the same event as &,
then Ai is created and initialized with the values of
Si. Otherwise, the transitions in & are appended to
&. The declarative constraint processing continues in
this manner until a fixpoint is reached, i.e., all of the

573

declarative constraints are satisfied and all statement-
level before-triggers for cascaded actions required for
the evaluation of a constraints are executed.

If the evaluation of a constraint causes an error to be
returned, then any modifications made to the database
by Execute-UDI are first undone. These modifications
are represented by the transitions in Ai, ., A,, in
the working storage. Processing for Execute-UDI ter-
minates and returns an error.
Execute after-triggers for S and its cascading
actions. Let Al, AZ, . . ., A, be all statement and
row-level after-triggers activated by events of Ai, .,
A, in increasing order according to the global trigger
ordering. Processing of the after-triggers is the same
as previously described for before-triggers, with the
following exceptions: (a) the set of simultaneously ac-
tivated triggers contain triggers with different events
(rather than a single event) since the entire contents of
the working storage is considered, (b) statement-level
triggers execute once for the transition set Ai of their
respective activating event, (c) after-triggers cannot
change the new values of A;, and (d) any explicit er-
ror returned by the action of a trigger must first undo
changes made to the database by Execute-UDI. Be-
cause the action of an after-trigger can contain SQL
statements that modify the database, such statements
must be processed in a recursive manner. When a
DELETE, UPDATE, or INSERT statement S’ is en-
countered during the execution of after-trigger Ai, the
current contents of the working storage is pushed on a
stack clearing its current contents, and Execute-UDI is
recursively invoked to process S’. After Execute-UDI
finishes executing S’, the saved contents of the working
storage is popped from the stack. If the recursive in-
vocation causes an error, all modifications made to the
database by Execute-I-ID1 are undone and processing
terminates in error.
Return. If the above processing of the before-triggers,
declarative constraints, and after-triggers completes
successfully with no explicit errors during trigger ex-
ecution, constraint violation errors, or errors caused
from recursive invocations of Execute-UDI, then pro-
cessing returns successfully. Otherwise, processing re-
turns an error after restoring the database to its state
prior to this execution of Execute-UDI. Note that, as
described, when any error occurs, the database will
eventually be restored to the state of the database be-
fore the execution of the outermost modification event
(i.e. to the beginning of the original statement).

6 Our Model in Action
Consider an application that with the following tables,
constraints, and a symmetric view:

DISTRIBUTORS(id,location)

AUDITPARTS(modtype, updated-by, moddate, numrecs)
PARTS(codenum, supplier, cost, super-part,

updated-by,record-date)

HIBVAL: check (cost >= 10.0)
VALIDDIST: PARTS(supp1i-x) references DISTRIBUTOR(id)

on delete set null
PARTSUPPART: PARTS(super-part) references PARTS(codenum)

on delete cascade

EOUCAPITAL view: (select * from PARTS
where COST < 500) with check option

Check constraint MINVAL verifies that only parts
with cost greater than 10 are tracked. The RI con-
straint VALIDDIST ensures that any non-null value
of PARTS.suppher is a valid distributor. Because the
delete rule is SET NULL, the deletion of a distribu-
tor will set the supplier field for any part supplied by
the deleted distributor to NULL. The self-referencing
RI constraint PARTSUPPART ensures that all values
of super-parts are also listed as parts. The delete rule
of cascade will delete a part whenever its super part
is deleted. Symmetric view NONCAPITAL selects only
parts that are not classified as capital equipment. Any
insertion of capital equipment or update that reclas-
sifies non-capital equipment as capital is not allowed
through this view.

The following row-level before-trigger ensures that
the supplier field is never updated to any value other
than NULL. If this occurs the originating statement is
rolled-back and an error is reported.

create trigger OHESUPPLIER
before update of supplier on PARTS
referencing new as B
for each row
when (II.supplier IS ROT BULL)

signal sqlstate '70005' ('Cannot change supplier');

The following row-level before-trigger computes the
time and user of each update.

create trigger USERDATE
before update on PARTS
referencing new as B
for each row

set B.updated-by = USER,
B.record-data = CURREBT DATE;

The following statement-level after-trigger uses a tran-
sition table to audit the number of parts updated.
Assume there is a similar statement-level trigger
RECORDDEL after deletions on PARTS.

create trigger RECORDUPD
after update on PARTS
referencing old-table as OT
for each statement

insert into AUDITPARTS
values('U', USER, CURREBT DATE,

(select count(*) from OT));

574

When all suppliers located in California are deleted
from table DISTRIBUTOR, the referential constraint
VALIDDIST will be evaluated, causing the supplier
column for all rows in PART whose supplier column
matches the id of any of the deleted distributors to be
set to NULL. This update, in turn, activates the two
before-triggers ONESUPPLIER and USERDATE, which
are then executed. Assume that the global order is the
same as the creation time order of the triggers, so that
ONESUPPLIER is executed before USERDATE First,
the new value for supplier is checked. Because it is
NULL, the condition of trigger ONESUPPLIER is not
satisfied, so the error is not returned. Second, update
values for columns updated-by and record-date are com-
puted from the environment values for the current user
and date. Once these triggers are evaluated for all of
the identified rows, the resulting updates are applied
to the database, which activates the statement-level
trigger RECORDUPD. This trigger will insert one row
into table AUDITPARTS to record number of rows in
PARTS updated as a result of a statement issued by
the current user.

Now, suppose that all parts with NULL suppliers are
deleted. The referential constraint PARTSUPPART is
evaluated and subsequently deletes any row in PART
whose super-part was deleted. This process continues
until there are no rows left in PART with either a NULL
supplier or a super-part value that does not match some
codenum value of a remaining row in PART. Once the
evaluation of PARTSUPPART reaches this fixpoint, the
statement-level trigger RECORDDEL is activated and
inserts one record in table AUDITPARTS to record the
total number of rows deleted from PARTS by the issued
delete statement and the resulting cascading actions.

To demonstrate symmetric views in this scenario,
consider an update to the cost column of the view
NONCAPITAL. This update will first activate before-
triggers. In this case, only.USERDATE is activated be-
cause ONESUPPLIER is only activated on updates to
the supplier column. Then, the update is applied with
the value of cost specified in the original statement and
the values for updated-by and record-date computed by
trigger USERDATE. Subsequently, the check constraint
MINVAL and the symmetric view are evaluated to ver-
ify the new cost value is between 10 and 500; a value
less than 10 indicates the part is not valuable enough
to record, and a value of 500 or more would cause the
updated rows to be reclassified as capital equipment
and disappear from the view.

‘7 Discussion of our Model

The main contributions of our model are as follows.

l It is integrated with the set semantics of SQL and
the fixpoint semantics for the evaluation of declara-

tive constraints, achieving full compatibility with
SQL92, the standard to which commercial SQL
DBMSs are committed. Assumptions made in pre-
vious models are either incompatible with SQL or
compromise the generality and expressive power of
SQL, which is unacceptable.

It allows both before-triggers and after-triggers and
distinguishes between them. After-triggers are used
primarily as an extension to the application logic
while before-triggers are primarily used to extend
the constraint logic.

It incorporates the before-triggers as data condi-
tioners and extensions to the constraint logic into
the fixpoint computation.

It ensures that application logic embedded in after-
triggers see a constraint-consistent database.

It clearly defines the contents and scoping rules for
both transition tables and transition variables.

It recognizes that triggers with different events may
be triggered simultaneously and hence, supports a
global ordering of all triggers.

Prior to the acceptance of our model, SQL3 con-
tained a specification for triggers that was incomplete,
did not address any of the above issues [5], and im-
posed many arbitrary restrictions. For instance, it
explicitly disallowed the definition of any trigger on
a table that was the target of a cascading referential
action.

We integrate trigger execution in the context of the
set-semantics of SQL by defining the triggering event
as a single SQL statement, even for row-level triggers.
We also make this model upward compatible with the
evaluation of constraints defined by SQL92. We rec-
ognize that the integration of triggers in the presence
of this fixpoint constraint model requires certain re-
strictions for before-triggers that are not required for
after-triggers.

An important aspect of the model described in this
paper is that it distinguishes between before-triggers
and after-triggers. Before-triggers participate in the
fixpoint computation of declarative constraints, and
consequently, the fixpoint computation of the transi-
tion tables. After-triggers execute only after declara-
tive constraints are satisfied. By definition, a before-
trigger must be executed before the activating mod-
ifications are applied to the database, but any such
before-trigger executed during the fixpoint evaluation
of constraints may be exposed to an inconsistent data-
base. One way to prevent this is to simulate the eval-
uation of constraints, e.g., using the run-time marking

575

algorithms defined in [15], to pre-compute the transi-
tion tables before executing any of the before-triggers
or applying any of the modifications. The disadvan-
tage of this approach is that it prevents the use of
before-triggers to condition the data as the transition
tables would be pre-computed before the triggers are
executed. Because we view data conditioning as one of
the primary advantages of before-triggers, we clearly
distinguish between the uses and properties of before-
triggers and after-triggers as previously described.

Like declarative constraints, the execution of
before-triggers must be monotonic because they par-
ticipate in the fixpoint computation of transition ta-
bles. Consequently, neither statement-level nor row-
level before-triggers can use aggregate information,
e.g., total number of employees deleted, computed
from transition tables; this information is meaningless
until the fixpoint computation is complete. Because
aggregation is the main reason for including transition
tables, we restrict their use entirely in before-triggers.
Our model also does not allow before-triggers to mod-
ify the database because such modifications can lead
to non-monotonic behavior. Furthermore, such mod-
ifications may cause the activation of further triggers
which may lead to confusing behavior due to the nest-
ing of modifications yet to be applied to the data-
base. Clearly, these restrictions on before-triggers are
conservative, and identifying the situations in before-
triggers in which transition table references or mod-
ifications do not lead to non-monotonic behavior are
topics for further investigation.

Our model evaluates declarative constraints before
executing any after-triggers. This concurs with exist-
ing implementations of triggers in the marketplace [24,
Ii’]. However, these implementations have fundamen-
tal limitations. Some only support statement-level
after-triggers, leading to very verbose triggers for re-
peatedly performing operations on each row modified
by the triggering event. Others intermix the execution
of row-level after-triggers with the evaluation of con-
straints in a way that does not maintain the SQL92
constraint evaluation model and does not guarantee
that application logic in an after-trigger operates on
a consistent database. A previous proposal [16] pro-
vides a detailed analysis of the difficulties in specifying
a model for simultaneously evaluating declarative con-
straints and procedural triggers in SQL. In contrast to
our model, this proposal attempts to define a model
in which constraints are evaluated only after all of the
triggers are executed. Hence logic embedded in after-
triggers is possibly exposed to inconsistent data. Un-
fortunately, application libraries require a consistent
database and, as such, cannot be used by trigger bod-
ies. Interestingly, such semantics may also lead to
a severe performance degradation of trigger execution,

and, as highlighted in [32], this is an important concern
in the employment of active features. Many optimiz-
ers use uniqueness and referential constraints to reduce
duplicate elimination and access to parent tables; such
semantic optimization techniques can only be applied
when declarative constraints are guaranteed.

Non-determinism is inherent in row-level after-
triggers due to the order in which rows are processed.
Consider an update of two rows r-1 and r2 in T, and a
row-level after-trigger for updates to T that inserts the
value of the new transition variable into table S, and
subsequently appends table S to table R. If rl is pro-
cessed first, then two copies of rl will be appended to
R and only one copy of r2. If r2 is processed first, then
two copies of rs will be appended to R and only one
copy of rl. It is enlightening to notice that most row-
level after-triggers can be simulated with a statement-
level after-trigger in which the trigger program iterates
through each row of the transition table if trigger ac-
tions support iteration. In addition, these statement-
level after-triggers could use the “order by” clause to
sort the rows in the transition tables and guarantee
a deterministic behavior. Another topic for future re-
search is to support an ordering clause to help users
control the processing of row-level triggers. Row-level
triggers are an important feature because they greatly
simplify trigger actions. In addition to providing a
convenient short-hand for processing actions once per
each row, they inherently provide a mechanism for
pairing the new and old transition values of an up-
dated row. Simulating this mechanism in statement-
level triggers requires a join of the old and new tran-
sition tables using the columns of non-updatable pri-,
mary keys. Furthermore, row-level before-triggers can-
not be simulated with statement-level before-triggers
because the statement-level before-triggers cannot ref-
erence transition tables.

Our model is unique in considering the semantics
and scoping rules for transition table and transition
variable references within the context of all the vari-
ous flavors of triggers. Transition tables can be refer-
enced in the conditions and actions of both row-level
and statement-level after-triggers, and facilitate appli-
cations that perform actions based on the aggregate
information about the transition. Furthermore, a tran-
sition table collects all transitions of an event type for
the execution of a statement and the evaluation of its
constraints. This is particularly advantageous in the
case of cyclic RI, as it delivers the full transition table
to the application logic, allowing it to reason about the
net-effect of a given statement. Consider a deletion
for a department table that causes cascaded deletes
of all employees in the deleted department, which in
turn causes cascaded deletes of any departments man-
aged by the deleted emp!oyees. At the end of the

576

constraint evaluation, the OLD transition table of a
delete-trigger for the department table contains all of
the deleted departments, and the OLD transition ta-
ble of a delete-trigger for the employee table contains
all of the deleted employees. Assuming no other after-
trigger modifies the database, these transition tables
can be unioned with the existing database to recon-
struct its contents prior to the original delete state-
ment

Our model utilizes a global trigger ordering when
the fixpoint execution of constraints executes many
events causing the simultaneous activation of several
after-triggers with different event types. A global trig-
ger ordering is also required for the execution of de-
ferred constraints and triggers. SQL3 currently does
not provide a mechanism for a user defined global or-
dering, and, in the implementation of DB2, we define
the global ordering according to the creation times-
tamp. Extending the standards to allow user speci-
fied global ordering among all triggers, similar to the
Starburst Rule System [l], and extending our model
to support deferred triggers and constraints are topics
for future work.

Although there has been considerable research ac-
tivity for active DBMSs, prior to this paper the im-
portant problem of completely integrating declarative
constraints and active rules without restrictions has
not been addressed. The execution models of many
prototype active database systems, e.g., Ariel [14],
HiPac [8, 181, RDL [22], RPL [9], and Starburst [36],
consider only ECA rules and are more in the style of
OPS5; the activation of triggers is considered only at
preset activation points, the execution of trigger ac-
tions are non-interruptible, and trigger activation is
determined based on the net-effect of multiple events.
Because declarative constraints are supported using
rules, these systems cannot benefit from the important
semantic query optimization techniques [23]. In con-
trast to the OPS5 models, triggers appearing in the
marketplace are more procedural, & la Postgres [33],
Alert [31] and Update Dependencies [4, 251. Once ac-
tivated, a trigger will be eventually executed, and if a
trigger action causes an event that activates another
trigger, the newly activated triggers are executed im-
mediately. The burden for controlling triggering based
on the net-effect of database modifications is placed on
the user who can program this explicitly in the trigger
condition and action.

8 Summary

Support for active data is crucial to the management of
the world’s information. Declarative constraints and
triggers are two essential features that have been in-
troduced to support user requirements in relational

DBMSs. Given the differing expressive powers of
declarative constraints and triggers, support for both
is required for today’s applications.

The semantics of the interaction of triggers and
declarative constraints must be carefully defined to
avoid inconsistent execution and to provide users a
comprehensive model for understanding such interac-
tion. This is the first paper that defines such a model.
Our model is unique in that it maintains the set seman-
tics for evaluating declarative constraints as defined by
SQL92 while allowing the execution of powerful proce-
dural triggers. This model integrates trigger execution
with all forms of constraints defined in the SQL92 stan-
dard: primary keys, unique keys, NOT NULL specifi-
cations, check constraints, referential constraints, and
symmetric views. The main advantage of this model,
as described in Section 7 “Discussion of the Model”,
is that it maintains the SQL92 fixpoint semantics for
the evaluation of constraints and incorporates before-
triggers into this fixpoint computation while ensuring
that application logic embedded in after-triggers op-
erates with a consistent database. This work is also
the first to define the semantics and scoping rules of
both transition tables and transition variables in the
context of row-level and statement-level triggers.

Acknowledgments

Richard Sidle incorporated portions of this execution
model into DB2 C/S, Dan Lee, John Hornibrook, and
the entire DB2 Common Server team implemented and
tested DB2 C/S triggers. Don Chamberlin, Bruce
Lindsay, Pat Selinger, Mike Carey and many others
at Almaden provided thorough review of this work.

References
[l] R. Agrawal, R. Cochrane, and B. Lindsay. On main-

taining priorities in a production rule system. In Proc.
of the 17th hat. Conf. on Very Large Data Bases,
pages 479-487, Barcelona (Catalonia, Spain), Septem-
ber 1991.

[2] L. Brownston, R. Farrell, E. Kant, and N. Martin.
Programming Expert Systems in OPS5: An Introduc-
tion to Rule-Based Programming. Addison-Wesley,
Reading, Massachusetts, 1985.

[31

[41

[51

PI

S. Ceri and J. Widom. Deriving production rules for
constraint maintenance. In Proc. of the 16th ht. Conf.
on Very Large Data Bases, pages 566-577, Brisbane,
Australia, August 1990.

R. Cochrane. Issues in Integrating Active Rules Into
Database Systems. Ph.D. &sserta%on, University of
Maryland, Department of’computer Science, College
Park, MD, 1992.

R. Cochrane and N. Mattos. ISO-ANSI SQL3 Change
Proposal, ISO/IEC JTCl/SC21/WG3 DBL LHR-89,
X3H2-95-458, An Execution Model for After Triggers,
November 1995.
Database Programming and Design. The 1996 Busi-
ness Rules Summit, February 1996.

577

171

PI

IQ1

PO1

WI

P21

[131

v41

1151

WI

1171

WI

WI

WI

WI

PM

P31

C.J. Date and Hugh Darwen. A Guide to The
SQL Standard. Addison-Wesley Publishing Company,
Reading, Massachusetts, 3rd edition, 1993.

U. DayaI, B. Blaustein, A. Buchmann,
S. Chakravarthy, M. Hsu, R. Ladin, D. McCarthy,
A. Rosenthal, S. Sarin, M.J. Carey, M. Livny, and
R. Jauhari. The HiPAC project: Combining active
databases and timing constraints. SIGMOD Record,
17(l), March 1988.

L.M.L. Delcambre and J.N. Etheredge. The Rela-
tional Production Language: A production language
for relational databases. In L. Kerschberg, editor, Ez-
pert Database Systems - Proc. from the Second Int.
Conf., pages 333-351, Redwood City, C&forma, 1989.
Benjamin/Cummings.

K.P. Eswaran. Specifications, implementations and
interactions of a trigger subsystem in an integrated
database system. IBM Research Report RJ 1820,
IBM Research Laboratory, San Jose, California, Au-
gust 1976.

K.P. Eswaran and D.D. Chamberhn. Functional spec-
ifications of a subsystem for data base integrity. In
Proc. of the 1st Int. Conf. on Very Large Data Bases,
pages 48-67, Framingham, Massachusetts, September
1975.
H. Fosdick. WiII DB2 make the short list. Information
Week, pages 56-64, August 28, 1995.
B. Von HaIIe. Uncovering business rules. Database
Programming and Design, 8(7):13-18, December 1995.

E. N. Hanson. The design and implementation of the
ariel active database rule system, 1995.

B. Horowitz. A rim-time execution model for referen-
tial integrity maintenance. In Proc. 8th International
Conf. on Data Engineering, pages 548-556, Tempe,
Arizona, February 1992.

B. Horowitz. Intermediate states as a source of non-
deterministic behavior in triggers. In Fourth Inter-
national Workshoo on Research Issues in Data En-
gineering~~Active~L)atabase Systems, pages 148-155,
Houston, TX, February 1994.

L. Howe. Sybase data integrity for on-line applica-
tions. Technical report, Sybase, Inc., EmeryviIIe, CA,
1986.
M. Hsu, R. Ladin, and D. McCarthy. An execution
model for active database management systems. In
Proc. Srd International Conf. on Data and Knowl-
edge Bases - Improving Usability and Responsiveness,
JerusaIem, June 1988.

IBM Database 2 Referential Integrity Usage Guide.
IBM Corporation, International Technical Support
Center - Santa Teresa, San Jose, California, 1988.

ISO-ANSI Database Language SQL2 Standard;
X3H2-92-154, 1992.

ISO-ANSI Working Draft: Database Language SQL
(SQLS), ISO/IEC JTCl/SC21/WGS DBL LHR-004,
X3H2-95-368, j. melton, editor, October 1995.

J. Kieman. C. de MaindreviIIe, and E. Simon. Mak-
ing deductive databases a practical technology: A step
forward. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 237-246, Atlantic-City, New
Jersey, June 1990.

J. King. QUIST: A system for semantic query opti-
mization in relational database. In Proc. 7th Inter-
national Conf. on Very Large Data Bases, Cannes,
France, September 1981.

P4

1251

WI

P71

1281

PQI

[301

[311

[321

[331

[341

[351

1361

G. Koch and K. Loney. Oracle: The Complete Refer-
ence. Osborne McGraw-Hi& Berkeley, California, 3rd
edition, 1995.

L. Mark. Self-Describing Database Systems - Formal-
ization and Realization. Ph.D. dissertation, Depart-
ment of Computer Science, University of Maryland,
College Park, Maryland, 1985. TR-1484.

V. M. Markowitz. Safe referential integrity structures
in relational databases. In Proc. of the 17th Int. Conf.
on Very Large Data Bases, pages 123-132, Barcelona
(Catalonia, Spain), September 1991.

J. Melton and A. R. Simon. The New SQL: A Com-
plete Guide. Morgan Kaufmann Publishers, San Ma-
teo, California, 1993.

C. Mohan. CommitLSN: A Novel and Simple Method
for Reducing Locking and Latching in Transaction
Processing Systems. In Proc. of the 16th Int. Conf.
on Very Large Data Bases, Brisbane, Australia, Au-
gust 1990.

C. S. MuIIins. The procedural DBA. Database Pro-
gramming and Design, 8(7):40-45, December 1995.

Ron Ross. The Business Rule Book. Database Re-
search Group, 1994.

UIf Scbreier, Hamid Pirahesh, Rakesh AgrawaI, and
C. Mohan. Alert: An architecture for transforming a
passive DBMS into an active DBMS. In Proc. of the
17th Int. Conf. on Very Large Data Bases, pages 469-
477, Barcelona (Catalonia, Spain), September 1991.

E. Simon and A. Kotz-Dittrich. Promises and reah-
ties of active database systems. In Proc. of the %lst
Int. Conf. on Very Large Data Bases, pages 642-653,
Zurich, Switzerland, September 1995.

M. Stonebraker, M. Hearst, and S. Potamianos. A
commentary on the POSTGRES rules system. SIG-
MOD Record, Special Issue on Rule Management and
Processing in Expert Database Systems, 18(3):5-11,
September 1989.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potami-
anos. On rules, procedures, caching and views in data-
base systems. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages
New Jersey, June 1990.

281-290, Atlantic City,

M. UbeII. The Montage extensible datablade. In Proc.
ACM SIGMOD Int. Conf. on Management of Data,
page 482, Minneapolis, Minnesota, May 1994.

J. Widom, R. Cocbrane, and B. Lindsay. Implement-
ing set-oriented production rules as an extension to
Starburst. In Proc. of the 17th Int. Conf. on Very
Large Data Bases, pages 275-285, Barcelona (CataIo-
nia, Spain), September 1991.

578

