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Abstract 

Several formal models for database access con- 
trol have been proposed. However, little at- 
tention has been paid to temporal issues like 
authorizations with limited validity or ob- 
tained by deductive reasoning with temporal 
constraints. We present an access control 
model in which authorizations contain peri- 
odic temporal intervals of validity. An author- 
ization is automatically granted in the time in- 
tervals specified by a periodic expression and 
revoked when such intervals expire. Deductive 
temporal rules with periodicity and order con- 
straints are provided to derive new authoriza- 
tions based on the presence or absence of other 
authorizations in specific periods of time. We 
prove the uniqueness of the set of implicit au- 
thorizations derivable at a given instant from 
the explicit ones, and we propose an algorithm 
to compute the global set of valid authoriza- 
tions. The resulting model provides a high 
degree of flexibility and allows to express sev- 
eral protection requirements that cannot be 
expressed in traditional access control models. 

1 Introduction 

As an increasing number of applications entrust their 
data to database systems, the need for access con- 
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trol mechanisms increases. Most commercial DBMS 
provide an authorization mechanism by using which 
users are given access authorizations to objects under 
different modes, such as read or write. Upon a data ac- 
cess request from a user, the authorization mechanism 
checks whether the user is authorized for the access. 

Authorization mechanisms, such as the ones sup- 
ported by commercial DBMS, are not yet able to fully 
meet many application needs. An important require- 
ment derives from the temporal dimension that per- 
missions have in many real-world situations, Permis- 
sions are usually limited in time or may hold only for 
specific periods of time. Because a typical commercial 
DBMS does not provide any temporal authorization 
mechanism, implementing authorization management 
at application program level is the only solution for 
supporting temporal authorizations. However, such a 
solution is largely inadequate because it makes author- 
ization specification and management very difficult, if 
at all possible. 

Even more crucial is the need for periodic authoriz- 
ations. Indeed, in many organizations, authorizations 
given to users must be tailored to the pattern of their 
activities within the organization. Therefore, users 
must have access authorizations only for the time peri- 
ods in which they are expected to need the data. As 
an example of periodic authorization, consider part- 
time staff that should be authorized to read a given 
file only each working day between 9 a.m and 12 a.m. 
Periodic authorizations are also very important when 
dealing with execution authorizations for application 
programs, Controlling the time periods during which 
specific application programs can be invoked is very 
useful for optimizing resource usage. Programs, whose 
execution is very resource-expensive, could be assigned 
specific time periods in which other programs are not 
likely to be executed. Periodic authorizations are, 
however, even more difficult to handle than simple, 
non-periodic temporal authorizations. Therefore, also 
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for periodic authorizations, the solution of implement- 
ing them as part of application programs is not viable. 

When developing a temporal authorization model 
several issues must be addressed, including the defini- 
tion of a formal semantics for the model, the develop- 
ment of strategies for efficient access control, and tools 
for authorization administration. Some of those issues 
have been addressed as part of the development of a 
temporal authorization model, presented in [2]. Under 
that model, authorizations contain temporal intervals 
of validity; an authorization is automatically revoked 
when the associated temporal interval expires. The 
model also provides rules for the automatic deriva- 
tion of new authorizations from those explicitly spe- 
cified. A formal semantics has been defined for tem- 
poral authorizations and derivation rules, based on the 
semantics of logic programs with negation. Moreover, 
strategies have been developed, based on view materi- 
alization approaches, to support efficient authorization 
checking. 

However, our previous model does not provide peri- 
odic authorizations, which are - we believe - an es- 
sential ingredient of a temporal access control mech- 
anism. The current paper complements our previous 
work with periodic access authorizations and rules. 
This is a major extension, both for the practical rel- 
evance of periodic expressions in specifying authoriza- 
tions and for the involved theoretical and performance 
issues. In particular, the formal semantics used in the 
current extended model is based on Datalog programs 
with negation and periodicity and order constraints. 
The materialization strategy, proposed for the previ- 
ous model, has been substantially extended to deal 
with periodicity and order constraints. We have also 
added new temporal operators (UPON and UPON-NOT) 
to cover interesting protection requirements that were 
not expressible in [2]. 

To the best of our knowledge, this authorization 
model is the first one proposing features such as 
temporal derivation rules and periodic authorizations. 
Relevant related work has been carried out in the 
framework of the Kerberos system [S]. Kerberos, based 
on client-server architecture, provides the notion of 
ticket, needed for requiring a service to the server, with 
an associated validity time. The validity time is used 
to save the client from the need to acquire a ticket for 
each interaction with the server. The ticket mechanism 
is not used to grant accesses to the resources managed 
by the system. Rather, it is only used to denote that 
a client has been authenticated by the authentication 
server. Thus, the scope bf the temporal ticket mech- 
anism is very different from our access control model. 
From the side of logical formalisms for security spe- 
cifications, Woo and Lam in [9] have proposed a very 
general formalism for expressing authorization rules. 

Their language does not have explicit const,raints to 
deal with temporal information, but has almost the 
same expressive power of first order logic. We believe 
that for the sake of efficiency, it is important to de- 
vise more restricted languages focusing only on relev- 
ant properties. The temporal authorization model we 
propose in this paper is a step in this direction. 

The remainder of this paper is organized as follows. 
Section 2 describes the formalisms we use to represent 
periodic time. Section 3 introduces periodic author- 
izations and derivation rules. Section 4 specifies the 
semantics of our model and proves its main formal 
properties. In Section 5 an algorithm for deriving the 
set of implicit and explicit authorizations is presented. 
Section 6 concludes the paper. Finally, Appendix A 
illustrates the Datalog extension that we use to rep- 
resent the semantics of our rules. 

2 Preliminaries: Representation of 
periodic expressions 

To represent periodic authorizations we need a formal- 
ism to denote periodic time. Our choice is to provide a 
symbolic (user friendly) formalism for the user that has 
to specify authorizations and an equivalent “mathem- 
atical” formalism to describe the semantics of periodic 
authorizations and rules, to prove formal properties of 
our model, and to perform deductive reasoning. 

The symbolic formalism is essentially the one pro- 
posed by Niezette and Stevenne in [4], based on the 
notions of calendars and periodic expressions. 

A calendar is defined as a set of consecutive inter- 
vals. Each interval of a calendar is numbered by a 
natural number, called index of the interval, in such 
a way that successive intervals are numbered by suc- 
cessive natural numbers. Days, Months, and Years 
are example of calendars representing respectively the 
set of all the days, the months, and the years, start- 
ing from a given time instant. Calendars can also be 
finite. For instance, the calendar Years-from-1980-to- 
1992 represents the set of all the years between 1980 
and 1992. We use symbol T to denote the special cal- 
endar having a single time interval (indexed by 1) and 
including the whole time line. Given two calendars Ci 
and Cz, we say that Ci is a subcalendar of C:!, (written 
Cr & Cz), if each interval of C2 is exactly covered by 
a finite number of intervals of Cr. New calendars can 
be dynamically constructed from the existing ones.’ 
In our model, we postulate the existence of a set of 
predefined calendars containing Hours, Days, Weeks, 
Months, and Years. 

Calendars can be combined to represent more gen- 
eral sets of periodic intervals, not necessarily contigu- 
ous, as, for instance, the set of Mondays or the set of 

1 We refer to [4] for details of the construction. 
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The third hours of the first day of each month. Chn- 

plex sets of periodic intervals, like the ones above, are 
represented by means of periodic expressions, formally 
defined as follows. 

Definition 2.1 (Periodic expression) A periodic 
expression is defined as P = cy=‘=, Oi.Ci D r.Cd, where 

01 E qN U {all}, Oi E 2N i = 2,. . . , n, Ci and Cd 
are calendars for i = 1,. . . , n, Cd C C,,, and r E IN. 

In practice, 01 is omitted when its value is all, whereas 
when Oi is a singleton it is represented by its unique 
element. r.Cd is omitted when it is equal to l.C,,. 
Table 1 illustrates a set of periodic expressions and 
their meaning. 

Each periodic expression P is a symbolic represent- 
ation of a set of time intervals n(P).’ For example, if 
P is the last expression in Table 1, then H(P) is the 
set of time intervals starting with the tenth hour (9 to 
10a.m.) of the second, third, fourth, fifth, and sixth 
day of every week. Each interval has a duration of 3 
hours. 

Symbolic expressions, while convenient for the user, 
are not easy to manipulate in the deductive process. 
Hence, when an expression has been given by the user, 
we translate it into a different formalism. This form- 
alism is based on sets of periodicity constraints over 
integer numbers and it is inspired by the work in [7]. 
Periodicity constraints denote infinite periodic sets of 
integers. 

Definition 2.2 (Simple Periodicity Constraint) 
Let K be a finite set of natural numbers, x an integer 
variable, k an element of K , and c E (0, . . . , k- 1). A 
simple periodicity constraint is a formula of the form: 
x Ek c. 

Periodicity constraint x 3k c denotes the set of 
integers of the form c + nk, with n ranging from 
-oo to +oo in 2. In the following we use the nota- 
tion 2 Ek (y + c)vy = 0,. . . , u aS a compact rep 
resentation for the disjunction of simple constraints: 
x~kCVx:kC+1V...Vt~kC+~. 

Conjunction of simple periodicity constraints can 
be represented by means of periodicity graphs [7], in 
which each node represents a variable or the constant 
0, and an edge labeled (k, c) exists between 0 and x iff 
the constraint x Ek c belongs to the conjunction. 

Another type of constraints will be useful to specify 
periodic authorizations. 

Definition 2.3 (Gap-order Constraint) 
Let u, 1 be integers, c a non-negative integer, and x, y 
integer variables. A gap-order constraint is a formula 
of the form 1 < x, x < u, x = y, or x + c < y. 

2 We refer tb [4] for the formal definition of n(). 

Conjun: ion of Gap-order constraints can be rep- 
resented by means of gap graphs [5], that is, by means 
of graphs where the nodes represent the variables and 
the lower and the upper bound of the constraints, and 
edges represent gaps. Equality constraints are repres- 
ented by undirected edges labeled by “=“. For each 
pair of nodes a single edge, either representing equal- 
ity or a gap, is allowed. The operations of conjunction 
(A) and complement (1) of gap graphs are defined 
in [5], while the operation of conjunction of period- 
icity graphs is defined in [7]. For lack of space we do 
not report these definitions in the paper. However, 
the complement of periodicity graphs has never been 
defined and we do it here. Let G be a periodicity 
graph representing n constraints. For each x Ek c rep 
resented by G, consider the constraints x Ek r with 
r=O,..., c-l,c+l,..., k - 1. -G, the complement 
of G, is the disjunction of the n * (k - 1) periodicity 
graphs representing these constraints. Operations on 
gap graphs are analogous. 

Example 2.1 Consider the sets of periodicity con- 
straints Cr = {x ~7 1,y ~1s 1) and CZ = {x -14 1). 
Ci can be represented by means of a periodicity graph 
Gi with nodes x, y, 0, and with two edges: (0, x), with 
label (7, l), and (0, y), with label (10,l). Similarly Cz 
can be represented by a graph Gz with nodes x and 
0 and with a unique edge (0,x), with label (14,l). 
Gr A Gz is the graph with nodes x,y, and 0, and 
the edges: (0,x) with label (14,l) and (0,~) with 
label (10,l). 7G1 is the disjunction of the period- 
icity graphs corresponding to the constraints: x ~7 0, 
x E7 2, . . ., x -7 6, y =lo 0, y izlo 2, . . ., y q lo 9. 

It is easily shown [l] that any symbolic periodic ex- 
pression can be translated into a set of simple period- 
icity constraints. Each constraint in that set will have 
the form t --P~~wcQ,(P) c, where Periodicity(P) is the 
number n of units of the basic granularity that iden- 
tifies the periodicity with which the time intervals in 
n(P) repeat themselves. For example, if Hours is the 
basic granularity, the periodicity of the first, fourth, 
and fifth expressions in Table1 is 168 (a week expressed 
in hours). The constants c must be such that all pos- 
sible solutions of the disjunction of the periodicity con- 
straints in the set are equivalent to the instants in the 
time intervals of II(P). For example, the expression 
Weeks + 2.Days, identifying Mondays, is translated 
into t ~~6s (y + 24) Vy = 0,. . . ,23. 168 is the number 
of hours in a week (the periodicity of Mondays), 24 is 
the distance in hours of the first Monday from the be- 
ginning of the period (the displacement of Mondays), 
and O,..., 23 are the 24 hours within each Monday 
(the duration of each Monday). 

Symbolic periodic expressions together with simple 
gap-order constraints are used by users to specify peri- 
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Table 1: Example of periodic expressions 
odic access authorizations and rules, while their “fully” 
constraint counterpart is used to express the semantics 
of authorizations and rules, as well as for proving 
formal properties of the model and to perform access 
control. For simplicity, in the following periodicity and 
gap graphs will be denoted with the set of constraints 
they represent. 

3 Periodic authorizations and rules 

Our model allows to express periodic authorizations, 
that is, authorizations for a user to access an object 
in specific time intervals specified by a periodic ex- 
pression. Moreover, a time interval is associated with 
each authorization, imposing lower and upper bounds 
to the potentially infinite set of instants denoted by 
t,he periodic expression. We refer to an authorization 
together witli its time interval and periodic expression 
as periodic authorization. In the following U denotes 
the set of users, 0 the set of objects, and M the set of 
access modes. 

We start by introducing the definition of authoriz- 
ation. 

Definition 3.1 (Authorization) An authorization 
is a 5-tuple (s,o,m,pn,g), with s, gE U, OE 0, 
mu M, pn E {+,-}. 

Tuple (s,o,m,pn,g) states that user s has been au- 
thorized (if pn = ‘+‘) or denied (if pn = ‘-‘) for priv- 
ilege m on object o by user g. 

Definition 3.2 (Periodic Authorization) A peri- 
odic authorization is a triple (time,period,auth), 
where time is a time interval Cmin,maxl , such that 
min and max denote respectiuely instants tb and te with 
0 <tblt.$, period is a periodic expression, and auth 
is an authorization. 

Triple ([min,maxl ,P,(s,o,m,pn,g)), states that 
user g had granted an authorization to user s for ac- 
cess mode m on object o, that holds for each instant in 
II(P) limited by the interval [tb, t,] , where tb and te 
are the instants corresponding respectively to min and 
max. The beginning and ending points of the inter- 
val associated with an authorization can be specified 
in one of the basic calendars. We use the notation 
l/1/94:08 to represent 8a.m. on l/1/94. When l/1/94 

is used as a minimum, it denotes the first instant of 
the first day of January 1994, while, as a maximum, it 
denotes the last instant of l/1/94. We use symbol 00 
for max to denote a periodic authorization that spans 
from the starting time of its interval to infinity. 

For example, the periodic authorization 
( C1/1/94,001 ,Nondays3, (Watt ,01 ,read,+,Bob) ), 
specified by Bob, states that Watt has the authoriz- 
ation to read 01 each Monday starting from l/1/94. 
Note that a non periodic authorization, that is, an au- 
thorization that holds continuously for a specific set of 
time instants can be expressed by a periodic authoriz- 
ation using T as the period component. 

The model also allows to specify derivation rules 
from which other authorizations can be derived. The 
derivation is based on temporal propositions, used as 
rules, which allow new periodic authorizations to be 
derived on the basis of the presence or the absence 
of other periodic authorizations. Like authorizations, 
derivation rules have an associated time interval and 
a periodicity, representing the set of instants in which 
the derivation rule can be applied. 

Definition 3.3 (Derivation rule) A derivation 
rule is defined as (time, period, Al (OP) Az), 

where time=Cmin,maxl is the time interval associated 
with the rule, such that min and max denote respect- 
ively instants tb and te with 0 <tb<te, period is a 
periodic expression, Al and A2 are authorizations, and 
(OP) is one of the following operators: WHENEVER, 

ASLONGAS, UPON, WHENEVER-NOT, UNLESS, UPON- 

NOT. 

Rule (Cmin,maxl, P, (s~,o~,m~,pn~,gl) (0~) 
(92 ,02,m2,pn2,g2)) states that for each instant in4 
fl(p)n{ [tb ,%I 1, user s1 is authorized (if pnl = ‘+‘) 
or denied (if pnl = ‘-‘) for access mode ml on object 01 
according to the presence or absence (depending on the 
(0~)) of the authorization (92 ,oz ,m2 ,pnz ,g2). A de- 
rivation rule in which P=T represents a rule which can 

3Here and in the following we use intuitive names for peri- 
odic expressions, assuming that they are defined with the syntax 
shown above. 

4We use a set of disjoint intervals T = ([ti, tj], . . . , [trr tS]} 
as a compact notation for the set of natural numbers included 
in these intervals. Hence, the intersection operation (Tl n ‘72) 
has the usual semantics defined for sets. 
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be applied for each instant in [min , max] . A derivation 
rule with max = 00 can be applied from the starting 
time of its time interval up to infinity. A simple exten- 
sion to the above syntax allows to use a special symbol 
(*) instead of an authorization user, object or modifier 
with the meaning that any value in the corresponding 
domain can be used. This provides a compact form to 
express a set of derivation rules [2]. For simplicity we 
do not consider this extension in the rest of the paper. 

Figure 1 illustrates an example of periodic author- 
izations and derivation rules. 
We now give the intuitive semantics of the different 
kinds of derivation rules allowed by our model. The 
formal semantics will be given in the next section. In 
the following we assume all authorizations are granted 
by the same user and we therefore do not consider the 
grantor of authorizations in the discussion. 

l ( Cmin,maxl , P, A1 WHENEVER AZ). We can de- 
rive Al for each instant in II(P)fl { [tb,t,]} for 
which A2 is given or derived. 
For instance, rule Ri in Figure 1 states that 
summer-staff can read document for every in- 
stant in Summer-time, from l/1/1995, in which 
staff can do it. 

l ( [min ,max] , P , A1 ASLONGAS AZ > . We can derive 
Ai for each instant t in II(P>fl { [tb,t,]} such that 
A2 is either given or derived for each time instant 
in II(P [tb,te]} from the first one up to t. 
For instance, rule Rs in Figure 1 states that Jim 
can read document in a working day starting from 
7/20/95 if summer-staff has been authorized for 
it for each working day from 7/20/95. 

l ([min,max] ,P; Ai UPON AZ). We can derive Ai 
for each instant t in II(P [tb,t,]} if there ex- 
ists an instant t’ < t in II(P)fl{ Ctb, t,] } such that 
A2 is either given or derived at time t’. 
For instance, rule Rs in Figure 1 states that 
technical-staff is forbidden to write report 
for every instant from the first time in C95,ool 
at which technical-staff is allowed to read 
report-evaluation. 

l ([min,max], P, A1 WHENEVER-NOT AZ). we 
can derive A1 for each instant in n(P)fl { [tb, t,] } 
for which A3 is neither given nor derived. 
For instance, rule ~6 in Figure 1 states that Ann 
can read pay-checks each working day in 1995 
and 1996 in which Tom is not allowed to write 
Pay-checks. 

. ( [min,max] , P, Al UNLESS AZ). We can derive 
Ai for each instant t in II( { [tb, te] } such that 
A2 is neither given nor can be derived for each in- 
stant in rI(p)n{ [tb,t.$l} from the first one up to 

t. 
For instance, rule R2 in Figure 1 states that 
temporary-staff can read document each work- 
ing day starting from l/1/95 until the first work- 
ing day summer-staff will be authorized for that. 

(Cmin,maxl,P, Al UPON-NOT AZ). We can de- 
rive Al for each instant’t in II(P { [tb, t,]} 
such that there exists an instant t’ < t in 
n(p)n{ hb &I } in which A2 is neither given nor 
derived. 
For instance, rule R4 in,. Figure 1 states that 
technical-staff can write report each work- 
ing day from the first working day in [95, co] in 
which manager does not have the authorization to 
write guidelines. 

Example 3.1 Consider the authorizations and rules 
in Figure 1. Among the authorizations that can be 
derived are: 

l 

0 

4 

(temporary-staff,document,read,+,Sam) for 
each working day in [i/1/95,6/30/95], from 
rules R2 and Ri, and authorization Al. 

(Jim,document,read,+,Sam) for each working 
day in [7/20/95,10/30/95], from rules Rs and 
Rr, and authorization Ai. 

Formal semantics 

In this section we formalize the semantics of peri- 
odic authorizations and derivation rules. First, it 
is necessary to point out that the possibility of ex- 
pressing negative authorizations introduces potential 
conflicts among authorizations. Indeed, a positive 
authorization states that an access must be granted 
whereas a negative authorization states that an ac- 
cess should be denied. A conflict therefore exists every 
time both a positive and a negative authorization ex- 
ist for the same subject. We solve this conflict ac- 
cording to the denials-take-precedence principle. For 
instance, consider the authorizations and rules in Fig- 
ure 1. From R4 and A2 we derive the authorization for 
technical-staff to write report for each working 
day in [5/21/95,oo]. From Rs and Ad, we derive a 
negative authorization for the same access for all in- 
stants in [iO/i/95,co]. Thus, technical-staff will 
be allowed for the access only for the working days in 
C5/21/95) 9EiO/951. 

The formal semantics considers this fact. 

Definition 4.1 (Temporal Authorization Base) 
A Temporal Authorization Base (TAB) is a set of peri- 
odic authorizations and derivation rules. 
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(Al) ([96,97] ,Yorking-days, (staff ,document ,read,+ ,Sam)) 

(Az) ([96.6/20/961, T , (manager ,guidelines ,urite ,+ ,%A) 

(As) ([95,co], Pay-days, (Tore,pay-checks,urite,+,Sam)) 

(Ad) ([10/1/95,co], T ,(technical-staff ,report-evaluation,read,+,Sam)) 

(RI) ([95,co], Summer-time, (summer-staff ,document,read,+,Sam) WHENEVER (staff ,documsnt,read,+,Sam)) 

(Ez) ([95,co] , Working-days, (temporary-staff ,document ,read ,+ ,Sam) UNLESS 
(summer-staff,document,read,+,Sam)) 

(Its) ([7/20/95,ool, Yorking-days, (Jim,document,read,+,Sam) ASLONGAS (summer-staff,document,read,+,Sam)) 

(Rd) ([95,.], Yorking-days, (technical-staff ,report ,arite,+,Sam) UPON-NOT 
(manager,guidelines,write,+,Sam)) 

(Rs) ([95,co] , T, (technical-staff ,report ,write,- ,Sam) UPON 
(technical-staff,report-evaluation,read,+,Sam)) 

(&) ([95,96] , Uorking-days, (Ann,pay-checks ,read,+,Sam) WHENEVER-NOT (Tom,pay-chacks,arite ,+,Sam)) 

Figure 1: An example of authorizations and derivation rules 
The semantics of a TAB is given as i set of 

clauses in a Datalognot~‘z~<z program corresponding 
to TAB. Datalog”ot~Zz*<z is the extension of Datalog 
with non-monotonic negation, periodicity, and gap- 
order constraints on the integers (see Appendix A). 
Programs corresponding to TABS will be actually a 
very restricted class of Datalog”ot~Zz~<z programs: 
the only predicate symbols are F(), FN(), Fp(), GO, 
and CNSTR(), a limited set of non-temporal constants 
(%ol,ml,+,-,P,. . . ) is provided to denote users, 
objects, access modes, sign of authorizations, and peri- 
odic expressions.5 Periodicity and order constraints 
only involve temporal variables and do not use the + 
function. 

We consider non-ground interpretations of our pro- 
grams defined as sets of constrained atoms of the 
form (B, e), where B is a predicate and S = 
{(G, HI), . . . , (G, h-J) a set of constraints on the 
temporal variables of B. Each Gi is a periodicity graph 
and each Hi is a gap graph. E is a disjunction of these 
pairs, i.e., it is satisfied if there exists i such that both 
Gi and Hi are satisfied. Each constrained interpret- 
ation has an equivalent (possibly infinite) Herbrand 
interpretation containing only ground atoms. 

Table 2 reports the clause/set of clauses in 
Datajog”ot,fZ,<Z corresponding to each type of au- 
thorization/rule allowed by our model.6 Intuitively, 
the predicate F() is used to represent the authoriz- 
ations at specific instants. The fact that (F(t, A), Z) 

belongs to an interpretation means that A is valid ac- 
cording to that interpretation at all instants t satisfy- 

5Note that when P appears as a predicate argument it de- 
notes a non-temporal constant that we associate with a periodic 
expression. 

6For brevity, we use the form tb < t It= as a shortcut for the 
conjunction of the two gap-order constraints cl < t and t < c2 
with cl =tb - 1 and c2 =te + 1. Similarly, constraint t” < t’ < t 
is a shortcut for the disjunction (using two clauses) oft’ = t” 
and t” < t’ < t. 

ing Z. The predicates GO, FN() and Fp() are auxil- 
iary predicates, used to avoid quantification. Intuit- 
ively, G(t, s, o,m) is true in an interpretation if there 
is at least one negative authorization, with the same 
s,o,m, valid at instant t according to that interpreta- 
tion. FN(t”, t, P,A) is true in an interpretation if there 
is at least an instant t’ with t” < t’ < t and t’ in 
the set denoted by P at which authorization A is not 
valid according to that interpretation. FP(t”, t, P,A) 

is true in an interpretation if there is at least an in- 
stant t’ with t” 5 t’ < t and t’ in the set denoted by 
P at which authorization A is valid according to that 
interpretation. 

We denote the Datalog”ot*~z~<z program corres- 
ponding to a TAB with PTAB. We consider stable 
model semantics of logic programs with negation [3] 
to identify the models of PTAB. The notion of con- 
strained interpretation presented above naturally ex- 
tends to constrained (non-ground) stable models. 

Definition 4.2 (Valid Authorization) Let M be a 
model of PTAB. An authorization A is said to be valid 
at time z with respect to M if (F(t, A), Z) is contained 
in M with 1 satisfying E. If PTAB has a unique ground 
model and M is one of its non-ground representations, 
then we simply say that A is valid at time t. 

4.1 Restrictions on rules 

An important property that we require for our set of 
periodic authorizations and rules is that we must al- 
ways be able to derive a unique set of valid author- 
izations. This means, for example, that each set of 
rules together with a fixed set of explicit authorizations 
should not derive different authorizations depending 
on the evaluation order. 

Example 4.1 Consider the following rules: 
(RI) ([min, max], P, Al WHENEVER-NOT AZ) 
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Cmin, maxI, P, (s,o,m,-,g) : 
F(t,s,o,m,-,g)t tt, < t <te, CNSTR(P,t) 

bin, maxl,t,],P, (s.o,m,+,g) : 
F(t,s,o,m,+,g)t tb 2 t <te, CNSTR(P,t), nd(l=(ho,m)) 

[min, maxl, P, (81+1,ml,--,gl) WHENEVER (s2,02,m2,pnrg2) : 
F(t,sl,ol,ml,-,gl) t tb 5 t <te. CNSTR(P,t), F(h,oz,mz,pn,gz) 

[min, meal, P, (sl,~~,ml,-t-,gi) WHENEVER (s2,02,m2,pn7g2) : 
F(t,q,ol,ml,+,gl) t tb < t <te, CNSTR(P,t), F(trs2,02,m2,pn,g2), not(G(t,sl,ol,ml)) 

Cmin, maxl,P, (sl,ol,ml,-,gl) ASLONGAS (S2;02,m21Pnrg2): 
F(t,sl,ol,ml,-,gl) t tb 5 t I%, CNSTR(p,t), F(t ,s2,02,m2,pnrgz), nOt(F~(tb,t,P,Sg,oz,m2, pn,gz)) 

[min, maxl ,P,(sl,o~,m~,+,g~) ASLONGAS (s2,02,m2,Pnrg2) : 
F(t,sl,ol,ml,+,g1) t tb 5 t St,, CNSTR(P,t), F(t,s2,o2,m2,pn,g& nOt(F~(tb,t,P,82,02,mz, pn,gz)), 

not(G(W,w,ml)) 

bin, mad, P, (sl,olm,-,gl) UPoN (~z~WJW~PW3d : 
F(t,sI,o1,m1,-,g1) t tb 5 t <ter CNSTR(P,t), Fp(tbrt,P,s2,02,m2, pn,gz) 

[min, maxl,P, (sl,ol,ml,+,gl) UPoN (s2,oz,m2,Pn,gz) : 
F(t,slrolrmlr+,gl) t tb 5 t <te, CNSTR(p,t), Fp(tb,t,P,s2,02,mz, pn,gz), not(G(t,sl,ot,ml)) 

[min, max], P, (sl,~l,ml,--,gl) WHENEVER-NOT (82,02,m2,pn&!) : 
F(t,sl,ol,ml,-,gl) t tb 2 t lte, CNSTR(P,~), Uot(F(t,sz,oz,mz,pU,gz)) 

[min, maxl,P, (sl,ol,ml,+,g1) WHENEVER-NOT (S2,02,m2,pnrg2) : 
F(t,s~,o~,m~,-l-,gl) t tb 5 t <ter CNSTR(P,t), not(F(t,s2,02,m2,pn,g2)), not(G(t,sl,ol,w)) 

bin, maxl;P,(sl,ol,ml,-,gi) UNLESS (s2roz9m2,Pnvg2) : 
F(t,sl,ol,ml,-,gl) t tb < t <te, CNSTR(P,t), not(F(t,sz,oz,mz,pn,gz)), not(Fp(tb,hPv QrWP2~ Pnvgz)) 

bin, mad, p, (sI,oI,~I,+,~I) UNLESS (w,o2,m2,Pn,gz) : 
F(t,sl ,ol ,ml ,+,gl) t tb 5 t 5% CNS’I’R(P, t) , ncW(t rsww,m2,Pn,g2))r not(Fp(tbrt,P,s2,02,m2, Pnlgz)) , 

not((=(hsl ,olm)) 

Cmin, m=d,P, (sl,ol,ml,-,gl) UPON-NOT (w,%,m2,Pn,g2) : 
F(t,sl,ol,ml,-,gl) t tb 5 t <tcr CNSTR(P,~), &V(tbrhP,sZr02rm2, pn,gz) 

hin, mad,P, (slrOlrml,+,gl)UPON-NOT (Szvo2,m2vPn7gz) : 
F(t,sl,ol,ml,+,g1) t tb 5 t <ter CN=‘R(P,t), ~N(tbrkP,sZrOZ,m2, Pnrgz) , not(G(&sl,ol,ml)) 

Auxiliary clauses: 

G(h 3, o,m) t F(hs,o,m, -,g) 

{CNSTR(Pvt) t t zperiodicity(P) YI 

Vy such that t Gperiodi,-ity(P) y + t E n(P) 

{Fp(t”,t,P,s;o,m,pn,g) et" 5 t' < t,CNSTR(P,t'),F(t',s,o,m,pn,g)} 
V distinct P appearing in an UNLESS/UPON rule 

{FN(~“, t,P,s,o,m,pn,g) t t" 5 t' < t, CNSTR(P,t'),not(F(t',s,o,m,pn,g))) 
V distinct P appearing in an ASLONGAS/UPON-NOT rule 

Table 2: Semantics of periodic authorizations and rules 
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(Rz) ([min, max], P, A2 WHENEVER-NOT Al) 

Suppose that there are no explicit authorizations for 
A1 or A2 in the TAB and these are the only rules. If 
we consider first R1 we derive authorization Al for each 
instant in { [tb,te]}NI(P), and we cannot derive Aa. 

If we consider first Rz, we derive A2 for the same time 
intervals and not Al. Hence, we have two different 
sets of derived authorizations. In this case there is no 
reason to give preference to one set or the other. 

From the point of view of the semantics, the prop 
erty of always having a unique set of valid authoriza- 
tions is guaranteed only if all the models of the pro- 
gram corresponding to the TAB identify the same set 
of valid authorizations’at any instant (or equivalently, 
there exists a unique ground stable model equivalent 
to all the models of &B). In the rest of this section 
we formally define restrictions on sets of rules in order 
to guarantee a unique ground model for PTAB. We 
also give an algorithm for checking the satisfaction of 
these restrictions. 

In the following, we use the term negatioe operator 
toreferto WHENEVER-NOT,UNLESS, and past operator 
(PASTOP) to refer to UNLESS, ASLONGAS, UPON-NOT 
and UPON. Moreover, we use symbols Ai as a shortcut 
for the 5-tuple (si , oi, rni, pni , gi) , while A+ forces pnj = 
+ and AT forces pni = -. 

A binary relation L) among the periodic authoriz- 
ations appearing in TAB is defined as follows: 

l if there is a rule ( [min,max] , P, A,(oP) An) in 
TAB, where (OP) is an arbitrary operator, then 
An[t] L) Am[t] for each t E {Ctt,,t,l}nH(P). The 
L) relation represents a dependency of A,,, at in- 
stant t from A, at the same instant. When (OP) 
is a negative operator we say that L) represents a 
strict dependency. 

l if there is a rule ([min,max], P, A, (PASTOP) 
An) in TAB, then A, [t] L) A, [t’] for each t, t’ E 
{ Ctb,t,l}nn(P), t < t’. If PAsToP is equal to 
ASLONGAS, UNLESS or UPON-NOT then L) repres- 
ents a strict dependency. 

Using this relation we can define the more complex 
notion of priority among periodic authorizations. 

Definition 4.3 (Priority) An authorization A, at 
time t has higher priority than an authorization Am 
at time t’ (written An[t] > Am[t’]) if one of the follow- 
ing conditions holds: 

l a sequence An[t]=Al[t] L) . . . L)Ak-l[t”] 9 

Ak[t’]=Am[t’] exists such that at least one of the 
L) relationships is a strict dependency, 

l two sequences A,[t]=Al[t] L) . . . qAF[t”] 

and AG1 [t”] L) . . . vAk[t’]= A,[t’] exist 

such that s(A~)=s(AT+~), o(A;)=o(AT+~), and 

m(A;)=m(A&1),7 

l an authorization Al and an instant t” exist such 
that An[t] > Al[t”] and Al[t”] > A,,, [t’]. 

Note that the second condition in the above defin- 
ition implies that each negative authorization* has 
higher priority than its positive counterpart at the 
same instant. 

We are now ready to identify critical sets of deriv- 
ation rules. 

Definition 4.4 (Critical set) A TAB conkins a 
critical set of rules if and only if an authorization A, 

in TAB and an instant t exist such that A,,, at instant 
t has priority over itself ( A, [t] > A, [t]). 

The CSD (Critical Set Detection) algorithm, de- 
scribed in the next subsection, can be used to recog- 
nize and reject a TAB containing a critical set. 

4.2 The CSD algorithm 

Before illustrating the CSD algorithm we need to in- 
troduce some notions. 

Given a TAB, we introduce its graph version, de- 
noted as TAB’, as the set of pairs of the form (t, Z), 
where x is either an authorization or rule in TAB and 
E the set of pairs (G, H) representing the temporal 
constraints associated with it in TAB. Essentially, a 
temporal authorization ([tb,t,l , P, Am) is mapped 
into the pair (A,, {(II, Gl), . . . , (H, Gk)}), where H 
represents constraint {tb < t 5 te} and G1, . . . , Gk 
represent the periodicity constraints corresponding to 
P. If A, is specified more than once in TAB with differ- 
ent temporal constraints the set E associated with A, 

in TAB’ is the union of the sets corresponding to the 
different constraints. Derivation rules are transformed 
in an analogous way. In the following, given an au- 
thorization A, in TAB, 8, denotes the constraints 
associated with A,,, in TAB’. Analogously, Z:R denotes 
the constraints associated with rule R in TAB’. 

We introduce the operations of conjunction (A*) 
and complement (7;) between sets of pairs (G, H). 
Let 2 = {(G,~l),..., (Gm,H,,,)} and let E’ = 
{(G{, Hi), . . . , (Gi, Hi)). E A* E’ is the disjunctive 
normal form of the result obtained by the conjunc- 
tion of the’ formulas corresponding to E and 2’. For 
instance {(Gl, HI), (G2, ff2)) A* {(G',, Hi)) = (((2 A 

‘We use the notation s(A),o(A),mU),pn(A) to denote re- 
spectively the subject, the object, the privilege and the sign 
in A. 
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G:, Hi A Hi), (G2 A G:, Hz A Hi)}. The operation of 
complement (l*) can be defined in a similar way. 

The algorithm for detecting critical sets receives as 
input TAB’, i.e. the graph version of TAB. It returns 
FALSE if either a critical set exists or the number of 
levels exceeds a fixed upper bound. Otherwise, it re- 
turns a sequence of levels (Lr, . . . , Lk) representing a 
finite partition of the set of pairs (A, t) for each author- 
ization A in TAB’ and l&i,, < t 5 t,,,, where t,,,i,, 
and ha+ are respectively the minimum and maximum 
constant (included oo) appearing in TAB’. Each level 
Li is a set of pairs (Aj, Sj,i), where Ej,i denotes the 
temporal constraints associated with Aj at level Li. In- 
tuitively, authorizations appearing at lower levels for 
a certain set of instants have higher priority for eval- 
uation than authorizations appearing at higher levels 
(for the same or for a different set of instants). 

The algorithm starts by putting at level 1 all the 
authorizations for all time instants between tmin and 
t maz* Then, it considers the dependencies caused by 
negative authorizations and rules and possibly moves 
authorizations up in levels. Moving authorization A,,, 
from a level h to a level k with constraints S means up- 
dating &h to be E,,hA*T*E and updating z,,+ to be 
%,k U E.8 The process is repeated until no changes to 
the levels are necessary (i.e., all the priorities are sat- 
isfied), or the number of levels becomes greater than 
max-level. max-level is an upper bound chosen as 
the number of authorizations in TAB’ multiplied by 
(CA,, - Lin + pma, + l), where I&,,,, is the max- 
imum finite constant appearing in TAB’ and P,,, is 
the least common multiple (lcm) of all the periodicities 
appearing in TAB’ (excluding T). 

The algorithm guarantees that if a critical set exists, 
it will be detected. Intuitively, in case of a critical set, 
the algorithm cycles over some priority relationship 
and soon it reaches the max-level upper bound. 

When the algorithm reaches a fix-point before 
reaching max-level, it returns the levels that have 
been generated. These levels obey the priority rela- 
tionship: If a dependency An[t] L) A,,,[?] exists in 
TAB, then Am[t’] appears at a level higher than or 
equal to A,[t]. The level is necessarily higher if the 
dependency is strict. Moreover, a positive authoriz- 
ation A,,, appears at level higher than any negative 
authorization A,, with same subject, object, and ac- 
cess mode for the, same time instant. The algorithm 
guarantees also that for each authorization A,,,, each 
instant t, t,in 5 t <tmal? satisfies the constraints 
&,l of exactly one level 1. A detailed description of 
the algorithm can be found in [l]. 

81f Am does not appear at level k before the operation, it is 
inserted and E,,,,k initialized to 8. 

Example 4.2 Consider a TAB containing the follow- 
ing authorizations and rules: 
([95,col, T, Ai) 
(RI) ( [i/20/97,981 , Mondays,AiUPONAf ) 
(Rs) ( [SS, 971, Working-days ,A;~HENEVER-NOTA~) 
The corresponding TAB’ contains the following pairs9 
@17{({true~~{~/~/95 I tl)l> 
(A~uPoNA~, {({t 37 I}, {i/20/97 5 t 5 i2/31/98})}) 
(ATWHENEVER-NOTA~, {({t -7 (y + 1)Vy = 0,. . .,4}, 
{l/i/96 5 t < 12/31/97})}) 

Authorizations Al, At, As, and Ai are initially in- 
serted at level 1 with constraints {({true},{ I/1/95 5 
w. 

The algorithm then cycles moving authorizations 
up in level as follows. 
1st iteration: 
For A2 at level 1: move (A~,{({true},{l/l/95 5 t})}) 
to level 2. 
For rule Rr: move (Ar,{({t -7 l}, {l/20/97 5 t 5 
12/31/98})}) to level 2. 
For rule Rz: move (A;,{({t ~7 (y + 1)Vy = 0,. . . ,4}, 
{i/i/96 5 t 5 12/31/97})}) to level 2. 
2nd itemtion: 
For A; at level 2: move (Aa,{({t -7 (y + 1)Vy = 
0 .‘, 4}, {l/l/96 5 t 5 12/31/97})}) to level 3. 
Fkr rule Rr: move (Ar,{({t ~7 1}{1/20/97 < t 5 
12/31/98})}) to level 3. 
3rd iteration: 
All dependencies are satisfied. No further changes to 
the levels are necessary and the algorithm terminates 
returning the levels illustrated in Figure 2. 

For the purpose of determining the authorization 
state of the system at a certain instant, the uniqueness 
of the PTAB ground model at that instant is required. 
The uniqueness of the model in absence of critical sets 
is guaranteed by the following theorem. 

Theorem 4.1 Given a TAB with no critical sets, the 
corresponding logic program PTAB has a unique ground 
model. 

Note that more than one finite constrained non- 
ground model of PTAB equivalent to the unique ground 
model can exist, since the same set of instants can be 
represented by different constraints. 

5 Access Control 

In our model, the control of whether an access request 
can be authorized may require the evaluation of sev- 
eral rules. For this reason we adopt a materialization 
approach to enforce access control. Under such an 

gFor simplicity, here and in the following examples we assume 
Days as our finest granularity and Sunday 1/ 1/95 as our instant 
zero. 
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Level 1: 
(Al,(((true),(l/l/95I t <1/19/97)), ({t$7 1),{1/20/97< t 5 12/31/98}),({true},{1/1/99~t})}) 

(AZ,{({true),(i/i/95i t I l/31/95)), ({t$7 (Y+ l),v =O 

p~\yl7w~/g5 5 9))) 
,...,4},{1/1/96< t 5 12/31/97}), ({true},{1/31/97< t})}) 

(A;,{& (Y + l)Vy = 0 , . . . ,4},{1/1/96 5 t <_ 12/31/97})}) 
Level 3: 
(h,{({t=7 1}{1/20/97<t 5 

(A$,{({t37 

12/31/98)))) 

(y+l)Vy=O,..., 4},{1/1/96 5 t 5 Q/31/97})}) 

Figure 2: An example of levels returned by the CSD algorithm 
approach the system permanently maintains all the 
valid authorizations, both explicit and derived. Upon 
an access request, the system can immediately check 
whether a valid corresponding positive authorization 
exists. 

In the following we illustrate how to compute, given 
a TAB, the corresponding valid authorizations. We 
start with the following definition. 

Definition 5.1 (Temporal Authorization Base 
Extent) The Temporal Authorization Base Extent 
(TABExT) of TAB is the set of valid authorizations 
derived from TAB. 

Authorizations are maintained in TABEXT using a 
compact representation similar to that of TAB’. Each 
Ak is associated with a set of constraints Gb; (Ah, Rk) is 
in TABEXT if authorization Ak is valid at each instant 
t satisfying fik. 

Given two sets of constraints Z and Z’, we say that 
B is shift-equivalent to E’ (written 5 Z!* 2’), if the in- 
stants denoted by 5 are a transposition of the instants 
denoted by Z on the time axis. Formally: 
=*-)*-I. u- z if 3’ E IN such that t +t’ satisfies E’ whenever 
t satisfies E. 

Figure 3 presents an algorithm to compute 
TABExT. The algorithm is based on the model com- 
putation for (locally) stratified Datalog”otl~z~<Z pro- 
grams given in Appendix A. This computation is 
represented in Algorithm 5.1 by an iteration of the 
repeat-until cycle. The termination of each iteration 
is guaranteed by using a finite constant as an upper 
bound in constraints and computing TABEXT only up 
to that value. The periodicity of our rules and their se- 
mantics guarantee that a finite constant can always be 
found, such that the computed TABEXT can be exten- 
ded (Step 3 of Algorithm 5.1) to the actual TABEXT 
(possibly including oo). This finite constant cannot be 
easily determined before running the algorithm, and 
this is the reason for the repeat-until cycle. In par- 
ticular, the algorithm considers two contiguous time 
intervals after &a=) of length equal to the maximum 
periodicity in TAB (P,,, ) and checks whether the con- 
straints associated with the derived authorizations and 
restricted to these intervals are shift-equivalent (Step 

2.3)?If noi, it proceeds with another iteration of Step 
2, generating a larger TABEXT using the constant of 
the previous iteration incremented by P,,, (Step 2.1). 
We have proved that for any TAB the algorithm ter- 
minates. 

Theorem 5.1 i) Algorithm 5.1 terminates and ii) an 
authorization A is valid at time ? if and only if there 
exists (A, Q) in TAB EXT such that t satisfies $2. 

In practice, we expect the algorithm to terminate 
at the first iteration in most cases. 

Example 5.1 Consider the TAB in Example 4.2. 
The levels computed by the CSD algorithm are il- 
lustrated in: Figure 2. We now apply the algorithm 
for TABEXT generation. At the first iteration of the 
repeat-until cycle Ic = 2 and current_time=i/l4/99 
(12/31/98 + 2 Weeks). Let TABg?T be the TABEXT 
resulting from the evaluation of level Li. We have: 

TAB&T = {(Al,{({true}, {l/1/95 _< t _< l/19/97}), 
({t $7 11, {l/20/97 2 t 5 12/31/98)), 
(ltrue3, {VU99 I t I ~/14/99~)~)~ 

TAB(&T = TAB;?,’ U {(Ai-,{({t 57 (Y+ 1) 

vy = 0, . . . ,4), {1/W 5 t I WWg71)~)~ 
TABEL, = TAB& U {(AI, {({t ~7 l}, 

{l/20/97 5 t 5 12/31/98})})} 

success is set to true and the repeat-until cycle ter- 
minates. 
The last step of the algorithm substitutes co to each 
value i- such that i/7/99< Z <l/14/99. Hence: 

TABEXT = {(Al,{({true},{1/1/95I t))}>, 

(A;,{({t=7(y+ ~)VY= 0,...,4}, 

{W/96 L t 5 ww~)Hl 

Once we have generated TABExT, an access re- 
quest from user si to exercise access mode ml on ob- 
ject 01 at time t will be allowed only if (A, a) exists 
in TABEXT such that s(A)=si, o(A)=o~, m(A)=ml, 
pn(A)= ‘+‘, and t satisfies R. 
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Algorithm 5.1 
INPUT: The output (&, . . . , Lk) of the CSD Algorithm and TAB’. 
OUTPUT: TABExT={(A~,Q) 1 Ai is a valid authorization for each instant satisfying ni} 
METHOD: 
1. k := 1; success := false 
2. Repeat 

2.1. k := /c + 1; current-max := t,,,+k. Pm,= 
2.2. For each level Li: 

Let X; c TAB’ containing all (A,,,,E, ) and (R,=R) (R=Am (OP) An) such that Am appears in Li 
Repeat 

For each (I, E) E Xi: 
(a) Let 0 be the conjunction of E, Z,,i and {(true, t 5 current-max)} 
(b) If x = Am (OP) A,,: 

If OP = WHENEVER: reassign to 0 the conjunction of 2, and 0 
If OP = WHENEVER-NOT: reassign to @ the conjunction of -*E, and 0 
If OP is a past operator: 

Let t be the unique variable appearing in 0 
Case 0P of: 

UPON: reassign to 0 the conjunction of {(true, t > 7)) and 0, 
where t is the first instant satisfying E and & 

UPON-NOT: reassign to 0 the conjunction of {(true, t > t)} and 0, 
where 7 is the first instant satisfying E and -*En 

ASLONGAS: reassign to 0 the conjunction of ((true, t < t)} and 0, 
where 7 is the first instant satisfying 6 and -*En 

UNLESS: reassign to 0 the conjunct+ of ((true, t < 2)) and 0, 
where 7 is the first instant satisfying Z and 3, 

(c) If Am is a positive authorization: reassign to 0 the conjunction of 0 with the complement 
of each element in the set {Z:k ( pn(Ak)=‘-‘,s(Ak)=s(A,),o(Ak)-o(A,), m(Ak)=m(A,)} 

(d) Discard the inconsistent pairs from 0 
(e) Add (A,, 0) to TABJJXT 

until TABEXT does not change 
2.3. If V(A,CJ) in TABEXT 

R A* {(true, t,,, +(rc - 2) * Pmoz < t 5 FVn,,,+(lc - 1). Pmaz)) t* 
Cl A* ((true, t,,,+(k - 1) f Pmas < t 5 t,,,+k. Pmae)}: 

success := true 

3. For each (A,O) in TABExT: substitute with 00 each value i: such that &,,+(k - 1) . Pma, < 5 5 tma++/c . Pmar 

I Figure 3: An algorithm for TABEXT generation 
6 Conclusions References 
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Constraints. Theoretical Computer Science, 
116(1):117-149, 1993. 

J. G. Steiner, C. Neuman, and J. I. Schiller. Ker- 
beros: An authentication service for open network 
systems. In PTOC. USENIX Conf., pages 191-202, 
Dallas, TX, 1988. 

(having the same set of variables) if any assignment satis- 
fying (Gl, HI) satisfies also (Gz, HZ). Operations of sub- 
sumption and projection can be easily extended to sets of 
pairs (G, H), similarly to A* and Y*. 

Periodicity and gap graphs serve as a basis to define a 
non-ground interpretation for Dotalog”ot+z~<z programs. 
A (z, <) interpretation is any set of pairs of the form 
(B, E), where B is a predicate symbol, and FZ is a set, of 
pairs (G, H) denoting the disjunction of the corresponding 
constraints. 

Given a Datolog”ot~zz~<z program P we cati define an 
operator TPnotprzt<z that maps (E, <) interpretations to 
(2, <) interpretations. In the following we denote with a* 
the projection operation on sets Z. 

Definition A.2 (TPnotSrzl<z operator) Let P be a 
Dotolog”~t,‘z><z program and I o (E, <) interpretation. 

TP”ot~<z=z(Z) = I u { (B,Z) : I3 c Dl,. . , , D,, 
notD,.+l,. . . ,n~tD,,,+~, 
G,C2 E p 

(Di,Z,) E I, Vi = 1,. . . ,m 
0 = El/\*. . . A’ =:,A* 
A*-*&+I) A’. . . A* -I* Em+,, ( 1 
A*t(Gc,>Hc,)l 
‘;: - Gar(B) (0) 
TBTE) is not subsumed by I } 

where Gc, is o periodicity graph corresponding to Cl, Hc, 
is o gap graph corresponding to Cz and Vor(B) denotes the 
set of variables in atom B. The nodes of the periodicity 
and gap graphs ore renamed using the variable names in 
the associated atoms of the cla’uses. 

If we restrict our attention to stratified (or locally strat- 
ified) [8] Datalog”“t*‘z’<z programs the following proced- 
ure based on the fixpoint iteration method can be used to 
evaluate programs. 

Algorithm A.1 (Naive Bottom-up evaluation of 
stratified Datolog”ot~Ezl<z programs) Let P be a 
Dotolog”ot~‘z~<z program, let PI,. . . , P,, be o strotifico- 
tion of P.l” 

I := 0 
For i := 1 to n do 

repeat 
1 ;= TP”‘&“Z,<Z(~) 

until I doe; not change 
endfor 
return I 

Termination of algorithm A.1 is not guaranteed for any 
stratified Datalognot”Z’<Z program, as Datalog”“tSSzS’z 
programs can express any Turing computable function [5]. 
However, it is easily shown [I] that .if gap-order constraints 
are on a finite subset of the integers, Algorithm A.1 termin- 
ates returning a non-ground representation of the unique 
(ground) model of the program. 

loPi contains rules of strata i, i = 1,. . . ,12. 
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