
Intra-Transaction Parallelism in the Mapping of an
Object Model to a Relational Multi-Processor System

Michael Rys Moira C. Norrie Hans- Jijrg Schek

Dept. of Computer Science, Swiss Federal Institute of Technology (ETH)
CH-8092 Zurich, Switzerland

{rys, norrie, schek}@inf.ethz.ch

Abstract

We map an object model to a commercial re-
lational multi-processor database system using
replication and view materialisation to provide
fast retrieval. To speed up complex update oper-
ations, we exploit intra-transaction parallelism by
breaking such an operation down into shorter re-
lational operations which are executed as parallel
subtransactions of the update transaction. To en-
sure the correctness and recoverability of the oper-
ation’s execution, we use multi-level transactions.
In addition, we minimise the resulting overhead
for the logging of the compensating inverse oper-
ation required by the multi-level concept by log-
ging the compensation for non-derived data only.
In particular, we concentrate on the novel appli-
cation of multi-level transaction management to
efficiently maintain the replicated data and ma-
terialised views. We present a prototype imple-
mentation and give a performance evaluation of
an exemplary set-oriented update statement.

1 Introduction

During the past decade, research in data modelling
and database system architecture has led to two
new classes of database management systems: object
database management systems (ODBMS) and paral-
lel database management systems (PDBMS). ODBMS

Permission to copy without fee all or part of this materiat is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special pemission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

are based on semantically rich and powerful object
models which feature concepts such as object classifi-
cation and generalisation/specialisation. Such an ob-
ject model is accompanied by an object algebra which
describes the model’s generic query and manipulation
operations [BM93].

PDBMS support the natural parallelism of database
systems based on the concurrent execution of differ-
ent user transactions on a common database (inter-
transaction parallelism) by exploiting the infrastruc-
ture of multi-processor and/or multi-disk computer
systems. In addition, they increase the performance
of the database system by executing operations within
a transaction in parallel (intra-transaction parallelism)
and by parallelising the execution of these operations
(intra-operation parallelism). The performance in-
crease manifests itself either by the capability to pro-
cess larger datasets in the same amount of time (scale-
up) or by the reduction of the response time of a single
transaction (speedup). The reduction in response time
either can be used to improve the response time for a
single user or to improve the overall system transac-
tion throughput [Gra95]. While several commercial
systems of either variety are now available, the com-
bination of parallel and object database management
systems is still a research topic [Va193].

Many applications which use ODBMS feature rich
classification structures and typically execute signif-
icantly more queries than updates on the database.
A typical example of such an application is a decision
support system of a life insurance company [RRSM93].
We combine an ODBMS and a PDBMS to support
such a knowledge baaed decision support system with
a parallel object database management system. In
particular, a frame based knowledge representation
model FRM [Rei89] is mapped to the COCOON object
data model and its associated object algebra COOL
[SLR+94] h’ h w ic are themselves implemented on top of
a commercial relational database management system
[RLNR95]. We use- a commercial relational database

460

management system as an “intelligent” storage server
in order to exploit the mature technology provided by
the relational database management system for query
optimisation, concurrency control and physical design
[NRL+94]. The main load of a decision support system
is retrievals. Therefore we increase the access efficiency
through the extensive use of replication (see [SC891 for
a discussion of its benefits) and view materialisation
(see [Han87, GM95, BE96]). Update operations be-
come more complex due to the added redundancy in
the mapping of the large classification structures. In
order to speed them up, we exploit intra-transaction
parallelism by breaking the updates into shorter rela-
tional operations. These are executed as ordinary in-
dependent parallel transactions on the relational stor-
age server.

This works builds on our previous experience with
multi-level transactions [WeiSl, WS92a, SSW95]. In
particular, we explore and evaluate the key idea of
exploiting inter-transaction parallelism at the low level
for intra-transaction parallelism at the high level in
the context of multi-level transaction management as
described in [WH93].

Using parallelism to update derived data is also in-
vestigated in the Cactis project [HK89]. In contrast to
our approach, Cactis deals with derived attributes of a
few, large objects typically encountered in engineering
design applications. It does not use an existing par-
allel database system, nor does it apply a multi-level
transaction management concept.

Many object database management systems use
a relational database management system as a
storage server, examples are: COCOON [TS91],
SQL/XNF [MPP+93], OMT [RBP+Sl], ERIC [LC91],
Iris [LK91], HP’s OpenODB [AD92], EXTREM
[HHRW92], and OPM]CM95]. They choose a
“traditional” mapping where the resulting relational
schemata are normalised and avoid object replication
by using either horizontal or vertical partitioning when
mapping the generalisation hierarchy [RBP+Sl, LV87,
HH91]. The disadvantage of the normalised, non-
replicated mapping is that retrieve operations need to
recompose the objects from the different tables with
expensive join. operations which we want to avoid.
The idea of introducing extensive replication in the
mapping of an object model to a relational parallel
database (storage) system has, to our knowledge, not
been investigated so far, although it seems to be a
straightforward approach.

The main contributions of thispaper are the follow-
ing:

l The investigation of extensive replication in the
mapping of an object model to a relational parallel
database (storage) system.

The use of multi-level transaction management to
efficiently maintain materialised views and repli-
cated data by parallelising the execution of up-
dates is a novel application of the multi-level
transaction concept.

In order to drastically reduce the inherent logging
overhead of a two-level transaction manager, we
introduce a new logging approach which uses the
mapping information from object operations to
storage operations, i.e. SQL in our case.

The evaluation of our approach is based on a real
prototype implementation.

In this paper, we give an overview of our approach
and discuss the parallelisation of the generic update
operation. Section 2 introduces our approach and the
architecture of our system and gives a short introduc-
tion to multi-level transactions. Section 3 gives an
overview of the object model COCOON and its map-
ping to the relational database management system.
Section 4 presents the mapping for the object algebra
COOL and also introduces our logging strategy. Sec-
tion 5 discusses evaluation results for the execution of
the update operation and discusses the potential and
limitations of the approach before we conclude with a
discussion of ongoing and future work.

2 General Architecture and Approach

Our work is embedded in a larger project called HY-
WIBAS [RRSM93] which exploits database technol-
ogy to support efficient retrieval and update of large
frame-based knowledge systems. The general archi-
tecture concerning the database support is shown in
figure 1. FRM is the frame based knowledge represen-
tation language which’ is being used to build the life
insurance decision support systems. FRM is a termi-
nological logic [WS92b] which features two kinds of re-
lations, namely properties and semantic relationships,
and a powerful classification mechanism. It is mapped
to the ODBMS layer with a data model featuring spe-
cialisation and classification structures. In our case,
COCOON is the data model used. Object operations
and transactions are mapped to SQL transactions of
the parallel database system (PDBMS). In our case
this is Oracle.

The main components for the mapping are the
Schema Definition Translator which does the physical
design on the relational tables (see also section 3), the
Update Operation l%anslator and the Query Operation
Z?anslator which both translate the COOL operations
based on the physical design. The COCOON object
layer acts as a client to the relational storage server.
In order to be able to execute several transactions in
parallel from a single transaction, we have to build

461

ODBMS

FRM

COCOON Object Layer

Schema
Definition
TEUAttor

Pardleliser
c2urrcnlly only fa “pdalcs)

I I

Locking Component

Logging Component
I

PDBMS fl
‘1 I

COCOONDB “r”
lllV1

6696 66

I Objects & Metaschema Log

Figure 1: The overall system architecture

an extra layer on top of the client/server interface of
the relational database system, because current sys-
tems do not support several parallel transactions from
a single client. This subcomponent (the Pamlleliser)
is similar to a transaction processing monitor in that
it accepts a set of transactions and a description of
their dependencies, executes them in parallel on the
underlying relational system and returns a single re-
turn code to the actual client. Finally, the Logging
and Locking G’omponents implement the level specific
multi-level transaction management. In this paper,
we concentrate on the schema and update operation
translators and on the logging component. The locking
component is similar to the lock managers described in
[Has95, SSW95]. Details about the query translator,
the paralleliser and the lock manager are beyond the
scope of this paper.

As we mentioned above, the reduction in retrieval
costs resulting from our mapping is achieved at the
expense of increased complexity of update operations
due to the data replication and view materialisation.
A COOL update operation now has to update and re-
classify the different replicated and materialised copies
of the updated objects in all the different locations in-
troduced by the mapping. Instead of deferring the
updates to the retrievals and slowing them down, we
immediately propagate the changes to the replicated

L2 CoOLhnwt

Ll wpGzzz&q w

Figure 2: A multi-level transaction hierarchy

objects. However, to avoid long transactions with lots
of updates which are not only slow, but may also hin-
der queries because of lock contention, we apply intra-
transaction parallelism by executing the many result-
ing relational updates in parallel [Has95].

As an example for a COOL update operation, con-
sider the insertion of objects into classes on the’ object
model level. These objects now have to be inserted
into all the SQL tables where they belong because of
the replication of the objects within the classification
structure and the materialisation of the classes. All
SQL insert operations have to be executed, however
their execution order does not matter. In particular,
these inserts can be performed in parallel as individual
SQL transactions. The available concurrency control
mechanisms of the advanced storage server (i.e. the re-
lational database system) can be used to execute the
SQL operations successfully on the lower level. How-
ever, in order to assure the correctness of the main
insert operation, additional concurrency control mech-
anisms have to be used on that higher level. By ap-
plying multi-level transaction management [WS92a],
we can use its formal foundation to correctly and effi-
ciently parallelise the COOL update operations.

Multi-level transactions are a variant of open nested
transactions where the subtransactions correspond to
operations, at particular levels of abstraction in a lay-
ered system (see figure 2 for the hierarchy for the
given example). Each level exploits the semantics of
the level specific operations for concurrency control
by reflecting the commutativity (compatibility) of the
operations in level-specific conflict relations. In the
example, the COOL insert operation is on level L2.
It commutes with another COOL update operation if
the set of inserted objects is disjoint with the other
set of updated objects. Similarly, the SQL operations
on level Ll, where they form level Ll transactions,
can commute with other SQL transactions with which
they do not conflict. Such a conflict test can be per-
formed by a predicate based lock manager such as
the ones described in [Has95, SSW95]. In our case,
the level LO operations are hidden within the rela-
tional database system. In short, the operations of
a transaction of level Li form transactions on level
Li-1. Multi-level transaction management allows more
concurrency compared to conventional (single-level)
transaction management. However, transaction aborts

462

can no longer be implemented by restoring the before-
image of the modified low-level objects, since certain
modifications become visible to concurrent transac-
tions at the end of each subtransaction. The solution
to this problem is to perform the aborts by means’
of high-level inverse operations that compensate com-
plete subtransactions.

Thus, the intra-transaction parallelism at L2 is
transformed into inter-transaction parallelism on level
Ll, the parallel relational database management sys-
tem. Therefore we can exploit the capability of the
multi-processor database system to efficiently execute
many short transactions in parallel.

3 Mapping of the Object Model to
SQL

In this section, we describe the basic principles of the
COCOON mapping to a relational database manage-
ment system, and discuss our physical design.’ Note
that the approach is general and could also be adopted
for other object data models as well.

3.1 , The COCOON Object Model

The COCOON data model differentiates between the
structural description of objects and the semantic
grouping of objects. The structure is described by a
type system, while classes are used to group the ob-
jects. In both cases an object can be multiply instanti-
ated, i.e. it can be of several different types and it can
be member of several different classes at the same time.
If objects change properties during updates which in-
fluence their classification, they are dynamically re-
classified. Thus, COCOON features objects, property
functions, types and classes as main concepts. Using
the example given in figure 3, we now describe how
these concepts occur in COCOON.

COCOON objects have properties which are mod-
elled by functions. The function definitions implicitly
introduce the definition of the object types. In the ex-
ample, the functions ‘name, age, sex, salary and dept
define the object type employee.

Subtyping defines a new abstract object type by de-
riving its definition from one or more existing types
(inheritance) and adding new functions. For example,
projleader is a subtype of employee and adds the func-
tion projects to the inherited functions. Each instance
of a subtype is also instance of its supertypes (multiple
instantiation).

In COCOON, types describe the functions which
are applicable to an object, but they do not group
objects into collections which then can be queried.

‘For the purpose of this paper, a subset of the actual CO-
COON data model is presented.

type hierarchy

class hierarchv

Figure 3: An example schema

To form such collections of objects, COCOON pro-
vides a class construct. The extent of a class is the
set of objects ‘of the associated abstract object type
(the member type) which fulfil a condition referred
to as the class predicate. For example, the class Re-
searchers has the member type employee and the pred-
icate dept=‘Research’. The classes can be considered
polymorphic since, due to multiple instantiation, ob-
jects contained in the extents are instances of the class
member type and its subtypes.

A subclass relationship between two classes implies
that the member type of the subclass is a subtype
of (or the same type as) the member type of the su-
perclass and the extent of the subclass is a subset of
that of the superclass. There are two forms of sub-
class relationship: all classes and some classes. All
classes are subclasses which automatically contain all
members of their superclass if they are of the sub-
class’ member type and satisfy the optional associated
class predicate; in other words, the subclass member-
ship conditions are both necessary and sufficient. The
class Researchers, like all other classes in the classifi-
cation structure of figure 3, is an all class and there-
fore automatically contains all objects of Employees if
they work in the research department. Note, that all
classes can be regarded as a partial precomputation
of frequently asked queries. Some classes are sub-
classes where the type and the predicate condition are
only necessary but not sufficient. Members of such
subclasses have to be inserted explicitly. We will con-
centrate on all classes for the remainder of this paper.

463

There is a predefined root class of the class hier-
archy, Objects, which contains all existing objects.
Thus, the extent of Objects is the active domain of
the type object. All other classes contain only objects
which are specified by the subclass relationships and
by the class predicates. A class contains all members
of its subclasses.

3.2 Mapping of COCOON to a RDBMS

Generally, a COCOON type and class are mapped to
a relation schema, while an object is mapped to one
or more relation triples. An object will be represented
in all of the relations corresponding to the types of
which it is an instance. It will also be represented
in all of the relations corresponding to the classes to
which it belongs. In this way, direct access to objects
of a certain type and of a class is attained. The in-
ternal object identifier is implemented by a logical key
attribute COOL-OID which serves as the primary key
in all of the relations representing the types or classes.

Each abstract object type is mapped to a main rela-
tion table which besides the logical key attribute, con-
tains all single-valued functions as attributes. Each
multi-valued function is stored in a separate binary
function table. The subtype hierarchies are mapped
with horizontal and vertical replication. This means
that all single-valued function attributes are repeated
in the subtype’s relation table (vertical replication)
and all instances of a subtype are also stored in the
table of the supertype (hotizontal replication). Using
this type mapping, all the attributes of the type table
Employee are repeated in the type table Deptleader
(vertical replication) and a deptleader object is stored
in both tables (horizontal replication).

A class is mapped to a table which in the case of
all classes is of the same form as its member type’s
main relation table: In addition, the classification hi-
erarchies are horizontally replicated, i.e. the member
objects of the classes are stored in all the tables of
the classes of which they are member. Note, that all
classes can be considered as materialised views, since
they could also be mapped as views of their closest
some class(es) (i.e. their base class(es)). For exam-
ple, the all classes Researchers and UpperManagement
are mapped to tables which are structurally equivalent
to the tables of their member types employee and man-
ager.

In addition, a metaschema contains the necessary
meta information such as superclass relationships or
a class’ member type. Also, the metaschema contains
all the information for each class which is necessary to
materialise its extent.

Based on this mapping, we can identify the follow-
ing derived data:

l An all class table is a materialised view of its
member type and base class tables.

l A type table which represents a subtype vertically
replicates the inherited attributes.

l The members of a type table which represents a
subtype, or of a class table, which represents a
subclass, are horizontally replicated in the super-
type or superclass tables.

Another important point to consider is the place-
ment of the objects on the disks. Since object tuples
are updated in parallel, there will almost certainly be
a bottleneck when writing to the disk. In order to
minimise the I/O-boundedness of the update opera-
tions, the data has to be distributed across different
disks such that the object tuples can also be written
in parallel. Our current implementation distributes
the data using a disk array by horizontally striping
the data across several disks. This means that tuples
of the same table are on different disks which can im-
prove the I/O access time when accessing objects from
the same table. Another way to improve the I/O ac-
cess time is to allocate the tables on different disks by
different placement heuristics. However, our investiga-
tions [Blu96], in which we used the anticipated size of
the tables and their semantical relationship to achieve
load balancing, show that there is no significant gain
over the horizontal striping.

4 Mapping of COOL Operations

In this section we give an overview of the COCOON
object algebra and an introduction to the mapping of
a generic update operation of the algebra using intra-
transaction parallelism.

4.1 COOL Operations

The operations over COCOON databases are ex-
pressed in the language COOL which is founded on
a set-oriented, generic, orthogonal and closed algebra
formally defined in [SLR+94]. Generally, COOL query
operations such as select and project work on sets of
objects (i.e. classes) and have object-preserving se-
mantics, such that their results are subsets of the ex-
isting objects in the database.

Object generation in COOL is achieved by opera-
tions such as create which creates an object but does
not explicitly associate it with any classes or insert
which creates an object and inserts it into the specified
class and into all classes where it is classified accord-
ing to the class predicates. The update operations can
be divided into operations for assignment (set), for
object evolution (gain, lose, delete) and for manipu-
lating the extents of classes and views (add, remove,

464

LZ

Ll

updale[...l(-)

upd(TlJ: wdf72J: upd(ClJ: rematVZ7J: rematfC3J:
update Tl update T2 updale Cl tntncate table C2; truncate table C3;

set . set set insert into C2 insert into C3
where . . . where . . . where . . select * select *

fromTI,.... from Tz,....

T1.l T1.2 T1.3 Ti .4 T1.5

Figure 4: A COOL update transaction hierarchy

update). Due to the dynamic reclassification of ob-
jects into all classes, an update statement may initiate
the automatic propagation of objects within the class
hierarchy. In the case of an object evolution operation,
objects might also be propagated dynamically within
the type hierarchy. For example, the update operation

update[fI(o) := el, fn(o) := e,](o: set-ezpf-);

changes the functions fr , f,, for every object o of
the set-ezppr such that the function application fi(o)
results in the value of the expression ei.

With the physical design introduced in section 3 and
the goal to minimise the query overhead, the update
operations have to update the data in several tables
immediately. A COOL update operation on level L2
consists of several subtransactions, each representing
one SQL transaction which performs the necessary up-
date operations on exactly one of the SQL tables on
level Ll. Since most of the SQL level updates can be
performed independently from each other, we would
like to speed up the update operations by parallelis-
ing the SQL updates. Figure 4 gives an example of
such a transaction hierarchy for the update state-
ment. We get similar transaction hierarchies for the
other set oriented update operations, which then can
be parallelised in an analogous way. In this paper, we
use the update statement as the example to present
and evaluate our approach.

4.2 The Update Statement and Remateriali-
sation Strategies

The mapping of the update statement identifies all
types which contain the affected function. It then col-
lects all classes whose member type belongs to the set
of the identified types. This results in a set of tables
containing all the tables which may contain objects
which have to be updated.

If the type table contains a subset of the objects
to be updated, the SQL update statement can be ex-
pressed by selecting the affected objects without refer-
encing the base table of the set expression. Otherwise
a join with the set expression’s base has to be per-
formed.

Because classes are mapped as materialised views,
the updates of the class tables need to perform the

EOT

Figure 5: The generic update dependency graph

rematerialisation from the base tables. There are dif-
ferent approaches to implement the rematerialisation
[GM95, BE96]. First, we can differentiate between
those classes where the update operation may change
the extent and those classes where the extent stays the
same and only the state of the contained objects may
change. In the first case, the classes either have to
be incrementally rematerialised by explicitly deleting
and inserting the qualifying objects. Otherwise a full
rematerialisation has to be performed. If the function
affected by the update does not influence the classifi-
cation, it is sufficient to only update the changed at-
tributes in the class tables.,

Thus, these seZf-maintainable class tables can be up-
dated independently (and therefore in parallel) from
their base tables. The other class rematerialisations
have to be performed after the update of the base class
tables and after the member type table on which the
classes depend. This execution order assures that the
class extents are correct when the views are remateri-
alised on the changed base tables. In addition, if the
extent of the set expression may change due to class
maintenance, all updates on tables which reference the
set expression’s base table, such as an update on a type
or self-maintainable class table, have to be performed
before the specific class rematerialisation.

Therefore, the execution order of the Ll transac-
tions has to guarantee the dependencies. This is done
by the dependency analyser which generates a depen-
dency graph of the Ll transactions (see figure 5) which
then is passed to the paralleliser (see figure 1).

4.3 Logging and Recovery Strategy

If a COOL transaction has to be aborted, not yet
committed subtransactions will be aborted by the
RDBMS. However, since subtransactions are commit-
ted on the RDBMS before the COOL transaction is
committed, it is necessary to compensate the com-
mitted subtransactions. According to the multi-level

465

transaction theory, compensating inverse operations
have to be executed which semantically undo the ef-
fects of the subtransactions. To guarantee the correct-
ness of the compensation, atomicity at the SQL opera-
tion level is required; this is achieved by executing the
inverse operations as compensating subtransactions.

In the naive approach when we do not make use of
our knowledge of the data model’s semantics and the
execution precedencesspecified in the COOL trans-
actions dependency graph, the standard inverse op-
erations are as follows (see also [SSW95, Hss95]): A
committed insert subtransaction has to be undone by
deleting the inserted tuples and deleted tuples have
to be reinserted. Updated tuples have to be reset to
their old values by either deleting and reinserting the
changed tuples or, preferably, by updating the tuples
to the old values. This naive approach would cause
too much overhead: For each insert, delete or update
statement, we would almost double the work by gen-
erating another insert for the logging.

In order to significantly reduce the overhead of the
additional log, the logging component optimises the
log data by applying its knowledge of the semantics
of the COCOON data model and its mapping to the
relational database system. The main idea is that
undo operations will be logged only on tables contain-
ing data which cannot be derived from other tables.
Such tables which need to be logged are called pri-
mary tables. Compensating operations for operations
on tables containing derived data do not need to be
logged, but can be derived when needed. The goal
is to employ this in such a way that logging is min-
imised without losing the ability to perform recovery,
or a (partial) rollback, of a transaction by compensat-
ing (some of) its subtransactions. To achieve this, we
need to ensure that we have the logged information
on the status of the running and already committed
subtransactions to perform the necessary redo (recov-
ery) or undo (compensation) operations on the derived
data.

With the vertical and horizontal replication be-
tween the tables of type Ti and its supertypes Tl ..Ti-l
and subtypes Ti+l . . Tn, only the operations on Ti have
to be logged for operations which primarily affect Ti
(i.e. Ti is the member type of the set expression).

In the case of an all class table, an undo of a com-
mitted khange can be done by rematerialising the class
table after its member type and base class tables has
been undone.2 If the all class is self-maintainable or if
we compensate an update on an unlogged type table,
we propagate the old object state from either the log

2For reason of simplicity, we do not discuss the case of classes
with predicates referencing other classes or other types (via an
inverse function).

or directly from the primary table depending on the
status of the subtransaction on the primary table.

If a crash happens after changes on an unlogged
table have been committed but the changes of the pri-
mary table were lost, the recovery process can simply
restart the not yet committed subtransactions.

Therefore, compensating operations only need to be
logged for the primary type tables. For the inverse
of insert, only the deletion based on the primary
key attributes (i.e. the object identifier) need to be
logged. The inverses of the update and delete state-
ments have to log the complete undo operation for the
affected tuple.

With this logging strategy, the mapping of the up-
date statement looks as follows:

The COOL update operation first operates in par-
allel on the type tables and on the self-maintainable
class tables. The compensation log is only written
for the primary type table. A subtransaction of the
class rematerialisation phase starts as soon as all of the
subtransactions on which it depends have committed.
Since there is no dependency between the class rema-
terialisation subtransactions, they can be executed in
parallel2

The information required to perform the inverse op-
eration has to be written to a persistent log using the
WAL (write ahead log) rule. We exploit the database
functionality for keeping the log data persistent by im-
plementing the log as database tables. One table con-
tains the information about the state of each subtrans-
action, while the other table contains the undo oper-
ations. While in principle all log data can be written
to the log table by database triggers which are auto-
matically generated for each operation type and for
each table as soon as the table is created, this can lead
to a severe performance penalty with the current im-
plementation of triggers in some of the commercially
available database systems. Instead, an SQL state-
ment can be generated which writes the log to the
table shortly before or after the execution of the oper-
ation.

Since the mapping of a COOL operation always re-
sults in the same set of subtransactions as long as there
were no schema changes, it might appear sufficient to
just log the COOL operation and generate the inverses
of the subtransactions during the rollback. This ap-
proach however can lead to incorrect results, if the
inverse of a subtransaction is not defined. For exam-
pie,-if we increment the salary of all employees within
a certain salary range, the inverse cannot be derived
automatically, since the decrement may also affect ob-
jects which were not affected by the increment. There-
fore we still need to log the inverse operations of the
subtransaction on’the primary table. Note that redo
information for the derived data also does not need to

466

be logged on the lower level by the relational system.
Unfortunately, no commercial database management
system currently allows such non-persistent transac-
tions. In Oracle, truncate table operations are not
logged, therefore we use them in the rematerialisation
transaction.3 However, the insert statements following
the truncation are still logged by the database system.

5 Evaluation

In this section, we present some results of our experi-
mental evaluations for two typical COOL update and
two typical retrieve operations. The schema given in
figure 3 was augmented by additional classes which
partition the existing classes into male and female
members. Then a database was generated with this
schema which had a size of approximately 75 MB and
contained 50’000 objects of the type employee.

The measurements were performed on a Sun Sparc-
Center 2000 shared memory multiprocessor system
with ten processors running under Solaris 2.5. The
relational database system used was Oracle 7.1.3. The
tables of the mapped schema were all allocated on a
tablespace which was striped over seven (raw) disks of
50 MB each. The log tables were allocated on a dif-
ferent tablespace which was striped over two different
(raw) disks of 100 MB each. The striping granulate
was 40 kbytes which corresponds to one disk track.
The internal rollback segments were also striped over
two disks. The internal redo logs were allocated on
different disks while the temporary tablespace shared
a disk with the data tablespace. The database buffer
was set to 500 blocks with a database block size of
4 kbytes which resulted in an average buffer hit ratio
of 98.5%. The size of the shared pool, which is used
by Oracle to store session information such as sort ar-
eas and triggers, was set to 20MB and the size of the
log buffer to 4MB to minimise the influence of Oracle
internals on the measurements. The system was run-
ning in multi-user mode, however the measurements
were performed while no other users were on the sys-
tem in order to exclude influences from the outside.
The measurements were repeated until a 95% confi-
dence level with a confidence interval of f5% around
the average or better was reached.

5.1 Retrieval Performance

In order to investigate the benefit of using replication
to speed up the retrieve operations, we investigated
the following two simple COOL statements:

#(select[sez = “m”] (MedPensions)) (Sl)
#(select[sea: = “m”] (MediumSal)) WI

3Note that truncate table is considered a schema operation
by Oracle and therefore forces a commit of the running transac-
tion. Therefore it can only be used in single user investigations.

Table 1: The generated SQL statements
r

Sl I

replicaded
mapping

select count(*) from MedPenszons
where sez = ‘m’

select counties

vertical from Pens&& NI, Employee N2

partitioning where N1.COOL,OID=N2.COOL~OID
and Nk?.sex = ‘m’
and NZsalary between 4001 and 6000

I

s2

replicated select count(*) from Mediumsal
mapping where sez = ‘m’

select count(*) from (select COOL-OID
from Employee

horizontal where salary between 4001 and 6000
partitioning and NZ.sex = ‘m’

union select COOL-OID from Parttrmer
. . . 1

Table 2: Retrieve performance

Sl
s2

Elapsed Time CPU Time
rep1 nonrepl rep1 nonrepl
0.1s 8.6s 0.1s 7.5s

1.1s 8.0s 0.7s 6.1s

physical IO
rep1 nonrepl
23 579

294 510

Sl retrieves the number of all male pensioners with
a medium sized pension while S2 retrieves the number
of all male employees with a medium income. Note
that these queries could also be formulated directly on
the classes which contain the requested employees. Sl
is used to compare our replicated mapping with the
traditional mapping using vertical partitioning, while
S2 is used to compare our approach with the map-
ping using horizontal partitioning (see Table 1 for the
generated SQL statements). Note that each table had
a primary key index specified on the COOL-OID at-
tribute.

Table 2 gives the measured elapsed and CPU times
and the physical reads for a single execution of the
statements. Even for such simple statements, our
replicated mapping results in performance improve-
ments of one to two orders of magnitude and a sig-
nificantly lower number of disk accesses. Due to the
lower number of disk accesses, the data more likely fits
into the database buffer. Therefore, we have to expect
a higher buffer miss ratio in addition to the additional
computational effort in the non replicated case. When
we add an index on the salay attribute of Employee,
Sl in the non-replicated case chooses a different plan,
however the resulting elapsed response time improves
only by about 15%.

467

Table 3: Log execution time

Logged Sub-TA Log Time Exec Time
of Unlogged Sub-TA

Ul upd(Pensioner) 2.3s 3s
u2 upd(Employee) 13s 29s

L

Figure 6: Elapsed time Ul

5.2 Update Performance

In the following, we present our results on the main
question, namely to what extent updates can be made
faster. Based on the statements

update[saZary := salary + 500](MedPensions) (Ul)
update[salary := salary + 500](MediumSal) W)

we will discuss the performance and applicability of
the parallelisation of the update operations and the
differences between the two investigated statements.
We measured elapsed time and raw CPU time (user
and system time) for the execution with multi-level
transaction management for 1 to 7 processors. As
a reference point, we measured the same statements
also on one processor in a single transaction imple-
mentation without logging and with the same physical
design. In addition, we used an incremental remateri-
alisation strategy as well as full rematerialisation for
both update statements. The statement Ul changes
the salary of 5% of the database population while U2
changes 54%.

Table 3 gives the overhead of the log, which is writ-
ten .by the upd(JZmployee) subtransaction for U2 and
the upd(Pensioner) subtransaction for Ul. While the
log overhead accounts for a substantial part of the sub-
transaction’s execution time, it is almost negligible if
we compare it with the total execution time of the up-
date statements (see discussion of elapsed time below).

Figures 6 and 7 show the elapsed response time of
the statements Ul and U2, respectively. The horizon-

Figure 7: Elapsed time U2

tal lines indicate the response times for the sequen-
tial executions without multi-level transactions which
are compared to the response times achieved with the
parallel executions.4 While one would expect that the
execution of the same statement with multi-level trans-
action support on one processor takes longer because
of the logging overhead, the measurements show differ-
ent. A probable reason for this is that the additional
overhead for Oracle to handle a long transaction is
large enough to make the difference insignificant, even
when no other transaction is present in the system
(note that the expected difference due to the addi-
tional logging (Ul: l%, U2: 3.6%) was slightly larger
than the confidence interval for the measurement of
the sequential execution (Ul: 0.5%, U2: 2.6%)). Us-
ing six processors we are around 70% faster than in
the sequential case for all 3 cases.

Figure 6 also shows that for a low selectivity of
the update statement the incremental rematerialisa-
tion strategy must be preferred over full remateriali-
sation. Figure 7 on the other hand shows that for a
high selectivity the incremental approach is unfeasi-
ble mostly because of the higher deletion costs. While
these measurements alone do not give a conclusive an-
swer to the question of when the incremental strategy
is better than the full, it indicates (together with some
random samples taken) that the incremental strategy
is favourable if less than about lo%-15% of the objects
of a class have to be rematerialised.

The increase in performance is also shown in fig-
ure 8 which shows the achieved speedup compared to
the single processor, single transaction execution for
both elapsed and CPU time.4 In the case of six pro-
cessors, for example, we get a speedup of 3.53 for the
elapsed time and 4.25 for the longest running proces-
sor’s CPU time for U2. The difference between the
elapsed and CPU time speedup is mainly because of

4For the single execution of U2 with incremental remateriali-
sation the measurements could not be performed with the given
systems resources because the internal rollback segments were
not large enough.

468

1234567

Figure 10: Standard deviation of CPU load balance
U2 (Full Rematj

Figure 8: Speedup Ul & U2
In addition, we can see that Oracle is quite capable to
cope with an increased transaction load, because the
CPU processing overhead seems to remain stable for
an increase in the number of concurrent transactions.

We also investigated for U2 the case where an index
was defined on the salary attribute of the employee
type table. This slows down the update of the type
table itself because of the index maintenance. On the
other hand, the use of the index can speed up the
rematerialisation of classes with predicates of high se-
lectivity based on this attribute. In our example, only
the UpperManagement and the Pensions classes have
a high enough selectivity to benefit from such an in-
dex. Otherwise the cost based optimiser still uses a
scan and the index is not used. In our investigated
example, the index maintenance costs during the up-
date were too high. Thus, the resulting response times
were always worse than the response time without the
additional index.

Our results show that there is a benefit in parallelis-
ing update statements using multLleve1 transactions.
Especially if objects have to be reclassified in a large
classification structure, there is a significant benefit in
the parallelisation. As has been shown in [Has95], the
faster execution of the update statements also leads to
a reduced conflict potential with concurrent retrieves
due to shorter locks.

Finally let us compare the execution time of our
approach with the traditional, nonreplicated approach
using vertical partitioning. In this case only the type
table employee which contains the changed attribute
has to be updated. We measured 16s for this update
for Ul and 30s for U2 when executed as a single-level
transaction. With our approach, we are about 3 to
4 times slower (see figures 6 and 7). On the other
hand, as we have shown above, even a simple retrieve
statement benefits from the replication. For example
for the statement S2 and the update statement U2 we
benefit from the replication approach as long as the
number of retrievals is more than 9 times the number
of updates.

4w
350

$300

Em
F zoo
6 150

100

50
0

Figure 9: CPU resource usage U2 (Full Remat)

the increased synchronisation overhead on the lower
level. Using seven processors does not further improve
the speedup in this case because of the increased low-
level synchronisation overhead and the sequential exe-
cution of the dependent subtransactions. For U2, the
sequential execution of the longest subtransaction of
the first phase (upd(5ployee)) and the longest sub-
transaction of the second phase (remat (MediumSal))
increases from 62s for one processor to 97s for seven
processors due to the low-level synchronisation. This
is only about 7s less than the seven processor execu-
tion of the whole update statement. Therefore we can
expect that we can still benefit from a higher degree of
parallelism for larger classification structures or when
we further parallelise the subtransactions. Both re-
materialisation strategies result in a similar speedup
behaviour for the statement Ul.

Based on the total CPU time for U2 used by all pro-
cessors as shown in figure 9, we notice that we have to
invest around 22% more CPU time compared to the
single processor case because of the additional low-
level synchronisation which has to be done by Oracle.
Figure 10 shows that our scheduler produces an ex-
cellent load balance of the subtransactions up to five
processors. After that the distribution of the workload
becomes worse because there are not enough subtrans-
actions to balance the longer running subtransactions.

469

In summary, we have shown that significant per-
formance improvements can be achieved for retrievals
by a mapping using replication and view materialisa-
tion. Using our multi-level transaction approach to
parallelise the update operations, we can again benefit
significantly compared to a nonparallel approach, es-
pecially for large and complex classification structures.

6 Conclusion and Outlook

In this paper, we presented an implementation of
an object model on a parallel multi-processor sys-
tem suited to applications such as decision support
systems which typically have complex classification
structures and many more retrievals than updates.
In the implementation we use replication to increase
query performance and apply intra-transaction par-
allelism to execute the updates efficiently. We did
not change the relational multiprocessor database sys-
tem, but used a commercially available system. Never-
theless, by using multi-level transaction management
on top of to the existing database transaction man-
ager to map the intra-transaction parallelism to inter-
transaction parallelism, we can obtain significant per-
formance improvements for ODBMS update opera-
tions. Our experimental investigations show that this
approach combined with an “intelligent” logging strat-
egy compares favourably to a single transaction imple-
mentation and to the traditional nonreplicated imple-
mentation.

In addition, we identified certain characteristics
which an “intelligent” storage server should provide in
such a layered system. In this paper, we mentioned the
benefit of switching off the low-level logging for certain
storage server transactions which handle derived data.
This avoids unnecessary logging activities on the lower
level which improves the performance of our high-level
parallelisation. ,Based on the performance evaluation,
we also think that there is a need for more efficient
trigger execution if triggers should be used for high
performance work.

We were investigating intra-transaction parallelism
for only a single high-level transaction. If we also take
inter-transaction parallelism at the COCOON level
into account, we of course lose some of our benefits
due to lock conflicts on the COCOON level and the
internal Oracle level. Some investigations concerning
the general effects of parallel transactions at the higher
levels are reported in [Has95]. We intend to build on
this work in future investigations of our approach.

Further investigations are required to generalise the
factor for which the replication approach outperforms
the traditional approaches. More work also needs to
be done in comparing the two mentioned remateriali-
sation approaches for finding a heuristic approach to

chose the better strategy. In the future, we will also
investigate the benefits of lazy instead of eager evalu-
ation for the rematerialisation of rarely accessed class
tables and try to develop a heuristic to dynamically
choose between the eager and the lazy approach based
on the current system characteristics.

Our approach of extensive replication for increased
retrieval efficiency, together with high-level paralleli-
sation of update operations, is a new promising di-
rection which is more generally applicable. Another
area where it could be applied is in distributed envi-
ronments where replication is a popular approach to
increase query performance or in data warehouse sys-
tems [LW95].

Acknowledgement

This work was supported by the Swiss Priority Pro-
gramme in Computer Science under Grant No. 5003-
34347. The authors would also like to thank Christof
Hasse, Gustav0 Alonso and the anonymous referees
who gave helpful comments on earlier drafts of the pa-
per.

References
[AD921

[BE961

[Blu96]

[BM93]

[CM951

[GM951

[Gra95]

[Han871

[Has951

R. Ahad and D. Dedo. OpenODB from Hewlett-
Packard: A Commercial Object-Oriented Database
Management System. Journal of Object-Oriented
Progmmming, 5(1):31-35, 1992.

D. Botzer and 0. Etzion. Optimization of Material-
ization Strategies for Derived Data Elements. IEEE
‘lVansactions on Knowledge and Data Engineering,
8(2):260-272, April 1996.

U. Blum. Implementation und Evaluation ver-
schiedener Heuristiken zur Allokation von Tabellen
auf verschiedenen Disks bei der Abbildung von CO-
COON Typen und Klassen. Diploma work, ETH
Zurich, March 1996.

E. Bertino and L. Martino. Object-Oriented
Database Systems. Addison-Wesley, 1993.

I.A. Chen and V.M. Markowitz. OPM Schema
Translator 3.1. Technical report LBL-35582,
Lawrence Berkeley Laboratory, March 1995.

A. Gupta and I.S. Mumick. Maintenance of Mate-
rialized Views: Problems, Techniques, and Applica-
tions. Bulletin of the Technical Committee on Data
Engineering, 18(2):3-18, June 1995.

J. Gray. A Survey of Parallel Database Techniques
and Systems. Tutorial at the 21st International
Conference on Very Large Data Bases, September
1995.

E. N. Hanson. A Performance Analysis of View Ma-
terialisation Strategies. In Proceedings of the ACM
SIGMOD Conference on Management of Data,
pages 440-453. ACM, 1987.

C. Hasse. Inter- und Intmtransaktionsparallelitit
in Datenbanksystemen: Entwurf, Implementierung
und Evaluation eines Datenbanksystems mit Inter-
und Intmtmnsaktionspamllelittit. Diss ETH Nr.
11045, ETH Zurich, 1995.

470

[HH91] C. HGrner and A. Heuer. EXTREM - The struc-
tural part of an object-oriented database model.
Informatik-Bericht 91/5, TU Clausthal, October
1991.

[HHRW92] A. Heuer, C. HGrner, H. Riedel, and U. Wiebking.
Syntax, Semantics, and Evaluation of the EXTREM
Object Algebra. Informatik-Bericht, TU Clausthal,
1992.

[HK89]

[LC91]

[LKSl]

[LV87]

[LW95]

[MPP+93]

[NRL+94]

[RBP+Sl]

[Rei89]

[RLNR95]

[RRSM93]

S. E. Hudson and R. King. Cactis: A Self-Adaptive,
Concurrent Implementation of an Object-Oriented
Database Management System. ACM lYonsac-
tions on Database Systems, 14(3):291-321, Septem-
ber 1989.

T. Learmont and R.G.G. Cattell. An Object-
Oriented Interface to a Relational Database. In
K.R. Dittrich, U. Dayal, and A.P. Buchmann,
editors, On Object-Oriented Database Systems.
Springer, 1991.

P. Lyngbaek and W. Kent. A Data Modeling
Methodology for the Design and Implementation of
Infromation Systems. In K.R. Dittrich, U. Dayal,
and A.P. Buchmann, editors, On Object-Oriented
Database Systems. Springer, 1991.

P. Lyngbaek and V. Vianu. Mapping a semantic
database model to the relational model. In Proceed-
ings of the ACM SIGMOD Conference on Monoge-
ment of Data, pages 132-142. ACM, 1987.

D. Lomet and J. Widom, editors. Special Issue on
Materialized Views and Data Warehousing, volume
18(2) of Bulletin of the Technical Committee on
Data Engineering. IEEE Computer Society, June
1995.

B. Mitschang, H. Pirahesh, P. Pistor, B. Lindsay,
and Siidkamp N. SQL/XNF - Processing Compos-
ite Objects as Abstractions over Relational Data.
In Proceedings of the 9th Data Engineering Con-
ference, pages 272-282, Vienna, April 1993. IEEE,
IEEE.

M. Norrie, U. Reimer, P. Lippuner, M. Rys, and H.-
J. Schek. Frames, Objects and Relations: Three Se-
mantic Levels for Knowledge Base Systems. In Pro-
ceedings of the Workshop “Reasoning about Struc-
tured Objects: Knowledge Representation Meets
Databases” of the 18. Fachtogung fiir Kiinstliche
IntelPgenz, Saarbriicken, September 1994.

J. E. Rumbaugh, M. R. Blaha, W. J. Premerlani, F.
Eddy, and W. Lorensen. Object-Oriented Modelling
and Design. Prentice-Hall International, Inc., 1991.

U. Reimer. FRM: Ein l+ome-Repr&entotions-
model1 und seine formole Semantik. Zur Zntegm-
tion von Datenbonk- und Wissensreprisentotions-
onsltzen. Springer, 1989.

U. Reimer, P. Lippuner, M. C. Norrie, and M. Rys.
Terminological Reasoning by Query Evaluation: A
Formal Mapping of a Terminological Logic to an
Object Data Model. In G. Ellis, R.A. Levinson,
A. Fall, and V. Dahl, editors, Proceedings of the
International KRUSE Symposium: Knowledge Re-
trieval, Use and Storage for Eficiency, pages 49-
53, University of California at Santa Cruz, August
1995.

U. Reimer, M. Rys, H.-J. Schek, and R. Marti.
Datenbankbasierung eines Frame-Modells: Abbil-
dung auf ein Objektmodell und effiziente Un-

[SC891

[SLR+94]

[SSW95]

[TS91]

[Val93]

[Wei

[WH93]

[WS92a]

[WS92b]

terstiitzung komplexer Operationen. Technical Re-
port 5/93, Informatik-Forschungsgruppe, Rente-
nanstalt/Swiss Life, Ziirich, August 1993.

E. J. Shekita and M. J. Carey. Performance
Enhancement Through Replication in an Object-
Oriented DBMS. In Proceedings of the ACM SIG-
MOD International Conference on the Monoge-
ment of Data, volume 18(2) of SIGMOD Records,
pages 325-336, June 1989.

M. H. Scholl, C. Laasch, C. Rich, H.-J. Schek, and
M. Tresch. The COCOON Object Model. Technical
Report 211, ETH Ziirich, Departement Informatik,
February 1994.

W. Schaad, H.-J. Schek, and G. Weikum. Imple-
mentation and Performance of Multi-level Transac-
tion Management in a Multidatabase Environment.
In Proceedings of the 5th Intemot’l Workshop on
Research Issues on Data Engineering: Distributed
Object Monogemenf Taipeh, Taiwan, 1995.

M. Tresch and M. H. Scholl. Implementing an Ob-
ject Model on Top of Commercial Database Sys-
tems (Extended Abstract). In Proceedings of the
3rd GI Workshop on Foundation of Database Sys-
tems, Volkse, May 1991.

P. Valduriea. Parallel Database Systems: Open
Problems and New Issues. International Journal on
Distributed and Porollel Databases, 1(2):137-166,
April 1993.

G. Weikum. Principles and Realization Strategies of
Multilevel Transaction Management. ACM Dons-
actions on Database Systems, 16(1):132-180, March
1991.

G. Weikum and C. Hasse. Multi-Level Transac-
tion Management for Complex Objects: Implemen-
tation, Performance, Parallelism. The VLDB Jour-
nal, 2(4), October 1993.

G. Weikum and H.-J. Schek. Concepts and Ap-
plications of Multilevel Transactions and Open
Nested Transactions. In A. K. Elmagarmid, editor,
Database tinsaction Models for Advanced Appli-
cations. Morgan Kaufmann Publishers, Inc., 1992.

W.A. Woods and J.G. Schmolze. The KL-ONE fam-
ily. In Computer and Mathematics with Applico-
tions, volume 23(2-5), pages 133-177. 1992.

471

