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Abstract 

We map an object model to a commercial re- 
lational multi-processor database system using 
replication and view materialisation to provide 
fast retrieval. To speed up complex update oper- 
ations, we exploit intra-transaction parallelism by 
breaking such an operation down into shorter re- 
lational operations which are executed as parallel 
subtransactions of the update transaction. To en- 
sure the correctness and recoverability of the oper- 
ation’s execution, we use multi-level transactions. 
In addition, we minimise the resulting overhead 
for the logging of the compensating inverse oper- 
ation required by the multi-level concept by log- 
ging the compensation for non-derived data only. 
In particular, we concentrate on the novel appli- 
cation of multi-level transaction management to 
efficiently maintain the replicated data and ma- 
terialised views. We present a prototype imple- 
mentation and give a performance evaluation of 
an exemplary set-oriented update statement. 

1 Introduction 

During the past decade, research in data modelling 
and database system architecture has led to two 
new classes of database management systems: object 
database management systems (ODBMS) and paral- 
lel database management systems (PDBMS). ODBMS 
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are based on semantically rich and powerful object 
models which feature concepts such as object classifi- 
cation and generalisation/specialisation. Such an ob- 
ject model is accompanied by an object algebra which 
describes the model’s generic query and manipulation 
operations [BM93]. 

PDBMS support the natural parallelism of database 
systems based on the concurrent execution of differ- 
ent user transactions on a common database (inter- 
transaction parallelism) by exploiting the infrastruc- 
ture of multi-processor and/or multi-disk computer 
systems. In addition, they increase the performance 
of the database system by executing operations within 
a transaction in parallel (intra-transaction parallelism) 
and by parallelising the execution of these operations 
(intra-operation parallelism). The performance in- 
crease manifests itself either by the capability to pro- 
cess larger datasets in the same amount of time (scale- 
up) or by the reduction of the response time of a single 
transaction (speedup). The reduction in response time 
either can be used to improve the response time for a 
single user or to improve the overall system transac- 
tion throughput [Gra95]. While several commercial 
systems of either variety are now available, the com- 
bination of parallel and object database management 
systems is still a research topic [Va193]. 

Many applications which use ODBMS feature rich 
classification structures and typically execute signif- 
icantly more queries than updates on the database. 
A typical example of such an application is a decision 
support system of a life insurance company [RRSM93]. 
We combine an ODBMS and a PDBMS to support 
such a knowledge baaed decision support system with 
a parallel object database management system. In 
particular, a frame based knowledge representation 
model FRM [Rei89] is mapped to the COCOON object 
data model and its associated object algebra COOL 
[SLR+94] h’ h w ic are themselves implemented on top of 
a commercial relational database management system 
[RLNR95]. We use- a commercial relational database 
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management system as an “intelligent” storage server 
in order to exploit the mature technology provided by 
the relational database management system for query 
optimisation, concurrency control and physical design 
[NRL+94]. The main load of a decision support system 
is retrievals. Therefore we increase the access efficiency 
through the extensive use of replication (see [SC891 for 
a discussion of its benefits) and view materialisation 
(see [Han87, GM95, BE96]). Update operations be- 
come more complex due to the added redundancy in 
the mapping of the large classification structures. In 
order to speed them up, we exploit intra-transaction 
parallelism by breaking the updates into shorter rela- 
tional operations. These are executed as ordinary in- 
dependent parallel transactions on the relational stor- 
age server. 

This works builds on our previous experience with 
multi-level transactions [WeiSl, WS92a, SSW95]. In 
particular, we explore and evaluate the key idea of 
exploiting inter-transaction parallelism at the low level 
for intra-transaction parallelism at the high level in 
the context of multi-level transaction management as 
described in [WH93]. 

Using parallelism to update derived data is also in- 
vestigated in the Cactis project [HK89]. In contrast to 
our approach, Cactis deals with derived attributes of a 
few, large objects typically encountered in engineering 
design applications. It does not use an existing par- 
allel database system, nor does it apply a multi-level 
transaction management concept. 

Many object database management systems use 
a relational database management system as a 
storage server, examples are: COCOON [TS91], 
SQL/XNF [MPP+93], OMT [RBP+Sl], ERIC [LC91], 
Iris [LK91], HP’s OpenODB [AD92], EXTREM 
[HHRW92], and OPM ]CM95]. They choose a 
“traditional” mapping where the resulting relational 
schemata are normalised and avoid object replication 
by using either horizontal or vertical partitioning when 
mapping the generalisation hierarchy [RBP+Sl, LV87, 
HH91]. The disadvantage of the normalised, non- 
replicated mapping is that retrieve operations need to 
recompose the objects from the different tables with 
expensive join. operations which we want to avoid. 
The idea of introducing extensive replication in the 
mapping of an object model to a relational parallel 
database (storage) system has, to our knowledge, not 
been investigated so far, although it seems to be a 
straightforward approach. 

The main contributions of thispaper are the follow- 
ing: 

l The investigation of extensive replication in the 
mapping of an object model to a relational parallel 
database (storage) system. 

The use of multi-level transaction management to 
efficiently maintain materialised views and repli- 
cated data by parallelising the execution of up- 
dates is a novel application of the multi-level 
transaction concept. 

In order to drastically reduce the inherent logging 
overhead of a two-level transaction manager, we 
introduce a new logging approach which uses the 
mapping information from object operations to 
storage operations, i.e. SQL in our case. 

The evaluation of our approach is based on a real 
prototype implementation. 

In this paper, we give an overview of our approach 
and discuss the parallelisation of the generic update 
operation. Section 2 introduces our approach and the 
architecture of our system and gives a short introduc- 
tion to multi-level transactions. Section 3 gives an 
overview of the object model COCOON and its map- 
ping to the relational database management system. 
Section 4 presents the mapping for the object algebra 
COOL and also introduces our logging strategy. Sec- 
tion 5 discusses evaluation results for the execution of 
the update operation and discusses the potential and 
limitations of the approach before we conclude with a 
discussion of ongoing and future work. 

2 General Architecture and Approach 

Our work is embedded in a larger project called HY- 
WIBAS [RRSM93] which exploits database technol- 
ogy to support efficient retrieval and update of large 
frame-based knowledge systems. The general archi- 
tecture concerning the database support is shown in 
figure 1. FRM is the frame based knowledge represen- 
tation language which’ is being used to build the life 
insurance decision support systems. FRM is a termi- 
nological logic [WS92b] which features two kinds of re- 
lations, namely properties and semantic relationships, 
and a powerful classification mechanism. It is mapped 
to the ODBMS layer with a data model featuring spe- 
cialisation and classification structures. In our case, 
COCOON is the data model used. Object operations 
and transactions are mapped to SQL transactions of 
the parallel database system (PDBMS). In our case 
this is Oracle. 

The main components for the mapping are the 
Schema Definition Translator which does the physical 
design on the relational tables (see also section 3), the 
Update Operation l%anslator and the Query Operation 
Z?anslator which both translate the COOL operations 
based on the physical design. The COCOON object 
layer acts as a client to the relational storage server. 
In order to be able to execute several transactions in 
parallel from a single transaction, we have to build 
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Figure 1: The overall system architecture 

an extra layer on top of the client/server interface of 
the relational database system, because current sys- 
tems do not support several parallel transactions from 
a single client. This subcomponent (the Pamlleliser) 
is similar to a transaction processing monitor in that 
it accepts a set of transactions and a description of 
their dependencies, executes them in parallel on the 
underlying relational system and returns a single re- 
turn code to the actual client. Finally, the Logging 
and Locking G’omponents implement the level specific 
multi-level transaction management. In this paper, 
we concentrate on the schema and update operation 
translators and on the logging component. The locking 
component is similar to the lock managers described in 
[Has95, SSW95]. Details about the query translator, 
the paralleliser and the lock manager are beyond the 
scope of this paper. 

As we mentioned above, the reduction in retrieval 
costs resulting from our mapping is achieved at the 
expense of increased complexity of update operations 
due to the data replication and view materialisation. 
A COOL update operation now has to update and re- 
classify the different replicated and materialised copies 
of the updated objects in all the different locations in- 
troduced by the mapping. Instead of deferring the 
updates to the retrievals and slowing them down, we 
immediately propagate the changes to the replicated 

L2 CoOLhnwt 

Ll wpGzzz&q w 

Figure 2: A multi-level transaction hierarchy 

objects. However, to avoid long transactions with lots 
of updates which are not only slow, but may also hin- 
der queries because of lock contention, we apply intra- 
transaction parallelism by executing the many result- 
ing relational updates in parallel [Has95]. 

As an example for a COOL update operation, con- 
sider the insertion of objects into classes on the’ object 
model level. These objects now have to be inserted 
into all the SQL tables where they belong because of 
the replication of the objects within the classification 
structure and the materialisation of the classes. All 
SQL insert operations have to be executed, however 
their execution order does not matter. In particular, 
these inserts can be performed in parallel as individual 
SQL transactions. The available concurrency control 
mechanisms of the advanced storage server (i.e. the re- 
lational database system) can be used to execute the 
SQL operations successfully on the lower level. How- 
ever, in order to assure the correctness of the main 
insert operation, additional concurrency control mech- 
anisms have to be used on that higher level. By ap- 
plying multi-level transaction management [WS92a], 
we can use its formal foundation to correctly and effi- 
ciently parallelise the COOL update operations. 

Multi-level transactions are a variant of open nested 
transactions where the subtransactions correspond to 
operations, at particular levels of abstraction in a lay- 
ered system (see figure 2 for the hierarchy for the 
given example). Each level exploits the semantics of 
the level specific operations for concurrency control 
by reflecting the commutativity (compatibility) of the 
operations in level-specific conflict relations. In the 
example, the COOL insert operation is on level L2. 
It commutes with another COOL update operation if 
the set of inserted objects is disjoint with the other 
set of updated objects. Similarly, the SQL operations 
on level Ll, where they form level Ll transactions, 
can commute with other SQL transactions with which 
they do not conflict. Such a conflict test can be per- 
formed by a predicate based lock manager such as 
the ones described in [Has95, SSW95]. In our case, 
the level LO operations are hidden within the rela- 
tional database system. In short, the operations of 
a transaction of level Li form transactions on level 
Li-1. Multi-level transaction management allows more 
concurrency compared to conventional (single-level) 
transaction management. However, transaction aborts 
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can no longer be implemented by restoring the before- 
image of the modified low-level objects, since certain 
modifications become visible to concurrent transac- 
tions at the end of each subtransaction. The solution 
to this problem is to perform the aborts by means’ 
of high-level inverse operations that compensate com- 
plete subtransactions. 

Thus, the intra-transaction parallelism at L2 is 
transformed into inter-transaction parallelism on level 
Ll, the parallel relational database management sys- 
tem. Therefore we can exploit the capability of the 
multi-processor database system to efficiently execute 
many short transactions in parallel. 

3 Mapping of the Object Model to 
SQL 

In this section, we describe the basic principles of the 
COCOON mapping to a relational database manage- 
ment system, and discuss our physical design.’ Note 
that the approach is general and could also be adopted 
for other object data models as well. 

3.1 , The COCOON Object Model 

The COCOON data model differentiates between the 
structural description of objects and the semantic 
grouping of objects. The structure is described by a 
type system, while classes are used to group the ob- 
jects. In both cases an object can be multiply instanti- 
ated, i.e. it can be of several different types and it can 
be member of several different classes at the same time. 
If objects change properties during updates which in- 
fluence their classification, they are dynamically re- 
classified. Thus, COCOON features objects, property 
functions, types and classes as main concepts. Using 
the example given in figure 3, we now describe how 
these concepts occur in COCOON. 

COCOON objects have properties which are mod- 
elled by functions. The function definitions implicitly 
introduce the definition of the object types. In the ex- 
ample, the functions ‘name, age, sex, salary and dept 
define the object type employee. 

Subtyping defines a new abstract object type by de- 
riving its definition from one or more existing types 
(inheritance) and adding new functions. For example, 
projleader is a subtype of employee and adds the func- 
tion projects to the inherited functions. Each instance 
of a subtype is also instance of its supertypes (multiple 
instantiation). 

In COCOON, types describe the functions which 
are applicable to an object, but they do not group 
objects into collections which then can be queried. 

‘For the purpose of this paper, a subset of the actual CO- 
COON data model is presented. 

type hierarchy 

class hierarchv 

Figure 3: An example schema 

To form such collections of objects, COCOON pro- 
vides a class construct. The extent of a class is the 
set of objects ‘of the associated abstract object type 
(the member type) which fulfil a condition referred 
to as the class predicate. For example, the class Re- 
searchers has the member type employee and the pred- 
icate dept=‘Research’. The classes can be considered 
polymorphic since, due to multiple instantiation, ob- 
jects contained in the extents are instances of the class 
member type and its subtypes. 

A subclass relationship between two classes implies 
that the member type of the subclass is a subtype 
of (or the same type as) the member type of the su- 
perclass and the extent of the subclass is a subset of 
that of the superclass. There are two forms of sub- 
class relationship: all classes and some classes. All 
classes are subclasses which automatically contain all 
members of their superclass if they are of the sub- 
class’ member type and satisfy the optional associated 
class predicate; in other words, the subclass member- 
ship conditions are both necessary and sufficient. The 
class Researchers, like all other classes in the classifi- 
cation structure of figure 3, is an all class and there- 
fore automatically contains all objects of Employees if 
they work in the research department. Note, that all 
classes can be regarded as a partial precomputation 
of frequently asked queries. Some classes are sub- 
classes where the type and the predicate condition are 
only necessary but not sufficient. Members of such 
subclasses have to be inserted explicitly. We will con- 
centrate on all classes for the remainder of this paper. 
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There is a predefined root class of the class hier- 
archy, Objects, which contains all existing objects. 
Thus, the extent of Objects is the active domain of 
the type object. All other classes contain only objects 
which are specified by the subclass relationships and 
by the class predicates. A class contains all members 
of its subclasses. 

3.2 Mapping of COCOON to a RDBMS 

Generally, a COCOON type and class are mapped to 
a relation schema, while an object is mapped to one 
or more relation triples. An object will be represented 
in all of the relations corresponding to the types of 
which it is an instance. It will also be represented 
in all of the relations corresponding to the classes to 
which it belongs. In this way, direct access to objects 
of a certain type and of a class is attained. The in- 
ternal object identifier is implemented by a logical key 
attribute COOL-OID which serves as the primary key 
in all of the relations representing the types or classes. 

Each abstract object type is mapped to a main rela- 
tion table which besides the logical key attribute, con- 
tains all single-valued functions as attributes. Each 
multi-valued function is stored in a separate binary 
function table. The subtype hierarchies are mapped 
with horizontal and vertical replication. This means 
that all single-valued function attributes are repeated 
in the subtype’s relation table (vertical replication) 
and all instances of a subtype are also stored in the 
table of the supertype (hotizontal replication). Using 
this type mapping, all the attributes of the type table 
Employee are repeated in the type table Deptleader 
(vertical replication) and a deptleader object is stored 
in both tables (horizontal replication). 

A class is mapped to a table which in the case of 
all classes is of the same form as its member type’s 
main relation table: In addition, the classification hi- 
erarchies are horizontally replicated, i.e. the member 
objects of the classes are stored in all the tables of 
the classes of which they are member. Note, that all 
classes can be considered as materialised views, since 
they could also be mapped as views of their closest 
some class(es) (i.e. their base class(es)). For exam- 
ple, the all classes Researchers and UpperManagement 
are mapped to tables which are structurally equivalent 
to the tables of their member types employee and man- 
ager. 

In addition, a metaschema contains the necessary 
meta information such as superclass relationships or 
a class’ member type. Also, the metaschema contains 
all the information for each class which is necessary to 
materialise its extent. 

Based on this mapping, we can identify the follow- 
ing derived data: 

l An all class table is a materialised view of its 
member type and base class tables. 

l A type table which represents a subtype vertically 
replicates the inherited attributes. 

l The members of a type table which represents a 
subtype, or of a class table, which represents a 
subclass, are horizontally replicated in the super- 
type or superclass tables. 

Another important point to consider is the place- 
ment of the objects on the disks. Since object tuples 
are updated in parallel, there will almost certainly be 
a bottleneck when writing to the disk. In order to 
minimise the I/O-boundedness of the update opera- 
tions, the data has to be distributed across different 
disks such that the object tuples can also be written 
in parallel. Our current implementation distributes 
the data using a disk array by horizontally striping 
the data across several disks. This means that tuples 
of the same table are on different disks which can im- 
prove the I/O access time when accessing objects from 
the same table. Another way to improve the I/O ac- 
cess time is to allocate the tables on different disks by 
different placement heuristics. However, our investiga- 
tions [Blu96], in which we used the anticipated size of 
the tables and their semantical relationship to achieve 
load balancing, show that there is no significant gain 
over the horizontal striping. 

4 Mapping of COOL Operations 

In this section we give an overview of the COCOON 
object algebra and an introduction to the mapping of 
a generic update operation of the algebra using intra- 
transaction parallelism. 

4.1 COOL Operations 

The operations over COCOON databases are ex- 
pressed in the language COOL which is founded on 
a set-oriented, generic, orthogonal and closed algebra 
formally defined in [SLR+94]. Generally, COOL query 
operations such as select and project work on sets of 
objects (i.e. classes) and have object-preserving se- 
mantics, such that their results are subsets of the ex- 
isting objects in the database. 

Object generation in COOL is achieved by opera- 
tions such as create which creates an object but does 
not explicitly associate it with any classes or insert 
which creates an object and inserts it into the specified 
class and into all classes where it is classified accord- 
ing to the class predicates. The update operations can 
be divided into operations for assignment (set), for 
object evolution (gain, lose, delete) and for manipu- 
lating the extents of classes and views (add, remove, 
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Figure 4: A COOL update transaction hierarchy 

update). Due to the dynamic reclassification of ob- 
jects into all classes, an update statement may initiate 
the automatic propagation of objects within the class 
hierarchy. In the case of an object evolution operation, 
objects might also be propagated dynamically within 
the type hierarchy. For example, the update operation 

update[fI(o) := el, . . . . fn(o) := e,](o: set-ezpf-); 

changes the functions fr , . . . . f,, for every object o of 
the set-ezppr such that the function application fi(o) 
results in the value of the expression ei. 

With the physical design introduced in section 3 and 
the goal to minimise the query overhead, the update 
operations have to update the data in several tables 
immediately. A COOL update operation on level L2 
consists of several subtransactions, each representing 
one SQL transaction which performs the necessary up- 
date operations on exactly one of the SQL tables on 
level Ll. Since most of the SQL level updates can be 
performed independently from each other, we would 
like to speed up the update operations by parallelis- 
ing the SQL updates. Figure 4 gives an example of 
such a transaction hierarchy for the update state- 
ment. We get similar transaction hierarchies for the 
other set oriented update operations, which then can 
be parallelised in an analogous way. In this paper, we 
use the update statement as the example to present 
and evaluate our approach. 

4.2 The Update Statement and Remateriali- 
sation Strategies 

The mapping of the update statement identifies all 
types which contain the affected function. It then col- 
lects all classes whose member type belongs to the set 
of the identified types. This results in a set of tables 
containing all the tables which may contain objects 
which have to be updated. 

If the type table contains a subset of the objects 
to be updated, the SQL update statement can be ex- 
pressed by selecting the affected objects without refer- 
encing the base table of the set expression. Otherwise 
a join with the set expression’s base has to be per- 
formed. 

Because classes are mapped as materialised views, 
the updates of the class tables need to perform the 

EOT 

Figure 5: The generic update dependency graph 

rematerialisation from the base tables. There are dif- 
ferent approaches to implement the rematerialisation 
[GM95, BE96]. First, we can differentiate between 
those classes where the update operation may change 
the extent and those classes where the extent stays the 
same and only the state of the contained objects may 
change. In the first case, the classes either have to 
be incrementally rematerialised by explicitly deleting 
and inserting the qualifying objects. Otherwise a full 
rematerialisation has to be performed. If the function 
affected by the update does not influence the classifi- 
cation, it is sufficient to only update the changed at- 
tributes in the class tables., 

Thus, these seZf-maintainable class tables can be up- 
dated independently (and therefore in parallel) from 
their base tables. The other class rematerialisations 
have to be performed after the update of the base class 
tables and after the member type table on which the 
classes depend. This execution order assures that the 
class extents are correct when the views are remateri- 
alised on the changed base tables. In addition, if the 
extent of the set expression may change due to class 
maintenance, all updates on tables which reference the 
set expression’s base table, such as an update on a type 
or self-maintainable class table, have to be performed 
before the specific class rematerialisation. 

Therefore, the execution order of the Ll transac- 
tions has to guarantee the dependencies. This is done 
by the dependency analyser which generates a depen- 
dency graph of the Ll transactions (see figure 5) which 
then is passed to the paralleliser (see figure 1). 

4.3 Logging and Recovery Strategy 

If a COOL transaction has to be aborted, not yet 
committed subtransactions will be aborted by the 
RDBMS. However, since subtransactions are commit- 
ted on the RDBMS before the COOL transaction is 
committed, it is necessary to compensate the com- 
mitted subtransactions. According to the multi-level 
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transaction theory, compensating inverse operations 
have to be executed which semantically undo the ef- 
fects of the subtransactions. To guarantee the correct- 
ness of the compensation, atomicity at the SQL opera- 
tion level is required; this is achieved by executing the 
inverse operations as compensating subtransactions. 

In the naive approach when we do not make use of 
our knowledge of the data model’s semantics and the 
execution precedencesspecified in the COOL trans- 
actions dependency graph, the standard inverse op- 
erations are as follows (see also [SSW95, Hss95]): A 
committed insert subtransaction has to be undone by 
deleting the inserted tuples and deleted tuples have 
to be reinserted. Updated tuples have to be reset to 
their old values by either deleting and reinserting the 
changed tuples or, preferably, by updating the tuples 
to the old values. This naive approach would cause 
too much overhead: For each insert, delete or update 
statement, we would almost double the work by gen- 
erating another insert for the logging. 

In order to significantly reduce the overhead of the 
additional log, the logging component optimises the 
log data by applying its knowledge of the semantics 
of the COCOON data model and its mapping to the 
relational database system. The main idea is that 
undo operations will be logged only on tables contain- 
ing data which cannot be derived from other tables. 
Such tables which need to be logged are called pri- 
mary tables. Compensating operations for operations 
on tables containing derived data do not need to be 
logged, but can be derived when needed. The goal 
is to employ this in such a way that logging is min- 
imised without losing the ability to perform recovery, 
or a (partial) rollback, of a transaction by compensat- 
ing (some of) its subtransactions. To achieve this, we 
need to ensure that we have the logged information 
on the status of the running and already committed 
subtransactions to perform the necessary redo (recov- 
ery) or undo (compensation) operations on the derived 
data. 

With the vertical and horizontal replication be- 
tween the tables of type Ti and its supertypes Tl ..Ti-l 
and subtypes Ti+l . . Tn, only the operations on Ti have 
to be logged for operations which primarily affect Ti 
(i.e. Ti is the member type of the set expression). 

In the case of an all class table, an undo of a com- 
mitted khange can be done by rematerialising the class 
table after its member type and base class tables has 
been undone.2 If the all class is self-maintainable or if 
we compensate an update on an unlogged type table, 
we propagate the old object state from either the log 

2For reason of simplicity, we do not discuss the case of classes 
with predicates referencing other classes or other types (via an 
inverse function). 

or directly from the primary table depending on the 
status of the subtransaction on the primary table. 

If a crash happens after changes on an unlogged 
table have been committed but the changes of the pri- 
mary table were lost, the recovery process can simply 
restart the not yet committed subtransactions. 

Therefore, compensating operations only need to be 
logged for the primary type tables. For the inverse 
of insert, only the deletion based on the primary 
key attributes (i.e. the object identifier) need to be 
logged. The inverses of the update and delete state- 
ments have to log the complete undo operation for the 
affected tuple. 

With this logging strategy, the mapping of the up- 
date statement looks as follows: 

The COOL update operation first operates in par- 
allel on the type tables and on the self-maintainable 
class tables. The compensation log is only written 
for the primary type table. A subtransaction of the 
class rematerialisation phase starts as soon as all of the 
subtransactions on which it depends have committed. 
Since there is no dependency between the class rema- 
terialisation subtransactions, they can be executed in 
parallel2 

The information required to perform the inverse op- 
eration has to be written to a persistent log using the 
WAL (write ahead log) rule. We exploit the database 
functionality for keeping the log data persistent by im- 
plementing the log as database tables. One table con- 
tains the information about the state of each subtrans- 
action, while the other table contains the undo oper- 
ations. While in principle all log data can be written 
to the log table by database triggers which are auto- 
matically generated for each operation type and for 
each table as soon as the table is created, this can lead 
to a severe performance penalty with the current im- 
plementation of triggers in some of the commercially 
available database systems. Instead, an SQL state- 
ment can be generated which writes the log to the 
table shortly before or after the execution of the oper- 
ation. 

Since the mapping of a COOL operation always re- 
sults in the same set of subtransactions as long as there 
were no schema changes, it might appear sufficient to 
just log the COOL operation and generate the inverses 
of the subtransactions during the rollback. This ap- 
proach however can lead to incorrect results, if the 
inverse of a subtransaction is not defined. For exam- 
pie,-if we increment the salary of all employees within 
a certain salary range, the inverse cannot be derived 
automatically, since the decrement may also affect ob- 
jects which were not affected by the increment. There- 
fore we still need to log the inverse operations of the 
subtransaction on’the primary table. Note that redo 
information for the derived data also does not need to 
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be logged on the lower level by the relational system. 
Unfortunately, no commercial database management 
system currently allows such non-persistent transac- 
tions. In Oracle, truncate table operations are not 
logged, therefore we use them in the rematerialisation 
transaction.3 However, the insert statements following 
the truncation are still logged by the database system. 

5 Evaluation 

In this section, we present some results of our experi- 
mental evaluations for two typical COOL update and 
two typical retrieve operations. The schema given in 
figure 3 was augmented by additional classes which 
partition the existing classes into male and female 
members. Then a database was generated with this 
schema which had a size of approximately 75 MB and 
contained 50’000 objects of the type employee. 

The measurements were performed on a Sun Sparc- 
Center 2000 shared memory multiprocessor system 
with ten processors running under Solaris 2.5. The 
relational database system used was Oracle 7.1.3. The 
tables of the mapped schema were all allocated on a 
tablespace which was striped over seven (raw) disks of 
50 MB each. The log tables were allocated on a dif- 
ferent tablespace which was striped over two different 
(raw) disks of 100 MB each. The striping granulate 
was 40 kbytes which corresponds to one disk track. 
The internal rollback segments were also striped over 
two disks. The internal redo logs were allocated on 
different disks while the temporary tablespace shared 
a disk with the data tablespace. The database buffer 
was set to 500 blocks with a database block size of 
4 kbytes which resulted in an average buffer hit ratio 
of 98.5%. The size of the shared pool, which is used 
by Oracle to store session information such as sort ar- 
eas and triggers, was set to 20MB and the size of the 
log buffer to 4MB to minimise the influence of Oracle 
internals on the measurements. The system was run- 
ning in multi-user mode, however the measurements 
were performed while no other users were on the sys- 
tem in order to exclude influences from the outside. 
The measurements were repeated until a 95% confi- 
dence level with a confidence interval of f5% around 
the average or better was reached. 

5.1 Retrieval Performance 

In order to investigate the benefit of using replication 
to speed up the retrieve operations, we investigated 
the following two simple COOL statements: 

#(select[sez = “m”] (MedPensions) ) (Sl) 
#(select[sea: = “m”] (MediumSal) ) WI 

3Note that truncate table is considered a schema operation 
by Oracle and therefore forces a commit of the running transac- 
tion. Therefore it can only be used in single user investigations. 

Table 1: The generated SQL statements 
r 

Sl I 

replicaded 
mapping 

select count(*) from MedPenszons 
where sez = ‘m’ 

select counties 

vertical from Pens&& NI, Employee N2 

partitioning where N1.COOL,OID=N2.COOL~OID 
and Nk?.sex = ‘m’ 
and NZsalary between 4001 and 6000 

I 

s2 

replicated select count(*) from Mediumsal 
mapping where sez = ‘m’ 

select count(*) from (select COOL-OID 
from Employee 

horizontal where salary between 4001 and 6000 
partitioning and NZ.sex = ‘m’ 

union select COOL-OID from Parttrmer 
. . . 1 

Table 2: Retrieve performance 

Sl 
s2 

Elapsed Time CPU Time 
rep1 nonrepl rep1 nonrepl 
0.1s 8.6s 0.1s 7.5s 

1.1s 8.0s 0.7s 6.1s 

physical IO 
rep1 nonrepl 
23 579 

294 510 

Sl retrieves the number of all male pensioners with 
a medium sized pension while S2 retrieves the number 
of all male employees with a medium income. Note 
that these queries could also be formulated directly on 
the classes which contain the requested employees. Sl 
is used to compare our replicated mapping with the 
traditional mapping using vertical partitioning, while 
S2 is used to compare our approach with the map- 
ping using horizontal partitioning (see Table 1 for the 
generated SQL statements). Note that each table had 
a primary key index specified on the COOL-OID at- 
tribute. 

Table 2 gives the measured elapsed and CPU times 
and the physical reads for a single execution of the 
statements. Even for such simple statements, our 
replicated mapping results in performance improve- 
ments of one to two orders of magnitude and a sig- 
nificantly lower number of disk accesses. Due to the 
lower number of disk accesses, the data more likely fits 
into the database buffer. Therefore, we have to expect 
a higher buffer miss ratio in addition to the additional 
computational effort in the non replicated case. When 
we add an index on the salay attribute of Employee, 
Sl in the non-replicated case chooses a different plan, 
however the resulting elapsed response time improves 
only by about 15%. 
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Table 3: Log execution time 

Logged Sub-TA Log Time Exec Time 
of Unlogged Sub-TA 

Ul upd(Pensioner) 2.3s 3s 
u2 upd(Employee) 13s 29s 

L 

Figure 6: Elapsed time Ul 

5.2 Update Performance 

In the following, we present our results on the main 
question, namely to what extent updates can be made 
faster. Based on the statements 

update[saZary := salary + 500](MedPensions) (Ul) 
update[salary := salary + 500](MediumSal) W) 

we will discuss the performance and applicability of 
the parallelisation of the update operations and the 
differences between the two investigated statements. 
We measured elapsed time and raw CPU time (user 
and system time) for the execution with multi-level 
transaction management for 1 to 7 processors. As 
a reference point, we measured the same statements 
also on one processor in a single transaction imple- 
mentation without logging and with the same physical 
design. In addition, we used an incremental remateri- 
alisation strategy as well as full rematerialisation for 
both update statements. The statement Ul changes 
the salary of 5% of the database population while U2 
changes 54%. 

Table 3 gives the overhead of the log, which is writ- 
ten .by the upd(JZmployee) subtransaction for U2 and 
the upd(Pensioner) subtransaction for Ul. While the 
log overhead accounts for a substantial part of the sub- 
transaction’s execution time, it is almost negligible if 
we compare it with the total execution time of the up- 
date statements (see discussion of elapsed time below). 

Figures 6 and 7 show the elapsed response time of 
the statements Ul and U2, respectively. The horizon- 

Figure 7: Elapsed time U2 

tal lines indicate the response times for the sequen- 
tial executions without multi-level transactions which 
are compared to the response times achieved with the 
parallel executions.4 While one would expect that the 
execution of the same statement with multi-level trans- 
action support on one processor takes longer because 
of the logging overhead, the measurements show differ- 
ent. A probable reason for this is that the additional 
overhead for Oracle to handle a long transaction is 
large enough to make the difference insignificant, even 
when no other transaction is present in the system 
(note that the expected difference due to the addi- 
tional logging (Ul: l%, U2: 3.6%) was slightly larger 
than the confidence interval for the measurement of 
the sequential execution (Ul: 0.5%, U2: 2.6%)). Us- 
ing six processors we are around 70% faster than in 
the sequential case for all 3 cases. 

Figure 6 also shows that for a low selectivity of 
the update statement the incremental rematerialisa- 
tion strategy must be preferred over full remateriali- 
sation. Figure 7 on the other hand shows that for a 
high selectivity the incremental approach is unfeasi- 
ble mostly because of the higher deletion costs. While 
these measurements alone do not give a conclusive an- 
swer to the question of when the incremental strategy 
is better than the full, it indicates (together with some 
random samples taken) that the incremental strategy 
is favourable if less than about lo%-15% of the objects 
of a class have to be rematerialised. 

The increase in performance is also shown in fig- 
ure 8 which shows the achieved speedup compared to 
the single processor, single transaction execution for 
both elapsed and CPU time.4 In the case of six pro- 
cessors, for example, we get a speedup of 3.53 for the 
elapsed time and 4.25 for the longest running proces- 
sor’s CPU time for U2. The difference between the 
elapsed and CPU time speedup is mainly because of 

4For the single execution of U2 with incremental remateriali- 
sation the measurements could not be performed with the given 
systems resources because the internal rollback segments were 
not large enough. 
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Figure 10: Standard deviation of CPU load balance 
U2 (Full Rematj 

Figure 8: Speedup Ul & U2 
In addition, we can see that Oracle is quite capable to 
cope with an increased transaction load, because the 
CPU processing overhead seems to remain stable for 
an increase in the number of concurrent transactions. 

We also investigated for U2 the case where an index 
was defined on the salary attribute of the employee 
type table. This slows down the update of the type 
table itself because of the index maintenance. On the 
other hand, the use of the index can speed up the 
rematerialisation of classes with predicates of high se- 
lectivity based on this attribute. In our example, only 
the UpperManagement and the Pensions classes have 
a high enough selectivity to benefit from such an in- 
dex. Otherwise the cost based optimiser still uses a 
scan and the index is not used. In our investigated 
example, the index maintenance costs during the up- 
date were too high. Thus, the resulting response times 
were always worse than the response time without the 
additional index. 

Our results show that there is a benefit in parallelis- 
ing update statements using multLleve1 transactions. 
Especially if objects have to be reclassified in a large 
classification structure, there is a significant benefit in 
the parallelisation. As has been shown in [Has95], the 
faster execution of the update statements also leads to 
a reduced conflict potential with concurrent retrieves 
due to shorter locks. 

Finally let us compare the execution time of our 
approach with the traditional, nonreplicated approach 
using vertical partitioning. In this case only the type 
table employee which contains the changed attribute 
has to be updated. We measured 16s for this update 
for Ul and 30s for U2 when executed as a single-level 
transaction. With our approach, we are about 3 to 
4 times slower (see figures 6 and 7). On the other 
hand, as we have shown above, even a simple retrieve 
statement benefits from the replication. For example 
for the statement S2 and the update statement U2 we 
benefit from the replication approach as long as the 
number of retrievals is more than 9 times the number 
of updates. 

4w 
350 

$300 

Em 
F zoo 
6 150 

100 

50 
0 

Figure 9: CPU resource usage U2 (Full Remat) 

the increased synchronisation overhead on the lower 
level. Using seven processors does not further improve 
the speedup in this case because of the increased low- 
level synchronisation overhead and the sequential exe- 
cution of the dependent subtransactions. For U2, the 
sequential execution of the longest subtransaction of 
the first phase (upd(5ployee)) and the longest sub- 
transaction of the second phase (remat (MediumSal)) 
increases from 62s for one processor to 97s for seven 
processors due to the low-level synchronisation. This 
is only about 7s less than the seven processor execu- 
tion of the whole update statement. Therefore we can 
expect that we can still benefit from a higher degree of 
parallelism for larger classification structures or when 
we further parallelise the subtransactions. Both re- 
materialisation strategies result in a similar speedup 
behaviour for the statement Ul. 

Based on the total CPU time for U2 used by all pro- 
cessors as shown in figure 9, we notice that we have to 
invest around 22% more CPU time compared to the 
single processor case because of the additional low- 
level synchronisation which has to be done by Oracle. 
Figure 10 shows that our scheduler produces an ex- 
cellent load balance of the subtransactions up to five 
processors. After that the distribution of the workload 
becomes worse because there are not enough subtrans- 
actions to balance the longer running subtransactions. 
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In summary, we have shown that significant per- 
formance improvements can be achieved for retrievals 
by a mapping using replication and view materialisa- 
tion. Using our multi-level transaction approach to 
parallelise the update operations, we can again benefit 
significantly compared to a nonparallel approach, es- 
pecially for large and complex classification structures. 

6 Conclusion and Outlook 

In this paper, we presented an implementation of 
an object model on a parallel multi-processor sys- 
tem suited to applications such as decision support 
systems which typically have complex classification 
structures and many more retrievals than updates. 
In the implementation we use replication to increase 
query performance and apply intra-transaction par- 
allelism to execute the updates efficiently. We did 
not change the relational multiprocessor database sys- 
tem, but used a commercially available system. Never- 
theless, by using multi-level transaction management 
on top of to the existing database transaction man- 
ager to map the intra-transaction parallelism to inter- 
transaction parallelism, we can obtain significant per- 
formance improvements for ODBMS update opera- 
tions. Our experimental investigations show that this 
approach combined with an “intelligent” logging strat- 
egy compares favourably to a single transaction imple- 
mentation and to the traditional nonreplicated imple- 
mentation. 

In addition, we identified certain characteristics 
which an “intelligent” storage server should provide in 
such a layered system. In this paper, we mentioned the 
benefit of switching off the low-level logging for certain 
storage server transactions which handle derived data. 
This avoids unnecessary logging activities on the lower 
level which improves the performance of our high-level 
parallelisation. ,Based on the performance evaluation, 
we also think that there is a need for more efficient 
trigger execution if triggers should be used for high 
performance work. 

We were investigating intra-transaction parallelism 
for only a single high-level transaction. If we also take 
inter-transaction parallelism at the COCOON level 
into account, we of course lose some of our benefits 
due to lock conflicts on the COCOON level and the 
internal Oracle level. Some investigations concerning 
the general effects of parallel transactions at the higher 
levels are reported in [Has95]. We intend to build on 
this work in future investigations of our approach. 

Further investigations are required to generalise the 
factor for which the replication approach outperforms 
the traditional approaches. More work also needs to 
be done in comparing the two mentioned remateriali- 
sation approaches for finding a heuristic approach to 

chose the better strategy. In the future, we will also 
investigate the benefits of lazy instead of eager evalu- 
ation for the rematerialisation of rarely accessed class 
tables and try to develop a heuristic to dynamically 
choose between the eager and the lazy approach based 
on the current system characteristics. 

Our approach of extensive replication for increased 
retrieval efficiency, together with high-level paralleli- 
sation of update operations, is a new promising di- 
rection which is more generally applicable. Another 
area where it could be applied is in distributed envi- 
ronments where replication is a popular approach to 
increase query performance or in data warehouse sys- 
tems [LW95]. 
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