
Dynamic Load Balancing in Hierarchical Parallel
Database Systems*

Luc Bouganim Daniela Florescu Patrick Valduriez
Bull INRIA INRIA

INRIAJLe Chesnay, France
e-mail: firstname.lastname@inria.fr

Abstract

We consider the execution of multi-join queries in a hierar-

chical parallel system, i.e., a shared-nothing system whose

nodes are shared-memory multiprocessors. In this context,

the problem of load balancing is magnified and must be

addressed within and among shared-memory nodes. We

propose a dynamic execution model that maximizes local

load balancing within shared-memory nodes while mini-

mizing the need for load sharing across nodes. We describe

a performance evaluation using an implementation on a

72-processor KSRl computer. The experiments with many

queries and large relations show very good speedup results,

even with highly skewed data. Our execution model per-

forms as well as a dedicated model in shared-memory and

can scale up very well to deal with multiple nodes.

1 Introduction
Parallel system designers have long opposed shared-
memory versus shared-nothing architectures. Shared-
memory provides flexibility and performance for a re-
stricted number of processors while shared-nothing can
scale up to high-end configurations [DeW92, Val93].
To combine their respective benefits, hierarchical par-
allel systems consisting of shared-memory multiproces-
sors interconnected by a high-speed network [Gra93]
are gaining much interest. As an evidence, symmetric

* This work has been done in the Groupement d’Intdret
Econornique Dyade (joint R&D venture between Bull and ln-
ria) and has been partially supported by the Commission of
European Communities under Esprit project IDEA.

Permission to copy withozlt fee all OT part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

multiprocessors (SMP), e.g., Sequent, are moving to
scalable cluster architectures, while massively parallel
processors (MPP), e.g., NCR’s Teradata,. are evolv-
ing to use shared-memory nodes. Another example
is Bull’s PowerCluster which is a cluster of PowerPC-

based SMP nodes.

In this paper, we consider the execution of multi-
join queries in hierarchical parallel database systems.
Such queries are getting increasingly important as par-
allel database systems are gaining wider use for deci-
sion support (e.g., data warehousing). The objective
of parallel query processing is to reduce query response
time as much as possible by distributing the query load
among multiple processors. The major barrier to this
objective is poor load balancing, i.e., some processors
are overloaded while some others remain idle. As the
response time of a set of parallel activities is that of the
longest one, this can severely degrade performance.

There are two dimensions for parallelizing multi-
join queries: horizontally (i.e., intra-operator par-
allelism) by distributing each operator among sev-
eral processors, and vertically (i.e., inter-operator
pipelined or independent parallelism) by distributing
all operators of the query among several processors.
Solutions for load balancing typically focus on one
dimension on a given architecture (shared-memory,
shared-disk, or shared-nothing).

In shared-nothing, intra-operator parallelism is
based on relation partitioning [BorSO, DeWSO, Ape92].
Skewed data distributions [Walgl] can yield poor
intra-operator load balancing. This problem has been
addressed by developing specific join algorithms that
handle different kinds of skew [KitSO, DeW92, Ber32,
Sha93] based on dynamic data redistribution.

With inter-operator parallelism, distributing the
query’s operators among all processors can also yield
poor load balancing. Much research has been ded-
icated to inter-operator load balancing in shared-
nothing [Meh95, Rah95, Gar96] which is done stati-

436

tally during optimization or dynamically prior to exe-
cution.

The potential reasons for poor load balancing in
shared-nothing are studied in [Wil95]. First, the de-
gree of parallelism and the allocation of processors to
operators, decided in the parallel optimization phase,
are based on a possibly inaccurate cost model. Sec-
ond, the choice of the degree of parallelism is subject
to discretization errors because both processors and
operators are discrete entities. Finally, the processors
associated with the latest operators in .a pipeline chain
may remain idle a significant time. This is called the
pipeline delay problem. These problems stem from the
fixed association between data, operators and proces-
sors.

In shared-disk [PirSO], there is more flexibility since
all processors have equal access to disks. Thus, intra-
operator parallelism does not require static relation
partitioning [Lugl]. ,Inter-operator parallelism is also
less constrained since any processor can be allocated
to any operator. Load balancing for independent par-
allelism is addressed in [Hsi94] while only pipeline par-
allelism is considered in [Lo93].

Shared-memory offers even more flexibility since all
processors have equal access to memory and disks.
The solutions to load balancing [Hon92, She931 can
be much more dynamic since redistributing the load
incurs low cost. For instance, with the self-balancing
process model proposed in [She93], each processor
reads tuples from I/O buffers and performs the joins
along the pipeline chain using synchronous pipelining
(procedure calls) as in [Hon92]. DBS3 [BerSl, Dag94]
has pioneered the use of an execution model based on
relation partitioning (as in shared-nothing) for shared-
memory. This model reduces processor interference
and shows exceilent load balancing for intra-operator
parallelism [Bou96]. However, interroperator load bal-
ancing was not addressed.

To our knowledge, no work has addressed the prob-
lem of load balancing in hierarchical systems. In this
context, load balancing is exacerbated because it must
be addressed at two levels, locally among the proces-
sors of each shared-memory node and globally among
all nodes. None of the previous approaches can be eas-
ily extended to deal with this problem. Load balancing
strategies for shared-nothing would have their inherent
problems worsening (e.g., complexity and inaccuracy
of the cost model). On the other hand, adapting of the
solutions for shared-memory would incur high commu-
nication overhead.

In this paper, we propose an execution model for
hierarchical systems which dynamically performs intra
and inter-operator load balancing. The basic, new idea
is that the query work is decomposed in self-contained
units of sequential processing, each of which can be

carried out by any processor. Intuitively, a proces-
sor can migrate horizontally and vertically along the
query work. The main advantage is to minimize the
communication overhead of inter-node load balancing
by maximizing intra and inter-operator load balancing
within shared-memory nodes, To validate the model
and study its performance, we did an.implementation
on a 72-processor KSRl computer.

The paper is organized as follows. Section 2 states
the problem more precisely. Section 3 presents the
basic concepts underlying our model and its load bal-
ancing strategy. Section 4 completes the description
of our execution model with its main implementation
techniques. Section 5 gives a performance evaluation
of our model, with comparison with two other load
balancing strategies, using our implementation on the
KSRl computer. Section 6 concludes.

2 Problem Formulation
A parallel execution model relies on assumptions re-
garding the target execution system and optimization
decisions. In this section, we make precise our assump-
tions regarding the execution system and the parallel
execution plans. This will help making the problem
statement and presenting the execution model.

2.1 Execution System

We consider a shared-nothing parallel database sys-
tem with several shared-memory multiprocessor nodes,
or SM-nodes for short. Each SM-node has several
processors, several disk units and a memory shared
by all processors. Inter-node communication is done
via message-passing while inter-processor communica-
tion within a node is done more efficiently via shared-
memory.

Relations are horizontally partitioned across nodes,
and within each node across disks. Relation parti-
tioning is based on a hash function applied to some
attribute. The home of a relation is simply the set of
SM-nodes which store its partitions.

As in many other papers, we consider only paral-
lel hash join methods since they generally offer supe-
rior performance [Va184, Bra84]. Hash joins provide
two opportunities for parallelism: (i) several joins can
be pipelined (inter-operator parallelism); and (ii) each
join can be done in parallel on partitioned relations
(intra-operator parallelism). Both relations involved
in the join are fragmented in the same number of buck-
ets, according to the same hash function applied to
the join attribute. The parallel hash join proceeds in
two phases: build and probe. First, the buckets of the
building relation are scanned in parallel and a hash ta-
ble is built for each bucket. Second, the buckets of the
probing relation are scanned in parallel, probing the
corresponding hash table and producing result tuples.

437

Join tree

+ Blockin edge
4 Pipelina le edge %
- - -2 Pipeline chain __e

Operator Scheduling

Hash constraints : Buildl<Probel, BuildZ<Probe2, Build3<Probe3
BuiM2<Scan4, Build3<Scan4

Operator homes

home(Build1, Pmbel, Scan2, Scan3) = Node B
home&an 4) = Node C

Operator Tree home (Buildf, Build2, Probe2, Probe3) = Nodes B,C

Figure 1: A join tree and a parallel execution plan

2.2 Parallel Execution Plans

The result of parallel query optimization is a parallel
execution plan that consists of an operator tree with
operator scheduling and allocation of computing re-
sources to operators. Different shapes of join tree can
be considered: left-deep, right-deep, segmented right-
deep or bushy. Bushy trees are the most appealing
because they offer the best opportunities to minimize
the size of intermediate results [She931 and to exploit
all kinds of parallelism [Va193]. Thus, in this paper,
we concentrate on the execution of bushy trees.

The operator tree results from the “macro-
expansion” of the join tree [Has94]. Nodes repre-
sent atomic operators that implement relational alge-
bra and edges represent dataflow. In order to exhibit
pipelined parallelism, two kinds of edges are distin-
guished: blocking and pipelinable. A blocking edge
indicates that the data is entirely produced before it
can be consumed. Thus, an operator with a blocking
input must wait for the entire operand to be material-
ized before it can start. A pipelinable edge indicates
that data can be consumed “one-tuple-at-a-time”. So
the consumer can start as soon as one input tuple has
been produced.

Let us consider an operator tree that uses hash join.
Three operators are needed: scan to read each base re-
lation, build and probe. The build operator produces
a blocking output, i.e., the hash table, while probe
produces a pipelinable output, i.e., the result tuples.
Thus, there is always a blocking edge between build
and probe, i.e., a blocking constraint between oper-
ators. An operator tree does not enforce constraints
between two operators that have no data dependency.
But the concurrent execution of two independent oper-
ators can yield poor sharing of the available resources
(memory, disk, processor). To optimize resource shar-
ing among operators, the optimizer may decide to add

new blocking constraints in order to make their ex-
ecution sequential. Thus, operator scheduling as de-
cided by the optimizer reflects the optimization con-
straints as well as the constraints implied by the hash
join method. It is expressed by a partial order on the
set of operators of the tree where 01 < 02 states that
operator 02 cannot be started before the end of 01.

An operator tree can be decomposed as a set of
maximum pipeline chains, i.e., chains with highest
numbers of pipelined operators, also called fragments
[She931 or tasks [Hon92]. For simplicity, we assume
that each pipeline chain can be entirely executed in
memory.

A typical parallel optimization decision is the allo-
cation of processors to operators. In shared-memory,
this decision reduces to the optimal number of pro-
cessors since each processor has equal access to disk
and memory. In shared-nothing, processor allocation
is highly dependent on data location and is typically
done by a fixed association between processors and
operators. A hierarchical architecture topology in-
troduces a new dimension to the processor allocation
problem. In this case, it is more important to decide
the set of SM-nodes where an operator is executed,
which we call operator home, rather than the set of
participating processors. Thus, the parallel execution
plan provides operator homes that respect the follow-
ing obvious constraints: (i) the home of a sca.n oper-
ator is that of the scanned relation; and (ii) the build
and probe operators of the same join have necessarily
the same home.

Figure 1 shows a bushy tree involving 4 relations
and a possible parallel execution plan which consists
of an operator tree adorned with operator schedul-
ing and operator home information. In addition to
the blocking constraints implied by the hash join algo-
rithm, the given scheduling specifies constraints corre-

438

sponding to two possible heuristics: (i) the execution
of a pipeline chain is started only when all the hash
tables are ready; and (ii) pipeline chains are executed
one-at-a-time. Such a parallel execution plan is the
input to our execution model. The optimization and
scheduling decisions, supposed to be good, are strictly
followed.

2.3 Problem Statement

Based on the above definitions and assumptions, we
can now simply state the problem. Given a parallel
execution plan which consists of an operator tree, op-
erator scheduling and operator homes, the problem is
to produce an execution on a hierarchical architecture
which minimizes response time. A necessary condi-
tion to minimize response time is to avoid processor
idle time. This can be done by using a dynamic load
balancing mechanism at two levels: (i) within an SM-
node, load balancing is achieved via fast interprocess
communication; (ii) between SM-nodes, more expen-
sive message-passing communication is needed. Thus,
the problem is to come up with an execution model so
that the use of local load balancing is maximized while
the use of global load balancing is minimized.

3 Parallel Execution Model
Intuitively, parallelizing a query amounts to partition
the total work along two dimensions. First, each oper-
ator is horizontally partitioned to yield intra-operator
parallelism. Second, the query is vertically partitioned
into dependent or independent operators to yield inter-
operator parallelism. We call activation the finest unit
of sequential processing, i.e., which cannot be further
partitioned. The main property of our model is to al-
low any thread to process any activation of its SM-
node. Thus, there is no static association between
threads and operators. This should yield good load-
balancing for both intra-operator and inter-operator
parallelism within an SM-node, and thus, reduce to
the minimum the need for global load balancing, i.e.,
when there is no more work to do in an SM-node. In
the rest of this section, we present the basic concepts
underlying our model and its load balancing strategy
which we illustrate with an example.

3.1 Basic Concepts

Our execution model is based on a few concepts:
activations, activation queues, fragmentation, and
threads. These concepts are simple and their com-
bination provides much flexibility and generality.
Activations. An activation represents a sequential
unit of work. Since any activation can be executed
by any thread, activations must be self-contained and
reference all information necessary for their execution:
the code to execute and the data to process. Two

kinds of activations can be distinguished: trigger ac-
tivations and data activations. A irigger activation
is used to start the execution of a leaf operator, i.e.,
scan. It is represented by an (Operator, Bucket) pair
which references the scan operator and the base rela-
tion bucket to scan. A data activation describes a tu-
ple produced in pipeline mode. It is represented by an
(Operator, Tuple, Bucket) triple which references the
operator to process. For a build operator, the data
activation specifies that the tuple must be inserted in
the hash table of the bucket and for a probe opera-
tor, that the tuple must be probed with the bucket’s
hash table. Although activations are self-contained,
they can only be executed on the SM-node where the
associated data (hash tables or base relations) is.
Activation Queues. Moving data activations along
pipeline chains is done using activation queues, called
table queues in [PirSO], associated with operators. If
the producer and consumer of an activation are on
the same SM-node, then the move is done via shared-
memory. Otherwise, it requires message-passing. To
unify the execution model, queues are used for trigger
activations (inputs for scan operators) as well as tuple
activations (inputs for build or probe operators).

All threads have unrestricted access to all queues
located on their SM-node. Managing a small number
of queues (es., one for each operator) may yield in-
terference. To reduce interference, we associate one
queue per thread working on an operator. Note that
a higher number of queues would likely trade inter-
ference for queue management overhead. To further
reduce interference without increasing the number of
queues, we give each thread priority access to a dis-
tinct set of queues, called its primary queues. Thus, a
thread always tries to first consume activations in its
primary queues.

During execution, operator scheduling constraints
may imply an operator to be blocked until the end of
some other operators (the blocking operators). There-
fore, a queue for a blocked operator is also blocked, i.e.,
its activations cannot be consumed but they can still
be produced if the producing operator is not blocked.
When all its blocking operators terminate, the blocked
queue becomes consumable, i.e., threads can consume
its activations. This is illustrated in Figure 2 with an
execution snapshot for the operator tree of Figure 1.
Fragmentation. +et us call degree of fragmenta-
tion the number of buckets of the building and prob-
ing relations. To reduce the negative effects of data
skew, the typical solution is to have a degree of frag-
mentation much higher than the degree of parallelism
[KitSO, DeW92J. If a queue is used for each bucket,
a high degree of fragmentation would imply an im-
portant queue management overhead [Bou96]. Since
activations are self-contained, we can mix activations

439

Scan2 i
Probe1 1
Build3 i
Scan3 i
Build2 i
Scan4 i
Probe2 ;
Probe3 :

‘. I

Node A Node B Node C

Figure 2: Snapshot of an execution

of different buckets in the same queue and thus reduce
the overhead of queue management with a high degree
of fragmentation.
Threads. A simple strategy for obtaining good load
balancing inside an SM-node is to allocate a number
of threads much higher than the number of proces-
sors and let the operating system do thread scheduling.
However, this strategy incurs high numbers of system
calls due to thread scheduling, interference and convoy
problems [PirSO, Hon92].

Instead on relying on the operating system for load
balancing, we choose to allocate only one thread per
processor per query. This is made possible by the fact
that any thread can execute any operator assigned to
its SM-node. The advantage of this one-thread-per-
processor allocation strategy is to significantly reduce
the overhead of interference and synchronization pro-
vided that a thread is never blocked. Waiting for some
event would cause processor idle time. During the pro-
cessing of an activation, a thread can be blocked in the
following situations:

l the thread cannot insert an activation in a
pipeline queue because the queue is fulll;

l the use of asynchronous I/O (for multiplexing disk
accesses with data processing) can create waiting
situations.

We solve this problem as follows. A thread in a waiting
situation suspends its current execution by making a
procedure call to find another local activation to pro-
cess. The advantage is that context saving is done
by procedure call, which is much less expensive than
operating system based synchronization.

‘Without any restriction on the queue size, memory con-
sumption may well increase. For instance, consider the con-
current execution of two pipelined operators. If the selection
strategy favors the producer opera&r, then it may well end up
materializing the entire intermediate result. To avoid this situ-
ation, queues h’ave a limited size.

,’

(\ -

b<

.\
: Setof
j primary
(queues ,’

x
Terminated
queue

Blocked
queue

L-l Active queue

0 Thread

3.2 Load Balancing Strategy

Load balancing within an SM-node is obtained by al-
locating all activation queues in a segment of shared-
memory and by allowing all threads to consume acti-
vations in any queue. To limit thread interference, a
thread will consume as much as possible in its set of
primary queues before considering the other queues of
the SM-node. Therefore, a thread gets idle only when
there is no more activation of any operator, which
means that there is no more work to do on its SM-
node which is starving.

When an SM-node gets starving, we can apply
load sharing with another SM-node by acquiring some
of its workload [Sha93]. However, acquiring activa-
tions (through message-passing) incurs communica-
tion overhead. Furthermore, activation acquisition is
not enough since associated data, i.e., hash tables,
must also be’acquired. Thus, we need a mechanism
that can dynamically estimate the benefit of acquiring
activations and data.

Let us call “requester” the SM-node which acquires
work and “provider” the SM-node which gets off-
loaded by providing work to the requester. The prob-
lem is to select a queue to acquire activations and de-
cide how much work to acquire. This is a dynamic
optimization problem since there is ‘a trade-off be-
tween the potential gain of off-loading the provider and
the overhead of acquiring activations and data. This
trade-off can be expressed by the following conditions:
(i) the requester must be able to store in memory the
activations and corresponding data; (ii) enough work
must be acquired in order to amortize the overhead of
acquisition; (iii) acquiring too much work should be
avoided; (iv) only probe activations can be acquired
since triggered activations require disk accesses and
build activations require building hash tables locally;
(v) there is no gain to move activations associated with
blocked operators which could not be processed any-

440

Node B

Node A

Join tree Parallel execution plan Execution snapshot

Figure 3: Example of query execution

way. Finally, to respect the decisions of the optimizer,
an SM-node cannot execute activations of an opera-
tor that it does not own, i.e., the SM-node is not in
the operator home. More details about the global load
balancing policy are given in section 4.

The quality of load balancing obtained depends on
the number of operators that are concurrently exe-
cuted which provides opportunities for finding some
work to share in case of idle times. Increasing the
number of concurrent operators can be done by al-
lowing concurrent execution of several pipeline chains
or by using non-blocking hash-join algorithms which
allow to execute all the operators of the bushy tree
concurrently [Wi195]. On the other hand, executing
more operators concurrently can increase memory con-
sumption. Static operator scheduling as provided by
the optimizer should avoid memory overflow and solve
this tradeoff.

3.3 Example

We now illustrate these main concepts on a simple
example. We consider the join of relations R and S
executed on two SM-nodes A and B, each having two
processors and thus two threads. Relation R is stored
at node A and relation S at node B. Figure 3 gives
the parallel execution plan and a snapshot at the be-
ginning of execution.

Execution at node A proceeds as follows. Threads
TAG and TAG consume trigger activations for the SCanR
operator in their associated queue. For each activa-
tion, they execute the scan operator on a partition of
R, reading R tuples from disk and sending selected tu-
ples in pipeline mode to the build operator at node B.
If TAG and TAG get blocked because the build queues
are full, and since there is no other operator to process
at A, they must wait for the build queues to free. If
one thread, say TAG, terminates processing all activa-
tions in its queue, it may consume activations in TAG ‘6
queue in order to balance the remaining load. Opera-
tor scanR terminates when there is no more activation
to process.

Execution at node B proceeds as follows. Threads
TBI and TB~ start consuming trigger activations for

ScaR
BuildR
scans probe

the scans operator in their associated queue. For each
activation, they execute the scan operator on a par-
tition of S, reading S tuples from disk and sending
selected tuples in pipeline mode to the probe oper-
ator. To illustrate how a thread switches execution,
we assume that activations Ci and C2 produce more
tuples (data activations) than the probe queues can
store. Thus, during execution of Ci, TBI fills the probe
queues. To avoid waiting, TB~ suspends the execution
of Ci by calling the procedure that selects activations,
thus saving Cl’s execution context. Since executing
other scans activations would result in blocking TB~
again and since the probe operator is blocked, TB~ se-
lects build activations produced by TAG and TAG. The
same execution happens for TB~ with Cz. TB~ and Tcz
execute all build activations until termination (i.e., the
hash table has been entirely built), which unblocks the
probe operator. Thus, they can execute probe activa-
tions, which frees the probe queues, and resume execu-
tion of Ci and Cz. Processing of new scans activations
may again fill the probe queues, in which case TB~ and
TB~ would switch to process probe activations, and so
on until termination of scans.

This simple example shows the value of using activa-
tion queues and procedure calls. Threads TB~ and TB~
are always busy during query execution and the load
of node B perfectly balanced. Furthermore, threads
TAG and TAG are fully busy during the first phase of
execution according to the optimizer decisions.

4 Basic Techniques
In this section, we present .the basic techniques to sup-
port our execution model. We do so by following the
various steps of query execution in a hierarchical sys-
tem.
Initialization. Let s be the number of SM-nodes,
each having p processors. The execution is initial-
ized by creating, at each SM-node participating in the
query, p execution threads, and, for each unblocked
operator located on this node, p queues. Furthermore,
an additional thread, called scheduler, is created at
each SM-node to deal with message-passing. During
execution, the scheduler receives messages from the re-

441

mote SM-nodes and directs them to the queues of its
SM-node. The scheduler also manages inter-node com-
munication as needed for global load balancing and
detection of operator end. Locally, the scheduler com-
municates with other threads using operating system
signals.
Query execution. It starts by sending trigger ac-
tivations to all unblocked scan queues. Then, each
execution thread processes activations by consuming
queues in priority order. First, it consumes its pri-
mary queues, then the other queues at the same SM-
node and finally, other queues at another SM-node us-
ing load sharing. Conceptually, each thread performs
a simple loop which ends when the last operator of
the query terminates. At each iteration, an activation
is processed. If there is no local activation to process
and no global activation to acquire through load shar-
ing, the thread falls asleep. If new activations come
in or some of the local queues become unblocked, the
scheduler wakes up the thread which can resume the
loop.
Activation granularity. The quality of load balanc-
ing depends on the granularity of parallelism [Bou96].
Fine-grain parallelism (i.e., parallel execution of data
activations) achieves perfect load balancing but may
yield high overhead. Conversely, coarse-grain paral-
lelism (i.e., parallel execution of trigger activations)
has limited overhead but may yield poor load balanc-
ing. To obtain good load balancing with little over-
head, we use a simple implementation technique. The
granularity of trigger activations is reduced by replac-
ing a bucket by one or more pages of a bucket, the
granularity of data activations is increased by buffer-
ing.
Local activation selection. To maximize SM-node
load balancing, activation selection must minimize
thread interference when accessing queues and avoid
useless access to queues associated with operators that
are either terminated or blocked. Our solution is based
on a circular list of references to all active queues, i.e.,
neither terminated nor blocked, which is accessed by
all threads during activation selection. To avoid inter-
ference, each thread starts accessing the list at a differ-
ent position corresponding to its first primary queue.
This list is created at the beginning of query execution,
and updated at the end of each operator to delete all
queues associated with it. Furthermore, if the end of
the operator causes unblocking of some other opera-
tors, the unblocked queues are inserted in the circular
list. If no activation is found in any queue of the cir-
cular list, it means that there is no more work to do at
that SM-node and global activations must be selected.
Global activation selection. Global activation se-
lection, i.e:, for load sharing with another SM-node,
contributes to global load balancing. When a thread

does not find local activations, it sends a signal to
its local scheduler which, in turn, sends a starving
message to the other SM-nodes. This message indi-
cates the available memory of the requester node. The
scheduler at each SM-node, when receiving a starving
message, looks up its candidate queues. Section 3.2
enumerates the necessary conditions for a queue to be
candidate, i.e., the conditions which insure that this
stealing is possible and beneficial. The scheduler se-
lects between the candidate queues the one with the
best benefit/overhead ratio. The benefit obtained by
stealing a candidate queue is proportional to the num-
ber of activations in the queue, i.e., the work removed
from the overloaded SM-node. The overhead is propor-
tional to the size of the data to be transmitted (hash
table and activations). Then, the scheduler sends back
to the requester information on the selected queue (if
any) as well as information on its actual load. Af-
ter receiving answers from all SM-nodes, the requester
selects the most loaded SM-node and requests for acti-
vations and corresponding data, i.e., hash tables to be
sent. Upon receipt of activations, the scheduler of the
requester SM-node wakes up the executions threads to
process them.

To optimize in case of repeated starving of the same
SM-node, a list of stolen queues is maintained at the
requester SM-node. At the next starving situation,
it tries to steal activations from theses queues whose
associated data have been already copied.
Activation execution. An activation has a refer-
ence to the code to be executed (scan, probe or build).
Thus, activation is simply performed by calling the
corresponding operator code. However, when execut-
ing that code, a thread can perform a blocking adion,
eg., by reading from disk or writing in a queue that is
full. Thus, in the code of each operator, the potential
blocking actions are modified as follows:

if (cannot perform (BlockingAction) then
while cannot perform (BlockingAction) do

ProcessAnotherActivation
end

The procedure ProcessAnotherActivation will not con-
sume activations of the same operator in order to avoid
new blocking situations. With this technique, we avoid
blocking actions and maximize processor utilization
without system calls.

5 Performance Evaluation
Performance evaluation of a parallel execution model
for multi-join queries is made difficult by the need to
experiment with many different queries and large rela-
tions. The typical solution is to use simulation which
eases the generation of queries and data, and allows
testing with various configurations. However, simula-
tion would not allow us to take into account some im-
portant performance aspects such as the overhead of

442

thread interference within an SM-node. On the other
hand, using implementation and benchmarking would
restrict the number of queries and make data gener-
ation very hard. Therefore, we decided to fully im-
plement our execution model on a multiprocessor and
simulate the execution of operators. Thus, query exe-
cution does not depend on relation content and can be
simply studied by generating queries and setting rela-
tion parameters (cardinality, selectivity, skew factor,
etc.).

In the rest of this section, we describe our experi-
mentation platform and report on performance results
on load balancing at two levels: locally within an SM-
node and globally among SM-nodes.

5.1 Experimentation Platform

We now introduce the multiprocessor configuration we
have used for our experiments and the way we have
generated parallel execution plans and relations. We
also present the methodology that was applied in all
experiments.

5.1.1 Multiprocessor Configuration

We have implemented our execution model on a 72-
processor KSRl computer for two reasons. First, it
is freely available to us at Inria. Second, its shared
virtual memory architecture and high number of pro-
cessors make it possible to organize as a hierarchical
parallel system. Each processor is 40 MIPS fast and
has its own 32 Megabytes memory, called local cache.
KSRl’s Allcache system uses hardware to provide a
shared virtual memory space which includes all local
caches.

To experiment with various hierarchical system con-
figurations, we cluster processors as Sdnodes2 and
simulate inter-node communication using the follow-
ing typical network parameters:

Bandwidth (based on [Meh95]) Infinite

~1

Furthermore, to experiment with multiple disks (only
one disk of the KSRl was available to us), we simu-
late disk accesses to base relations with the following
parameters:

21n order to simulate a real SM-node and avoid the influence
of the NUMA architecture of the KSRl, we force all read and
write data accesses to be local, i.e., in the local cache of the
processor.

Disk Parameters Values

Nb. of disks 1 per processor
Disk latency [Meh95] 17 ms

Seek Time 5 ms
Transfer Rate 6 MB/s

CPU cost for asynchronous I/O init. 5000 instr.

I/O Cache Size 8 pages

5.1.2 Parallel Execution Plans

The input to our execution model is a parallel execu-
tion plan obtained after compilation and optimization
of a user query. To generate queries, we use the al-
gorithm given in [She931 with three kinds of relations:
small (lOK-20K tuples), medium (lOOK-200K tuples)
and large (lM-2M tuples). First, the predicate connec-
tion graph of the query is randomly generated. Since
most multi-join queries in practice tend to have sim-
ple join predicates, we consider only acyclic connected
graphs. Second, for each relation involved in the query,
a cardinality is randomly chosen in one of the small,
medium or large ranges. Third, the join selectivity
factor of each edge (R,S) in the predicate connection
graph is randomly chosen in the range [0.5 * min(1 R 1
> I S I>/ I Rx S I, 1.5 * m4l R 0 I S I>/ I R x S II.

The result of query generation is an acyclic con-
nected graph adorned with relation cardinalities and
edge selectivities. We have generated 20 queries, each
involving 12 relations. Each query is then run through
our DBS3 query optimizer. For each query, the .two
best bushy operator trees are retained. To automat-
ically produce parallel execution plans from operator
trees, we make a number of assumptions. Although
these assumptions cannot yield the best parallel exe-
cution plan, they are reasonable. First, relations are
fully partitioned across all SM-nodes. Second, all SM-
nodes are allocated to all operators of the plan. Third,
pipeline chains are executed one-at-a-time.

We constrain the generation of operator trees so
that the sequential response time is between 30 mn
and one hour. Thus, we have produced 40 parallel ex-
ecution plans involving about 1.3 Gigabytes of base re-
lations and about 4 Gigabytes of intermediate results.
Since we ignore the content of relatidns, we could gen-
erate automatically large relations with given cardi-
nalities.

5.1.3 Experimentation Methodology

In the following experiments, each point in a graph
will be obtained from a computation based on the re-
sponse times of 40 parallel execution plans. Since the
different parallel execution plans correspond to 20 dif-
ferent queries, computing the average response time
does not make sense. Therefore, the results will al-
ways be in terms of comparable execution times. For
instance, in a speedup experiment, let the speedup be

443

n sp
DP
FP

0.6

16 32 64
Nb of processors

Figure 4: Relative performances
of SP, FP and DP

the ratio of response time with p processors over the
response time with one processor, each point will be
computed as the average of the speedups of all plans.
Each point of a graph is obtained with n measure-
ments, each on a different plan, using the formula:
t CT resp. time of experiment/reference resp. time
where the reference response time will be indicated for
each experiment. Each response time is computed as
the average of five successive measurements.

5.2 Local Load Balancing

To study the performance of our model within an SM-
node, we compare it with two other execution models.
Then we study the impact of data skew.

5.2.1 Performance Comparisons

To compare with our model in the shared-memory
case, we have chosen and implemented two well-known
load balancing strategies. The first strategy is syn-
chronous pipelining (SP) [She931 and is designed for
shared-memory. Each processor is multiplexed be-
tween I/O and CPU threads and participates in every
operator of a pipeline chain. I/O threads are used
to read the base relations into buffers. Each CPU
thread reads tuples from the buffers and probes all
the hash tables along the pipeline chain. Unless there
is severe data skew (which yields high variations in
tuple ‘processing time), this model will achieve perfect
load balancing. The second strategy has been designed
for shared-nothing [DeWSO, BorSO]. For each pipeline
chain, processors are statically allocated to operators
based on a ratio of the estimated cost, including CPU
and I/O costs, of each operator versus the global com-
plexity of the pipeline chain. This strategy yields good
load balancing as long as the cost model is accurate.

I ’
I I I I

6 2.

‘%i
4

18.
.

!$ 1.6 .

; 1.4 -

!L
0.8 - Q) -5 0 8procs 0.6 -

V 16procs
@ c% 0

0.4
32 procs

- + 64procs
I I I I I I ,

0
CL m?deI error rZe (in %)

30

Figure 5: Impact of cost model errors
on FP

We adapt this strategy for shared-memory, allowing
intra-operator load balancing and call it fixed process-
ing (FP). This was implemented using our execution
model by restricting each thread to process activations
associated with only one operator. To compare with
SP and FP, we call our model dynamic processing (DP)
to reflect the fact that processors are dynamically al-
located to operators of a pipeline chain.

Figure 4 compares the relative performance of the
three strategies for different numbers of processors
with no data skew. The reference response time is
that of SP which is always best. FP is always worse
because of discretization errors which worsen as the
number of processors decreases. The performance of
our strategy is very close to that of SP from 8 and 32
processors and remain close for higher numbers. The
slight performance difference is due to thread interfer-
ence and queue management in DP.

The performance of FP strongly depends on the
accuracy of its cost model and we were interested in
studying the impact of errors in cost estimates. Figure
5 shows the relative performance of FP versus the er-
ror rate, using several degrees of parallelism, with ,t’he
response time with no error used as reference.

To obtain a measurement with an error rate T, the
cardinalities of base and intermediate relations are dis-
torted by a value chosen in [-T,+T], which propagates
errors in estimating the cost of operators and the num-
ber of allocated processors. The measurements have
been performed with a realistic error rate between 0
and 30%. Given the random nature of the measure-
ments, we have chosen to restrict the number of execu-
tion plans tested. However, for each error rate, three
distortions are randomly picked for each plan.

‘-I n sP I

1
1 8 16 32 48 64

Nb of processors

Figure 6: Speedup of SP, FP, DP

The results show that response time degrades signifi-
cantly as the error rate increases and that it depends
much on the degree of parallelism. With few proces-
sors (eg., S), performance degradation is small with a
small error rate but increases significantly as the error
rate increases. This is because poor processor allo-
cation is worse with few processors (eg., l/8 is worse
than l/64). With more processors (eg., 64), a small
error rate changes the effectiveness of processor allo-
cation, but the impact on performance is proportion-
ally less. These experiments confirm the limitations of
static load balancing.

Figure 6 shows the average speed-up of all query
executions for each strategy, with r=O for FP. Again
SP is always slightly better than DP, and FP is always
worse. Up to 32 processors, SP and DP yield near-
linear speedup. However, a hierarchical system would
typically include SM-nodes with less than 32 proces-
sors thereby making DP an excellent strategy.

5.2.2 Impact‘of Data Skew

In our model, all threads have access to all local acti-
vation queues and thus can interfere with each other.
The interference overhead increases with bad distribu-
tions of activations in queues which stem from various
forms of data skew [Walgl]. Attribute value skew or
tuple placement skew lead to unbalanced relation par-
titions thereby causing bad distribution of trigger ac-
tivations in scan queues. Redistribution skew leads to
bad distribution of data activations in pipeline queues.

In this experiment, we study the overhead of inter-
ference in our model in case of skew. To do so, we
have introduced redistribution skew in the production
of trigger activations and in all operators producing
pipelined tuples. For simplicity, the skew factor of a
producer operator does not impact that of the con-

fz
+ DP

'C 1.3.
4
E
81.2-
a
8

I I I I I

0 0.2 0.4 0.6 0.8 1
Degree of redistribution skew (Zipf)

Figure 7: Impact of data skew on DP

sumer operator. All operators have the same skew
factor baaed on a Zipf function [Zip491 that yields a
factor between 0 (no skew) and 1 (high skew).

Figure 7 shows the relative performance of DP ver-
sus the skew factor with 64 processors, the reference
response time being that with no skew. The important
conclusion is that the impact of skew on our model
is insignificant. This is due to several design deci-
sions. First, our model allows a high degree of oper-
ator partitioning which reduces the negative effect of
skew [KitSO]. Second, the priority-baaed association of
queues to threads reduces interference. Finally, inter-
ferences are further reduced by caching read and write
activations.

5.3 Global Load Balancing

In our model, we minimize the use of global load bal-
ancing (which incurs communication overhead) by fa-
voring more efficient local inter- and intra-operator
load balancing. To assess the performance gain of such
strategy in a hierarchical system, we compare it with
FP which performs well in shared-nothing. In our ex-
periment, we adapt FP as follows. As each opera-
tor is present at all SM-nodes, the distribution of the
processors of each SM-node over the operators of the
pipeline chain is done independently, according to the
strategy described in Section 5.2.1. Since FP imposes
that processors process activations of only one opera-
tor, a processor that becomes idle triggers the use of
global load balancing. Therefore, an--uneven operator
load distribution on the nodes may lead to global load
balancing at the end of each operator.

In order to create poor load balancing within SM-
nodes, we simply introduced skew as before. With-
out skew, we have experimentally observed that global
load balancing is almost never used with the two

445

g 1.3

2 1.2

4 1.1
E
a 1
?
‘2 o.9
2 0.8

0.7

0.6

4x8 4x12 4x16
Configuration (Nb of nodes x Nb of procs/node)

Figure 8: Relative performance of FP and DP

strategies. wk first compared the behavior of FP and
DP for a simple execution plan, i.e., a pipeline chain
of 5 operators, each having a redistribution skew fac-
tor of 0.8. The hierarchical system was configured as
4 SM-nodes, each having 8 processors. We measured
the amount of data exchanged between nodes with FP
and DP. For this experiment, FP requires 9 Megabytes
data to be transferred versus only 2.5 Megabytes for
DP. We explain the difference observed as follows.

With FP, all processors can become idle indepen-
dently of each other. Since there is no dynamic inter-
operator load balancing, a processor allocated to an
operator can be idle whereas another processor allo-
cated to another operator is overloaded. The idle pro-
cessor will then invoke global load balancing to steal
work from a remote processor allocated to the same
operator. Thus, several starving situations can appear
at the same SM-node: Furthermore, there can be mu-
tual stealing between two SM-nodes. With DP, these
problems are avoided. When a processor becomes idle,
this is because the entire SM-node is starving. Since
load sharing is applied at the level of the SM-node
(rather than the processor), there cannot be multiple
or mutual starving situations.

As in the previous experiments, we have done mea-
surements with 40 execution plans (bushy trees involv-
ing 12 relations), with three configurations and a skew
factor of 0.6. Figure 8 shows the performance gain
of DP over FP with 4 nodes of 8, 12, respectively 16
processors. We observed, among all executions, per-
formance gains between 14 and 39%. This is due to
less utilization of global load balancing for DP as well
as better performance of D.P on SM-nodes. The com-
munication overhead due to global load balancing is
2 to 4 times smaller for DP. Also, processor idle time

with DP is almost null whereas it is quite significant
with FP. WJe did not observe any correlation between
the number of processors on each node and the perfor-
mance difference between FP and DP.

6 Conclusion
In this paper, we have addressed the problem of dy-
namic load balancing for multi-join queries in a hier-
archical parallel system. We have proposed a new, .dy-
namic solution that maximizes load balancing locally
within shared-memory nodes and reduces as much as
possible the need for load sharing across nodes. This
is obtained by decomposing the work in self-contained
activations that represent the finest units of sequen-
tial processing and allowing any thread to process any
activation of its SM-node. Thus, there is no static as-
sociation between threads and operators. This yields
much flexibility in exploiting intra-operator and inter-
operator parallelism within an SM-node, and thus,
minimizes the need for global load balancing.

Furthermore, our execution model eases static op-
timization, which is typically complex in a hierarchi-
cal architecture, by avoiding to statically decide the
operator scheduling and the association between op-
erators and processors. However, if static distribution
is decided by the optimizer, our execution model can
exploit it and would still minimize the overhead of dy-
namic load balancing. The cost estimate errors have
a small impact on response time due to dynamic load
balancing.

To evaluate the performance of our model, we did
an implementation on a 72-processor KSRl computer.
KSRl’s shared virtual memory architecture and high
number of processors have made it easy to organize
as a hierarchical parallel system. To experiment with
many different queries, large relations and different re-
lation parameters (cardinality, selectivity, skew factor,
etc.), we have simulated the execution of atomic oper-
ators. We have performed various experiments at two
levels: locally within an SM-node and globally among
SM-nodes.

In the shared-memory case, we have compared
our load balancing strategy called dynamic processing
(DP) with synchronous pipelining (SP) and fixed pro-
cessing (FP). SP is best for shared-memory but does
not work in shared-nothing whereas FP is designed for
shared-nothing and also works in shared-memory. FP
is always worse because of discretization errors which
worsen as the number of processors decreases. The
performance of our strategy is very close to that of SP
from 8 to 32 processors and remain close for higher
numbers. Both SP and DP strategies show very good
speedup, even with highly skewed data.

To assess the performance of our global load bal-
ancing strategy in a hierarchical system, we have

446

compared it with FP which performs well in shared-
nothing. Our strategy outperforms FP by a factor
between 14 and 39% and the communication overhead
due to global load balancing is 2 to 4 times smaller.
Finally, processor idle time is almost null with DP
whereas it is quite significant with FP.

To summarize, our execution model performs as
well as a dedicated model in shared-memory and can
scale up very well to deal with multiple nodes. Consid-
ering the current multiprocessor towards hierarchical
architectures with.database as the main target appli-
cation, such a model provides two strong advantages:
predictable performance across many different config-
urations and portability of DBMS software.

Acknowledgments
The authors wish to thank Benoit Dageville for many
fruitful discussions on parallel execution model and
Jean-Paul Chieze for helping us with the KSRl.

References [Lu91]

[Ape921

[Ber92]

[BerSl]

[BorSO]

[Bra841

[Bou96]

P&4

[DeWSO]

[Dew921

[Gar96]

P. M. G. Apers, C. A. van den Berg, J. Flok-
stra, P. W. P. J. Grefen, M. L. Kersten, A. N.
Wilschut, “PRISMAIDB: A Parallel Main Mem-
ory Relational DBMS”. IEEE Trans. Knowledge
and Data Engineering, 4(6), December 1992.

C. A. van den Berg, M, L, Kersten, “Analysis of
a Dynamic Query Optimization Technique for
Multi-join Queries”. Int. Conf. on Information
and Knowledge Engineering, Washington, 1992.
B. Bergsten. M. Couorie. P. Valduriez. “Proto-
typing”DBS3, a Shared ‘Memory Parallel Sys-
tem”. Int. Conf. on Parallel and Distributed

I

Information Systems, Miami Beach, December
1991.
H. Boral, W. Alexander, L. Clay, G.Copeland,
S. Danforth, M. Franklin, .B. Hart, M. Smith,
and P. Valduriez, “Prototypmg Bubba, A Highly
Parallel Database System”. IEEE Trans. Knowl-
edge and Data Engineering., 2(l), March 1990.

K. Bratbergsengen, “Hashing Methods and Re-
lational Algebra Operation”. Int. Conf. on
VLDB, Singapore, August 1984.
L. Bouganim, B. Dageville, P. Valduriez, “Adap-
tive Parallel Query Execution in DBS3”. Int.
Conf. on EDBT Avignon, March 1996.
B.Dageville, P.Casadessus, P.Borla-Salamet,
“The Imoact of the KSRl AllCache Architecture
on the Behavior of the DBS3 Parallel DBMS”.
Int. Conf. on Parallel Architectures and Lan-
guage, Athens, July 1994.
D. J. Dewitt, S. Ghandeharizadeh, D. Schnei-
der, A. Bricker, H. Hsiaq, R. Rasmussen,
“The Gamma Database Machme Project”. IEEE
Trans. on Knowledge and Data Engineering,
2(l), March 1990.

D.J. Dewitt, J.F. Naughton, D.A. Schneider, S.
Seshadri. “Practical Skew Handline in Parallel
Joins”. Int. Conf. on VLDB, Vanco&er, August
1992.
M. N. Garofalakis, Y. E. Yoannidis, “Multi-
dimensional Resource Scheduling for Parallel

[Gra93]

[Has941

[Hon92]

[Hsi94]

[Kit901

[Lo931

[Meh95]

[PirSO]

[Rah95]

[Sha93]

[She931

[Va184]

[Val93]

[Wal91]

[Wil95]

[Zip491

Queries”. ACM-SIGMOD Int. Conf. Montreal,
June 1996.
G. Graefe, “Query Evaluation Techniques for
Large Databases”. ACM Computing Surveys
25(2), June 1993.

W. Hassan, R. Motwani, “Optimization Algo-
rithms for Exploiting the Parallel Communica-
tion Tradeoff in Pipelined Parallelism”. Int. Conf
on VLDB, Santiago, Chile, 1994.
W. Hong, “Exploiting Inter-Operation Paral-
lelism in XPRS”. ACM-SIGMOD Int. Conf..
San Diego, June 1992.
H. Hsiao. M. S. Chen. P. S. Yu. “On Parallel
Execution of Multiple’ Pipelined’ Hash Joins”.
ACM-SIGMOD Int. Conf.. Minneaoolis. Mav

< , I , I

1994.
M. Kitsureeawa. Y. Oaawa. “Bucket Soread-
ing Paraller Hash: A Bew; Robust, Parallel
Hash Join Method for Data Skew in the Suoer
Database Computer”. Int. Conf on VLDB, B;is-
bane, 1990.
M-L. Lo, M-S. Chen, C. V. Ravishankar, P. S.
Yu, “On Optimal Processor Allocation to Sup-
port Pipelined Hash Joins”. ACM-SIGMOD Int.
Conf., Washington, May 1993.
H. Lu, M.-C. Shan, K.-L. Tan, “Optimization
of Multi-Way Join Queries for Parallel Execu-
tion”. Int. Conf. on VLDB, Barcelona, Septem-
ber 1991.
M. Metha, D. Dewitt, “Managing Intra-
ooerator Parallelism in Parallel Database Svs-
terns”. Int. Conf. on VLDB, Zurich, September
1995.
H. Pirahesh, C. Mohan, J. Cheng, T. S. Liu,
P. Selinger, “Parallelism in relational database
systems: Architectural issues and design ap-
oroaches”. Int. Sumv. on Databases in Parallel
hnd Distributed S&&ems, Dublin, July 1990.
E. Rahm, R. Marek, “Dynamic Multi-Resource
Load Balancing in Parallel Database Systems”.
Int. Conf. on VLDB, Zurich; Switzerland,
September 1993.
A. Shatdal, J. F. Naughton, “Using Shared
Virtual Memory for Parallel Join Processine”.
ACM-SIGMOD Int. Conf., Washington, May
1993.
E. J. Shekita, H. C. Young, “Multi-Join Op-
timization for Symmetric Multiprocessor”. Int.
Conf. on VLDB, Dublin, August 1993.
P. Valduriez, G. Gardarin, “Join and Semi-join
tl;;$thrns for a Multiprocessor Database Ma-

. ACM Trans. on Database Systems, 9(l),
March 1984.
P. Valduriez, “Parallel Database Systems: open
oroblems and new issues”. Int. Journal on Dis-
kibuted and Parallel Databases, l(2), 1993.

C.B. Walton, A.G. Dale, R.M. Jenevin, “A tax-
onomy and Performance Model of Data Skew
Effects in Parallel Joins”. Int. Conf. on VLDB,
Barcelona, September 1991.
A. N. W&hut, J. Flokstra, P.G Apers, “Par-
allel Evaluation of multi-join queries”. ACM-
SIGMOD Int. Conf., San Jose, 1995.
G. K. Zipf, “Human Behavior and the Princi-
ple of Least Effort: An Introduction to Human
Ecology”. Reading, MA, Addison-Wesley, 1949.

447

