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Abstract 

We consider the execution of multi-join queries in a hierar- 

chical parallel system, i.e., a shared-nothing system whose 

nodes are shared-memory multiprocessors. In this context, 

the problem of load balancing is magnified and must be 

addressed within and among shared-memory nodes. We 

propose a dynamic execution model that maximizes local 

load balancing within shared-memory nodes while mini- 

mizing the need for load sharing across nodes. We describe 

a performance evaluation using an implementation on a 

72-processor KSRl computer. The experiments with many 

queries and large relations show very good speedup results, 

even with highly skewed data. Our execution model per- 

forms as well as a dedicated model in shared-memory and 

can scale up very well to deal with multiple nodes. 

1 Introduction 
Parallel system designers have long opposed shared- 
memory versus shared-nothing architectures. Shared- 
memory provides flexibility and performance for a re- 
stricted number of processors while shared-nothing can 
scale up to high-end configurations [DeW92, Val93]. 
To combine their respective benefits, hierarchical par- 
allel systems consisting of shared-memory multiproces- 
sors interconnected by a high-speed network [Gra93] 
are gaining much interest. As an evidence, symmetric 
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multiprocessors (SMP), e.g., Sequent, are moving to 
scalable cluster architectures, while massively parallel 
processors (MPP), e.g., NCR’s Teradata,. are evolv- 
ing to use shared-memory nodes. Another example 
is Bull’s PowerCluster which is a cluster of PowerPC- 

based SMP nodes. 

In this paper, we consider the execution of multi- 
join queries in hierarchical parallel database systems. 
Such queries are getting increasingly important as par- 
allel database systems are gaining wider use for deci- 
sion support (e.g., data warehousing). The objective 
of parallel query processing is to reduce query response 
time as much as possible by distributing the query load 
among multiple processors. The major barrier to this 
objective is poor load balancing, i.e., some processors 
are overloaded while some others remain idle. As the 
response time of a set of parallel activities is that of the 
longest one, this can severely degrade performance. 

There are two dimensions for parallelizing multi- 
join queries: horizontally (i.e., intra-operator par- 
allelism) by distributing each operator among sev- 
eral processors, and vertically (i.e., inter-operator 
pipelined or independent parallelism) by distributing 
all operators of the query among several processors. 
Solutions for load balancing typically focus on one 
dimension on a given architecture (shared-memory, 
shared-disk, or shared-nothing). 

In shared-nothing, intra-operator parallelism is 
based on relation partitioning [BorSO, DeWSO, Ape92]. 
Skewed data distributions [Walgl] can yield poor 
intra-operator load balancing. This problem has been 
addressed by developing specific join algorithms that 
handle different kinds of skew [KitSO, DeW92, Ber32, 
Sha93] based on dynamic data redistribution. 

With inter-operator parallelism, distributing the 
query’s operators among all processors can also yield 
poor load balancing. Much research has been ded- 
icated to inter-operator load balancing in shared- 
nothing [Meh95, Rah95, Gar96] which is done stati- 
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tally during optimization or dynamically prior to exe- 
cution. 

The potential reasons for poor load balancing in 
shared-nothing are studied in [Wil95]. First, the de- 
gree of parallelism and the allocation of processors to 
operators, decided in the parallel optimization phase, 
are based on a possibly inaccurate cost model. Sec- 
ond, the choice of the degree of parallelism is subject 
to discretization errors because both processors and 
operators are discrete entities. Finally, the processors 
associated with the latest operators in .a pipeline chain 
may remain idle a significant time. This is called the 
pipeline delay problem. These problems stem from the 
fixed association between data, operators and proces- 
sors. 

In shared-disk [PirSO], there is more flexibility since 
all processors have equal access to disks. Thus, intra- 
operator parallelism does not require static relation 
partitioning [Lugl]. ,Inter-operator parallelism is also 
less constrained since any processor can be allocated 
to any operator. Load balancing for independent par- 
allelism is addressed in [Hsi94] while only pipeline par- 
allelism is considered in [Lo93]. 

Shared-memory offers even more flexibility since all 
processors have equal access to memory and disks. 
The solutions to load balancing [Hon92, She931 can 
be much more dynamic since redistributing the load 
incurs low cost. For instance, with the self-balancing 
process model proposed in [She93], each processor 
reads tuples from I/O buffers and performs the joins 
along the pipeline chain using synchronous pipelining 
(procedure calls) as in [Hon92]. DBS3 [BerSl, Dag94] 
has pioneered the use of an execution model based on 
relation partitioning (as in shared-nothing) for shared- 
memory. This model reduces processor interference 
and shows exceilent load balancing for intra-operator 
parallelism [Bou96]. However, interroperator load bal- 
ancing was not addressed. 

To our knowledge, no work has addressed the prob- 
lem of load balancing in hierarchical systems. In this 
context, load balancing is exacerbated because it must 
be addressed at two levels, locally among the proces- 
sors of each shared-memory node and globally among 
all nodes. None of the previous approaches can be eas- 
ily extended to deal with this problem. Load balancing 
strategies for shared-nothing would have their inherent 
problems worsening (e.g., complexity and inaccuracy 
of the cost model). On the other hand, adapting of the 
solutions for shared-memory would incur high commu- 
nication overhead. 

In this paper, we propose an execution model for 
hierarchical systems which dynamically performs intra 
and inter-operator load balancing. The basic, new idea 
is that the query work is decomposed in self-contained 
units of sequential processing, each of which can be 

carried out by any processor. Intuitively, a proces- 
sor can migrate horizontally and vertically along the 
query work. The main advantage is to minimize the 
communication overhead of inter-node load balancing 
by maximizing intra and inter-operator load balancing 
within shared-memory nodes, To validate the model 
and study its performance, we did an.implementation 
on a 72-processor KSRl computer. 

The paper is organized as follows. Section 2 states 
the problem more precisely. Section 3 presents the 
basic concepts underlying our model and its load bal- 
ancing strategy. Section 4 completes the description 
of our execution model with its main implementation 
techniques. Section 5 gives a performance evaluation 
of our model, with comparison with two other load 
balancing strategies, using our implementation on the 
KSRl computer. Section 6 concludes. 

2 Problem Formulation 
A parallel execution model relies on assumptions re- 
garding the target execution system and optimization 
decisions. In this section, we make precise our assump- 
tions regarding the execution system and the parallel 
execution plans. This will help making the problem 
statement and presenting the execution model. 

2.1 Execution System 

We consider a shared-nothing parallel database sys- 
tem with several shared-memory multiprocessor nodes, 
or SM-nodes for short. Each SM-node has several 
processors, several disk units and a memory shared 
by all processors. Inter-node communication is done 
via message-passing while inter-processor communica- 
tion within a node is done more efficiently via shared- 
memory. 

Relations are horizontally partitioned across nodes, 
and within each node across disks. Relation parti- 
tioning is based on a hash function applied to some 
attribute. The home of a relation is simply the set of 
SM-nodes which store its partitions. 

As in many other papers, we consider only paral- 
lel hash join methods since they generally offer supe- 
rior performance [Va184, Bra84]. Hash joins provide 
two opportunities for parallelism: (i) several joins can 
be pipelined (inter-operator parallelism); and (ii) each 
join can be done in parallel on partitioned relations 
(intra-operator parallelism). Both relations involved 
in the join are fragmented in the same number of buck- 
ets, according to the same hash function applied to 
the join attribute. The parallel hash join proceeds in 
two phases: build and probe. First, the buckets of the 
building relation are scanned in parallel and a hash ta- 
ble is built for each bucket. Second, the buckets of the 
probing relation are scanned in parallel, probing the 
corresponding hash table and producing result tuples. 
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Figure 1: A join tree and a parallel execution plan 

2.2 Parallel Execution Plans 

The result of parallel query optimization is a parallel 
execution plan that consists of an operator tree with 
operator scheduling and allocation of computing re- 
sources to operators. Different shapes of join tree can 
be considered: left-deep, right-deep, segmented right- 
deep or bushy. Bushy trees are the most appealing 
because they offer the best opportunities to minimize 
the size of intermediate results [She931 and to exploit 
all kinds of parallelism [Va193]. Thus, in this paper, 
we concentrate on the execution of bushy trees. 

The operator tree results from the “macro- 
expansion” of the join tree [Has94]. Nodes repre- 
sent atomic operators that implement relational alge- 
bra and edges represent dataflow. In order to exhibit 
pipelined parallelism, two kinds of edges are distin- 
guished: blocking and pipelinable. A blocking edge 
indicates that the data is entirely produced before it 
can be consumed. Thus, an operator with a blocking 
input must wait for the entire operand to be material- 
ized before it can start. A pipelinable edge indicates 
that data can be consumed “one-tuple-at-a-time”. So 
the consumer can start as soon as one input tuple has 
been produced. 

Let us consider an operator tree that uses hash join. 
Three operators are needed: scan to read each base re- 
lation, build and probe. The build operator produces 
a blocking output, i.e., the hash table, while probe 
produces a pipelinable output, i.e., the result tuples. 
Thus, there is always a blocking edge between build 
and probe, i.e., a blocking constraint between oper- 
ators. An operator tree does not enforce constraints 
between two operators that have no data dependency. 
But the concurrent execution of two independent oper- 
ators can yield poor sharing of the available resources 
(memory, disk, processor). To optimize resource shar- 
ing among operators, the optimizer may decide to add 

new blocking constraints in order to make their ex- 
ecution sequential. Thus, operator scheduling as de- 
cided by the optimizer reflects the optimization con- 
straints as well as the constraints implied by the hash 
join method. It is expressed by a partial order on the 
set of operators of the tree where 01 < 02 states that 
operator 02 cannot be started before the end of 01. 

An operator tree can be decomposed as a set of 
maximum pipeline chains, i.e., chains with highest 
numbers of pipelined operators, also called fragments 
[She931 or tasks [Hon92]. For simplicity, we assume 
that each pipeline chain can be entirely executed in 
memory. 

A typical parallel optimization decision is the allo- 
cation of processors to operators. In shared-memory, 
this decision reduces to the optimal number of pro- 
cessors since each processor has equal access to disk 
and memory. In shared-nothing, processor allocation 
is highly dependent on data location and is typically 
done by a fixed association between processors and 
operators. A hierarchical architecture topology in- 
troduces a new dimension to the processor allocation 
problem. In this case, it is more important to decide 
the set of SM-nodes where an operator is executed, 
which we call operator home, rather than the set of 
participating processors. Thus, the parallel execution 
plan provides operator homes that respect the follow- 
ing obvious constraints: (i) the home of a sca.n oper- 
ator is that of the scanned relation; and (ii) the build 
and probe operators of the same join have necessarily 
the same home. 

Figure 1 shows a bushy tree involving 4 relations 
and a possible parallel execution plan which consists 
of an operator tree adorned with operator schedul- 
ing and operator home information. In addition to 
the blocking constraints implied by the hash join algo- 
rithm, the given scheduling specifies constraints corre- 
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sponding to two possible heuristics: (i) the execution 
of a pipeline chain is started only when all the hash 
tables are ready; and (ii) pipeline chains are executed 
one-at-a-time. Such a parallel execution plan is the 
input to our execution model. The optimization and 
scheduling decisions, supposed to be good, are strictly 
followed. 

2.3 Problem Statement 

Based on the above definitions and assumptions, we 
can now simply state the problem. Given a parallel 
execution plan which consists of an operator tree, op- 
erator scheduling and operator homes, the problem is 
to produce an execution on a hierarchical architecture 
which minimizes response time. A necessary condi- 
tion to minimize response time is to avoid processor 
idle time. This can be done by using a dynamic load 
balancing mechanism at two levels: (i) within an SM- 
node, load balancing is achieved via fast interprocess 
communication; (ii) between SM-nodes, more expen- 
sive message-passing communication is needed. Thus, 
the problem is to come up with an execution model so 
that the use of local load balancing is maximized while 
the use of global load balancing is minimized. 

3 Parallel Execution Model 
Intuitively, parallelizing a query amounts to partition 
the total work along two dimensions. First, each oper- 
ator is horizontally partitioned to yield intra-operator 
parallelism. Second, the query is vertically partitioned 
into dependent or independent operators to yield inter- 
operator parallelism. We call activation the finest unit 
of sequential processing, i.e., which cannot be further 
partitioned. The main property of our model is to al- 
low any thread to process any activation of its SM- 
node. Thus, there is no static association between 
threads and operators. This should yield good load- 
balancing for both intra-operator and inter-operator 
parallelism within an SM-node, and thus, reduce to 
the minimum the need for global load balancing, i.e., 
when there is no more work to do in an SM-node. In 
the rest of this section, we present the basic concepts 
underlying our model and its load balancing strategy 
which we illustrate with an example. 

3.1 Basic Concepts 

Our execution model is based on a few concepts: 
activations, activation queues, fragmentation, and 
threads. These concepts are simple and their com- 
bination provides much flexibility and generality. 
Activations. An activation represents a sequential 
unit of work. Since any activation can be executed 
by any thread, activations must be self-contained and 
reference all information necessary for their execution: 
the code to execute and the data to process. Two 

kinds of activations can be distinguished: trigger ac- 
tivations and data activations. A irigger activation 
is used to start the execution of a leaf operator, i.e., 
scan. It is represented by an (Operator, Bucket) pair 
which references the scan operator and the base rela- 
tion bucket to scan. A data activation describes a tu- 
ple produced in pipeline mode. It is represented by an 
(Operator, Tuple, Bucket) triple which references the 
operator to process. For a build operator, the data 
activation specifies that the tuple must be inserted in 
the hash table of the bucket and for a probe opera- 
tor, that the tuple must be probed with the bucket’s 
hash table. Although activations are self-contained, 
they can only be executed on the SM-node where the 
associated data (hash tables or base relations) is. 
Activation Queues. Moving data activations along 
pipeline chains is done using activation queues, called 
table queues in [PirSO], associated with operators. If 
the producer and consumer of an activation are on 
the same SM-node, then the move is done via shared- 
memory. Otherwise, it requires message-passing. To 
unify the execution model, queues are used for trigger 
activations (inputs for scan operators) as well as tuple 
activations (inputs for build or probe operators). 

All threads have unrestricted access to all queues 
located on their SM-node. Managing a small number 
of queues (es., one for each operator) may yield in- 
terference. To reduce interference, we associate one 
queue per thread working on an operator. Note that 
a higher number of queues would likely trade inter- 
ference for queue management overhead. To further 
reduce interference without increasing the number of 
queues, we give each thread priority access to a dis- 
tinct set of queues, called its primary queues. Thus, a 
thread always tries to first consume activations in its 
primary queues. 

During execution, operator scheduling constraints 
may imply an operator to be blocked until the end of 
some other operators (the blocking operators). There- 
fore, a queue for a blocked operator is also blocked, i.e., 
its activations cannot be consumed but they can still 
be produced if the producing operator is not blocked. 
When all its blocking operators terminate, the blocked 
queue becomes consumable, i.e., threads can consume 
its activations. This is illustrated in Figure 2 with an 
execution snapshot for the operator tree of Figure 1. 
Fragmentation. +et us call degree of fragmenta- 
tion the number of buckets of the building and prob- 
ing relations. To reduce the negative effects of data 
skew, the typical solution is to have a degree of frag- 
mentation much higher than the degree of parallelism 
[KitSO, DeW92J. If a queue is used for each bucket, 
a high degree of fragmentation would imply an im- 
portant queue management overhead [Bou96]. Since 
activations are self-contained, we can mix activations 
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Figure 2: Snapshot of an execution 

of different buckets in the same queue and thus reduce 
the overhead of queue management with a high degree 
of fragmentation. 
Threads. A simple strategy for obtaining good load 
balancing inside an SM-node is to allocate a number 
of threads much higher than the number of proces- 
sors and let the operating system do thread scheduling. 
However, this strategy incurs high numbers of system 
calls due to thread scheduling, interference and convoy 
problems [PirSO, Hon92]. 

Instead on relying on the operating system for load 
balancing, we choose to allocate only one thread per 
processor per query. This is made possible by the fact 
that any thread can execute any operator assigned to 
its SM-node. The advantage of this one-thread-per- 
processor allocation strategy is to significantly reduce 
the overhead of interference and synchronization pro- 
vided that a thread is never blocked. Waiting for some 
event would cause processor idle time. During the pro- 
cessing of an activation, a thread can be blocked in the 
following situations: 

l the thread cannot insert an activation in a 
pipeline queue because the queue is fulll; 

l the use of asynchronous I/O (for multiplexing disk 
accesses with data processing) can create waiting 
situations. 

We solve this problem as follows. A thread in a waiting 
situation suspends its current execution by making a 
procedure call to find another local activation to pro- 
cess. The advantage is that context saving is done 
by procedure call, which is much less expensive than 
operating system based synchronization. 

‘Without any restriction on the queue size, memory con- 
sumption may well increase. For instance, consider the con- 
current execution of two pipelined operators. If the selection 
strategy favors the producer opera&r, then it may well end up 
materializing the entire intermediate result. To avoid this situ- 
ation, queues h’ave a limited size. 
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3.2 Load Balancing Strategy 

Load balancing within an SM-node is obtained by al- 
locating all activation queues in a segment of shared- 
memory and by allowing all threads to consume acti- 
vations in any queue. To limit thread interference, a 
thread will consume as much as possible in its set of 
primary queues before considering the other queues of 
the SM-node. Therefore, a thread gets idle only when 
there is no more activation of any operator, which 
means that there is no more work to do on its SM- 
node which is starving. 

When an SM-node gets starving, we can apply 
load sharing with another SM-node by acquiring some 
of its workload [Sha93]. However, acquiring activa- 
tions (through message-passing) incurs communica- 
tion overhead. Furthermore, activation acquisition is 
not enough since associated data, i.e., hash tables, 
must also be’acquired. Thus, we need a mechanism 
that can dynamically estimate the benefit of acquiring 
activations and data. 

Let us call “requester” the SM-node which acquires 
work and “provider” the SM-node which gets off- 
loaded by providing work to the requester. The prob- 
lem is to select a queue to acquire activations and de- 
cide how much work to acquire. This is a dynamic 
optimization problem since there is ‘a trade-off be- 
tween the potential gain of off-loading the provider and 
the overhead of acquiring activations and data. This 
trade-off can be expressed by the following conditions: 
(i) the requester must be able to store in memory the 
activations and corresponding data; (ii) enough work 
must be acquired in order to amortize the overhead of 
acquisition; (iii) acquiring too much work should be 
avoided; (iv) only probe activations can be acquired 
since triggered activations require disk accesses and 
build activations require building hash tables locally; 
(v) there is no gain to move activations associated with 
blocked operators which could not be processed any- 
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Figure 3: Example of query execution 

way. Finally, to respect the decisions of the optimizer, 
an SM-node cannot execute activations of an opera- 
tor that it does not own, i.e., the SM-node is not in 
the operator home. More details about the global load 
balancing policy are given in section 4. 

The quality of load balancing obtained depends on 
the number of operators that are concurrently exe- 
cuted which provides opportunities for finding some 
work to share in case of idle times. Increasing the 
number of concurrent operators can be done by al- 
lowing concurrent execution of several pipeline chains 
or by using non-blocking hash-join algorithms which 
allow to execute all the operators of the bushy tree 
concurrently [Wi195]. On the other hand, executing 
more operators concurrently can increase memory con- 
sumption. Static operator scheduling as provided by 
the optimizer should avoid memory overflow and solve 
this tradeoff. 

3.3 Example 

We now illustrate these main concepts on a simple 
example. We consider the join of relations R and S 
executed on two SM-nodes A and B, each having two 
processors and thus two threads. Relation R is stored 
at node A and relation S at node B. Figure 3 gives 
the parallel execution plan and a snapshot at the be- 
ginning of execution. 

Execution at node A proceeds as follows. Threads 
TAG and TAG consume trigger activations for the SCanR 
operator in their associated queue. For each activa- 
tion, they execute the scan operator on a partition of 
R, reading R tuples from disk and sending selected tu- 
ples in pipeline mode to the build operator at node B. 
If TAG and TAG get blocked because the build queues 
are full, and since there is no other operator to process 
at A, they must wait for the build queues to free. If 
one thread, say TAG, terminates processing all activa- 
tions in its queue, it may consume activations in TAG ‘6 
queue in order to balance the remaining load. Opera- 
tor scanR terminates when there is no more activation 
to process. 

Execution at node B proceeds as follows. Threads 
TBI and TB~ start consuming trigger activations for 

ScaR 
BuildR 
scans probe 

the scans operator in their associated queue. For each 
activation, they execute the scan operator on a par- 
tition of S, reading S tuples from disk and sending 
selected tuples in pipeline mode to the probe oper- 
ator. To illustrate how a thread switches execution, 
we assume that activations Ci and C2 produce more 
tuples (data activations) than the probe queues can 
store. Thus, during execution of Ci, TBI fills the probe 
queues. To avoid waiting, TB~ suspends the execution 
of Ci by calling the procedure that selects activations, 
thus saving Cl’s execution context. Since executing 
other scans activations would result in blocking TB~ 
again and since the probe operator is blocked, TB~ se- 
lects build activations produced by TAG and TAG. The 
same execution happens for TB~ with Cz. TB~ and Tcz 
execute all build activations until termination (i.e., the 
hash table has been entirely built), which unblocks the 
probe operator. Thus, they can execute probe activa- 
tions, which frees the probe queues, and resume execu- 
tion of Ci and Cz. Processing of new scans activations 
may again fill the probe queues, in which case TB~ and 
TB~ would switch to process probe activations, and so 
on until termination of scans. 

This simple example shows the value of using activa- 
tion queues and procedure calls. Threads TB~ and TB~ 
are always busy during query execution and the load 
of node B perfectly balanced. Furthermore, threads 
TAG and TAG are fully busy during the first phase of 
execution according to the optimizer decisions. 

4 Basic Techniques 
In this section, we present .the basic techniques to sup- 
port our execution model. We do so by following the 
various steps of query execution in a hierarchical sys- 
tem. 
Initialization. Let s be the number of SM-nodes, 
each having p processors. The execution is initial- 
ized by creating, at each SM-node participating in the 
query, p execution threads, and, for each unblocked 
operator located on this node, p queues. Furthermore, 
an additional thread, called scheduler, is created at 
each SM-node to deal with message-passing. During 
execution, the scheduler receives messages from the re- 

441 



mote SM-nodes and directs them to the queues of its 
SM-node. The scheduler also manages inter-node com- 
munication as needed for global load balancing and 
detection of operator end. Locally, the scheduler com- 
municates with other threads using operating system 
signals. 
Query execution. It starts by sending trigger ac- 
tivations to all unblocked scan queues. Then, each 
execution thread processes activations by consuming 
queues in priority order. First, it consumes its pri- 
mary queues, then the other queues at the same SM- 
node and finally, other queues at another SM-node us- 
ing load sharing. Conceptually, each thread performs 
a simple loop which ends when the last operator of 
the query terminates. At each iteration, an activation 
is processed. If there is no local activation to process 
and no global activation to acquire through load shar- 
ing, the thread falls asleep. If new activations come 
in or some of the local queues become unblocked, the 
scheduler wakes up the thread which can resume the 
loop. 
Activation granularity. The quality of load balanc- 
ing depends on the granularity of parallelism [Bou96]. 
Fine-grain parallelism (i.e., parallel execution of data 
activations) achieves perfect load balancing but may 
yield high overhead. Conversely, coarse-grain paral- 
lelism (i.e., parallel execution of trigger activations) 
has limited overhead but may yield poor load balanc- 
ing. To obtain good load balancing with little over- 
head, we use a simple implementation technique. The 
granularity of trigger activations is reduced by replac- 
ing a bucket by one or more pages of a bucket, the 
granularity of data activations is increased by buffer- 
ing. 
Local activation selection. To maximize SM-node 
load balancing, activation selection must minimize 
thread interference when accessing queues and avoid 
useless access to queues associated with operators that 
are either terminated or blocked. Our solution is based 
on a circular list of references to all active queues, i.e., 
neither terminated nor blocked, which is accessed by 
all threads during activation selection. To avoid inter- 
ference, each thread starts accessing the list at a differ- 
ent position corresponding to its first primary queue. 
This list is created at the beginning of query execution, 
and updated at the end of each operator to delete all 
queues associated with it. Furthermore, if the end of 
the operator causes unblocking of some other opera- 
tors, the unblocked queues are inserted in the circular 
list. If no activation is found in any queue of the cir- 
cular list, it means that there is no more work to do at 
that SM-node and global activations must be selected. 
Global activation selection. Global activation se- 
lection, i.e:, for load sharing with another SM-node, 
contributes to global load balancing. When a thread 

does not find local activations, it sends a signal to 
its local scheduler which, in turn, sends a starving 
message to the other SM-nodes. This message indi- 
cates the available memory of the requester node. The 
scheduler at each SM-node, when receiving a starving 
message, looks up its candidate queues. Section 3.2 
enumerates the necessary conditions for a queue to be 
candidate, i.e., the conditions which insure that this 
stealing is possible and beneficial. The scheduler se- 
lects between the candidate queues the one with the 
best benefit/overhead ratio. The benefit obtained by 
stealing a candidate queue is proportional to the num- 
ber of activations in the queue, i.e., the work removed 
from the overloaded SM-node. The overhead is propor- 
tional to the size of the data to be transmitted (hash 
table and activations). Then, the scheduler sends back 
to the requester information on the selected queue (if 
any) as well as information on its actual load. Af- 
ter receiving answers from all SM-nodes, the requester 
selects the most loaded SM-node and requests for acti- 
vations and corresponding data, i.e., hash tables to be 
sent. Upon receipt of activations, the scheduler of the 
requester SM-node wakes up the executions threads to 
process them. 

To optimize in case of repeated starving of the same 
SM-node, a list of stolen queues is maintained at the 
requester SM-node. At the next starving situation, 
it tries to steal activations from theses queues whose 
associated data have been already copied. 
Activation execution. An activation has a refer- 
ence to the code to be executed (scan, probe or build). 
Thus, activation is simply performed by calling the 
corresponding operator code. However, when execut- 
ing that code, a thread can perform a blocking adion, 
eg., by reading from disk or writing in a queue that is 
full. Thus, in the code of each operator, the potential 
blocking actions are modified as follows: 

if (cannot perform (BlockingAction) then 
while cannot perform (BlockingAction) do 

ProcessAnotherActivation 
end 

The procedure ProcessAnotherActivation will not con- 
sume activations of the same operator in order to avoid 
new blocking situations. With this technique, we avoid 
blocking actions and maximize processor utilization 
without system calls. 

5 Performance Evaluation 
Performance evaluation of a parallel execution model 
for multi-join queries is made difficult by the need to 
experiment with many different queries and large rela- 
tions. The typical solution is to use simulation which 
eases the generation of queries and data, and allows 
testing with various configurations. However, simula- 
tion would not allow us to take into account some im- 
portant performance aspects such as the overhead of 
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thread interference within an SM-node. On the other 
hand, using implementation and benchmarking would 
restrict the number of queries and make data gener- 
ation very hard. Therefore, we decided to fully im- 
plement our execution model on a multiprocessor and 
simulate the execution of operators. Thus, query exe- 
cution does not depend on relation content and can be 
simply studied by generating queries and setting rela- 
tion parameters (cardinality, selectivity, skew factor, 
etc.). 

In the rest of this section, we describe our experi- 
mentation platform and report on performance results 
on load balancing at two levels: locally within an SM- 
node and globally among SM-nodes. 

5.1 Experimentation Platform 

We now introduce the multiprocessor configuration we 
have used for our experiments and the way we have 
generated parallel execution plans and relations. We 
also present the methodology that was applied in all 
experiments. 

5.1.1 Multiprocessor Configuration 

We have implemented our execution model on a 72- 
processor KSRl computer for two reasons. First, it 
is freely available to us at Inria. Second, its shared 
virtual memory architecture and high number of pro- 
cessors make it possible to organize as a hierarchical 
parallel system. Each processor is 40 MIPS fast and 
has its own 32 Megabytes memory, called local cache. 
KSRl’s Allcache system uses hardware to provide a 
shared virtual memory space which includes all local 
caches. 

To experiment with various hierarchical system con- 
figurations, we cluster processors as Sdnodes2 and 
simulate inter-node communication using the follow- 
ing typical network parameters: 

Bandwidth (based on [Meh95]) Infinite 

~1 

Furthermore, to experiment with multiple disks (only 
one disk of the KSRl was available to us), we simu- 
late disk accesses to base relations with the following 
parameters: 

21n order to simulate a real SM-node and avoid the influence 
of the NUMA architecture of the KSRl, we force all read and 
write data accesses to be local, i.e., in the local cache of the 
processor. 

Disk Parameters Values 

Nb. of disks 1 per processor 
Disk latency [Meh95] 17 ms 

Seek Time 5 ms 
Transfer Rate 6 MB/s 

CPU cost for asynchronous I/O init. 5000 instr. 

I/O Cache Size 8 pages 

5.1.2 Parallel Execution Plans 

The input to our execution model is a parallel execu- 
tion plan obtained after compilation and optimization 
of a user query. To generate queries, we use the al- 
gorithm given in [She931 with three kinds of relations: 
small (lOK-20K tuples), medium (lOOK-200K tuples) 
and large (lM-2M tuples). First, the predicate connec- 
tion graph of the query is randomly generated. Since 
most multi-join queries in practice tend to have sim- 
ple join predicates, we consider only acyclic connected 
graphs. Second, for each relation involved in the query, 
a cardinality is randomly chosen in one of the small, 
medium or large ranges. Third, the join selectivity 
factor of each edge (R,S) in the predicate connection 
graph is randomly chosen in the range [0.5 * min( 1 R 1 
> I S I>/ I Rx S I, 1.5 * m4l R 0 I S I>/ I R x S II. 

The result of query generation is an acyclic con- 
nected graph adorned with relation cardinalities and 
edge selectivities. We have generated 20 queries, each 
involving 12 relations. Each query is then run through 
our DBS3 query optimizer. For each query, the .two 
best bushy operator trees are retained. To automat- 
ically produce parallel execution plans from operator 
trees, we make a number of assumptions. Although 
these assumptions cannot yield the best parallel exe- 
cution plan, they are reasonable. First, relations are 
fully partitioned across all SM-nodes. Second, all SM- 
nodes are allocated to all operators of the plan. Third, 
pipeline chains are executed one-at-a-time. 

We constrain the generation of operator trees so 
that the sequential response time is between 30 mn 
and one hour. Thus, we have produced 40 parallel ex- 
ecution plans involving about 1.3 Gigabytes of base re- 
lations and about 4 Gigabytes of intermediate results. 
Since we ignore the content of relatidns, we could gen- 
erate automatically large relations with given cardi- 
nalities. 

5.1.3 Experimentation Methodology 

In the following experiments, each point in a graph 
will be obtained from a computation based on the re- 
sponse times of 40 parallel execution plans. Since the 
different parallel execution plans correspond to 20 dif- 
ferent queries, computing the average response time 
does not make sense. Therefore, the results will al- 
ways be in terms of comparable execution times. For 
instance, in a speedup experiment, let the speedup be 
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Figure 4: Relative performances 
of SP, FP and DP 

the ratio of response time with p processors over the 
response time with one processor, each point will be 
computed as the average of the speedups of all plans. 
Each point of a graph is obtained with n measure- 
ments, each on a different plan, using the formula: 
t CT resp. time of experiment/reference resp. time 
where the reference response time will be indicated for 
each experiment. Each response time is computed as 
the average of five successive measurements. 

5.2 Local Load Balancing 

To study the performance of our model within an SM- 
node, we compare it with two other execution models. 
Then we study the impact of data skew. 

5.2.1 Performance Comparisons 

To compare with our model in the shared-memory 
case, we have chosen and implemented two well-known 
load balancing strategies. The first strategy is syn- 
chronous pipelining (SP) [She931 and is designed for 
shared-memory. Each processor is multiplexed be- 
tween I/O and CPU threads and participates in every 
operator of a pipeline chain. I/O threads are used 
to read the base relations into buffers. Each CPU 
thread reads tuples from the buffers and probes all 
the hash tables along the pipeline chain. Unless there 
is severe data skew (which yields high variations in 
tuple ‘processing time), this model will achieve perfect 
load balancing. The second strategy has been designed 
for shared-nothing [DeWSO, BorSO]. For each pipeline 
chain, processors are statically allocated to operators 
based on a ratio of the estimated cost, including CPU 
and I/O costs, of each operator versus the global com- 
plexity of the pipeline chain. This strategy yields good 
load balancing as long as the cost model is accurate. 
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Figure 5: Impact of cost model errors 
on FP 

We adapt this strategy for shared-memory, allowing 
intra-operator load balancing and call it fixed process- 
ing (FP). This was implemented using our execution 
model by restricting each thread to process activations 
associated with only one operator. To compare with 
SP and FP, we call our model dynamic processing (DP) 
to reflect the fact that processors are dynamically al- 
located to operators of a pipeline chain. 

Figure 4 compares the relative performance of the 
three strategies for different numbers of processors 
with no data skew. The reference response time is 
that of SP which is always best. FP is always worse 
because of discretization errors which worsen as the 
number of processors decreases. The performance of 
our strategy is very close to that of SP from 8 and 32 
processors and remain close for higher numbers. The 
slight performance difference is due to thread interfer- 
ence and queue management in DP. 

The performance of FP strongly depends on the 
accuracy of its cost model and we were interested in 
studying the impact of errors in cost estimates. Figure 
5 shows the relative performance of FP versus the er- 
ror rate, using several degrees of parallelism, with ,t’he 
response time with no error used as reference. 

To obtain a measurement with an error rate T, the 
cardinalities of base and intermediate relations are dis- 
torted by a value chosen in [-T,+T], which propagates 
errors in estimating the cost of operators and the num- 
ber of allocated processors. The measurements have 
been performed with a realistic error rate between 0 
and 30%. Given the random nature of the measure- 
ments, we have chosen to restrict the number of execu- 
tion plans tested. However, for each error rate, three 
distortions are randomly picked for each plan. 
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Figure 6: Speedup of SP, FP, DP 

The results show that response time degrades signifi- 
cantly as the error rate increases and that it depends 
much on the degree of parallelism. With few proces- 
sors (eg., S), performance degradation is small with a 
small error rate but increases significantly as the error 
rate increases. This is because poor processor allo- 
cation is worse with few processors (eg., l/8 is worse 
than l/64). With more processors (eg., 64), a small 
error rate changes the effectiveness of processor allo- 
cation, but the impact on performance is proportion- 
ally less. These experiments confirm the limitations of 
static load balancing. 

Figure 6 shows the average speed-up of all query 
executions for each strategy, with r=O for FP. Again 
SP is always slightly better than DP, and FP is always 
worse. Up to 32 processors, SP and DP yield near- 
linear speedup. However, a hierarchical system would 
typically include SM-nodes with less than 32 proces- 
sors thereby making DP an excellent strategy. 

5.2.2 Impact‘of Data Skew 

In our model, all threads have access to all local acti- 
vation queues and thus can interfere with each other. 
The interference overhead increases with bad distribu- 
tions of activations in queues which stem from various 
forms of data skew [Walgl]. Attribute value skew or 
tuple placement skew lead to unbalanced relation par- 
titions thereby causing bad distribution of trigger ac- 
tivations in scan queues. Redistribution skew leads to 
bad distribution of data activations in pipeline queues. 

In this experiment, we study the overhead of inter- 
ference in our model in case of skew. To do so, we 
have introduced redistribution skew in the production 
of trigger activations and in all operators producing 
pipelined tuples. For simplicity, the skew factor of a 
producer operator does not impact that of the con- 

fz 
+ DP 

'C 1.3. 
4 
E 
81.2- 
a 
8 

I I I I I 

0 0.2 0.4 0.6 0.8 1 
Degree of redistribution skew (Zipf) 

Figure 7: Impact of data skew on DP 

sumer operator. All operators have the same skew 
factor baaed on a Zipf function [Zip491 that yields a 
factor between 0 (no skew) and 1 (high skew). 

Figure 7 shows the relative performance of DP ver- 
sus the skew factor with 64 processors, the reference 
response time being that with no skew. The important 
conclusion is that the impact of skew on our model 
is insignificant. This is due to several design deci- 
sions. First, our model allows a high degree of oper- 
ator partitioning which reduces the negative effect of 
skew [KitSO]. Second, the priority-baaed association of 
queues to threads reduces interference. Finally, inter- 
ferences are further reduced by caching read and write 
activations. 

5.3 Global Load Balancing 

In our model, we minimize the use of global load bal- 
ancing (which incurs communication overhead) by fa- 
voring more efficient local inter- and intra-operator 
load balancing. To assess the performance gain of such 
strategy in a hierarchical system, we compare it with 
FP which performs well in shared-nothing. In our ex- 
periment, we adapt FP as follows. As each opera- 
tor is present at all SM-nodes, the distribution of the 
processors of each SM-node over the operators of the 
pipeline chain is done independently, according to the 
strategy described in Section 5.2.1. Since FP imposes 
that processors process activations of only one opera- 
tor, a processor that becomes idle triggers the use of 
global load balancing. Therefore, an--uneven operator 
load distribution on the nodes may lead to global load 
balancing at the end of each operator. 

In order to create poor load balancing within SM- 
nodes, we simply introduced skew as before. With- 
out skew, we have experimentally observed that global 
load balancing is almost never used with the two 
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Figure 8: Relative performance of FP and DP 

strategies. wk first compared the behavior of FP and 
DP for a simple execution plan, i.e., a pipeline chain 
of 5 operators, each having a redistribution skew fac- 
tor of 0.8. The hierarchical system was configured as 
4 SM-nodes, each having 8 processors. We measured 
the amount of data exchanged between nodes with FP 
and DP. For this experiment, FP requires 9 Megabytes 
data to be transferred versus only 2.5 Megabytes for 
DP. We explain the difference observed as follows. 

With FP, all processors can become idle indepen- 
dently of each other. Since there is no dynamic inter- 
operator load balancing, a processor allocated to an 
operator can be idle whereas another processor allo- 
cated to another operator is overloaded. The idle pro- 
cessor will then invoke global load balancing to steal 
work from a remote processor allocated to the same 
operator. Thus, several starving situations can appear 
at the same SM-node: Furthermore, there can be mu- 
tual stealing between two SM-nodes. With DP, these 
problems are avoided. When a processor becomes idle, 
this is because the entire SM-node is starving. Since 
load sharing is applied at the level of the SM-node 
(rather than the processor), there cannot be multiple 
or mutual starving situations. 

As in the previous experiments, we have done mea- 
surements with 40 execution plans (bushy trees involv- 
ing 12 relations), with three configurations and a skew 
factor of 0.6. Figure 8 shows the performance gain 
of DP over FP with 4 nodes of 8, 12, respectively 16 
processors. We observed, among all executions, per- 
formance gains between 14 and 39%. This is due to 
less utilization of global load balancing for DP as well 
as better performance of D.P on SM-nodes. The com- 
munication overhead due to global load balancing is 
2 to 4 times smaller for DP. Also, processor idle time 

with DP is almost null whereas it is quite significant 
with FP. WJe did not observe any correlation between 
the number of processors on each node and the perfor- 
mance difference between FP and DP. 

6 Conclusion 
In this paper, we have addressed the problem of dy- 
namic load balancing for multi-join queries in a hier- 
archical parallel system. We have proposed a new, .dy- 
namic solution that maximizes load balancing locally 
within shared-memory nodes and reduces as much as 
possible the need for load sharing across nodes. This 
is obtained by decomposing the work in self-contained 
activations that represent the finest units of sequen- 
tial processing and allowing any thread to process any 
activation of its SM-node. Thus, there is no static as- 
sociation between threads and operators. This yields 
much flexibility in exploiting intra-operator and inter- 
operator parallelism within an SM-node, and thus, 
minimizes the need for global load balancing. 

Furthermore, our execution model eases static op- 
timization, which is typically complex in a hierarchi- 
cal architecture, by avoiding to statically decide the 
operator scheduling and the association between op- 
erators and processors. However, if static distribution 
is decided by the optimizer, our execution model can 
exploit it and would still minimize the overhead of dy- 
namic load balancing. The cost estimate errors have 
a small impact on response time due to dynamic load 
balancing. 

To evaluate the performance of our model, we did 
an implementation on a 72-processor KSRl computer. 
KSRl’s shared virtual memory architecture and high 
number of processors have made it easy to organize 
as a hierarchical parallel system. To experiment with 
many different queries, large relations and different re- 
lation parameters (cardinality, selectivity, skew factor, 
etc.), we have simulated the execution of atomic oper- 
ators. We have performed various experiments at two 
levels: locally within an SM-node and globally among 
SM-nodes. 

In the shared-memory case, we have compared 
our load balancing strategy called dynamic processing 
(DP) with synchronous pipelining (SP) and fixed pro- 
cessing (FP). SP is best for shared-memory but does 
not work in shared-nothing whereas FP is designed for 
shared-nothing and also works in shared-memory. FP 
is always worse because of discretization errors which 
worsen as the number of processors decreases. The 
performance of our strategy is very close to that of SP 
from 8 to 32 processors and remain close for higher 
numbers. Both SP and DP strategies show very good 
speedup, even with highly skewed data. 

To assess the performance of our global load bal- 
ancing strategy in a hierarchical system, we have 
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compared it with FP which performs well in shared- 
nothing. Our strategy outperforms FP by a factor 
between 14 and 39% and the communication overhead 
due to global load balancing is 2 to 4 times smaller. 
Finally, processor idle time is almost null with DP 
whereas it is quite significant with FP. 

To summarize, our execution model performs as 
well as a dedicated model in shared-memory and can 
scale up very well to deal with multiple nodes. Consid- 
ering the current multiprocessor towards hierarchical 
architectures with.database as the main target appli- 
cation, such a model provides two strong advantages: 
predictable performance across many different config- 
urations and portability of DBMS software. 
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