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Abstract 

We consider the problem of answering queries 
from databases that may be incomplete. A 
database is incomplete if some tuples may be 
missing from some relations, and only a part 
of each relation is known to be complete. This 
problem arises in several contexts. For exam- 
ple, systems that provide access to multiple 
heterogeneous information sources often en- 
counter incomplete sources. The question we 
address is to determine whether the answer to 
a specific given query is complete even when 
the database is incomplete. 

We present a novel sound and complete al- 
gorithm for the answer-completeness prob- 
lem by relating it to the problem of indepen- 
dence of queries from updates. We also show 
an important case of the independence prob- 
lem (and therefore ofthe answer-completeness 
problem) that can be decided in polynomial 
time, whereas the best known algorithm for 
this case is exponential. This case involves up- 
dates that are described using a conjunction 
of comparison predicates. We also describe 
an algorithm that determines whether the an- 
swer to the query is complete in the current 
state of the database. Finally, we show that 
our ‘treatment extends naturally to partially- 
incorrect databases. 
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1 Introduction 

A database is usually assumed to be complete. For 
example, in a relational database we usually assume 
that the extension of every relation contains all the 
tuples that need to be in the relation. However, there 
are situations in which we have access to databases 
that may be partial, i.e., some tuples may be miss- 
ing. If the database is partial, then the meaning of 
an answer to a given query needs to be reconsidered. 
For queries that do not contain negation, the answers 
we obtain are guaranteed to be a subset of the an- 
swers that would have been obtained if the database 
were complete. However, an important question (con- 
sidered originally in [Mot89, EGW94]) is whether the 
answer is complete even though the database is in- 
complete. When queries contain negation, we need to 
modify our query answering algorithms to guarantee 
that we obtain only correct answers. 

We consider the answer-completeness problem, i.e.,. 
deciding whether an answer to a given query is guaran- 
teed to be complete even in the presence of an incom- 
plete database. We illustrate the problem with several 
examples. 

Example 1.1: Consider an example in which we 
have access to several online databases with informa- 
tion about movies. Suppose our relation schema con- 
tains the following relations: 

Movie(title, director, year) 
Shou(title, theater, hour) 
Oscar(title, year) 

The relation Movie contains tuples describing the 
title, director and year of production of movies. The 
relation Show describes the movies playing in New York 
City, and for each movie it tells us which theaters and 
at what hours the movie plays. The relation Oscar , 
contains a tuple for each movie that won an Oscar 
award, and the year in which it won the award. 

Suppose we know that the relation Movie is com- 
plete only from the year 1960 and on, and may be 
missing movies from earlier years. The relations Show 
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and Oscar are known to be complete. In such a set- 
ting, the completeness of the answer depends on the 
query. 

Suppose we are given the following query Qr that 
asks for the pairs of (title, director) for movies cur- 
rently playing in New York: 

(Qd: SELECT m.TITLE, m.DIRECTOR 
FROM Movie m, Show s 

WHERE m.TITLE = s.TITLE. 

The answer to this query may be incomplete. In- 
tuitively, the answer is incomplete because if we were 
to insed some of the missing tuples to the relation 
Movie, the answer to the query may change. 

On the other hand, consider the following query Qz 
that asks for directors whose movies have won Oscars 
since 1965.’ 

(Q2): SELECT m.DIRECTOR 
FROM Movie m, Oscar o 

WHERE m.TITLE = o.TITLE AND 

m.YEAR = o,YEAR AND 

o.YEAR > 1965. 

The answer to this query zs complete, even though 
the relation Movie is not complete. The reason is that 
only tuples of Movie whose third argument is 1965 or 
more can be joined with tuples from the relation Oscar 
to yield an answer to the query. Therefore, if Movie is 
complete on that part of the relation, the answer to the 
query will be complete. Furthermore, since the answer 
to Qz is guaranteed to be complete, then we can also 
guarantee that the answer to the following query that 
uses the negation of Qz is correct. The query Qs asks 
for directors who have won Oscars, but have not won 
any Oscars since 1965. 

Q3 : 
SELECT m.DIRECTOR 

FROM Movie m, Oscar o 
WHERE m.TITLE = o.TITLE AND 

NOT EXISTS 
(SELECT f FROM Movie ml, Oscar 01 

WHERE m.DIRECTOR = ml.DIRECTOR AND 
mi.TITLE = ol.TITLE AND 
ol.YEAR 1 1965). 

Finally, consider the query Qr again. Even though 
in general we cannot guarantee that the answer to the 
query is complete for any database in which the rela- 
tion Movie may be incomplete, we can check whether 
given the current state of the database is complete. 

‘Note that although it is reasonable to assume that a movie 
wins an Oscar for the year it was produced, we enforce it explic- 
itly in the query. 

To do so, we can compare the projection of the rela- 
tion Shoa on the attribute title and the projection 
of Movie on the attribute title. If the projection of 
Movie contains the projection of Show, then the an- 
swer to Qr is guaranteed to be complete. Intuitively, 
&I is complete in such a case because what really mat- 
ters is that the relation Movie has listings for movies 
that are currently playing in New York. 0 

As stated, deciding whether the answer we obtain 
for a query is complete is important in order to know 
whether we are missing some answers (and therefore 
may have to search for them elsewhere), and in or- 
der to answer queries involving negation in a sound 
manner. The main motivation for our work stems 
from the context of a mediator-based systems that pro- 
vide access to multiple distributed information sources 
(e.g., TSIMMIS [CGMH+94], SIMS [ACHK94], the 
Internet Softbot [EW94] and the Information Mani- 
fold [LR096a, LRO96b]). In practice, many of the 
sources these systems access contain only partial infor- 
mation. For instance, the system may have access to 
a university repository that contains publications au- 
thored by faculty and students of that university, but 
does not necessarily contain all of them. On the other 
hand, the system may have access to the database of 
the library of congress that has all the books published 
in the U.S.A in the past few decades. In such a setting, 
given a query, it is important to know which sources 
(or combination of sources) provide all the answers to 
the query. If we cannot obtain all the answers, we 
need to query multiple sources, thereby considerably 
affecting the performance of the system. Experimen- 
tal results reported by Etzioni et al. [EGW94] showed 
that identifying answer-completeness of queries en- 
ables pruning many redundant accesses to information 
sources, and therefore to significant speedups in query 
processing. Finally, the answer-completeness problem 
is also important in other contexts. For example, dur- 
ing a long transaction, a database may be incomplete, 
and in other cases, parts of a database may be tem- 
porarily inaccessible. 
’ We make the following contributions in this paper. 

l We show that the answer-completeness problem 
can be completely characterized as a problem of 
deciding whether a query is independent of an in- 
sertion update. As a result, we obtain a better 
understanding of the problem, and, in particu- 
lar, we obtain novel sound and complete algo- 
rithms for deciding answer-completeness. These 
results apply to a wider range of cases considered 
in [EGW94, Mot891 for this problem, and are the 
first ones that are guaranteed to always detect 
when an a query is answer-complete. 
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We show an important case of the problem of de- 
termining independence of queries from updates 
that can be decided in polynomial time, whereas 
the best previously known algorithms for this case 
are exponential. This is the case in which the up- 
dated tuples are described using constraints with 
built-in comparison predicates (5, <, =), and the 
all comparisons in the update specification and 
in the query contain a constant. This result pro- 
vides a polynomial-time algorithm for detecting 
answer-completeness, but it is also of indepen- 
dent interest in the context of determining query- 
independence. 

We describe an algorithm that determines 
whether in the current state of the database the 
answer to a given query is complete. Complete- 
ness is determined by issuing additional queries to 
the database. 

qz(Director) is called the head of the query, 
and its argument Director is its distinguished vari- 
able. The distinguished variables of the query 
correspond to attributes appearing in the SELECT 
clause. Movie(Title, Dir, Year), Year1 2 1965 and 
Show(Title, Theater, Hour) are atoms in the body of 
the query. Note that equality predicates in the WHERE 
clause are represented by equating variables in ,differ- 
ent atoms of a conjunctive query. The atom Year1 2 

1965 is said to be an atom of a comparison (or built- 
in) predicate (2 in this case). A union of conjunctive 
queries is a set of conjunctive queries that have the 
same arity in the head. Unless otherwise specified, we 
assume that a query is a union of conjunctive queries. 

We show that our treatment of the problem of in- 
complete databases extends naturally to the case 
of databases that may be incorrect (i.e., con- 
tain a superset of the tuples that should be in 
the database), and the problem of determining 
whether the answer to a given query is correct. 

Given a database instance D and a query Q, we 
denote by Q(D) th e result of evaluating Q over D. 
We say that a query Q is satisfiable if there is some 
database instance D such that Q(D) is a non empty set 
of tuples. Two queries Qi and Qs are said to be equiv- 
alent if, for any database instance D, 91(D) = Qz(D). 
The length of a conjunctive query is the number of non 
built-in atoms in its body. A conjunctive query Q is 
said to be minimal if we cannot remove any of the 
non-comparison atoms from its body and still obtain 
a query equivalent to Q. 

Section 2 defines the answer-completeness prob- 
lem. Section 3 shows the relationship between the 
answer-completeness problem and the query indepen- 
dence problem, and Section 4 presents the polynomial- 
time algorithm for deciding query independence. Sec- 
tion 5 describes the algorithm for determining answer- 
completeness in a particular datab,ase state, and Sec- 
tion 6 extends our treatment to partially incorrect 
databases. Section 7 discusses related work, and Sec- 
tion 8 concludes. 

2.1 Partial databases 

2 Problem definition 
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In our discussion we consider queries over relational 
databases that involve select, project, join and union 
and that use the built-in comparison predicates 5, <, 
= and #. We assume set semantics for queries (and 
not multisets). In our analysis it is more convenient 
to use the notation of conjunctive queries [UllSS]. For 
example, the query 

A database is said to be partial when the tuples in each 
relation are only a subset of the tuples that should be 
in the relation. Formally, such a situation can be mod- 
eled as having two sets of relations, the virtual rela- 
tions and the available relations. The virtual relations 
are R= RI,..., R,, while the available relations are 
R’ = R;, . . . , Rh. For every i E (1 . . . n}, the exten- 
sion of the available relation R: contains a subset of 
the tuples in the extension of the virtual relation Ri. 
The user poses queries in terms of the virtual rela- 
tions, but the system has access only to the extensions 
of the available relations. Therefore, given a query Q 
over the virtual relations, the query processor actually 
evaluates the query Q’ obtained by replacing every oc- 
currence of Ri by R:, for i, 1 5 i 5 n. 

(Q2): SELECT m.DIRECTOR 
FROM Movie m, Oscar o 
WHERE m.TITLE = o.TITLE AND 

o.YEAR 2 1965 

is given as a conjunctive query of the form: 

The question we address is whether the answer we 
obtain for a query is complete, that is, whether the 
answer to Q’ contains all the tuples we would have 
obtained by evaluating Q over the virtual relations. 
Clearly, if all we know is that R: C Ri for every i, 
1 5 i 5 n, then whenever the query Q is satisfiable the 
answer to Q’ may be incomplete. However, it is often 
the case that we know that R: is partially complete, 
i.e., that some parts of it are identical to Ri. 

qz(Director) : -Movie(Title, Director, Year) & 
Oscar(Title, YearI) & Year1 1 1965. 

Example 2.1: Continuing with Example 1.1, the re- 
lation Movie may be known to be complete for tuples 



for which Year >_ 1965. As another example, the rela- 
tion Movie may be complete for titles of movies being 
shown in New York. 0 

Formally, we specify local completeness of a relation 
R’ in the real database by a constraint on the tuples 
of R that are guaranteed to be in R’. 

Definition 2.1 (Constraint): Let R be a relation 
of arity n, and Xi,... ,X, be variables standing for 
its attributes. A constraint C on the relation R is 
a conjunction of atoms that includes constants, vari- 
ables from X1, . . . , X, and other variables. The rela- 
tions used in C can e&her be either database relations 
or comparison predicates, but not R itself. A tuple 
(al,..., a,,) satisfies C w.r.t. a database instance D if 
the conjunction resulting from substituting ai for Xi 
in C is satisfied in D. We denote the complement of 
C by 4’. 0 

Note that a tuple (al, . . . , a,) does not have to be in 
the extension of the relation R in a database instance 
D in order to satisfy a constraint C on R. In our dis- 
cussion on local-completeness statements we consider 
only constraints that involve the virtual relations and 
comparison predicates. 

Definition 2.2 (Local Completeness): Let C be a 
constraint on the relation R. A database instance D 
that includes the relations R and R’ is said to satisfy 
the local-completeness statement LC(R’, R, C) if R’ 
contains all the tuples of R that satisfy C, i.e., if the 
results of following two queries are identical over D: 

n(X1,. . ., X,) : -R(X1,. . *, X,) &C, 

42(X1, . . . , Xn) : -R/(X1, . . . , X,J & C. 

0 

Example 2.2 : The two local completeness state- 
ments in Example 2.1 can be stated as follows. The 
fact that the relation Movie J contains all movies after 
1965 is represented by 

LC(Movie’,Movie, Year 1 1965). 

We can represent that the relation Movie’ has all the 
movies that are currently playing in New York by 

LC(Movie’, Movie, Show(Title, Theater, Bour)). 

Finally, the statement 

LC(Movie’, Movie, Show(Title, Theaterl, HourI)& 
Show(Title, Theatera, HourZ)& 
Theater1 # Theater2). 

says that the relation Movie’ is complete w.r.t. movies 
that are playing in at least two theaters in NY. 0 

We can now define the answer-completeness prob- 
lem formally. The problem has two variants. In the 
first, we consider whether the answer is complete w.r.t. 
any database that satisfies the local-completeness 
statements, and in the second we consider only a single 
database instance. 

Definition 2.3 (Answer-completeness): Let I be 
a set of local completeness statements of the: form 
LC(R’, R, C), where R E fi (the virtual relations) and 
R’ E R’ (the available relations). Let Q be a query 
over the virtual relations R, and let Q’ be the result 
of replacing every occurrence of Ri by R: in Q, for i, 
l<i<n. 

The query Q is said to be answer-complete w.r.t. I’ 
if for any database instance D for the relations ii and 
ii’ such that D satisfies I, then Q(D) = Q’(D). 0 

Instance answer-completeness considers whether 
the answer to a query is complete w.r.t. a specific 
database instance for the available relations. 

Definition 2.4 (Instance answer-completeness): 
Let I be a set of local completeness statements of the 
form LC( R’, R, C), where R E ii (the virtual rela- 
tions) and R’ E ii’ (the available relations). Let Q be 
a query over the virtual relations R, and let Q’ be the 
result of replacing every occurrence of Ri by R: in Q, 
for i, 1 5 i 5 12. 

The query Q is said to be answer-complete w.r.t. 
I’ and the database instance D if for any database D’ 
such that the extensions of ii’ are identical in D and 
D’, and such that D’ satisfies I’, then Q(D’) = Q’(D’). 
0 

Example 2.3: Consider Example 1.1 and two sets 
of completeness information: 

rl : LC(Movie’, Movie, Year 1 1965), 
I2 : LC(Movie’, Movie, Show(Title, Theater, Hour)) 

The query Qi, asking for pairs of (title, director) 
of movies playing in New York, is not complete w.r.t. 
I’i because it may miss pairs in which the movie was 
produced before 1965. However, the answer to Qi is 
complete w.r.t. rz. The query QZ that asks for di- 
rectors whose movies have won Oscars since 1965 is 
complete w.r.t. rr but not w.r.t. I’z. 

For a specific database instance D in which the rela- 
tion Movie ’ contains all movies whose titles appear in 
the relation Show, the answer to Qi is complete w.r.t. 
I1 and D. 0 

2.2 Independence of queries from updates 

The insight underlying our solution to the answer- 
completeness problem is based on showing that it is 
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closely related to the problem of detecting indepen- 
dence of queries from updates [BCL89, Elk90, LS93]. 
The problem of independence of queries from updates 
is to determine whether the answer to a query & 
changes as a result of an insertion to the database or 
as a result of a deletion from the database. Formally, 
we specify a possible update by specifying a relation R 
that is updated and a constraint C that describes set 
of tuples of the relation R may be inserted or deleted. 
Formally, the independence problem is defined as fol- 
lows. 

Definition 2.5 (Independence): Let R be a rela- 
tion and C be a constraint on the arguments of R. 
The query Q is independent of the insertion update 
(R, C), denoted by In+(Q, (R, C)), if for any database 
instance D and for any database instance D’ that re- 
sults from D by adding to R some tuples that satisfy 
C, Q(D) = Q(D’>. 

The query Q is independent of the deletion update 
(R. C), denoted by In-(&, (R, C)), if for any database 
instance D and for any database instance D’ that re- 
sults from D by deleting from R some tuples that sat- 
isfy C, Q(D) = Q(D’). 0 

Example 2.4: Consider the query Qs, asking for 
the movies playing in New York that have received an 
Oscar in the past twenty years: 

qs(Title, Theater) : -Show(Title, Theater, Hour) & 

The query q3 is independent of deleting tuples from 
the relation Oscar for which the year is less than 1970. 
That is, In-(q3, (Oscar, Year 5 1970)) holds. On the 
other hand, the query is not independent of adding 
tuples to the relation Show for which the show time 
is after 8pm. That is, In+(qs, (Show, Hour 1 8pm)) 
does not hold., 0 

3 Deciding answer-completeness of a 
query 

Our solution to the answer-completeness problem is 
based on showing that the problem can be equivalently 
translated to a problem of detecting independence of 
a query from an insertion update. We establish the 
connection between these two problems in this section. 
We first illustrate the connection with an example. 

Example 3.1: Recall the query Qr that asks for the 
pairs of (title, director) for movies currently playing 
in New York, and suppose that our local completeness 
information states that the relation Movie ) is complete 
for movies produced after 1965, i.e., the relation may 
be missingtuples of movies produced before 1965. The 
query &I is not answer-complete. To see why, suppose 

Oscar(Title, Year) &Year > 1976. 

l The extensions of R’ are the same as in D in all 
databases, and 

l In Do,..., Di-1 the extension of Ri is the exten- 
I . sronofRimD,andmDi,..., D, it is the exten- 

sion of Ri in D. 

Recall that Q’ is the query in which every occurrence 
of Rd in Q is replaced by R:. Note that Q(Do) = Q’(D) 
and Q(Dn) = Q(D). We prove by induction on i that 
Q(Di) = Q(Di-1). The claim Q(D) = Q’(D) follows. 

Consider the case i = 1. Because D satisfies I’, 
the database D1 is obtained from Do by adding tuples 
that satisfy -431 to the extension of RI. However, since 
In+(Q) (RI, 4’r)) holds for any database, it holds in 
particular for Do, i.e., Q(Dl) = Q(Do). The proof of 
the inductive step is similar. 

For the other direction, suppose that one of the 
independence assumptions does not hold. Suppose 
In+(Q, (RI, -Cl)) does not hold. In that case, there 
must be a database instance E and a set of tuples S 
that satisfy 4’1, such that Q(E) # Q(E’), where E’ 
is the result of adding the tuples S to the extension of 
RI. Let D be the database in which the extension of 
R: is the extension of Ri in E, and the extensions of 
R are identical to those in E’. Note that D satisfies 
I’, however, Q(D) # Q’(D), and therefore, the answer 
to Q is not complete w.r.t. I. 0 
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we insert tuples into the relation Movie’ whose year is 
before 1965. In this case, the answer to the query Qr 
can change. That is, Qi is not independent of inserting 
tuples into Movie’ whose year is before 1965. 

On the other hand, suppose we consider the query 
Q2 that asks for directors whose movies have won Os- 
cars since 1965. The answer to Q2 is guaranteed to be 
complete, because even if we update the database with 
movies produced before 1965, that would not change 
the answer to the query. 0 

The following theorem formalizes the connection 
between independence and answer-completeness. 

Theorem 3.1: Let Q be a union of conjunctive 
queries over the virtual relations R and comparison 
predicates, and let r be a set of local completeness 
statements of the form LC(R(i, Rj, Cj), where Ri E R’ 
and Rj E R. The query Q is answer-complete w.r.t. r 
if and only if In+(Q, (Rj, -Cj)) holds for every state- 
ment in r. 0 

Proof: For the first direction, suppose 
In+(Q, (Rj, -Cj)) holds for every statement in I, and 
let D be a database instance that satisfies I’. We need 
to show that Q(D) = Q’(D). Let Do,. . . , D, be the 
databases such that: 



Using Theorem 3.1 we can apply algorithms for de- 
tecting independence (e.g., [BCL89, Elk90, LS93]) to 
the problem of deciding answer-completeness. Levy 
and Sagiv [LS93] describe an algorithm for detect- 
ing independence based on checking equivalence be- 
tween two queries. Figure 1 describes an algorithm 
that adopts the method in [LS93] to decide answer- 
completeness based on equivalence checking. 

procedure decide-completeness(Q, I’) 
/* Q is a query over the relations RI,. . . , R,; 

T is a set of local completeness statements: 
LC(R:, Ri, Ci) for i, 1 5 i 5 n. 

The procedure returns yes if and only if Q 
is answer-complete w.r.t. I. */ 

Let El,..., E, be new relation symbols. 
Define the views VI,. . . , V, as follows: 

(Xi are the arguments of R;) 
i$(Xi) : -Ei(Xi) & TCi. 
i((Xi) : -Ri(Ri). 

Let &I be the query in which every occurrence of Ri 
is replaced by Vi, for i, 1 5 i < n. 

return yes if and only if Q is equivalent to Q1. 
end. 

Figure 1: An algorithm for detecting answer- 
completeness of a query. 

The problem of checking query equivalence is well 
studied in the literature, and therefore algorithm 
decide-completeness can use a host of known re- 
sults to decide completeness. For example, algorithms 
for equivalence of queries containing unions and nega- 
tions are given in (SY81, LS93]. When queries are 
recursive, the equivalence problem is known to be 
undecidable [Shm93]. However, algorithms for re- 
stricted cases are given in [CV92, CV94, Sag88, LS93]. 
Finally, if the database relations are known to sat- 
isfy integrity constraints (e.g., functional dependen- 
cies, tuple generating dependencies), the algorithms 
in [CM77, ASU79b, ASU79a, JK83] can be used for 
deciding equivalence. We obtain the following decid- 
ability results for the answer-completeness problem. 

Theorem 3.2 : Let Q be a union of conjunctive 
queries over the relations RI, . . . , R, and comparison 
predicates, and let T be a set of local completeness 
statements of the form LC(Rj, Rj, Cj), where Ri E R’ 
and Rj E R. The answer-completeness problem is de- 
cidable in the following cases: 

1. if each of the Cj ‘s contains only arguments of Rj 
or constants, or 

2. if the head of Q contains all the variables of the 
body of Q, and neither the Cj ‘s or Q use the com- 

parison predicates. 0 

When the constraints involve comparison predicates 
the problem of deciding answer-completeness for the 
first case of Theorem 3.2 is II;. In fact, the lower 
bound on the problem of equivalence [vdM92] im- 
plies that this is also the lower bound on the answer- 
completeness problem. The proof of Theorem 3.2 
follows from Theorem 3.1 and from decidability re- 
sults for query containment [SY81, Kh.188, LS93]. In 
the next section we consider the very common case 
in which the Cj’s include variable-interval built-in 
atoms, and show that deciding independence can be 
done in polynomial-time, and therefore so can answer- 
completeness. 

4 Deciding independence efficiently 

In this section we identify an important practical case 
in which independence of queries from updates can 
be detected more efficiently than in previous algo 
rithms. Consequently, deciding answer-completeness 
of a query can also be done more efficiently. Intuitively, 
in this case detecting independence is equivalent to de- 
ciding when the updated tuples and the query are mu- 
tually unsatisfiable, whereas in general, detecting in- 
dependence requires that we detect that the updated 
tuples are redundant w.r.t. the query. The following 
example, adopted from [LS93], explains the difference 
between satisfiability and redundancy. 

Example 4.1: Consider a database containing the 
relation inCar(Person, Car, Age). ’ A tuple (P, C, A) 
is in the relation inCar if the person P, whose age is 
A is in car C. The view canDrive(Person, Car, Age) 
is defined as follows: 

canDrive(P, C, A) :- inCar(P, C, A), driver(P), 

inCar(P1, C, Al), Al 1 18. 

That is, a person P is allowed to drive a car C if P 
has a driver’s license and there is someone in the car 
above the age of 18. Suppose our query is to find all 
the adult drivers: 

adult Driver( P) :- canDrive(P,C,A), A? 18. 

Consider a deletion update that removes from 
the relation inCar some tuples (P, C, A) for which 
TDriwer(P) and A < 18. Clearly, such tuples can- 
not be part of a derivation of an answer to the query 
adultDriver because adultDriver uses only tuples of 
incur for which either P is a driver or the age is at 
least 18. In this case we say that the tuples involved in 
the update are mutually unsatisfiable with the query. 
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Clearly, if the updated tuples are mutually unsatisfi- 
able with the query, the query is independent of the 
update. 

Consider a deletion update that removes from the 
relation incur tuples involving only non-drivers, i.e., 
tuples (P, C, A) for which lDriver(P). Tuples of 
this set can be used in a derivation of the query 
adult Driver. For example, if the database con- 
tains the tuples inCar(Alice, C, 19), driver(Alice) 
and inCar(Bob, C, 20), the tuple of Bob can be used to 
derive that Alice is an adult driver. However, the tuple 
of Bob is redundant, because Alice (being older than 
18) is allowed to drive the car C even if she is alone 
in the car, and therefore is an answer to ad&Driver. 
Therefore, removing such tuples will not change the 
result of the query. •I 

Detecting redundancy is a more expensive proce- 
dure than detecting satisfiability. For example, for 
conjunctive queries with comparison predicates, the 
time complexity of detecting redundancy is $ [Klu88, 
vdM92], while checking satisfiability can be done in 
polynomial time [UllSS]. 

The case we consider involves variable-interval 
queries and updates. In particular, a conjunctive 
query & is a variable-interval query if all the built- 
in atoms in Q have one constant (i.e., there are no 
comparisons between pairs of variables). A variable- 
interval update is an update in which the updated tu- 
ples are specified by a conjunction of built-in atoms 
where each atom contains one constant. It should be 
noted that variable-interval queries are a more general 
class than semiinterval queries considered in [Klu88]. 
Figure 2 describes an algorithm for detecting inde- 
pendence of variable-interval queries from variable- 
interval updates. The following theorem shows that 
the algorithm completely decides independence in this 
case in polynomial time. 

Theorem 4.1: Let Q be a conjunctive variable- 
interval query over the relations El, . . . , En and the 
comparison predicates <, 5. Suppose U is an update 
(either deletion or insertion) to the relation El, in 
which tuples satisfying the constraint C are added to 
El, where C is a constraint on El involving only the 
comparison predicates <,<, and each conjunct in C 
has one constant. 

If & is a minimal query then procedure detect- 
independence will return independent if and only if 
Q is independent of U. Th e running time of procedure 
detect-independence is polynomial in the size of Q 
and C. 0 

Proof Sketch: In [LS93] it is shown that Q is inde- 
pendent of deleting (El, C) if and only if it is inde- 
pendent of adding (El, C), since the update is oblivi- 

procedure detect-independence(Q, E, C) 
/* Q is conjunctive query, and 

E is one of the relations mentioned in Q; 
C(X1,...,Xm) is a conjunctive constraint on the 
arguments of E that uses only comparison atoms, 
each with one constant. */ 

for every occurrence E(Yl , . . . , Ym) of the relation E 
in the body of Q do: 

Let 4 be the mapping X, -+ Y, for j, 1 _< j 5 m. 
Let Q’ be the conjunctive query in which $(C) 

is added to the subgoals of Q. 
if Q’ is satisfiable then return not independent. 

return independent. 
end. 

Figure 2: An algorithm for detecting independence of 
a query from an insertion update, for updates specified 
by built-in predicates. 

ous. We show that if Q is independent of the deletion 
update (El,C), and Q has a conjunct El(?) that is 
consistent with C(Y), then the conjunct must be re- 
dundant, and therefore the query is not minimal. 

In order to be satisfiable, the comparison atoms of 
the conjunctive query Q force the value of every vari- 
able X to be in an interval Ix. The interval may be 
open or closed and may have 00, -oo as endpoints. 

For any given mapping $ of the variables of Q to 
constants in their intervals, we can create a database 
D$ that contains exactly the tuples .$~(g) for every 
subgoal of g E Q, From Dq we can derive the an- 
swer $(X), where x are the head variables of Q. In 
order to show that the conjunct El(Y) is redundant, 
we need to show that for every $J, we can derive the 
answer +(X) from D+ without the tuple $(El(Y)). 

There are two cases. If $J(Y) satisfies C, then we 
can remove E($@)) from D$ without affecting the 
answer to Q because the query is independent of delet- 
ing (El, C). 

In the second case, $J(F) does not satisfy C. Since 
the comparison atoms in Q do not compare among 
variables, it is possible to modify D,J, to a database D;1 
such that one of the variables in ? is mapped to a new 
constant, and the resulting database contains a tuple 
that may be removed by the update. Furthermore, the 
mapping of the head variables of Q in 06 is the same 
as it is in D$ , and the mapping of D$, is consistent with 
the comparison atoms in Q. In D$,, there must be a 
proper subset of the tuples that suffices to derive the 
answer. In the proof we show that the corresponding 
subset in D+ also suffices to derive the answer. •I 
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5 Answer-completeness for a database 
instance 

In Section 3 we considered the problem of decid- 
ing answer-completeness of a query Q by examin- 
ing only & and the local-completeness information I. 
When our algorithm returned that the query is answer- 
complete, then that will be true no matter of the spe- 
cific database instance as long as it satisfies I. How- 
ever, if the algorithm returned that the query is not 
answer-complete, then there still may be database in- 
stances in which the answer is complete. 

In this section we describe an algorithm that de- 
cides whether the answer to the query is complete in 
the c~rrenl database state. The algorithm is based 
on submitting a couple of additional queries whose an- 
swers will show whether the answer to Q is guaranteed 
to be complete. We first illustrate the algorithm with 
an example. 

Example 5.1: Consider again the query &i ask- 
ing for the pairs of (title,director) of movies currently 
playing in New York. 

q(Title, Director) : -Movie(Title, Director, Year) & 
Show(Title, Theater, Time) 

Suppose the Show relation is known to be complete, 
but the Movie relation is not (i.e., Movie’ c Movie), 
and assume that the functional dependency Movie : 
Title + {Director,Year} holds, i.e., the title of the 
movie uniquely determines its director and year of pro- 
duction To check whether the answer we get in the 
current state of the database is complete we can issue 
the following two queries: 

ql(Title) : -Show(Title, Theater, Time) 
qz(Title) : -Movie(Title, Director, Year) 

If the answer to q2 is a superset of the answer to ql, 
then we can conclude that the answer to the query Qi 
is complete. The reason is that although the relation 
Movie’ may not be complete, it contains all the movies 
currently playing in NY, and therefore all the tuples 
that would be needed in the complete answer. 0 

Intuitively, the algorithm is based on finding a sub- 
set of the subgoals of the query that provide a superset 
of the complete answer to the query. We then check 
whether the conjunctive query formed by the rest of 
the subgoals is complete on that superset. Before we 
describe the algorithm, we need one additional defini- 
tion. 

Given a set of variables in the query, they may func- 
tionally determine the values of other variables. 

Definition 5.1 (Functional determination): Let 
Q be a conjunctive query, and assume that all equali- 
ties between variables have already been propagated in 

Q (i.e., Q does not imply additional equalities between 
variables or between a variable and a constant). Let 
2 be a subset of the variables that appear in the body 
of Q. The variable Y in Q is said to be functionally 
determined by x if 

1. Y E X, or 

2. There exist variables Yi, . . . , x that are function- 
ally determined by x, and an atom of the rela- 
tion R in the body of Q in which the variables 
Y,,... , Yr, Y appear in the positions ii,. , iI+1 

respectively, and the functional dependency R : 
{Xl,. . . , a) + tltl holds. 

0 

In Example 5.1, the variables Title, Theater and 
Time functionally determine all the other variables in 
the query. 

For simplicity of exposition we describe our algo- 
rithm for conjunctive queries. Suppose we are given 
a set of local-completeness statements I’, a database 
instance D and a query Q of the form 

Q: q(x) : -p&$ & . . . &p&?n) & C, 

where C, is the conjunction of comparison atoms in 
the query. We denote by Si a maximal subset of 
pl(xl), . . . ,p,(xn) such that: 

The variables in Si functionally determine all the 
distinguished variables x of Q, and 

The following query is answer-complete w.r.t. I: 

Q’ : q/(x’) : -S1 & Cs, 

where x’ are the subset of x that appear in Si, 
and C’S, is .the projection of C, on the variables 
in Si .2 

If no subset Si exists, then the algorithm returns 
unknown. Otherwise, we denote by S2 the set of non 
comparison atoms of Q that are not in Si, and by C’s, 
the projection of C, on the variables in Si. The set 
Y is the set of variables that appear in both Si and 
S’s, and Y’ is a minimal subset of Y that functionally 
determines all the other variables in Y. We define the 
following two queries: 

&I: q@‘) : -SI &C‘s,. 
92: q@‘) : -S2 & Cs,. 

If the answer to Q2 from D is a superset of the an- 
swer to Qi from D, then the algorithm returns com- 
plete, and otherwise it returns unknown. q 

zNote that the projection of C, on S1 may actually be a 
disjunction, in which case Q’ is a union of conjunctive queries. 
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Example 5.2: Continuing with example 5.1, the set 
Si includes the subgoal 

Show(Title, Theater, Hour) 

since Title determines Director and Year, and the 
relation Show is assumed to be complete. The set of 
variables Y would include only Title, and therefore the 
queries would be 

ql(Title) : -Show(Title, Theater, Time). 
qz(Title) : -Movie(Title, Director, Year). 0 

The correctness of the algorithm is established by the 
following theorem. 

Theorem 5.1: Let Q be a conjunctive query over the 
relations RI, . , . , R, and comparison predicates, and 
let r be a set of local completeness statements of the 
form LC(Ri, Rj, Cj), where Ri E ii’ and Rj E R. Let 
&I and Q2 be the queries defined by our algorithm. 
For a given database D, ifQz(D) > &l(D) then Q is 
answer-complete w.r.2. I’ and D. c] 

Proof Sketch: By the construction of the set 5’1, the 
answer to Q’ contains a superset of the projection of 
the complete answer of Q on the variables x’. This 
follows because Q’ is answer-complete w.r.t. I, and 
contains a subset of the subgoals of Q. If the answer 
to Q2 contains the answer to Qi over D, then inser- 
tions to incomplete parts of 5’2 cannot change the join 
of Sr and 272. Therefore, since the variables in Si func- 
tionally determine all the other variables in the body 
of Q, the answer to Q is guaranteed to be complete. 
0 

6 Answer-correctness 

An additional advantage of our treatment of the 
answer-completeness problem is that there is a very 
analogous treatment for the case of incorrect informa- 
tion in the database. In this case, the tuples of a rela- 
tion R: are a superset of the tuples of Ri. In the same 
way we defined that a relation is locally complete, we 
can define a relation to be locally correct: 

Definition 6.i (Local Correctness): Let C be a 
constraint on the relation R. A database instance D 
that includes the relations R and R’ is said to satisfy 
the local-correctness statement LCor(R’, R, C) if R’ 
does not contain tuples satisfying C that are not in R, 
i.e., if the results of following two queries are identical 
over D: 

471(X1,... ,X,) : -R(X1,. . .,X,)&C, 
Q2(Xl, * . . ,X,):-R/(X1 ,..., X,)&C. 

cl 

The question we are interested in now is whether the 
answer to a given query Q is correct from the partially 
correct database: 

Definition 6.2 (Answer-correctness): Let r be 
a set of local-correctness statements of the form 
LCor( R’, R, C), w h ere R E fi (the virtual relations) 
and R’ E R’ (the available relations). Let Q be a query 
over the virtual relations fi, and let Q’ be the result 
of replacing every occurrence of Ri by R: in Q, for i, 
l<isn. 

The query Q is said to be answer-correct w.r.t. I 
if for any database instance D for the relations ii and 
ii’ such that D satisfies I’, then Q(D) = Q’(D). 0 

Theorem 3.1 showed that the answer-completeness 
problem can be equivalently formulated as the prob- 
lem independence of a query from an insertion up- 
date. The following theorem shows that the answer- 
correctness problem can be equivalently formulated as 
the problem independence of a query from an deletion 
update. 

Theorem 6.1: Let Q be a union of conjunctive 
queries over the relations RI,. . . , R, and compari- 
son predicates, and let I’ be a set of local complete- 
ness statements of the form LCor(Ri, Rj, Cj), where 
R: E ii’ and Rj E ii. The query Q is answer-correct 
w.r.t. I’ if and only if In-(Q, (Rj, TCj)) holds for ev- 
ery statement in r. 0 

Given Theorem 6.1 we can use algorithms for 
detecting independence also for deciding answer- 
correctness. Theorem 6.1 has an additional interest- 
ing consequence. As shown by Elkan [ElkgO], inde- 
pendence from a deletion is a sufficient condition for 
independence from an update, i.e., 

In- (Q, (4 C))> * In+(Q, (4 C>>>. 

Therefore, if a query is deemed to be answer-correct, 
it is also answer-complete. More importantly, this im- 
plies that if we have a database that is partially incom- 
plete and partially incorrect, then determining answer- 
correctness is enough for detecting that the answer is 
both correct and complete. 

7 Related work 

Motro [Mot891 considers the problem of determin- 
ing answer-correctness (which he calls validity) and 
answer-completeness in the presence of incorrect or 
incomplete databases. His approach is based on de- 
scribing the complete (or valid) parts of the database 
as views. Given a query Q, if there is a rewriting of 
the query using the complete (resp. valid) views, then 
the answer is complete (resp. valid). He describes an 
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algorithm that finds rewritings of queries using views, 
but it is not always guaranteed to find one if one exists. 
Although complete algorithms for rewriting queries us- 
ing views have been developed since (e.g., [LMSS95]), 
finding a rewriting of the query using views has not 
been shown to be a necessary condition for answer- 
completeness. Motro also does not consider the prob- 
lem of determining answer-completeness w.r.t. a spe- 
cific database instance. 

Recently, Etzioni et al. [EGW94] considered the 
problem of answer-completeness in order to avoid re- 
dundant information gathering actions in the Internet 
Softbot system [EW94], and demonstrated experimen- 
tally the value of detecting answer-completeness. They 
show that answer-completeness is closed under con- 
junction and partial instantiation of queries, and use 
these properties as a basis for their algorithm for de- 
termining answer-completeness. As they show, their 
algorithm is not guaranteed to always detect answer- 
completeness when it holds. They do not allow exis- 
tential variables in local-completeness statements, and 
they do not make use of the semantics of compari- 
son predicates in their algorithms (though comparison 
predicates are allowed to appear). Reasoning about 
local-complete information is also related to the prob- 
lem of reasoning with the closed world assumption. 
The bulk of previous work on the topic (see [Gin871 
for a collection of articles) has concerned itself with 
the logic of reasoning with the closed world assump- 
tion (i.e., which conclusions are appropriate to derive) 
rather than efficient algorithms for doing so. 

Levy and Sagiv [LS93] present sound and complete 
algorithms for query independence for queries that are 
unions of conjunctive queries with comparison pred- 
icates and for recursive queries. Theorem 4.1 is a 
case that has not been considered specifically in [LS93] 
for which there is a polynomial time algorithm for 
query independence. Elkan [Elk901 describes an algo- 
rithm for query independence whose time-complexity 
is polynomial in the case considered by Theorem 4.1. 
However, his algorithms apply only to queries with 
no self-joins (i.e., at most one occurrence of every re- 
lation in the query). In [LSK95] an algorithm for 
pruning redundant sources based on sources complete- 
ness was described. However, the question of whether 
the answer to a given query is complete given local- 
completeness statements was not addressed. 

8 Conclusions 

We considered the problem of answering queries from 
databases that may be incomplete or incorrect, and 
presented algorithms that decide whether the answer 
to a query is complete or correct. We provided a 
complete characterization of the problem by relat- 

ing it to the problem of determining independence 
of queries from updates. Whereas determining com- 
pleteness of an answer is translated to independence 
of insertion updates, determining correctness of an 
answer is translated to independence of deletion up- 
dates. Consequently, we can deal uniformly with both 
cases. This characterization yields a better under- 
standing of the problem’s complexity and decidabil- 
ity, and in particular, it yields novel sound and.com- 
plete algorithms for answer-completeness and answer- 
correctness that generalize previous treatments of the 
problem. In particular, the algorithm for determining 
answer-completeness based on query containment can 
also be applied in wider contexts, such as in the pres- 
ence of integrity constraints on the database. We iden- 
tified an important case in which independence can be 
determined efficiently, which, aside from being a result 
of independent interest, yields an efficient algorithm 
for the answer-completeness problem. Finally, we pre- 
sented an algorithm that considers the current state 
of the database to determine whether the answer is 
complete. 

A related question one can pose about incomplete 
databases (which was considered in [EGW94]) is what 
happens when the partial-completeness completeness 
information changes. In particular, is the answer to 
a query still complete even if parts of the database 
that were assumed to be complete may not be com- 
plete anymore. It can be shown that this problem 
can be reformulated as a problem of independence of 
queries from deletion updates, thereby giving it a uni- 
form treatment with the problem we considered in this 
paper. 

There are several interesting directions of future 
work to pursue. One is to consider other ways of spec- 
ifying local-completeness information that cannot be 
captured by the statements we allow here. An inter- 
esting direction is to extend the algorithm described 
in Section 5 by considering whether more information 
about completeness can be obtained by issuing addi- 
tional queries to the database. 
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