
Calibrating the Query Optimizer Cost Model of IRO-DB,

an Object-Oriented Federated Database System*

Georges Gardarin, Fei Sha, Zhao-Hui Tang

CNRS-PRiSM Laboratory
University of Versailles St-Quentin
78035 Versailles Cedex, FRANCE

Firstname.Lastname@prism.uvsq.fr

Abstract

IRO-DB is an object-oriented federated database
system to access multiple data sources from an
ODMG compliant C++ inteqace. The system
encompasses several components, including local
database adapters to homogenize local data sources,
a remote object access component to query and
transfer collections of objects from site to site, ana’ a
mediator to de$ne integrated views, decompose ana’
optimize queries, and combine results. This paper
gives an overview of the IRO-DB architecture and
describes in detail the cost evaluator currently under
elaboration for the next version of the distributed
query optimizer. The cost model is composed of a set
of mathematical formulas with coejficients to
estimate the cost of the search operators. The
coeficients are deduced from a calibrating object-
oriented database composed of linked collections of
objects. A tuning application is run on each local site
to adjust the cost formulas and fix the coeficients.
We report on the tuning of 02 and ObjectStore. We
show that the estimation is quite accurate for path
traversals with the 007 benchmark on top of
ObjectStore.

1. Introduction

Recently several research projects have experimented the
use of object-oriented techniques to facilitate the

* This work is partially supported by IRO-DB ESPRISTproject.

Permission to copy without fee all or part of this.material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

complex task of building federated database systems.
The object-oriented paradigm brings new solutions in
several dimensions, including the modeling of local data
sources as objects with a well defined and published
interface, the use of a semantically rich common object
model to ease application integration, the development of
standards to interoperate among objects, the use of
object-oriented transaction models, etc. Well known
research projects in object-oriented multidatabase
systems are Pegasus [ADDgIl, DOMS [MHG92],
Carnot [WSH93], Femus [ADS93], InterBase [BCD93],
etc. A complete survey of object-oriented multidatabase
systems can be found in [BE95].

The current paper focuses on IRO-DB (Interoperable
Relational and Object-Oriented DataBases) [Gar94], an
ESPRIT project currently developed in Europe. The
novelty of the IRO-DB architecture is to use the
ODMG’93 standard [Cat931 as a common object model
supporting the OQL pivot language to federate various
object-oriented and relational data sources. It is also
clearly divided into three layers, thus facilitating the
cooperative development of the project in several
research centers. The local layer adapts local data
sources to the ODMG standard ; the communication
layer efficiently transfers OQL requests and the resulting
collections of objects ; the interoperable layer provides
schema integration tools and a global query evaluator. A
first version of the system is currently operational
interconnecting the Ingres relational system and the
Matisse and Ontos object systems. 02 and ObjectStore
are currently in the process of being connected to IRO-
DB. A CIM application has been prototyped on top of
the system [RF’F95].

Query optimization is a major issue in federated
database systems. In the current version of IRO-DB, the
query optimizer applies simple heuristics to detach
subqueries that are sent to the participating systems. A
synthesis query runs on the query site to elaborate the
final answer to the user. More precisely, given an OQL
query Q, an algebraic tree T(Q) is elaborated and simply

378

transformed by moving down selections. More
sophisticated transformations could be applied to find a
better execution plan, but it is very difficult for the
optimizer to estimate query costs as physical
characteristics of participating DBMSs are unknown.
However, due to the diversity of the participating
systems, a cost-based query optimizer is required. For
example, path traversals are very efficient in object
system, but inefficient in relational system. Thus the
need of a cost model is evident for a multidatabase
system such as IRO-DB. If the home site where the
global query is compiled has the knowledge of the
response time of each subquery sent to the participant
DBMSs, it can choose the best plan to reduce local
execution time and the total communication cost and to
favorite parallel execution of sub-queries.

In [DKS92], a logical cost model with cost
coefficients is developed for relational systems. The
coefficients represent on average how much CPU time,
I/O time, and other overhead is involved in query and
result processing A calibrating procedure is proposed to
estimate the coefficients on relational DBMSs, including
AllBase, DB2, Informix, and Oracle. Another novelty of
the IRO-DB project is to extend this strategy to deduce
the necessary information for object systems, such as 02
and ObjectStore. The extension requires the introduction
of a path traversal operator, also called pointer chasing.
Generic formula is designed to evaluate the cost of the
pointer chasing operator. Cost parameters such as object
size, collection size, projection size, and fan out are also
introduced. Using the IRO-DB generic formulas, we
calibrate two participating systems, namely ObjectStore
and 02. We finally use the 007 benchmark to validate
our genetic cost model for path traversals.

Of course, the generic cost model is less precise than
a proprietary one, which has knowledge of all the
detailed execution algorithms implemented inside the
DBMS. But still the approach of using a generic cost
model can provide good results due to two reasons. First,
low level operators in most commercial DBMSs are very
similar, for example, scan, index scan, nested join, sort
merge join, depth first pointer chasing, etc.. This makes
possible to propose similar formulas with coefficients to
estimate their costs. Second, as the coefficients are
derived from testing a large amount of sample queries
through the real configuration of participating DBMS,
the generic cost model needs less system parameters and
gives better estimation in many cases. As pointed out in
[LVZ93], the objective of query optimization is not to
find the best execution plan, but rather to avoid the bad
ones. If the generic cost model can give an accurate
estimation with less than 20% of errors in a
heterogeneous system such as IRO-DB, it is reasonable

to consider that this approach solves the technical
problem of cost-based global query optimization.

This paper is organized as follows. In section 2, we
present the IRO-DB system architecture. The
architecture is novel because (i) it is based on the
ODMG standard as pivot model, (ii) it integrates
multiple data sources through a generic toolbox to write
local database adapter scaleable in functionality, (iii) it
gives object-oriented facilities to define integrated views
on the client home site, (iv) it integrates an active
dictionary with a generic cost model for global query
optimization. In section 3, we present our generic cost
model for object-oriented DBMSs. The cost model is
novel because it is parameterized with operators and
coefficients adequate for object systems. In section 4, we
show the design of the. synthetic calibrating database. It
is an extension of that proposed in [DKS92] with object-
oriented features (e.g., links). Section 5 gives the results
of the calibrating procedure on ObjectStore and 02,
which validate the approach. Section 6 further validates
the approach through comparing the estimated and real
costs of typical path traversal queries for the 007
benchmark. Section 7 concludes the paper.

2. IRO-DB System Architecture

IRO-DB federates relational and object-oriented
databases through an interchange object-oriented data
model. The selected object model is the ODMG data
model [Cat93]. OQL, the ODMG query language, is
provided to query interoperable databases. It is the pivot
language of the IRO-DB system. OML/C++, the ODMG
manipulation language embedded in C++, is used to
write applications.

2.1 Schema Architecture
The IRO-DB schema architecture is represented in
Figure 1. Each local database of a local DBMS is
described with a schema called a local schema. A local
schema describes the subset of a database that a local
system -authorizes to access from entitled cooperating
systems. Each local schema is defined using the data
definition language of the corresponding local DBMS.
An export schema is obtained by translating a local
schema into the ODMG object-oriented data model. The
benefit of using an upcoming standard is the expected
availability of ODMG compliant interfaces for many
commercial object DBMSs, which will simplify the
mapping, as it is already the case for the 02 system
[BFE95].

To produce an homogeneous view of multiple remote
databases on a client site, an integrated schema has to be
defined. An integrated schema is an integration of parts

379

of export schemas included in a federated database, with
a unique semantic for all object classes and operations. It
can be perceived as an integrated view of the federated
database. Integrated classes are derived from imported
classes, which are defined as a partial one-to-one copy of
remote exported ones [RFF95]. The schema integrator
workbench [FBH94] is an interactive tool to help the
database administrator to define integrated classes and
relationships. The specification of integrated classes
consists of two parts : the interface specification and the
mapping specification. The interface is specified in
standard ODMG syntax (i.e., ODL). The mapping
specifies the combination (e.g., aggregation,
generalization, fusion) of imported classes to derive an
integrated class. Three kinds of OQL queries are
generated by the integrator workbench to define the
mapping, the first to populate the integrated class
extents, the second to define the attribute mappings and
the third to generate its relationships.

L................. : 2 i

.) is integrated in

w is redefined in

Figure I -The organization of schemas.

2.2 The Federated System Layers

The architecture of IRO-DB consists of three functional
layers as represented in Figure 2. At the interoperable
layer, the integrator workbench stands for specifying
integrated views, which are generated as ODL/C++ class
definitions. Integrated and export schemas are stored in a
repository known as the data dictionary. Object
manipulation facilities include the OML/C++ ODMG
user interface and modules to decompose global queries
in local ones and to control global transactions. More
precisely, the global query processor maps queries
referencing integrated views to subqueries referencing
import schemas. It also performs query optimization and
determines the best synthesis query to combine partial
results on the home DBMS. The global object manager
collects the results of local subqueries and performs the
final combination of partial results on top of the home

object-oriented DBMS (Ontos in the current
implementation).

Figure 2 - The IRO-DB system architecture

The communication layer implements an object-
oriented remote data access protocol (Remote Object
Access Protocol - ROA) which is an extension of the
SQL/Call Level Interface of the SQL Access Group to
support object-oriented features. This layer provides
services to establish connections with remote database
servers, to submit OQL queries to these servers and to
transfer results from the local layer to the interoperable
layer. Results of queries are organized as collections of
objects. Objects are identified through global identifiers
composed of a server identifier, a class extent identifier
and a marker inside the class extent, i.e., a bit string to
locally retrieve the object within the class extent. In
conformance with ODMG, sets, bags, arrays and lists are
supported as collections. According to the OQL query
type, a collection of object identifiers is generated first
on the server. Then, the collection is transferred on
demand from the global object manager using iterators.
Identifiers are transferred by blocks to avoid message
overhead. Imported objects are generated in virtual
classes representing the classes of export schemas on the
home site. The identifier of the original object is kept in
the imported object, so that any operation or attribute
applied to it can be shipped to the original object.

The local layer is composed of local database
adapters. A local database adapter maps ODMG
schemas and queries to local schemas and queries. It
provides services to answer OQL queries on an
abstraction of a local schema in term of an export
schema specified in ODL. An export schema only
describes locally implemented interfaces. Thus, only
locally available functionalities are described in export
schemas. This feature simplifies the implementation of
local database adapters on raw data sources, as they have
to provide only a restricted subset of the OQL query
language to filter independent collection of objects. The

380

adapter can also support full functionalities of OQL on
ODMG databases, as it is the case for example with the
02 system. Available data types with associated
operations are described in the export schema stored in the
local data dictionary (DD). The local data dictionary is
similar in structure to the global one. A function is
available to export schemas on demand Rom a remote site.
Schemas are stamped with a version number to guarantee
their consistent use throughout the network. In summary,
the interoperable layer can only invoke locally available
functionalities described in the local data dictionary. That
means for example that methods and relationships can not
be invoked if they are not described in export schemas,
which is the case for relational systems.

2.3 Architecture of the Cost Evaluator

The global query processor [FFS95] decomposes end-user
queries and chooses one of the best query execution plans
based on cost estimations. The optimizer first accepts
OQL queries referring integrated classes. Next, each
integrated class is replaced by the query defining it in
terms of imported classes. Integrated class attributes are
also replaced by their definitions retrieved in the data
dictionary. If there exists several layers of integrated
views, the process is applied recursively. Finally, an object
algebra tree is generated to represent the whole
transformed query. Usual transformation rules are applied
to generate equivalent trees. For each tree, local
subqueries are detached to be sent to local sites and a
synthesis query is generated to be run on the results by the
home ODBMS. The role of the cost evaluator is to
determine the presumed execution cost of each tree, in
order to choose the best one using a search strategy.

The cost evaluator is based on a cost model. ?‘he cost
model contains a set of formulas representing the cost of
algebraic operators. In order to return to the optimizer the
estimated cost of a tree, the cost evaluator consults the
data dictionary, which gathers useful information from
different databases. There are three kinds of information :
the database import schemas, the statistics of collections
including cardinality, selectivity, fan out, object size,
method cost, etc., and the system configurations including
the type of the participating DBMSs, network parameters,
and system capabilities.

As the participating DBMSs are autonomous, they can,
not provide some detailed parameters that the cost model
requires, such as the cost of a selection, a join or a path
traversal. To compensate, they have to implement a
specific application called the cost tuner. The cost tuner is
designed to test sample queries for deriving values of the
required coefficients. Once a new participant enters the
federated system, the cost tuner invokes the calibrating

procedure on this DBMS using predefined local
transactions that have to be provided. The calibrating
procedure instantiates a cost parameter table memorizing
the local system cost model required parameters. Figure 3
introduces the architecture of the cost evaluator for
deriving the query cost of a global OQL query. The cost
model is a set of mathematical formulas computed on
demand of the global query optimizer, using parameters
stored in the data dictionary. The generic parameters are
retrieved from the cost parameter tables of local sites on
demand of the home site database administrator through
specific queries. The data dictionary also contains, for
each collection described in an import schema (IS), the
number of objects, the average size of an object and the
existence of indexes with their types (clustered or not).
These information are important to select the adequate
formulas for cost estimations. They can be refreshed from
export schemas (ES) on demand of the home site database
administrator.

Figure 3 - Detailed architecture of the cost evaluator.

3. The Generic Cost Model

A cost model is a set of math formulas used to estimate the
cost of an execution plan. Cost-based query optimizers
select the most efficient execution plan among the
alternatives based on the cost estimations. There are
several major components of the cost : CPU cost, IO cost,
and Communication cost. IRO-DB requires a generic cost
model as participating DBMSs and systems are not known
in detail. Thus, we do not separate CPU and IO costs,
which are buried in global cost formula parameters. An
execution plan consists of a set of basic operators ; the cost
of each is estimated separately and their sum gives the
total response time of executing the query.
Communication cost can be reflected more precisely
according to the network description ; this topic is out of
the scope of this paper.

381

3.1 Generic Operators

One of the important aspects of OODBMS is object
navigation [ZW86, KKS90, KGM91]. Each object has a
unique identifier (OID) and objects from different classes
can refer each other freely. OID can be either physical as
in ObjectStore or logical as in Versant. No matter which
OID technique is applied, an OODBMS provides an
efficient way for decoding OIDs and charging the state of
object into memory. This mechanism is the base of the
navigation procedure in object database systems.
Navigation among objects is often called pointer chasing.

To speed up the query execution, object-oriented
DBMSs support classic indexes to class instances. Indexes
are generally organized as B-trees containing attribute
values with OID lists. Further, some systems like
ObjectStore [Obj94] provide path indexes, which follow a
sequence of objects linked by relationships. This
accelerates the evaluation of path expressions.

Due to these different aspects of OODBMS, the
execution model of OODBMS is richer than that of
RDBMS. In a relational system, the most common
operators are scan and join (both of them have different
algorithms), whilst in an object system, the nary .operator
pointer chasing exists. Pointer chasing profits of pt‘e-
computed links, thus has very low CPU costs compared to
traditional binary joins, but it may generate a lot of
random disk accesses. Although there exist many different
commercial DBMSs, the basic algebraic operators are
always the same. Our model covers the following common
operators :

. unary operators including sequential scan, index
scan and clustered index scan ;

l binary operators including nested join, index join
and sort-merge join ;

. nary operator corresponding to pointer chasing.

Pointer chasing in collections C,,C,, . ..C. starts from a
collection C, and performs a depth first traversal of the
tree following (multivalued) attribute pointers from C, to
C,. The average number of pointers in one object of
collection Ci to objects of collection C, is supposed to be
fan,,. A filtering predicate is supposed to be applied in
collection C, with selectivity Sel,.

3.2 The Cost Formulas

We use IlCll to denote the cardinality of collection C, ICI
the number of data pages of collection C, Se1 the predicate
selectivity of a collection, proj the size of all the projected
attributes. For each operator, we determine the cost using a
parametrized cost formula. The role of the tuning
application is to settle the parameters when a new system
joins the federation or more generally, on demand of the

database administrator. Each of the cost formulas contains
three major components : the first item is the initial cost of
the operator, the second term is the cost of processing the
predicate and the third item is the cost of processing the
selected objects.

For evaluating the cost of a selection, the following
cost parameters are introduced :

9 SS, , IS, , US0 are the initial cost of sequential
scan, index scan and clustered index scan ;

l SS, is the amortized I/O cost and CPU cost of
processing each page of the collection (object
fetch and condition checking) for sequential scan;

l IS,, CIS, are costs of index lookup respectively in
the case of index scan and clustered index scan ;

l SS,, IS,, CIS, represent the cost of processing
result tuples respectively in the case of sequential
scan, index scan and clustered index scan.

The cost formulas of the unary operators are then
categorized as follows :

l Sequential scan

SS = SS, + SS, *ICI + SS, * ((CII* Se1 * proj

. Index scan

IS = IS, + IS, + IS, * IICII* Se1 * proj

9 Clustered index scan

CIS = CIS, + CIS, + CIS, *ICI* Se1 * proj

These formulas are very similar to those given in
[DKS92], except that we differentiate the number of
objects and number of pages in a collection and we
introduce the projection cost. The experiments reported in
the sequel demonstrated the need for this differentiation in
object systems. In the formula for sequential scan, the cost
of object fetching and predicate evaluation is
SS1,,*IICII+SS1,O*ICl. To merge I/O and CPU costs, we
define SS, as I/O plus CPU cost per data page ; thus the
amortized cost will be SS,*ICI. As the I/O cost is much
higher than the CPU cost, this approximation works well
when object size is not too small. Index traversal requires
a predicate processing cost almost independent of the
number of objects in a collection, whilst it is proportional
to that number for sequential scan. With clustered index
scan, resulting tuples are processed on a page basis, which

explains the ICI factor in the last formula.

To elaborate the cost formulas of the binary join
operators, we introduce the following parameters :

. Sort is the cost of sorting a collection and it can
be zero if there is an index on .the joining
attribute ;

382

l SJ, is the cost of merging join objects;
l J,, is the selectivity of the join operation on C, and

c,;
l NJ, is the amortized 10 and CPU cost to join

tuples in one page of each collection;
l NJ, , IJ, represent the cost of processing result

tuples for nest join and index join;
The join cost formulas are then categorized as follows :

l Nested join (sequential scan on C2)

NJ = SS(C,)+SS,(C2)+lC1)*lC21* NJ, +

llC$llC& Jlz*NJ:!*proj

l Index join (index scan on C2)

ZJ = SS(C,)+ZS,(C2)+~~C,~~*LS, +

lk1I(*I(C2II* J12*1J2* proj

l Sort merge join

SJ=Sort(C,)+Sort(C2)+SS(C,)+SS(C2)+

IlG Ik IlC2 lb J12 * SJ2 * proj

The novelty of object systems is mainly the integration
of navigation in the query evaluation process. Thus, as
explained above, we introduce a pointer chasing operator
to model. pointer traversals. For pointer chasing evaluation,
we introduce the following cost parameters :

. PC, is the initial cost of pointer chasing, i.e., the
cost of processing the operator and setting up the
traversals.

l PC, is the amortized I/O cost and CPU cost of
fetching an object by its OID and verifying the
predicate ;

l PC, is the cost of processing a result tuple for
pointer chasing.

. n is number of collection.

Thus, the cost of pointer chasing is given by the complex
formula :

PC= PC,+

L

n-l i

PC, * IIC, IF 1 + C n (fanj,j+l * Selj

ix1 j-1)I

+

n-l

PC, * IIC,l~ Sel, * proj* n (fanij+, * Sel,,,)
i=l

PC, denotes the initial cost of pointer chasing ;

L

n-l i

PC~*llC~l~ l+Cn(fUnj,j+l*Selj

)I

gives the COSt

i=l j=]

component of charging the states of objects into memory

through their OIDs and evaluating the predicate ;

PC2*]IC,I(.Sel,*proj*fi(fant,t+l*Selt+,) gives the cost
i=l

of processing the selected objects from this pointer chasing
operator.

3.3 The Cost of Methods

Object-oriented database systems also support operations
to encapsulate data. IRO-DB supports remote operation
invocation through the OQL query language. The
operation code is a method in object systems or a stored
procedure in relational systems. The operation interface is
described in export schema. Since these functions are
written by users, database system cannot provide correct
formulas for estimating their costs. The only possibility to
know the cost is that the database administrator documents
their costs in the data dictionary, when describing the
interface. Each time a function is invoked, the tuner
compares the actual cost and the documented one and
updates the dictionary if there is a significant difference
between the two costs. Further work remains to be done to
confirm the validity of the approach for methods.

4. The Calibrating Database

In order to derive the values of the coefficients used in our
generic cost model presented in the previous section, each
local DBMS must support a synthetic database. The IRO-
DB cost tuner application queries it when required by the
local database administrator to compute the cost
parameters. The cost parameters are stored in the local
cost parameter database. Through IRO-DB, this database
is exported to home sites to give input parameters to the
global cost evaluator, as explained at end of section 2.

-1
Figure 4 - The calibrating database schema.

As mentioned in [DKS92], to calibrate a given system,
there are two major problems : one is that it is difficult to
predict the way a given query is executed by the system ;
the other problem is to eliminate the effect of data
placement, pagination and other physical storage factors

383

on query execution. The first problem is not severe for
object databases since, in actual commercial object-
oriented DBMSs, implemented query optimizers. are not
yet sophisticated. Thus, it is possible to predict the
generated execution plan. For fixing the second problem,
we design a calibrating database whose attribute values
guarantee certain distribution criteria. In this section, we
present our calibrating database which is an object
extension of the relational database of [DKS92].

The calibrating database is composed of six collections
C,,C,...C,. They are interconnected as shown in Figure 4.
Each collection Ci has inverse link with its two neighbor
collections. Apart from the attributes of OID types, each
object of these collections has seven attributes with atomic
values. Suppose the cardinality of a collection is 2”, the
seven attributes have the following characteristics :

l AI : integer [On], indexed, clustered.
l A2 : integer [0, 2”-11, indexed, de facto clustered.
l A3 : integer [On], indexed, unclustered.
l A4 : integer [O,n], no index.
l A5 : integer [0, 2”-11, indexed, unclustered
l A6 : integer [O, 2”-I], no index.
l A7: a string with a certain length to meet the

object size.

The values of these attributes are defined as follows. The
i-th object of a collection C is a tuple composed of the
following values :

l Al[n,i]=x+l, such that 2‘Ii<y’
l A2[n,i]=i
l A3[n,i]=n-x, such that i mod 2”=2’-1
l A4[n, i]=A3[n, i]
l A5[n,i]=2”-‘+j such that i=2”‘*(1+2*j) and

A5[n,O]=O.
l A6[n, i]=AS[n, i].

Table 1 shows the values of these integer attributes when
n=4 (the cardinality of the collection equals to 16).

The reason for choosing the above function for Al is to
model those cases where all the objects are well clustered,
i.e., just fit in continuous pages for a given value of Al.
The rest of the design guarantees the uniform distribution
of attributes for different kinds of queries including
equality and range queries, and for different access
methods using or not using indexes. Any selection on
attribute Al will result in Ciustered index scan. A2
represents the indice number inside the collection. The
values in A3 and A4 guarantee that for any integer
between 0 to n, tuples containing this value on attributes
A3 and A4 are uniformly distributed among all the disk
pages. A5 and A6 are designed for range queries. Any
integer between 0 to n, the set of values [0, 2’-I] are
distributed uniformly inside the collection. Compared to

the design in [DKS92], our functions for assigning values
to atomic attributes are simpler and easier to calculate, and
yet with the same effect in attribute value distribution.

Table 1 -Integer attribute values of a collection with
objects ,

16

I 1 Object Size 1 Cardinality 1 Disk Page Number

Table 2 - Calibrating database configuration.

Objects are interconnected each other. The maximum
fan out number between two neighbor collections is set to
a fixed value. For practical calibrations, it is set to 4.
Experiences have shown that changing this value does not
significantly change the coefficients in the path traversal
cost formulas, as exemplified below. Thus, each object
refers to 4 objects in the next collection, and the links
among objects are randomly generated. The object sizes
and cardinalities of the collections are different. Table 2
gives the database configuration. The whole calibrating
database holds about 60M bytes.

A large amount of sample queries are designed for the
calibrating. These queries include simple selection queries
on one collection, join queries involving two collections,
and navigation queries involving several collections. Both
equality and range predicates are included in the sample
set. Figure 5 gives some of these queries expressed in
OQL.

5. Calibrating ObjectStore and 02

In this section, we present some results of our
experimentation on calibrating two commercial object-
oriented DBMSs : ObjectStore and 02. The objective of
this experimentation is not to compare performance, but to
derive the coefficients values to settle our generic cost

384

select Al from C5 where Al=n ;
select Al from C3 where Al=n ;
select A2 from C5 where A2-a ;
select A6 from C5 where A6<n ;
select Al,A2 from C5 where A4=n ;

select Al from C4 where Al=n ;
select Al from Cl where Al=n ;
select A5 from C5 where A5<n ;
select A4 from C5 where A4=n ;

select Al,A2,A3,A4, from C5 where A4=n ;
select C4.A1, C5.A2 from C4, C5 where C4.Al=n & C4.Al=CS.A1 ;
select C4.A1, C5.A3 from C4, C5 where C4.Al=n & C4.Rl=C5.A3 ;
select C4.A2, C5.A2 from C4, C5 where C4.A2a & C4.A2=C5.A2 ;
select C4.A5, C5.A5 from C4, C5 where C4.A5<n & C4.A5=C5.A5 ;
select C4.A6, C5.A6 from C4, C5 where C4.A6<n & C4.A6=C5.A6 ;
select y.Al from x in CO, y in x.Cl where x.A3 = n ;
select y.Al from x in CO, y in x:Cl where x.A4 < n ;
select z.Al from x in CO, y in x.Cl, z in y.C2 where x.A3 = n ;
select z.Al from x in CO, y in x.Cl, z in y.C2 where x.A4 < n ;
select u.Al from x in CO, y in x.Cl, z in y.C2, u in z.C3 where x.A3 = n ;
select u.Al from x in CO, y in x.Cl, z in yC2, u in z.C3 where x.A4 < n ;

Figure 5 - Some sample calibrating queries.

formulas. In our experimentation, ObjectStore (version
3.0.2) runs on Windows NT 3.5 using a Pentium 90
machine with 24 M of main memory, while 02 (version
4.2) runs on a SUN Spare 4 with 32 M of memory.

Figure 6 shows the result of different scan operations.
The legends of the curves for 02 and ObjectStore start
with ‘02’ and ‘OS’ respectively. All the curves with ‘T’
in the legend represent the theoretical cost, which is from
our cost estimation.

Figure 6(a) shows the results of sequential scan. In our
formula, the cost of scan and predicate evaluation is
proportional to collection size and the cost for processing
the result tuples is proportional to the number of result
tuples! This matches quite well with the experimental
results. Since the cardinality of C5 is twice as that of C3,
and their object sizes are the same, we can see from Figure
6(a) that the inclination of OSC5 is almost twice as much
as that of OSC3 ; the same tendency is observed in 02C5
and 02C3. Figure 6(b) shows the result of index scan. The
cost of initialization, index access and predicate evaluation
is independent of the collection while the cost for
processing the result tuples is proportional to the number
of result tuples. The response time is more sensitive to the
collection cardinality than the actual size of the object.
Figure 6(c) gives the experimental results of clustered
index scan. Due to the fact that the result objects are
clustered in the physical storage, the result processing cost
is proportional to the number of disk pages of the
collection rather than to the number of result tuples, as in
the case of non clustered scans. Comparing all these
experimental and theoretical curves, we observe that they
match quite well. Figure 7 shows the response time of
pointer chasing. The legend ‘P4fan3’ represents the curve
for path length equals to 4 and fan out equals to 3. The
same notation is used to name other curves.

Figures 7(a) and 7(c) give the response time of pointer
chasing when path length varies from 4 to 5 and fan out
from 3 to 4. From both figures for ObjectStore and 02, we
discover that the response time of pointer chasing of path
length 5 and fan out 3 is quite close to that of path length 4
and fan out 4. From the cost formula for pointer chasing,
we can see that the major cost happens to be in the second
item, which represents the cost of following object links.
We calculate that the total number of traversed object links
equals to n* 364 for P5fan3 and n*341 for P4fan4, where
n is the number of qualified objects in the starting
collection. This explains the curve similarity phenomenon.
As the number of accessed objects in the starting
collection of the path grows, the cost of the traversal
increases proportionally. Figure 7(b) and 7(d) show the
result of pointer chasing for different path lengths and fan
outs. The number of qualified objects in the starting
collection of the path remains to 32. The horizontal axes is
the fan out and each curve represents the response time of
different path lengths when fan out keeps on varying. We
notice that the response time of pointer chasing is very
sensitive to the fan out when the path length is long. TP4
and TP5 follow the experiment result and this again proves
the correctness of the pointer chasing formula.

The above experimentation helps to derive the values
of the cost formula parameters and proves the validity of
our set of cost formulas as well. Thus, it is appropriate to
tune our cost formulas with coefficients derived from our
experimentation. The calculated values of these
coefficients are given in the table 3. As explained in
section 2, they constitute the results of the tuner
application, which export them as the cost parameter
database to be used by the global query optimizer.

385

Figure 6(a) - Sequential scans. Figure 7(b) - Pointer chasing.

Figure 6(b) - Index scans. Figure 7(c) - Pointer chasing.

Figure 6(c) - Clustered index scans.

Figure 7(a) - Pointer chasing.

Figure 7(d) - Pointer chasing.

Object 02 Object 02
Store Store

sso 0.2 093 IS0 66 097

SSl 0,018 0,027 IS1 0,08 0.08

ss2 0,024 0,024 IS2 0,025 0,032

CISO 0,6 1 IO,6 1 PC0 IO.25 IO,05 1
1

CISl 0.08 0.07 PC1 0,008 0,007

as2 0,008 0.0026 PC2 0,028 0,027

Table 3 - The Cost coefJicients of ObjectStore and 02.

386

6. Validation With The 007 Benchmark

To further validate our approach, we use our generic cost
model with the derived coefficients to estimate the cost of
queries on the 007 benchmark. The 007 benchmark was
designed by the Wisconsin database research group
[CDN93]. In its schema, each composite part is an
aggregate of a number of atom@ parts, which could
represent variables, statements or expressions in a CASE
procedure. Over these composite parts, a base assembly
hierarchy has been added to represent higher level design
objects such as an ALU in a CAD application. A complex
assembly is an aggregate of other assembly objects. A
module describes a complete assembly hierarchy. Since
the database schema is quite rich and objects are
interconnected, the 007 benchmark is very suitable for
testing queries on object traversals. There are three
different configurations proposed by 007 : small, medium
and large databases. In our experimentation, we choose the
medium size, which is about 50 M. The benchmark is
generated on.ObjectStore for Windows NT platform.

Among all the collections in 007, atomicpart is the
largest since the relationships between collections from up
to down in the schema graph are all one-to-many. For the
validation, we generate queries on atomicpart for testing
the unary operator such as sequential scan, index scan,
clustered index scan. Since the binary join operators such
as nested join and sort merge join are not implemented on
ObjectStore, all the queries with path expressions are
executed using pointer chasing. If the fan out between two
neighbor collections is greater than 1, the depth-first-
traversal method is applied [Obj94].

From Figures 8(a), 8(b), 8(c), we can see that the
response times of queries involving only one collection
match quite well with the estimated costs by our generic
cost model. And for low selectivities, the difference
between the estimated cost and the real cost is less than
5%. When the selectivity goes higher, the error increases
also. But in the worst case as in the clustered index scan,
the correctness can still reach about 80%. Figure 8(d)
shows the result of executing a query with path expression
module.assembly.compositePart.atomicPart. The fan out
between any of the two neighbor collections is set to 3.
The horizontal axes gives the number of objects in the
starting collection module. The theoretical curve is
calculated using the pointer chasing formula described in
section 2 with the coefficients derived from calibrating
procedure. Comparing these two curves, we can see that
the proposed formula represents quite well the propriety of
pointer chasing. Second, the coefficients derived from the
calibrating database can be used for estimating the query
cost of path traversals within the 007 database with less
than 10% of error in most cases.

Figure 7(a) - Validation on 007 benchmark.

Figure 7(b) - Validation on 007 benchmark.

Figure 7(c) - Validation on 007 benchmark.

Figure 7(d) - Validation on 007 benchmark.

387

7. Conclusion

IRO-DB is an object-oriented federated database system
based on the ODMG standard. The global data model is
expressive enough to capture the meaning of all local data
sources. It is scaleable in functionality, so that local
adapters can be developed with few functionalities - for
example, without supporting methods and relationships -
and enhanced later. The OQL subqueries sent to local
systems only invoke functionalities described in export
schemas. It is the role of the global query processor to
decompose global queries in local subqueries conforming
to the various export schemas. Global query optimization
is important to improve performance, e.g., to avoid costly
joins when fast path traversals are possible, to favorite
parallel execution of subqueries, etc.. As integrated views
of the federated databases can be easily defined using the
schema integrator workbench, global queries may become
very complex, which further requires good optimization
techniques.

One of the major problems of global query
optimization is that the cost functions of the different
participating DBMSs are not available. In the IRO-DB
context, we have proposed and experimented a generic
cost model for object-oriented DBMSs and also a method
for deriving the values of the cost coefficients for this
model. Our generic cost model includes the cost formulas
for unary, binary and nary operators. The nary operator
pointer chasing is considered as one of the important
aspects of object databases. It is generally applied for
queries with path expression.

W,e partially validate our approach through querying
the 007 benchmark. Throughout the experimentation, we
can see that our cost model provides quite accurate
estimations for different kinds of queries. The results show
that the coefficients derived from the calibrating databases
can be used on other databases if the system configuration
remains unchanged. This proves that the architecture we
presented in Figure 3 is appropriate for a federated DBMS
to have knowledge of the performance characteristics of
each participating site. The calibrating database is
generated at each local site and the cost tuner application
queries the local DBMSs using sample queries so as to
keep the values of coefficients valid in a cost parameter
table exported to query sites through the federated
database system.

We will continue our validation on different kinds of
queries on 02 and ObjectStore, as well as on some
relational databases. These results will help the global
query optimizer to choose the optimal execution schedule
to favor efficient executions. As cost model is a difficult
subject, there are still many open issues such as the cost
of methods, the cost formula for some special operators

implemented in different DBMSs, etc. Today, in most
commercial object-oriented DBMSs, the implemented
query optimizer is not yet complicated ; thus it is possible
to predict the selected execution plan of a given query. But
once these participating query optimizers will become
sophisticated, our approach could face a problem to
guarantee that the subqueries sent to each site will be
executed as supposed by the global query optimizer. The
question is then to determine when the estimated cost will
become a bad approximation. Further knowledge of the
behavior of different DBMS optimizers will then be
required to enhance the global query optimizer.

Acknowledgment The authors wish to thank Beatrice
Finance, Veronique Smahi, JtrGme Fessy and Sofien
Gannoimi from the PRiSM laboratory; Regis Legoff from
EDS; Wolfgang Klas, Peter Fankhauser, Ralph Busse and
Gerald Huck from the GMD-IPSI Laboratory; Virginia
Escuder from Ibermatica; and Antonis Ramfos from
Intrasoft for their collaboration. Without them IRO-DB
would not be such as it is now.

References

[ADD911

[ADS931

[BCDS9]

[BCD93]

[BE951

[BFE95]

Ahmed R., DeSchedt P., Du W., Kent W.,
Ketabchi M., Litwin W., Rafii A., Shan M.,
“The Pegasus Heterogeneous Multidatabase
System”, IEEE Computer, 24:12, Dec. 1991,
pp. 19-27.

Andersson M., DuPont Y., Spaccapietra S.,
Yetongnon K., Tresh M., Ye H., “The
FEMUS approach in Building a Federated
Multilingual Database System”, 3rd
International Workshop on RIDE-IMS,
Vienna, Austria, April 1993.

Bancilhon F., Cluet S., Delobel C., “A query
language for the 02 object-oriented database
system”, Proceedings of 2nd Intl. Workshop
on Database Programming Languages, 1989.

Bukhres O.A., Chen J., Du W., Elmagarmid
A.K., Pezzoli R., “InterBase: An Execution
Environment for Heterogeneous Software
Systems”, IEEE Computer, 26:8, August
1993, pp. 57-69.

Bukhres O.A., Elmagarmid A.K. Ed., Object-
Oriented Multibase Systems, Prentice Hall,
1995.

Bancilhon F., r’erran G., “The ODMG
Standard for Object Databases”, Proceedings
of the 4th International Conference on
Database Systems for Advanced Applications
(DASFAA’95), World., Scientific Pub.,
Singapore, April 1995.

388

[BF092]

[Cat931

[CDN93]

[DKS92]

[DL87]

[FBH94]

[FFS95]

[FLU941

tGar941

[GGT95]

[KGM91]

Bertino E., Foscoli P., “An analytical model
of object-oriented query costs”, Proceedings
of Workshop on Persistent Object System, in
Computing Series, Springer Verlag, 1992.

Cattell R.G. Ed., Object Databases : The
ODMG-93 Standard, Morgan & Kaufman,
1993.

Carey M.J., DeWitte D.J., Naughton J.F.,
“The 007 Benchmark”, Sigmod Record
22(2) :12-21, 1994.

Du W., Krishnamurthy R., Shan M.C., “Query
optimization in heterogeneous DBMS”,
Proceedings of 18th International Conference
on Very Large Databases, Vancouver, 1992.

Dwyer P., Larson J., “Some’experiences with
a distributed database tested system”,
Proceedings of the IEEE, 75(5), pp. 633-647,
May 1987.

Fankhauser P., Busse R., Huck G., “IOM
Design Specification”, Technical report, IRO-
DB Esprit Project (EP8629),
IRO/SPEC/GMD/ FBH940629, GMD-IPSI,
Darmstadt, Germany, July 1994.

Finance B., Fessy J., Smahi V., “Query
Processing in IRO-DB”, Conf. Bases de
Don&es Avancees, INRIA Ed., Nancy,
France, Sept. 1995.

Frohn J., Lausen G., Uphoff H., “Access to
objects by path expressions and rules”,
Proceedings of 20th International Conference
on Very Large Databases, 1994.

Gardarin G.et al., “IRO-DB : A Distributed
System Federating Object and Relational
Databases”, In Object-Oriented Multibase
Systems, 0. Bukres and A. Elmagarmid Ed.,
Prentice Hall, 1995.

Gardarin G., Gruser J.R, Tang Z.H., “A Cost
Model for Clustered Object-Oriented
Databases”, Proceedings of Int. Conference on
Very Large Databases VLDB, Zurich,
Switzerland, 1995.

T. Keller, G. Graefe, D. Maier, “Efficient
Assembly of Complex Objects”, Proceedings
of ACM-SIGMOD International Conference
on Management of Data, 148-157., 1991.

[KKS90]

[LVZ93]

[MHG92]

[Obj94]

[R=w

[Shag61

[Shi81]

[Swag91

[Wid95]

[WSH93]

[ZW86]

M. Kifer, W. Kim, Y. Sagiv, “Querying
object-oriented databases”, Proceedings of
ACM-SIGMOD International Conference,
1990.

R. Lanzelotte, P. Valduriez and M. Zait. On
the effectiveness optimization search
strategies for parallel execution spaces. In
Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

Manola F., Heiler S., Georgakopoulos D.,
Hornick M., Brodie M., “Distributed Object
Management”, International Journal of
Intelligent and Cooperative Information
Systems, 1: 1, March 1992, pp. 5-42.

ObjectStore Editor, “ObjectStore User
Guide”, ObjectStore Pub., Release 3.0, 1994.

Ramfos A., Fessy J., Finance B., Smahi V.,
“IRO-DB : a solution for Computer Integrated
Manufacturing Applications”, Proceedings of
the Third International Conference on
Cooperative Information System (CoopIS-95),
Vienna, Austria, May, 1995..

Shapiro L., “Join Processing in Database
Systems with Large Main Memories”, ACM
Transactions on Database Systems, Vol 11
n03, p239-264, September 1986.

Shipman D., “The functional data model and
the data language DAPLEX”, IEEE
Transactions on database systems, 6(l), pp.
140-173, March 1981.

Swami A., “A validated cost model for main
memory databases”, Performance Evaluation
Review, May 1989.

Widom J., “Research Problems in Data
Warehousing”, Proc. of the 4th Int. Conf. on
Information and Knowledge Management
(CIKM), Nov. 1995.

Woelk D., Shen W., Huhns M., Cannata P.,
“Model Driven Enterprise Information in
Carnot”: 1st International Conference on
Enterprise Integration Modeling, The MIT
Press, Cambridge, Mass., 1992, pp. 301-309.

S. Zdonik and P. Wegner. Language and
methodology for object-oriented database
enviroments.. In Proceeding of the Hawaii
International Conference on System Sciences,
1986

389

