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Abstract 

IRO-DB is an object-oriented federated database 
system to access multiple data sources from an 
ODMG compliant C++ inteqace. The system 
encompasses several components, including local 
database adapters to homogenize local data sources, 
a remote object access component to query and 
transfer collections of objects from site to site, ana’ a 
mediator to de$ne integrated views, decompose ana’ 
optimize queries, and combine results. This paper 
gives an overview of the IRO-DB architecture and 
describes in detail the cost evaluator currently under 
elaboration for the next version of the distributed 
query optimizer. The cost model is composed of a set 
of mathematical formulas with coejficients to 
estimate the cost of the search operators. The 
coeficients are deduced from a calibrating object- 
oriented database composed of linked collections of 
objects. A tuning application is run on each local site 
to adjust the cost formulas and fix the coeficients. 
We report on the tuning of 02 and ObjectStore. We 
show that the estimation is quite accurate for path 
traversals with the 007 benchmark on top of 
ObjectStore. 

1. Introduction 

Recently several research projects have experimented the 
use of object-oriented techniques to facilitate the 
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complex task of building federated database systems. 
The object-oriented paradigm brings new solutions in 
several dimensions, including the modeling of local data 
sources as objects with a well defined and published 
interface, the use of a semantically rich common object 
model to ease application integration, the development of 
standards to interoperate among objects, the use of 
object-oriented transaction models, etc. Well known 
research projects in object-oriented multidatabase 
systems are Pegasus [ADDgIl, DOMS [MHG92], 
Carnot [WSH93], Femus [ADS93], InterBase [BCD93], 
etc. A complete survey of object-oriented multidatabase 
systems can be found in [BE95]. 

The current paper focuses on IRO-DB (Interoperable 
Relational and Object-Oriented DataBases) [Gar94], an 
ESPRIT project currently developed in Europe. The 
novelty of the IRO-DB architecture is to use the 
ODMG’93 standard [Cat931 as a common object model 
supporting the OQL pivot language to federate various 
object-oriented and relational data sources. It is also 
clearly divided into three layers, thus facilitating the 
cooperative development of the project in several 
research centers. The local layer adapts local data 
sources to the ODMG standard ; the communication 
layer efficiently transfers OQL requests and the resulting 
collections of objects ; the interoperable layer provides 
schema integration tools and a global query evaluator. A 
first version of the system is currently operational 
interconnecting the Ingres relational system and the 
Matisse and Ontos object systems. 02 and ObjectStore 
are currently in the process of being connected to IRO- 
DB. A CIM application has been prototyped on top of 
the system [RF’F95]. 

Query optimization is a major issue in federated 
database systems. In the current version of IRO-DB, the 
query optimizer applies simple heuristics to detach 
subqueries that are sent to the participating systems. A 
synthesis query runs on the query site to elaborate the 
final answer to the user. More precisely, given an OQL 
query Q, an algebraic tree T(Q) is elaborated and simply 
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transformed by moving down selections. More 
sophisticated transformations could be applied to find a 
better execution plan, but it is very difficult for the 
optimizer to estimate query costs as physical 
characteristics of participating DBMSs are unknown. 
However, due to the diversity of the participating 
systems, a cost-based query optimizer is required. For 
example, path traversals are very efficient in object 
system, but inefficient in relational system. Thus the 
need of a cost model is evident for a multidatabase 
system such as IRO-DB. If the home site where the 
global query is compiled has the knowledge of the 
response time of each subquery sent to the participant 
DBMSs, it can choose the best plan to reduce local 
execution time and the total communication cost and to 
favorite parallel execution of sub-queries. 

In [DKS92], a logical cost model with cost 
coefficients is developed for relational systems. The 
coefficients represent on average how much CPU time, 
I/O time, and other overhead is involved in query and 
result processing A calibrating procedure is proposed to 
estimate the coefficients on relational DBMSs, including 
AllBase, DB2, Informix, and Oracle. Another novelty of 
the IRO-DB project is to extend this strategy to deduce 
the necessary information for object systems, such as 02 
and ObjectStore. The extension requires the introduction 
of a path traversal operator, also called pointer chasing. 
Generic formula is designed to evaluate the cost of the 
pointer chasing operator. Cost parameters such as object 
size, collection size, projection size, and fan out are also 
introduced. Using the IRO-DB generic formulas, we 
calibrate two participating systems, namely ObjectStore 
and 02. We finally use the 007 benchmark to validate 
our genetic cost model for path traversals. 

Of course, the generic cost model is less precise than 
a proprietary one, which has knowledge of all the 
detailed execution algorithms implemented inside the 
DBMS. But still the approach of using a generic cost 
model can provide good results due to two reasons. First, 
low level operators in most commercial DBMSs are very 
similar, for example, scan, index scan, nested join, sort 
merge join, depth first pointer chasing, etc.. This makes 
possible to propose similar formulas with coefficients to 
estimate their costs. Second, as the coefficients are 
derived from testing a large amount of sample queries 
through the real configuration of participating DBMS, 
the generic cost model needs less system parameters and 
gives better estimation in many cases. As pointed out in 
[LVZ93], the objective of query optimization is not to 
find the best execution plan, but rather to avoid the bad 
ones. If the generic cost model can give an accurate 
estimation with less than 20% of errors in a 
heterogeneous system such as IRO-DB, it is reasonable 

to consider that this approach solves the technical 
problem of cost-based global query optimization. 

This paper is organized as follows. In section 2, we 
present the IRO-DB system architecture. The 
architecture is novel because (i) it is based on the 
ODMG standard as pivot model, (ii) it integrates 
multiple data sources through a generic toolbox to write 
local database adapter scaleable in functionality, (iii) it 
gives object-oriented facilities to define integrated views 
on the client home site, (iv) it integrates an active 
dictionary with a generic cost model for global query 
optimization. In section 3, we present our generic cost 
model for object-oriented DBMSs. The cost model is 
novel because it is parameterized with operators and 
coefficients adequate for object systems. In section 4, we 
show the design of the. synthetic calibrating database. It 
is an extension of that proposed in [DKS92] with object- 
oriented features (e.g., links). Section 5 gives the results 
of the calibrating procedure on ObjectStore and 02, 
which validate the approach. Section 6 further validates 
the approach through comparing the estimated and real 
costs of typical path traversal queries for the 007 
benchmark. Section 7 concludes the paper. 

2. IRO-DB System Architecture 

IRO-DB federates relational and object-oriented 
databases through an interchange object-oriented data 
model. The selected object model is the ODMG data 
model [Cat93]. OQL, the ODMG query language, is 
provided to query interoperable databases. It is the pivot 
language of the IRO-DB system. OML/C++, the ODMG 
manipulation language embedded in C++, is used to 
write applications. 

2.1 Schema Architecture 
The IRO-DB schema architecture is represented in 
Figure 1. Each local database of a local DBMS is 
described with a schema called a local schema. A local 
schema describes the subset of a database that a local 
system -authorizes to access from entitled cooperating 
systems. Each local schema is defined using the data 
definition language of the corresponding local DBMS. 
An export schema is obtained by translating a local 
schema into the ODMG object-oriented data model. The 
benefit of using an upcoming standard is the expected 
availability of ODMG compliant interfaces for many 
commercial object DBMSs, which will simplify the 
mapping, as it is already the case for the 02 system 
[BFE95]. 

To produce an homogeneous view of multiple remote 
databases on a client site, an integrated schema has to be 
defined. An integrated schema is an integration of parts 
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of export schemas included in a federated database, with 
a unique semantic for all object classes and operations. It 
can be perceived as an integrated view of the federated 
database. Integrated classes are derived from imported 
classes, which are defined as a partial one-to-one copy of 
remote exported ones [RFF95]. The schema integrator 
workbench [FBH94] is an interactive tool to help the 
database administrator to define integrated classes and 
relationships. The specification of integrated classes 
consists of two parts : the interface specification and the 
mapping specification. The interface is specified in 
standard ODMG syntax (i.e., ODL). The mapping 
specifies the combination (e.g., aggregation, 
generalization, fusion) of imported classes to derive an 
integrated class. Three kinds of OQL queries are 
generated by the integrator workbench to define the 
mapping, the first to populate the integrated class 
extents, the second to define the attribute mappings and 
the third to generate its relationships. 

L................. : . . . . . . . . . . . . . . . . 2 i 

. . . . . . . ...) is integrated in 

w is redefined in 

Figure I -The organization of schemas. 

2.2 The Federated System Layers 

The architecture of IRO-DB consists of three functional 
layers as represented in Figure 2. At the interoperable 
layer, the integrator workbench stands for specifying 
integrated views, which are generated as ODL/C++ class 
definitions. Integrated and export schemas are stored in a 
repository known as the data dictionary. Object 
manipulation facilities include the OML/C++ ODMG 
user interface and modules to decompose global queries 
in local ones and to control global transactions. More 
precisely, the global query processor maps queries 
referencing integrated views to subqueries referencing 
import schemas. It also performs query optimization and 
determines the best synthesis query to combine partial 
results on the home DBMS. The global object manager 
collects the results of local subqueries and performs the 
final combination of partial results on top of the home 

object-oriented DBMS (Ontos in the current 
implementation). 

Figure 2 - The IRO-DB system architecture 

The communication layer implements an object- 
oriented remote data access protocol (Remote Object 
Access Protocol - ROA) which is an extension of the 
SQL/Call Level Interface of the SQL Access Group to 
support object-oriented features. This layer provides 
services to establish connections with remote database 
servers, to submit OQL queries to these servers and to 
transfer results from the local layer to the interoperable 
layer. Results of queries are organized as collections of 
objects. Objects are identified through global identifiers 
composed of a server identifier, a class extent identifier 
and a marker inside the class extent, i.e., a bit string to 
locally retrieve the object within the class extent. In 
conformance with ODMG, sets, bags, arrays and lists are 
supported as collections. According to the OQL query 
type, a collection of object identifiers is generated first 
on the server. Then, the collection is transferred on 
demand from the global object manager using iterators. 
Identifiers are transferred by blocks to avoid message 
overhead. Imported objects are generated in virtual 
classes representing the classes of export schemas on the 
home site. The identifier of the original object is kept in 
the imported object, so that any operation or attribute 
applied to it can be shipped to the original object. 

The local layer is composed of local database 
adapters. A local database adapter maps ODMG 
schemas and queries to local schemas and queries. It 
provides services to answer OQL queries on an 
abstraction of a local schema in term of an export 
schema specified in ODL. An export schema only 
describes locally implemented interfaces. Thus, only 
locally available functionalities are described in export 
schemas. This feature simplifies the implementation of 
local database adapters on raw data sources, as they have 
to provide only a restricted subset of the OQL query 
language to filter independent collection of objects. The 
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adapter can also support full functionalities of OQL on 
ODMG databases, as it is the case for example with the 
02 system. Available data types with associated 
operations are described in the export schema stored in the 
local data dictionary (DD). The local data dictionary is 
similar in structure to the global one. A function is 
available to export schemas on demand Rom a remote site. 
Schemas are stamped with a version number to guarantee 
their consistent use throughout the network. In summary, 
the interoperable layer can only invoke locally available 
functionalities described in the local data dictionary. That 
means for example that methods and relationships can not 
be invoked if they are not described in export schemas, 
which is the case for relational systems. 

2.3 Architecture of the Cost Evaluator 

The global query processor [FFS95] decomposes end-user 
queries and chooses one of the best query execution plans 
based on cost estimations. The optimizer first accepts 
OQL queries referring integrated classes. Next, each 
integrated class is replaced by the query defining it in 
terms of imported classes. Integrated class attributes are 
also replaced by their definitions retrieved in the data 
dictionary. If there exists several layers of integrated 
views, the process is applied recursively. Finally, an object 
algebra tree is generated to represent the whole 
transformed query. Usual transformation rules are applied 
to generate equivalent trees. For each tree, local 
subqueries are detached to be sent to local sites and a 
synthesis query is generated to be run on the results by the 
home ODBMS. The role of the cost evaluator is to 
determine the presumed execution cost of each tree, in 
order to choose the best one using a search strategy. 

The cost evaluator is based on a cost model. ?‘he cost 
model contains a set of formulas representing the cost of 
algebraic operators. In order to return to the optimizer the 
estimated cost of a tree, the cost evaluator consults the 
data dictionary, which gathers useful information from 
different databases. There are three kinds of information : 
the database import schemas, the statistics of collections 
including cardinality, selectivity, fan out, object size, 
method cost, etc., and the system configurations including 
the type of the participating DBMSs, network parameters, 
and system capabilities. 

As the participating DBMSs are autonomous, they can, 
not provide some detailed parameters that the cost model 
requires, such as the cost of a selection, a join or a path 
traversal. To compensate, they have to implement a 
specific application called the cost tuner. The cost tuner is 
designed to test sample queries for deriving values of the 
required coefficients. Once a new participant enters the 
federated system, the cost tuner invokes the calibrating 

procedure on this DBMS using predefined local 
transactions that have to be provided. The calibrating 
procedure instantiates a cost parameter table memorizing 
the local system cost model required parameters. Figure 3 
introduces the architecture of the cost evaluator for 
deriving the query cost of a global OQL query. The cost 
model is a set of mathematical formulas computed on 
demand of the global query optimizer, using parameters 
stored in the data dictionary. The generic parameters are 
retrieved from the cost parameter tables of local sites on 
demand of the home site database administrator through 
specific queries. The data dictionary also contains, for 
each collection described in an import schema (IS), the 
number of objects, the average size of an object and the 
existence of indexes with their types (clustered or not). 
These information are important to select the adequate 
formulas for cost estimations. They can be refreshed from 
export schemas (ES) on demand of the home site database 
administrator. 

Figure 3 - Detailed architecture of the cost evaluator. 

3. The Generic Cost Model 

A cost model is a set of math formulas used to estimate the 
cost of an execution plan. Cost-based query optimizers 
select the most efficient execution plan among the 
alternatives based on the cost estimations. There are 
several major components of the cost : CPU cost, IO cost, 
and Communication cost. IRO-DB requires a generic cost 
model as participating DBMSs and systems are not known 
in detail. Thus, we do not separate CPU and IO costs, 
which are buried in global cost formula parameters. An 
execution plan consists of a set of basic operators ; the cost 
of each is estimated separately and their sum gives the 
total response time of executing the query. 
Communication cost can be reflected more precisely 
according to the network description ; this topic is out of 
the scope of this paper. 
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3.1 Generic Operators 

One of the important aspects of OODBMS is object 
navigation [ZW86, KKS90, KGM91]. Each object has a 
unique identifier (OID) and objects from different classes 
can refer each other freely. OID can be either physical as 
in ObjectStore or logical as in Versant. No matter which 
OID technique is applied, an OODBMS provides an 
efficient way for decoding OIDs and charging the state of 
object into memory. This mechanism is the base of the 
navigation procedure in object database systems. 
Navigation among objects is often called pointer chasing. 

To speed up the query execution, object-oriented 
DBMSs support classic indexes to class instances. Indexes 
are generally organized as B-trees containing attribute 
values with OID lists. Further, some systems like 
ObjectStore [Obj94] provide path indexes, which follow a 
sequence of objects linked by relationships. This 
accelerates the evaluation of path expressions. 

Due to these different aspects of OODBMS, the 
execution model of OODBMS is richer than that of 
RDBMS. In a relational system, the most common 
operators are scan and join (both of them have different 
algorithms), whilst in an object system, the nary .operator 
pointer chasing exists. Pointer chasing profits of pt‘e- 
computed links, thus has very low CPU costs compared to 
traditional binary joins, but it may generate a lot of 
random disk accesses. Although there exist many different 
commercial DBMSs, the basic algebraic operators are 
always the same. Our model covers the following common 
operators : 

. unary operators including sequential scan, index 
scan and clustered index scan ; 

l binary operators including nested join, index join 
and sort-merge join ; 

. nary operator corresponding to pointer chasing. 

Pointer chasing in collections C,,C,, . ..C. starts from a 
collection C, and performs a depth first traversal of the 
tree following (multivalued) attribute pointers from C, to 
C,. The average number of pointers in one object of 
collection Ci to objects of collection C, is supposed to be 
fan,,. A filtering predicate is supposed to be applied in 
collection C, with selectivity Sel,. 

3.2 The Cost Formulas 

We use IlCll to denote the cardinality of collection C, ICI 
the number of data pages of collection C, Se1 the predicate 
selectivity of a collection, proj the size of all the projected 
attributes. For each operator, we determine the cost using a 
parametrized cost formula. The role of the tuning 
application is to settle the parameters when a new system 
joins the federation or more generally, on demand of the 

database administrator. Each of the cost formulas contains 
three major components : the first item is the initial cost of 
the operator, the second term is the cost of processing the 
predicate and the third item is the cost of processing the 
selected objects. 

For evaluating the cost of a selection, the following 
cost parameters are introduced : 

9 SS, , IS, , US0 are the initial cost of sequential 
scan, index scan and clustered index scan ; 

l SS, is the amortized I/O cost and CPU cost of 
processing each page of the collection (object 
fetch and condition checking) for sequential scan; 

l IS,, CIS, are costs of index lookup respectively in 
the case of index scan and clustered index scan ; 

l SS,, IS,, CIS, represent the cost of processing 
result tuples respectively in the case of sequential 
scan, index scan and clustered index scan. 

The cost formulas of the unary operators are then 
categorized as follows : 

l Sequential scan 

SS = SS, + SS, *ICI + SS, * ((CII* Se1 * proj 

. Index scan 

IS = IS, + IS, + IS, * IICII* Se1 * proj 

9 Clustered index scan 

CIS = CIS, + CIS, + CIS, *ICI* Se1 * proj 

These formulas are very similar to those given in 
[DKS92], except that we differentiate the number of 
objects and number of pages in a collection and we 
introduce the projection cost. The experiments reported in 
the sequel demonstrated the need for this differentiation in 
object systems. In the formula for sequential scan, the cost 
of object fetching and predicate evaluation is 
SS1,,*IICII+SS1,O*ICl. To merge I/O and CPU costs, we 
define SS, as I/O plus CPU cost per data page ; thus the 
amortized cost will be SS,*ICI. As the I/O cost is much 
higher than the CPU cost, this approximation works well 
when object size is not too small. Index traversal requires 
a predicate processing cost almost independent of the 
number of objects in a collection, whilst it is proportional 
to that number for sequential scan. With clustered index 
scan, resulting tuples are processed on a page basis, which 

explains the ICI factor in the last formula. 

To elaborate the cost formulas of the binary join 
operators, we introduce the following parameters : 

. Sort is the cost of sorting a collection and it can 
be zero if there is an index on .the joining 
attribute ; 
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l SJ, is the cost of merging join objects; 
l J,, is the selectivity of the join operation on C, and 

c,; 
l NJ, is the amortized 10 and CPU cost to join 

tuples in one page of each collection; 
l NJ, , IJ, represent the cost of processing result 

tuples for nest join and index join; 
The join cost formulas are then categorized as follows : 

l Nested join (sequential scan on C2) 

NJ = SS(C,)+SS,(C2)+lC1)*lC21* NJ, + 

llC$llC& Jlz*NJ:!*proj 

l Index join (index scan on C2) 

ZJ = SS(C,)+ZS,(C2)+~~C,~~*LS, + 

lk1I(*I(C2II* J12*1J2* proj 

l Sort merge join 

SJ=Sort(C,)+Sort(C2)+SS(C,)+SS(C2)+ 

IlG Ik IlC2 lb J12 * SJ2 * proj 

The novelty of object systems is mainly the integration 
of navigation in the query evaluation process. Thus, as 
explained above, we introduce a pointer chasing operator 
to model. pointer traversals. For pointer chasing evaluation, 
we introduce the following cost parameters : 

. PC, is the initial cost of pointer chasing, i.e., the 
cost of processing the operator and setting up the 
traversals. 

l PC, is the amortized I/O cost and CPU cost of 
fetching an object by its OID and verifying the 
predicate ; 

l PC, is the cost of processing a result tuple for 
pointer chasing. 

. n is number of collection. 

Thus, the cost of pointer chasing is given by the complex 
formula : 

PC= PC,+ 

L 

n-l i 

PC, * IIC, IF 1 + C n (fanj,j+l * Selj 

ix1 j-1 )I 

+ 

n-l 

PC, * IIC,l~ Sel, * proj* n ( fanij+, * Sel,,, ) 
i=l 

PC, denotes the initial cost of pointer chasing ; 

L 

n-l i 

PC~*llC~l~ l+Cn(fUnj,j+l*Selj 

)I 

gives the COSt 

i=l j=] 

component of charging the states of objects into memory 

through their OIDs and evaluating the predicate ; 

PC2*]IC,I(.Sel,*proj*fi(fant,t+l*Selt+,) gives the cost 
i=l 

of processing the selected objects from this pointer chasing 
operator. 

3.3 The Cost of Methods 

Object-oriented database systems also support operations 
to encapsulate data. IRO-DB supports remote operation 
invocation through the OQL query language. The 
operation code is a method in object systems or a stored 
procedure in relational systems. The operation interface is 
described in export schema. Since these functions are 
written by users, database system cannot provide correct 
formulas for estimating their costs. The only possibility to 
know the cost is that the database administrator documents 
their costs in the data dictionary, when describing the 
interface. Each time a function is invoked, the tuner 
compares the actual cost and the documented one and 
updates the dictionary if there is a significant difference 
between the two costs. Further work remains to be done to 
confirm the validity of the approach for methods. 

4. The Calibrating Database 

In order to derive the values of the coefficients used in our 
generic cost model presented in the previous section, each 
local DBMS must support a synthetic database. The IRO- 
DB cost tuner application queries it when required by the 
local database administrator to compute the cost 
parameters. The cost parameters are stored in the local 
cost parameter database. Through IRO-DB, this database 
is exported to home sites to give input parameters to the 
global cost evaluator, as explained at end of section 2. 

-1 
Figure 4 - The calibrating database schema. 

As mentioned in [DKS92], to calibrate a given system, 
there are two major problems : one is that it is difficult to 
predict the way a given query is executed by the system ; 
the other problem is to eliminate the effect of data 
placement, pagination and other physical storage factors 
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on query execution. The first problem is not severe for 
object databases since, in actual commercial object- 
oriented DBMSs, implemented query optimizers. are not 
yet sophisticated. Thus, it is possible to predict the 
generated execution plan. For fixing the second problem, 
we design a calibrating database whose attribute values 
guarantee certain distribution criteria. In this section, we 
present our calibrating database which is an object 
extension of the relational database of [DKS92]. 

The calibrating database is composed of six collections 
C,,C,...C,. They are interconnected as shown in Figure 4. 
Each collection Ci has inverse link with its two neighbor 
collections. Apart from the attributes of OID types, each 
object of these collections has seven attributes with atomic 
values. Suppose the cardinality of a collection is 2”, the 
seven attributes have the following characteristics : 

l AI : integer [On], indexed, clustered. 
l A2 : integer [0, 2”-11, indexed, de facto clustered. 
l A3 : integer [On], indexed, unclustered. 
l A4 : integer [O,n], no index. 
l A5 : integer [0, 2”-11, indexed, unclustered 
l A6 : integer [O, 2”-I], no index. 
l A7: a string with a certain length to meet the 

object size. 

The values of these attributes are defined as follows. The 
i-th object of a collection C is a tuple composed of the 
following values : 

l Al[n,i]=x+l, such that 2‘Ii<y’ 
l A2[n,i]=i 
l A3[n,i]=n-x, such that i mod 2”=2’-1 
l A4[n, i]=A3[n, i] 
l A5[n,i]=2”-‘+j such that i=2”‘*(1+2*j) and 

A5[n,O]=O. 
l A6[n, i]=AS[n, i]. 

Table 1 shows the values of these integer attributes when 
n=4 (the cardinality of the collection equals to 16). 

The reason for choosing the above function for Al is to 
model those cases where all the objects are well clustered, 
i.e., just fit in continuous pages for a given value of Al. 
The rest of the design guarantees the uniform distribution 
of attributes for different kinds of queries including 
equality and range queries, and for different access 
methods using or not using indexes. Any selection on 
attribute Al will result in Ciustered index scan. A2 
represents the indice number inside the collection. The 
values in A3 and A4 guarantee that for any integer 
between 0 to n, tuples containing this value on attributes 
A3 and A4 are uniformly distributed among all the disk 
pages. A5 and A6 are designed for range queries. Any 
integer between 0 to n, the set of values [0, 2’-I] are 
distributed uniformly inside the collection. Compared to 

the design in [DKS92], our functions for assigning values 
to atomic attributes are simpler and easier to calculate, and 
yet with the same effect in attribute value distribution. 

Table 1 -Integer attribute values of a collection with 
objects , 

16 

I 1 Object Size 1 Cardinality 1 Disk Page Number 

Table 2 - Calibrating database configuration. 

Objects are interconnected each other. The maximum 
fan out number between two neighbor collections is set to 
a fixed value. For practical calibrations, it is set to 4. 
Experiences have shown that changing this value does not 
significantly change the coefficients in the path traversal 
cost formulas, as exemplified below. Thus, each object 
refers to 4 objects in the next collection, and the links 
among objects are randomly generated. The object sizes 
and cardinalities of the collections are different. Table 2 
gives the database configuration. The whole calibrating 
database holds about 60M bytes. 

A large amount of sample queries are designed for the 
calibrating. These queries include simple selection queries 
on one collection, join queries involving two collections, 
and navigation queries involving several collections. Both 
equality and range predicates are included in the sample 
set. Figure 5 gives some of these queries expressed in 
OQL. 

5. Calibrating ObjectStore and 02 

In this section, we present some results of our 
experimentation on calibrating two commercial object- 
oriented DBMSs : ObjectStore and 02. The objective of 
this experimentation is not to compare performance, but to 
derive the coefficients values to settle our generic cost 
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select Al from C5 where Al=n ; 
select Al from C3 where Al=n ; 
select A2 from C5 where A2-a ; 
select A6 from C5 where A6<n ; 
select Al,A2 from C5 where A4=n ; 

select Al from C4 where Al=n ; 
select Al from Cl where Al=n ; 
select A5 from C5 where A5<n ; 
select A4 from C5 where A4=n ; 

select Al,A2,A3,A4, from C5 where A4=n ; 
select C4.A1, C5.A2 from C4, C5 where C4.Al=n & C4.Al=CS.A1 ; 
select C4.A1, C5.A3 from C4, C5 where C4.Al=n & C4.Rl=C5.A3 ; 
select C4.A2, C5.A2 from C4, C5 where C4.A2a & C4.A2=C5.A2 ; 
select C4.A5, C5.A5 from C4, C5 where C4.A5<n & C4.A5=C5.A5 ; 
select C4.A6, C5.A6 from C4, C5 where C4.A6<n & C4.A6=C5.A6 ; 
select y.Al from x in CO, y in x.Cl where x.A3 = n ; 
select y.Al from x in CO, y in x:Cl where x.A4 < n ; 
select z.Al from x in CO, y in x.Cl, z in y.C2 where x.A3 = n ; 
select z.Al from x in CO, y in x.Cl, z in y.C2 where x.A4 < n ; 
select u.Al from x in CO, y in x.Cl, z in y.C2, u in z.C3 where x.A3 = n ; 
select u.Al from x in CO, y in x.Cl, z in yC2, u in z.C3 where x.A4 < n ; 

Figure 5 - Some sample calibrating queries. 

formulas. In our experimentation, ObjectStore (version 
3.0.2) runs on Windows NT 3.5 using a Pentium 90 
machine with 24 M of main memory, while 02 (version 
4.2) runs on a SUN Spare 4 with 32 M of memory. 

Figure 6 shows the result of different scan operations. 
The legends of the curves for 02 and ObjectStore start 
with ‘02’ and ‘OS’ respectively. All the curves with ‘T’ 
in the legend represent the theoretical cost, which is from 
our cost estimation. 

Figure 6(a) shows the results of sequential scan. In our 
formula, the cost of scan and predicate evaluation is 
proportional to collection size and the cost for processing 
the result tuples is proportional to the number of result 
tuples! This matches quite well with the experimental 
results. Since the cardinality of C5 is twice as that of C3, 
and their object sizes are the same, we can see from Figure 
6(a) that the inclination of OSC5 is almost twice as much 
as that of OSC3 ; the same tendency is observed in 02C5 
and 02C3. Figure 6(b) shows the result of index scan. The 
cost of initialization, index access and predicate evaluation 
is independent of the collection while the cost for 
processing the result tuples is proportional to the number 
of result tuples. The response time is more sensitive to the 
collection cardinality than the actual size of the object. 
Figure 6(c) gives the experimental results of clustered 
index scan. Due to the fact that the result objects are 
clustered in the physical storage, the result processing cost 
is proportional to the number of disk pages of the 
collection rather than to the number of result tuples, as in 
the case of non clustered scans. Comparing all these 
experimental and theoretical curves, we observe that they 
match quite well. Figure 7 shows the response time of 
pointer chasing. The legend ‘P4fan3’ represents the curve 
for path length equals to 4 and fan out equals to 3. The 
same notation is used to name other curves. 

Figures 7(a) and 7(c) give the response time of pointer 
chasing when path length varies from 4 to 5 and fan out 
from 3 to 4. From both figures for ObjectStore and 02, we 
discover that the response time of pointer chasing of path 
length 5 and fan out 3 is quite close to that of path length 4 
and fan out 4. From the cost formula for pointer chasing, 
we can see that the major cost happens to be in the second 
item, which represents the cost of following object links. 
We calculate that the total number of traversed object links 
equals to n* 364 for P5fan3 and n*341 for P4fan4, where 
n is the number of qualified objects in the starting 
collection. This explains the curve similarity phenomenon. 
As the number of accessed objects in the starting 
collection of the path grows, the cost of the traversal 
increases proportionally. Figure 7(b) and 7(d) show the 
result of pointer chasing for different path lengths and fan 
outs. The number of qualified objects in the starting 
collection of the path remains to 32. The horizontal axes is 
the fan out and each curve represents the response time of 
different path lengths when fan out keeps on varying. We 
notice that the response time of pointer chasing is very 
sensitive to the fan out when the path length is long. TP4 
and TP5 follow the experiment result and this again proves 
the correctness of the pointer chasing formula. 

The above experimentation helps to derive the values 
of the cost formula parameters and proves the validity of 
our set of cost formulas as well. Thus, it is appropriate to 
tune our cost formulas with coefficients derived from our 
experimentation. The calculated values of these 
coefficients are given in the table 3. As explained in 
section 2, they constitute the results of the tuner 
application, which export them as the cost parameter 
database to be used by the global query optimizer. 
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Figure 6(a) - Sequential scans. Figure 7(b) - Pointer chasing. 

Figure 6(b) - Index scans. Figure 7(c) - Pointer chasing. 

Figure 6(c) - Clustered index scans. 

Figure 7(a) - Pointer chasing. 

Figure 7(d) - Pointer chasing. 

Object 02 Object 02 
Store Store 

sso 0.2 093 IS0 66 097 

SSl 0,018 0,027 IS1 0,08 0.08 

ss2 0,024 0,024 IS2 0,025 0,032 

CISO 0,6 1 IO,6 1 PC0 IO.25 IO,05 1 
1 

CISl 0.08 0.07 PC1 0,008 0,007 

as2 0,008 0.0026 PC2 0,028 0,027 

Table 3 - The Cost coefJicients of ObjectStore and 02. 
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6. Validation With The 007 Benchmark 

To further validate our approach, we use our generic cost 
model with the derived coefficients to estimate the cost of 
queries on the 007 benchmark. The 007 benchmark was 
designed by the Wisconsin database research group 
[CDN93]. In its schema, each composite part is an 
aggregate of a number of atom@ parts, which could 
represent variables, statements or expressions in a CASE 
procedure. Over these composite parts, a base assembly 
hierarchy has been added to represent higher level design 
objects such as an ALU in a CAD application. A complex 
assembly is an aggregate of other assembly objects. A 
module describes a complete assembly hierarchy. Since 
the database schema is quite rich and objects are 
interconnected, the 007 benchmark is very suitable for 
testing queries on object traversals. There are three 
different configurations proposed by 007 : small, medium 
and large databases. In our experimentation, we choose the 
medium size, which is about 50 M. The benchmark is 
generated on.ObjectStore for Windows NT platform. 

Among all the collections in 007, atomicpart is the 
largest since the relationships between collections from up 
to down in the schema graph are all one-to-many. For the 
validation, we generate queries on atomicpart for testing 
the unary operator such as sequential scan, index scan, 
clustered index scan. Since the binary join operators such 
as nested join and sort merge join are not implemented on 
ObjectStore, all the queries with path expressions are 
executed using pointer chasing. If the fan out between two 
neighbor collections is greater than 1, the depth-first- 
traversal method is applied [Obj94]. 

From Figures 8(a), 8(b), 8(c), we can see that the 
response times of queries involving only one collection 
match quite well with the estimated costs by our generic 
cost model. And for low selectivities, the difference 
between the estimated cost and the real cost is less than 
5%. When the selectivity goes higher, the error increases 
also. But in the worst case as in the clustered index scan, 
the correctness can still reach about 80%. Figure 8(d) 
shows the result of executing a query with path expression 
module.assembly.compositePart.atomicPart. The fan out 
between any of the two neighbor collections is set to 3. 
The horizontal axes gives the number of objects in the 
starting collection module. The theoretical curve is 
calculated using the pointer chasing formula described in 
section 2 with the coefficients derived from calibrating 
procedure. Comparing these two curves, we can see that 
the proposed formula represents quite well the propriety of 
pointer chasing. Second, the coefficients derived from the 
calibrating database can be used for estimating the query 
cost of path traversals within the 007 database with less 
than 10% of error in most cases. 

Figure 7(a) - Validation on 007 benchmark. 

Figure 7(b) - Validation on 007 benchmark. 

Figure 7(c) - Validation on 007 benchmark. 

Figure 7(d) - Validation on 007 benchmark. 
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7. Conclusion 

IRO-DB is an object-oriented federated database system 
based on the ODMG standard. The global data model is 
expressive enough to capture the meaning of all local data 
sources. It is scaleable in functionality, so that local 
adapters can be developed with few functionalities - for 
example, without supporting methods and relationships - 
and enhanced later. The OQL subqueries sent to local 
systems only invoke functionalities described in export 
schemas. It is the role of the global query processor to 
decompose global queries in local subqueries conforming 
to the various export schemas. Global query optimization 
is important to improve performance, e.g., to avoid costly 
joins when fast path traversals are possible, to favorite 
parallel execution of subqueries, etc.. As integrated views 
of the federated databases can be easily defined using the 
schema integrator workbench, global queries may become 
very complex, which further requires good optimization 
techniques. 

One of the major problems of global query 
optimization is that the cost functions of the different 
participating DBMSs are not available. In the IRO-DB 
context, we have proposed and experimented a generic 
cost model for object-oriented DBMSs and also a method 
for deriving the values of the cost coefficients for this 
model. Our generic cost model includes the cost formulas 
for unary, binary and nary operators. The nary operator 
pointer chasing is considered as one of the important 
aspects of object databases. It is generally applied for 
queries with path expression. 

W,e partially validate our approach through querying 
the 007 benchmark. Throughout the experimentation, we 
can see that our cost model provides quite accurate 
estimations for different kinds of queries. The results show 
that the coefficients derived from the calibrating databases 
can be used on other databases if the system configuration 
remains unchanged. This proves that the architecture we 
presented in Figure 3 is appropriate for a federated DBMS 
to have knowledge of the performance characteristics of 
each participating site. The calibrating database is 
generated at each local site and the cost tuner application 
queries the local DBMSs using sample queries so as to 
keep the values of coefficients valid in a cost parameter 
table exported to query sites through the federated 
database system. 

We will continue our validation on different kinds of 
queries on 02 and ObjectStore, as well as on some 
relational databases. These results will help the global 
query optimizer to choose the optimal execution schedule 
to favor efficient executions. As cost model is a difficult 
subject, there are still many open issues such as the cost 
of methods, the cost formula for some special operators 

implemented in different DBMSs, etc. Today, in most 
commercial object-oriented DBMSs, the implemented 
query optimizer is not yet complicated ; thus it is possible 
to predict the selected execution plan of a given query. But 
once these participating query optimizers will become 
sophisticated, our approach could face a problem to 
guarantee that the subqueries sent to each site will be 
executed as supposed by the global query optimizer. The 
question is then to determine when the estimated cost will 
become a bad approximation. Further knowledge of the 
behavior of different DBMS optimizers will then be 
required to enhance the global query optimizer. 
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