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Abstract 

We study implementation techniques for a 
parallel query language for nested collections. 
The language handles collections of three 
kinds (sets, bags, and sequences), and its 
expressive power is essentially that of OQL 
(ODMG93). From the perspective of paral- 
lel evaluation, the novelty of such a query 
language is that it can express nested paral- 
lelism, which is naturally associated to nested 
collections. The first implementation step is 
a translation into a specially designed alge- 
bra for flat sequences, having only flat par- 
allelism: the translation “flattens” the nested 
parallelism, and we prove that it preserves the 
asymptotic parallel complexity. The second 
step consists in an implementation of the se- 
quence algebra on a shared nothing architec- 
ture. Here we show that all data communi- 
cations needed by the sequence algebra op- 
erators (with one exception) have a particu- 
lar communication pattern, called monotone 
communication. We give a provably optimal 
algorithm for monotone communications on a 
shared nothing architecture. Here “optimal” 
means that for any particular initial and final 
data layout, its communication cost is abso- 
lute minimum (not within a constant factor). 
To account for the communication costs we 
chose as sh’ared nothing model the recently 
proposed LogP model. Finally we report some 
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preliminary experiments of our implementa- 
tion techniques, on a LogP simulator. 

1 Introduction 

In theory, relational database operations offer great 
potential for parallel evaluation. On a shared noth- 
ing architecture, the database relations are uniformly 
partitioned horizontally across nodes, and, since the 
relational operators are so simple, they can be imple- 
mented efficiently terms of a number of communica- 
tion steps between nodes. In practice however, even 
for the case of relational databases, there are several 
barriers to good speedup, like data skew and node in- 
terference [DG92]. 

Object-oriented database systems [DeuSO, Cat94, 
ABD+92] complicate the issue of parallelism. Some 
parallel implementations [CDF+94, GCKL93] address 
explicitly one dimension of object-oriented databases, 
namely that of being a collection of objects with 
links between them. A typical query will start from 
one object in the database and access other objects 
by traversing links. When a link traverses node 
boundaries, either the query migrates to the other 
node [GWLZ93] or the remote object is fetched over 
the network [CDF+94]. But in today’s parallel object- 
oriented databases, the main source of scalable paral- 
lelism are still the set operations inherited from the 
relational algebra. 

Object-oriented databases however have the poten- 
tial for another kinds of parallelism: nested parallelism 
associated to nested collections, and parallelism as- 
sociated to the other kinds of collections, like arrays 
or sequences (these are still arrays, but with a richer 
set of operations). We discuss here implementation 
techniques for nested parallelism on three kinds of col- 
lections: sets, bags and sequences. We start from a 
high level query language for nested collections (like 
OQL [Cat94]), and end on a shared nothing architec- 
ture. Nested collections, and their associated nested 
parallelism, are more vulnerable to data skew than 
flat relations: therefore we discuss an implementation 
technique which guarantees good load balance. We 
give a complete analysis of the complexity of these 
techniques. 

We start with an example showing the main ideas. 
An example Consider Stores(name, sales), a re- 
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lation where name is a string, and sales is a 
Node 0 Nncbl Node 2 

bag (multiset) consisting of all sales at that store: I..’ 

.,..- - _ .--- - 

gs~q 
stores on Language 

.,p$& 
~01 ,.:.:y.::& 

saL3 (price, it&n). The -Object Definiti 
ODL of the ODMG-93 proposal [Cat941 allows us to i 
describe this as: 

interface sale 

{ attribute float price; 
attribute string item; 

1; 
interface store 

{ attribute string name; 
attribute Bag< sale > sales 

‘I; 
Bag< store > stores; 

Now consider the following OQL [Cat941 query Q: 

select f(z.name, s.sales) from 2 in stores wherep(s.name~~~ 
‘.., 

which applies (in parallel) the function f to each store, 
z, satisfying the predicate p, and returns the bag of 
results. Suppose now that the function f(n, s) in turn 
applies some other function, g, in parallel to all sales 
of 2, say f(n, 8) is: 

.-... .,, u 

Figure 1: Implementation of the query Q. 
once the whole database is represented only with flat 
sequences, we can distribute each of the sequences uni- 
formly on the nodes. Figure 1 illustrates this for 3 
nodes. ‘select g(n, y) from y in s 

Then & has nested parallelism. Note that g(n, y) has 
access both to the name n of a store, and to some sales 
y at that store. 

Let us take a close look at a parallel evaluation of 
the query Q. Of course, we start by applying p in 
parallel to all stores: here we’would like to have the 
stores uniformly distributed on the nodes, in order to 
get good load balance. Next we want to apply f in par- 
allel to all selected stores: to ensure good load balance, 
we redistribute first the selected stores on the nodes. 
But now we face a dilemma, due to the fact that stores 
are nested collections: should we distribute the stores 
uniformly, or rather their sales ? This dilemma is typ- 
ical for nested collection, and for the associated nested 
parallelism. 

Our solution is based on a flattening technique using 
seament descriptors [BS90, Ble901. It only works for 

I 

sequences, not for se& or bags, so’a part of this paper 
deals with encodings of (nested) sets and bags in terms 
of sequences. To illustrate the technique, suppose that 
our database has 6 stores, with 5,6,4,0,1,2 sales re- 
spectively (for a total of 18). First we split stores into 
a flat sequence names, and a nested sequence sales: 

sales = [[300,301,302,303,304],[310,311,312,313, 

314,315],[320,321,322,323],flr[340],[350,351]] 

The nested sequence sales is further split into two flat 
sequences s and ss: 

33 = [5,6,490,1,21 
S = [ 300,301,..., 51 3 I 

The numbers in ss are the lengths of the subsequences 
in sales and are called segment descriptors. Finally, 

Now we can explain how the query Q can be com- 
puted on this data representation, step by step (see 
also Figure 1): 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Apply the predicate p to each store. Assume that 
p returns true on stores 0,1,4 (those shaded in 
Figure 1). 

Send a 0 or 1 flag to every element in s, saying 
whether its store has been selected or not: this 
step involves data communication. The resulting 
subsequence of s, call it s’, has 12 elements (which 
are shaded in Figure 1). 

Redistribute 3’ uniformly on the 3 nodes. 

We cannot apply g on the elements in s’ yet, be- 
cause g needs access to the name of the store 
too. For that, replicate the names of the se- 
lected stores: the resulting sequence n’ contains 
the names of stores 0, 1, and 4, with multiplicities 
5, 6, and 1 respectively. 

Now apply g on each name-sale pair from n’ and 
3’. This is again done locally, with perfect load 
balance. Call s” the sequence of 12 results. 

Let ss’ be the subsequence of ss corresponding to 
the selected stores: ss’ = [5,6,1]. Distribute 3s’ 
uniformly on the nodes. 

The final result is a nested sequence represented 
by the two sequences s” and 3s’. 

Each step is a perfectly balanced parallel compu- 
tation, but the price paid for that is that bf frequent 
data communications: one wonders whether this price 
is not too high. Our first main contribution in this 
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paper consists in observing that all these communica- 
tions are of a particular, simple form, and to describe 
a provably optimal algorithm for computing them. 

On the other hand one wonders how the example 
above generalizes to arbitrary queries on nested col- 
lections (like OQL queries). In this example, a key 
step consists in expressing nested collections in terms 
of flat sequences. Our second contribution consists in 
identifying a list of flat sequence operations which are 
simple enough to parallelize, and yet sufficient to im- 
plement “efficiently” all queries on nested collections 
(like OQL queries). 

We comment more on these two issues next. 
Communication cost We implement the flat se- 

quence operations on a shared nothing architecture in 
the obvious way: by partitioning sequences uniformly 
on the nodes, doing all communications required to 
compute that operation and having the result parti- 
tioned uniformly too. Thus every operation has perfect 
processor load balance, but at the cost of frequent data 
communications. This may saturate the network, lead- 
ing to poor performance. We show however that all 
flat sequence operations (with one exception) require 
only a simple communication pattern, called monotone 
communication (definition in Section 4): communica- 
tion steps 2, 3, 4, 6 above are monotone. More, we 
describe a provably optimal algorithm for monotone, 
one-to-one communications on a shared nothing archi- 
tecture (Steps 3, 6 are one-to-one, the other two are 
one-to-many). Our optimality statement is as strong 
as it can get: we prove that for any given initial and fi- 
nal distribution of the data on the nodes, our algorithm 
achieves best possible running time. For many-to-one 
monotone communications, our algorithm does most 
of the job too, but needs to be followed by a parallel 
broadcast step: here we cannot prove absolute opti- 
mality, but it is easy to see that the running time does 
not exceed the optimal one by more than the time for 
broadcasting one da&-item, which is independent on 
the total size of the data (depends only on the num- 
ber of processors). Hence, for all practical purposes, 
monotone communications admit highly efficient im- 
plementations. 

We base our communication cost analysis on 
the LogP model, recently proposed by Culler et 
al. [CKP+93]. While precise enough to model virtually 
all modern multiprocessors [CKP+93, AISS95, Ble94, 
TM94], the LogP model is simple enough to serve as a 
framework for the design and analysis of parallel algo- 
rithms [KSSS93]. Our optimal algorithm for monotone 
communication is for the LogP model. 

Sequence operations In order to choose the right 
sequence operations which can implement all nested 
collection queries (OQL), we start at a high level, by 
describing a nested collection calculus, NCC, much in 
the spirit of [AB88, BBW92, VD91, FM95]. NCC is 
expressive enough to express all queries in OQL, but 
it is original in its choice of operations for sequences: 
we show that all sets and bag operations in NCC (and, 
hence, OQL) can be expressed “efficiently” (explained 
below) in terms of the sequence operations in NCC. 
Having done that, we identify next which operations 

on flat sequences suffice to further translate all n/CC 
sequence operations “efficiently” in terms of flat se- 
quence operations. In short, we get an efficient trans- 
lation of NCC (OQL) into flat sequences. 

Parallel complexities Traditionally, declarative 
query languages do not carry explicit information 
about the “complexity” of a query: the optimizer 
is expected to provide the best execution plan for a 
query. But since our translation from NCC to nested 
sequences and then to flat sequences involves complex 
query rewritings, we want to prove that these trans- 
lations do not increase the complexity of the original 
query. Therefore we choose to associate a formal, ab- 
stract parallel complexity with NCC: it corresponds 
to an ideal, but intuitive model of parallel query exe- 
cution, assuming arbitrary many processors. One can 
easily infer the parallel complexity of an NCC query, 
based on this intuition Then, we can make our claims 
about the efficiency of the query translations precise, 
by proving that the translations preserve the asymp- 
totic parallel complexities. As explained above, the 
flat sequence operations are further implemented on 
parallel shared nothing architectures: their actual run- 
ning time is the same as their abstract parallel com- 
plexity. In short we have shown that the real parallel 
running time can be deduced from the high-level, ab- 
stract, parallel complexity. 

Preliminary experimental results Finally, we 
tested the feasibility of these implementation tech- 
niques by running some simple experiments on a LogP 
simulator. The experiments are preliplinary, and their 
main goal is to compare three components of the total 
running time: the data communication cost, the con- 
trol communication cost, and the local computations. 
These comparisons are important, since our implemen- 
tation techniques achieve good processor balance basi- 
cally at the expense of massive data communications. 
The results show that for medium or large data sets, 
and for a number of nodes in the range 1 - 64, the data 
communication costs are low enough, and hence are a 
price worthwhile paying for guaranteed processor bal- 
ance. But as the number of nodes grows beyond some 
threshold, the cost of the control messages exceeds the 
total communication cost, making communications too 
expensive. Still, by increasing the size of the data sets, 
the threshold increases too. 

Bancilhon et al. [BBKV87] describe a database lan- 
guage FAD, designed for a parallel database machine 
Bubba. FAD is a functional language, featuring nested 
sets with object identifiers (no bags or sequences) and 
two main parallel constructs: a parallel map (called 
filter), and a parallel divide and conquer construct 
(called pump). Parker et al. [PSV92] describe a value- 
based model of parallelism in bulk data processing, 
SVP, in which both sets and streams are represented 
as trees. . It has a complex parallel operator, called 
transducer, generalizing parallel map, parallel divide- 
and-conquer, and parallel stream processing. Neither 
FAD nor SVP have explicit sequence operations. Our 
language NCC is value-based, like SVP, but its imple- 
mentation technique, which relies on flat sequences, 
differs from that of FAD and SVP: also, we focus on 
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the parallel complexities and on the communication 
costs, which are not considered in F.’ .D and SVP. Al- 
though we do not discuss divide-and-conquer here, this 
form of parallelism can be integrated in our techniques, 
using the ideas in [ST94]. 

This paper is organized as follows. In Section 2 
we introduce the nested collection calculus, NCC, its 
high-level parallel complexities, and show that it can 
express all OQL queries. In Section 3 we describe the 
first part of the implementation, nm,“y the transla- 
tion of NCC queries into flat sequences; we prove that 
the translation preserves the asymptotic complexity. 
Section 4 describes the second part of the implementa- 
tion: here we start by describing the LogP model, show 
that all operations on flat sequences (with one excep- 
tion) have monotone data communications, present a 
provably optimal algorithm for monotone, one-to-one 
communications, and show how it can be extended to 
an efficient algorithm for any monotone communica- 
tion. Finally we discuss some preliminary experiments 
on a LogP simulator in Section 5. 

2 The Nested Collection Calculus 

We start by defining the high level query calculus NCC 
(Nested Collection Calculus). 

2.1 Data Model 

The Nested Collection Calculus, NCC, operates on 
three collection types: sets, bags, and sequences. We 
denote sets as usual, e.g. {u,hc}. Bags, sometimes 
called multisets, may have duplicates: e.g. {a, a, b, CD 
has two occurrences of a, and is the same as {a, b, a, CD. 
Sequences are ordered collections, like arrays and 
lists: e.g. [a, b, a, c] is a sequence of length 4, differ- 
ent from [a, a, b, c]. All collections are homogeneous. 
To simplify the presentation we use tuples instead of 
records: e.g. we write (a, b, c) for the 3-tuple contain- 
ing a, b, and c, and () for the empty tuple. Also, there 
are base types, which include string, int, bool, real, 
as well as an unspecified number of user defined base 
types. E.g. any C++ class can be an NCC base type. 

Each literal in NCC has a precisely defined 
type. E.g. the pair (3, “abc”) is of type int x 
string, the set {3,5,8} is of type {int}, while 

iI 
(3.14, {2,5}), (2.71, {3,5,2,7})b is .a bag of type 
real X {int}D. . 
NCC includes a number of external functions: 

e.g. arithmetic operators on integers (+, -, *, /, etc), 
string operators, logical operators (not, and, or), as 
well as an unspecified number of user defined func- 
tions and predicates. For each.base type t we assume 
to have a canonical order relation denoted -<t. 

Following sound design principles [BBW92, VD91], 
we organize the operators in NCC around the types: 
there will be independent operators for sets, for bags, 
for sequences, for product types, and for base types. 

2.2 NCC 

NCC has basically the same set and bag operations 
as OQL, but with a more concise abstract syntax; we 

briefly sketch them here. NCC is original however in 
its choice of operations on sequences, which we dis- 
cuss in the next subsection. A complete list of NCC 
operations is given in [Suc95]. 

The central operation in NCC is the parallel map. 
There are three kinds of map, one for sets, one for bags, 
and one for sequences. Let f be some function express- 
ible in NCC: map sequence(f) is a function mapping 
sequences to sequences, defined by: 

maP8e~uenc.5(f)([~o,. . - ,%-II) ef [f(so), . . . , f(G-111 
Similarly, we have a mapbag for bags, and one for 
sets; we drop indexes when no confusion arises. 
map,,t(f)(z) is a particular OQL select construct, 
namely: 

select distinct f(u) from u in z 

An interesting case is when the function f itself 
contains another map: in that case we obtain nested 
parallelism, as in the example of Section 1. 

Other operations are: set union (U), bag addition 
($) and sequence concatenation (63); flatten, which 
takes a set of sets and removes one level of parenthe- 
ses, e.g. flatten({{a, b}, {}, {b,c}}) = {a, b,c}; simi- 
larly there exists a flatten for bags of bags, and one 
for sequences of sequence. NCC has a conditional, 
if then else , and an unspecified list of external func- 
tions, like primitive operations (+, -, *, /, etc.), and 
user-defined functions and predicates. 

NCC derives lots of flexibility from nesting map con- 
structs and mixing them with the flatten operator. 
E.g. the query select distinct ‘ZL from z where p(z) is 
expressed in NCC as flatten(map(f)(z)), where f is: 
f(u) = if p(u) then {u} else (1. 

Cartesian product and join are expressed as nested 
map’s. E.g. z x y is flatten(map(f)(z)) where f(u) = 
map(g)(y), and where g(v) = (u,v). In OQL syntax 
this becomes: 

flatten(select (select (‘u,u) from u in y) from 21 in z) 

2.3 Operators for sequences 

Besides the operators mentioned in the previous sub- 
section, NCC has sequence operators specially de- 
signed to allow both (1) an efficient implementation 
of sets and bags in terms of sequences, and (2) fur- 
ther efficient parallel implementation of the sequence 
operations. They are: enumerate,zip, and split. For 
z = [%I),..., z,,--1] and y = [yn, . . . , ~~-11, enumerate 
and zip are defined as: 

enumerate(z) dZf [0, 1, . . . ,71 - l] 

G4~, v> !zf [(~O,YO), . . . , h-1,%3-1>] 

Example: zip(s, enumerate(z)) pairs every element in 
1: with its index, [(ze, 0), (~1, l), . . . , (~~~-1 ,n - l)]. zip 
produces an error when z and 9 have different length. 

split(z, y) is an inverse to flatten: it returns a se- 
quence z such that flatten(z) = 2. Here J/ ‘is a 
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T(mw(f), [x0,. . . , h41> gf 1 + j=yl T(f, Xi> 

W(mw(f), [x0,. . . , 2n-~l) dSf size([xo, . . . ,x,-l]) 

+ c WflXi) 
i=O.n-1 

Figure 2: The definition of T and W for map(f). 

sequence of integers dictating the lengths of subse- 
quences in z, i.e. z will be such that map(count)(z) = 
y (count computes the length of a sequence . E.g. 
split@, 6, c, 4 4, [TO, 31) = [[a, 4, [I, EC, 4 el . 1’ Of 
course, the sum of numbers in y must be equal to the 
length of x, or else split(x, y) is undefined. 

We illustrate with an example which we will use in 
the sequel. 

Example ‘2.1 Consider the query select(x, y) taking 
two sequences x and y of the same length, and return- 
ing the sequence of those elements yi for which xi # 0. 
E.g. whenx = [l,O,O,l,l,O] and y = [a,b,c,d,e,f, 
then select(x, y) = [a,d,e]. We express select(x, y) 
aa flatten(map(f)(zip(x,y))), where f(u,v) = if u # 
0 then [v] else 0. That is map(f) returns a nested se- 
quence: for 2, y above, it returns [[a], , I], 0, [d, [e], 01, 
Finally flatten will do the job. 

NCC is an expressive calculus. It can express set 
difference, nest, unnest, etc. More generally: 

Proposition 2.2 NCC can express all OQL queries. 

2.4 Parallel Complexities 

As promised, we formally define a high-level parallel 
complexity for NCC. To every NCC query we associ- 
ated two numbers, T and W, called the parallel time 
complexity, and the work complexity respectively. 
Intuitively T stands for an idealized parallel running 
time, assuming arbitrary many processors and zero- 
cost communication; W stands for the total number 
of operations done during the computation (same as 
the sequential complexity). E.g. for map(f) (say, on 
sequences; for sets and bags, T and W are defined sim- 
ilarly), the rules defining T and W are given in Fig- 
ure 2. For all other operations in NCC, by definition 
T dzf 1, while W dzf the sum of the size of the inputs 
and the outputs. It is with respect to these parallel 
complexities that we will prove our query translations 
into flat sequences to be efficient (Section 3). Some 
explanations are in order. 

T, W for nested collection queries The defini- 
tions of T and W may seem arbitrary at a 
first look, but they correspond to an intuitive, 
abstract parallel model of computation. 
to compute map(f)([xo,. . .,x+1]), one compZZ 

.- f(xo), * - * ,f(x,-1) in parallel, then assembles the re- 
sults in a sequence: hence T is 1 + maxT(f, xi). As 
another example, consider xU y. Imagine that the sets 
x and y are given as sorted sequences: then, using 

enough processors, we can merge x and y in a con- 
stant number of parallel steps, and with linear work 
complexity, so T dzf 1, W dzf size(x) + size(y). Al- 
though formal rules for T and W accom@my every 
NCC language construct [Suc95], one can “read” T 
and W directly from the query, based on this ideal- 
ized, but intuitive parallel model of computation. 

T, W for flat sequences For queries on flat se- 
quences however, T and W are “real”, in the following 
sense. We show in Section 4 that any flat sequence op- 
eration of work complexity W (and T = 1) runs on a 
shared nothing architecture with P processors in time 
Tp = 0( [$I). Therefore any flat query of complexi- 
ties T, W runs in time’: 

Tp=O(T+;) 

We care about the asymptotic behaviors of T and 
W, not about their absolute values. E.g. W = O(n1.5) 
is better than W = O(n2). Notice that, in absence 
of external functions, every query in NCC has T = 
O(1). But external functions f are considered to be 
sequential, hence T dgf W dsf sequential running time 
of f. So queries with external functions may have T 
larger than a constant. E.g. assume f(z) sequentially 
processes the sequence z in time T = (size(z))2. Then 
the parallel time complexity of map(f)(x) applied to 
amatrixx=[[xii ,..., xi,J ,..., [x,1 ,..., z,i]]isT= 
O(n2). 

+I 
3 Translation into Flat Sequences 
Here we show how to translate nested sets, bags and 
sequences into flat sequences. The main result in this 
section is: 

Theorem 3.1 For any E > 0 and any query Q in 
NCC with complexities T and W, there exists an equiu- 
alent query QL using only j?bt sequences, with T’ = 
O(T) and W’ = O(W’+E). 

We pay the E penalty in the work complexity in 
order to sort sequences representing sets and bags. We 
do not discuss the constants behind the O(. . .) in this 
section: while they are not out of control (they are = 4 
in Example 3.2 below), Theorem 3.1 should be taken 
as existence proof. Additional optimization techniques 
are further required in order to reduce the constants 
behind the 0’s. This is the topic of future work. We 
discuss now the two steps leading to Theorem 3.1. 

We start by translating NCC queries involving sets 
and bags into sorted sequences (without duplicates, in 
the case of sets). We use the order relations at base 
.types, which we lift at arbitrary types. The key step in 
the translation is a fast sort function [Suc95]: for every 
E > 0 there exists an NCC expression which sorts2 a 

‘Because Tp = zi=I,T 0( [%I) where IV; is the work com- 

plexity of the i’s operation [Ble90]. 
.2We u8e a specialized form of distribution sort; algorithms 

like quicksort, with an O(nlogn) sequential running time, typ- 
ically lead to T = O(logn) parallel steps [Ble90], while here we 
need O(1). 
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sequence 5 of size n in T = O(l), W = O(n’+E). Using 
this, we translate a Q with T, W, into some NCC query 
Q:, implementing Q in terms of sequences (no sets 
or bags), with T’ = O(T) and W’ = O(W1+E). Of 
course, we sort only sparingly, namely after those set 
or bag operations which require duplicate elimination. 
When sorting is unnecessary, the translation achieves a 
much better complexity: T’ = O(T) and W’ = O(W), 
with very low (G 1) constants under the 0’s. E.g. the 
query Q in the example of Section 1 can be translated 
in terms of sequences without sorting. 

Next, we flatten the sequences in NCC, and, in 
the process, flatten the nested parallelism. For this 
to work we need to choose the right primitive op- 
erations on flat sequences: those in NCC are not 
sufficient, because NCC can express some operations 
on flat sequences only by using nested sequences as 
intermediate results, like the select query in Exam- 
ple 2.1. The complete list of operations is given 
in [Suc95]. Most of them are trivial, or directly in- 
herited from NCC, except for three: select(z,y) (Ex- 
ample 2.1), bmRoute(x, y, z), and sbmRoute(x, y, z, u). 
Here bmRoute(x, y, z) (“bounded monotone routing”) 
expects three input sequences, x,y,z, with y and 
z having the same length, and y a sequence of in- 
tegers . It produces a sequence in which each el- 
ement in z is replicated a number of times dic- 
tated by the corresponding element in y. The 
first parameter, x, is ignored, ‘except for its length, 
which must match in length exactly the length of 
the output of bmRoute: we call z a “bound”. 
E.g. bmRou~e([xo,xl,x2,x3,x41,[3,O,2],[u,~,~]) = 
[a, a, a, c, c], i.e. a has to be replicated 3 times, 6 0 
times, and c 2 times. The “bound” 5 has length 5, 
matching the expected result. One can check that 
bmRoute can be expressed in NCC, by using nested 
sequences as intermediate results, but one can prove 
that without the bound x bmRoute is not expressible. 
Finally sbmRoute(x, y, z, u), the most complex opeia- 
tion in Sd, is a “segmented” or “nested” version of 
bmRoute, defined to be bmRoute(z, y, split(z) u)). 

We call the collection of all flat sequence operations 
the sequence algebra, Sd. Next we encode nested 
sequences as flat sequences, using segment descrip- 
tors technique [BS90, Ble90) (Section 1). By adapt- 
ing techniques from [ST941 we show that every NCC 
query on (nested) sequences with T, W can be trans- 
lated into an equivalent Sd query with O(T), O(W). 
Some operations are trivial to translate, like split(x) y) 
when 5, y are flat sequences (it becomes a no-op). 
But other operations are really tricky, e.g. Q(z) y) = 
map@)(zip(x, 71)). 

This completes the proof of Theorem 3.1. 

Example 3.2 Consider the qiery Q in Section J with 
complezitiea T, W, and its implementation in 7parallel 
steps. Theorem 3.1 -applied to Q produces the following 

Sd query Q’, having3 T’ = 4T, W’ = 4W: 

Step 1 < + madd(names) 
$;; f f, +- bmRouy+, ss,f) 

3 t select(f ,3) 

Step 6 ss’ t select(f) 3s) 
Step 4 n’ t bmRoute(s’, ss’, select(f) names)) 
Step 5 s” c map(g)(n’,s’) 

4 Implementing the Flat Sequences on 
the LogP Model 

We show in this section that the flat sequence opera- 
tions in Sd can be implemented on a shared nothing 
architecture with guaranteed uniform processor bal- 
ance. This is achieved by constantly rebalancing af- 
ter each Sd operation, with the potential risk of high 
communication cost. Our main result in this section 
consists in giving a provably optimal algorithm for the 
kind of communications needed in all Sd operations 
(except sbmlioute). 

4.1 The LogP model 

To account for the communication cost we use the 
LogP model introduced by Culler et al. in [CKP+93]. 
The model is essentially a shared-nothing architecture, 
in which P independent nodes are connected by a com- 
munication network enabling point-to-point communi- 
cations. The focus of the LogP model are the param- 
eters of this network, and its goal is to provide a real- 
istic framework for the design and analysis of parallel 
algorithms. Moreover, the resulting algorithms can be 
fine-tuned to the parameters of a particular network. 

The model describes the network in terms of the la- 
tency L, the gap g, and the overhead o. L is an upper 
bound on the time needed for one byte of a message to 
traverse the network from the &nder node to the re- 
ceiver. The overhead, o, is the time a processor is busy 
preparing a message for send or for receive. The gap, 
g, is the minimum time interval between two consecu- 
tive bytes sent or received by a node, and is the inverse 
of the network’s bandwidth. Moreover, to avoid net- 
work saturation, no more than L/g bytes are allowed 
to be in transit between any two processors, at any 
given time. 

In the original LogP model, messages have a fixed 
size, which is assumed to be a small number of 
bytes. We slightly extend it by allowing variable 
length messages (but without adding a fourth param- 
eter as [AISS95]). Figure 3 illustrates the cost of send- 
ing a message of size s, starting at time t. The receiver 
fully receives the message at time t + 20+ L-t (3 - 1)g. 
Except for the overhead, there may be overlap of com- 
putation and communication at any given node: e.g. 
the sender can initiate sending the next message at 
time t + (i - 1)g. Also, we assume a dual port model: 
a node can both send and receive a message at the 
same time. 

3E.g. look at names: Cj apparently touches it only once (by 
mapping p on it), while Q’ does 4 operations on nomes and f, 
which haa the same size. 
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receiver 

Figure 3: A message of size s sent on the LogP model. 
Poor message orchestration can significantly slow 

down the communications because of: 

l Receive/receive conflict: when several nodes send 
simultaneously to the same destination, all but 
one will stall. 

l Send/receive conflict: although on our dual port 
model a message can be sent while another is fe- 
ceived at the same node, the two processor over- 
heads o cannot overlap. 

We will focus on efficient orchestration of messages for 
the communications in our flat sequence operations. 
We start with data partitioning. 

4.2 Data partitioning 

We distribute flat sequences using block partitioning. 
To illustrate, assume first that the length n of some 
sequence 5 = [x0,21, . . . ,++I] is divisible by P, i.e. 
n = Pno. Then we store the subsequence zi = 
[xino, xin,,+l,. . . ,xino+,,,,-I] at node i, i = 0, P - 1. 
When n is not divisible by P, then we store an ad- 
ditional item in the first (n mod P) nodes. Always 
xO@x’@ . . . @zp-’ = 2, and the lengths of any two 
xi,xj differ by at most one. We also store the total 
length, n, at each node. 

Sequences of user-defined types may have large data 
skew, i.e. si.ze(zi) and size(~) may differ consider- 
ably. To guarantee good load balance in this case, 
we represent such objects as sequences of bytes: then 
5 = [xo,...,x,-1 ] becomes a nested sequences of 
bytes, which we first unnest into two sequences us- 
ing segment descriptors, then partition both sequences 
using block partitioning. In consequence objects may 
cross node boundaries: we explain how to implement 
a map(fo)(z) operator in Sd, with f0 a user-defined 
function. First we cluster 2, i.e. repartition it such 
that no object crosses node boundaries, and that the 
distribution is still uniform, only then apply f0 in par- 
allel. More precisely, let 8 dsf (Cizo n--l size(zi)). 
Scanning from left to right, cluster assibs object xi, 
i = 0,n - 1, to node j, j = 0, P - 1 as follows. If the 
total size currently assigned to j is < s/P, then assign 
xi to j; else increase j. This ensures that each proces- 
sor’s load is < s/P + maxi,0,,-1 sire(xi). Of course, 
cluster will run in parallel, using a parallel prefix sum 
and the monotone communication algorithm described 
next. Assuming that the complexity of the external 
function f0 is at least linear (T(f0, xi) > c.size(xi), for 
some c > 0), then the running time of cluster (ignoring 
the prefix sum) is O(T + $), since each node has to 
perform a work of cost O(s/P+mw,0 ,+I size(xi)) = 
0(8/P + maxi=O,n--l T(f0,xi)) = O(s)P + T). 

4.3 An example: select(x, y) 

We take now a close look at the .steps needed to im- 
plement some Sd operations, say z = select(x, y). To 
bfgin with, each node i holds the subsequences xi and 
y’ of x and y respectively. Then select(x, y) requires 
three communication steps: 

Each node i, i = 0, P - 1, starts by counting lo- 
cally the number of nonzero elements occurring 
in xi: call this number ni. In a global com- 
munication step, we compute a prefix sum on 
the ni’s: after that, node i will hold the value 
mj dgf no + nl + . ..+nj. 

The last node broadcasts m (= mp-1) to all 
other nodes: this will be length(z). 

Having rni and m, each node will be able to de- 
termine for each of its local elements yj, what 
position they take in the final result z, and, sends 
it to the corresponding node. 

The first two communications are control commu- 
nications, and the last one data communication. 
The only control communications needed in Sd oper- 
ations are broadcasts and/or prefix sums, for which 
provably optimal implementations exists [KSSS93]. 
Still, optimality here is not crucial, since their cost 
depends only on P (they are O(log P)), and not on 
the database size. We focus on data communications 
next. 

4.4 Monotone communications 

It turns out that our data communications have special 
patterns. Formally, let a communication problem 
for the LogP model be given by a number of items, a 
number of celkr, both distributed on the nodes, and a 
one-to-many relation from items to cells, saying tihich 
item has to be sent to which cell(s). The problem asks 
to orchestrate the messages such that all items arrive 
at their destination in a minimum global time. 

Let 2 = [x0,... ,x,+1] be the sequence of all items 
held by all P nodes, and zi the subsequence of ni items 
stored at node i: x = x”Qx’@ . . . @xp-‘. Similarly, 
let Y = [YO,...,Y,-I ] be the sequence of all destina- 
tion cells, and y” the subsequence stored at node i. In 
a communication problem, each item Xk has to be sent 
to a number of cells ~d,,~, ydh2, . . ., possibly residing on 
several nodes. When each item Xk has exactly one des- 
tination, 61, then we call the communication problem 
one-to-one, otherwise we call it one-to-many. Fig- 
ure 4 contains three examples of communication prob- 
lems: (b) is one-to-one, while (a), (c) are one-to-many. 
Next, we call a communication problem monotone if 
for any two distinct items Xk, Xk’ , with k < k’, &ny 
tW0 destination Ceh Of these items y&, , &,,, Satisfy: 
dkl < dkqt. Examples (b) and (c) of Figure 4 are 
monotone, while (a) is not. Intuitively a communica- 
tion problem is monotone iff the arrows drawn as in 
Figure 4 do not intersect each other. 

Our central observation is that all data communi- 
cations in the Sd operations (except sbmRoute), are 
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Figure 4: Communication problems, for P = 3 nodes. 
monotone: in fact they are even one-to-one, except for 
bmRoute which is monotone, one-to-many. Indeed: for 
sequence concatenation, z@u, we perform two mono- 
tone, one-to-one communications (the first moves x 
to the left, and the second moves y to the right); for 
select(x, y) we need a monotone, one-to-one communi- 
cation with some elements of 21; for map(fe) we need 
to cluster, then apply fo locally, then decluster the 
result, and both cluster and decluster are monotone, 
one-to-one. We focus next on the implementation of 
monotone communication problems. 

4.5 A provably optimal algorithm for mono- 
tone, one-to-one communications 

We give here a simple algorithm for the monotone, 
one-tpone communication problem, an prove it is op- 
timal whenever sg > 30, where s is the size of the 
items xb, g and o are the gap and overhead respec- 
tively. Since items do not need to be replicated, we 
basically obtain optimality by avoiding receive/receive 
and send/receive conflict?. 

Recall that each item xk on node i has to be sent 
to exactly one destination cell Ydkl, say on node j. 
We will assume4 that the node i knows the relative 
position of cell Y& on node j. 

The algorithm consists of two threads at each 
node: ‘a send-thread and a receive-thread, with. the 
send-thread of higher priority. The send-thread at 
node i starts by partitioning its items into blocks, ac- 
cording to their destination node, Figure 5. Each block 
will be sent in a single, possibly long message to its des- 
tination node. Because the communication is mono- 
tone, only blocks 0 and X (first and last) may generate 
receive/receive conflicts at their destinations. To avoid 
them, we send the blocks in the order A, X - 1,. . . ,0: 
hence, each node j will receive its messages in left-to- 
right order. Then, the only possible receive/receive 

4This aesumption is true for all our Sd operations. 

procedure send-thread 
for b = X to 1 do 

send block b to processor jb 

let t be the time needed to send the X blocks above 
let 6 = the relative position of xk,, in node je 
let t’ = 6g 
if t’ > t then wait t’ - t time units else continue 
send block 0 to processor je 

procedure receive-thread 
for b’ = 1 to A’ do 

let t = time left to next activation of send-thread 
if t < o then wait t + o time units else continue 
receive block b’ 

Figure 6: Optimal communication algorithm. 
conflict remains only for block 0: there may be other 
nodes,sayi-l,i-2,... sending to the same node jo. 
Hence the send-thread waits for all processors to the 
left to complete their sends. Since it knows the cell 
number at node jo where item X&,, goes, it can com- 
pute exactly how much time it needs to wait before it 
is its tur_n. The send&mad is described in Figure 6. 

The receive-thread receives messages and stores 
them in their destination cell, at full speed. The only 
problem is that it has to avoid send/receive conflicts, 
Figure 7. The black boxes represent time intervals in 
which a thread needs to acquire the processor: two 
black boxes are not allowed to overlap. Before start- 
ing to accept a message, the receive-thread checks the 
state of the send-thread: if the time-t left before the 
send-thread needs to acquire the processor is < o, then 
the receive-thread waits, for at most t + o time units. 
Even in this case, the delayed black box will not inter- 
fere with the next black box, provided that 30 5 sg. 
We can prove [Suc95]: 

Theorem 4.1 When 30 5 sg, then the algorithm in 
Figure 6 is optimal for the monotone one-to-one com- 
munication problem. 

When applied to an Sd operation with work com- 
plexity W, the running time is x g+ = O(s). 

4.6 An eflkient algorithm for monotone, one- 
to-many communications 

For the case of one-to-many monotone communica- 
tions, we proceed in two steps: (1) a one-to-one com- 
munication step, in which each item is sent only to 
its rightmost destination, (2) a number of local broad- 
casts (group communications), in which each item is 
replicated to its left. The cost of the latter is indepen- 
dent on the data size, and depends only on P. We _ 
don’t know whether the two steps combined form an 
optimal algorithm (the optimal algorithm may over- 
lap the two steps), but the running time t is obviously 
bounded by t 5 toptimal + tbmadc&, where topt is 
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To processor je To processor jr To processor j,-r TO processor j, 

Figure 5: The send-blocks in the optimal monotone, one-to-one algorithm. 

send-thread: 
Block b + 1 Block b Block b - 1 

0 >sg-0 0 ,sg--0 0 >sg-0 

receive-thread: 
Block b’ - 1 Block b’ Block b’ f 1 

>sg-0 0 >sg-0 0 >sg-0 0 

Figure 7: Possible send/receive conflicts. 
the optimal running time, and tbroadcast is the broad- 
cast time. The latter is O(logP), and is independent 
of the data size. 

4.7 Running time for Sd operations. 

Hence every Sd instruction (except sbmRoute) is im- 
plemented in time Tp = O(T) + O(logP), the first 
term being the cost of data communication, and the 
last one the cost of control messages. We will argue in 
the next section that, under realistic assumptions, the 
total cost is dominated by the first term. 

5 Preliminary results on a LogP simu- 
lator 

In order to test the feasibility of our LogP implementa- 
tion techniques, we run some preliminary experiments 
for two simple benchmarks on a LogP simulator. We 
fed the simulator with the L, o, and g parameters for 
the Connection Machine 5 (L = 60,o = 105,g = 100, 
measured in clock units) and the SPl multiprocessors 
(L = 70, o = 120,g = 55) [Ble94]: we observed no 
changes in overall behavior, so we report here only the 
experiments with the parameters for the CM5. Our 
primary goal was to compare the cost of communica- 
tions to that of the “useful” computation, and the cost 
of control communications and to that of data commu- 
nications. 

We ran two benchmarks: a simple merge algorithm, 
and an object-oriented flavored benchmark, inspired 
from the 007 benchmark of [CDN93]. For lack of 
space we report only the results of the first one: both 
are fully described in [Suc95]. 

The merge function is a pragmatic adaptation of 
Valiant’s parallel merge algorithm [Val75, Jaj92]. Two 
sorted sequences z = [zsIzr,, . . ,zm-i] and y = 
[YOJl,..., yn-r] are given as inputs. In order to merge 

them, our algorithm starts by dividing x into &ii sub- 
sequences of length 6: x = z”@z’O . . . @sfi-‘. In 
parallel for each subsequence a?, it finds the corre- 
sponding subsequence v’ of y with which a? has to be 
merged. Then xi with y’ are merged using an exter- 
nal, sequential sequential-merge function, in parallel 
for i = 0, fi - 1. (Valiant’s algorithm continues re- 
cursively, for a total of O(log log m) parallel steps.) For 
m sufficiently large, the number of fi subsequences 
which have to be merged in parallel is large enough to 
allow a reasonably good processor load balance. 

The data sets for the merge benchmark were gen- 
erated such that x is uniformly distributed in the in- 
terval [x0, z,,,-13, while y is uniformly distributed in 
the middle third of x. While these data sets were easy 
to generate, they may not cover the worst case, when 
one subsequence y’ is equal to y: a second pass of the 
algorithm however can guarantee perfect load balance 
in this case too [Suc95]. 

Each point in the graphs represent a single run: 
since the simulator is deterministic and we used a sin- 
gle data set, subsequent runs would produce the same 
results. For simplicity, our simulator ignores other 
factors besides communication and computation time, 
such as I/O cost, start-up time, system load, etc. 

We ran each experiment in two modes. In the 
communication only mode, the simulator counts only 
the communication time, and ignores the computation 
time, except for the communication overhead o: this is 
the same as assuming infinite processor speed, hence 
we obtain 0 running time for P = 1 node. This mode is 
useful for measuring the communication costs. In the 
communication and computation mode, the computa- 
tion time (which is estimated) is taken into account 
too. There are two kinds of computation times which 
are counted in this mode. First there is the compu- 
tation time of the external functions sequential-merge. 
This time strictly decreases as P increases. Second, 
there is the computation time spent in preparing the 
communications for the Sd operators: this is in some 
sense “unuseful” work, since for P = 1 this time is 0. 

We tested two performance metrics speedup and 
scaleup [DG92]. In the speedup experiments we kept 
the data size constant, and varied P from 1 to 64: 
both x and y have length 100,000. In the scaleup ex- 
periments we varied P again from 1 to 64, and chose 
the length of x and v to be 10,000. P. 

The speedup of merge in Figure 8 reveals a nice 
surprise: the communication time decreases with P. 
For P = 1 there are no communications at all. When 
P increases, the time for the control communications 
is O(log P), forcing the total communication time to 
increase. But at the same time each processor has to 
send less data messages, because the input data size is 
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constant. What the graph in Figure 8 says is that for 
a large input size N = 100,000 and not too many pro- 
cessors, the communication time is dominated by the 
data messages. Hence it. decreases when P increases. 
Had we increased P even further (say P = 128) we 
would have observed an increase of the communica- 
tion time, because it starts being dominated by the 
control communications. However for larger data sets, 
the data communications would be still dominant for 
even larger P’s. 

Once we account for the computation time too, the 
graph in Figure 8 shows a good overall speedup. 

The total number of words sent plotted in Figure 8 
reinforces the observation about the communication 
time being dominated by the data communications. 
Indeed the total number of words in the data mes- 
sages is constant (because the input size is constant), 
while that in the control messages varies (P - 1 for 
broadcast, O(Plog P) for scan): the graph shows that 
the total number of words sent grows slowly with P, 
hence the constant component is significant. The other 
two plots in Figure 8 reveal a negative phenomenon of 
our implementation on the LogP model. As P grows, 
more and smaller data messages are exchanged: the 
total number of ‘messages grows linearly with P. 

In the scaleup experiment, Figure 9, the commu- 
nication time grows faster than in the speedup ex- 
periment, because the cost of data communications 
per node remains roughly constant, while that of con- 
trol communications increases. Still the growth is 
not significant as long as the communication phase 
is dominated by the data messages, as in the range 
P = 4. . .32. For P = 64 however, the communication 
time starts getting dominated by the control messages, 
and it grows sharply. This upper bound for P increases 
as the data size at each processor increases: we ex- 
pect to see good scaleup beyond 64 processors for, say, 
40,000 elements per processor. The maximum mes- 
sage size shown in Figure 9 stabilizes at 10,000, which 
means that, at some point, a processor sends all its z 
or y subsequence to another processor. Unlike in the 
speedup experiment, the total number of words sent 
increases linearly both for the data messages and for 
the control messages. 

6 Conclusions and Future Work 

We have discussed parallel implementation techniques 
for databases organized as nested sets, bags, and se- 
quences . At a high level we have shown how nested 
parallelism can be flattened in an efficient way w.r.t. 
the asymptotic parallel complexities. At a low level we 
have discussed implementations on the LogP model, 
showing absolute optimality for data communications. 
Several issues remain to be addressed: 

Optimizations The translation of hrCC queries 
into Sd queries (Theorem 3.1) preserves only the 
asymptotic parallel complexities: this is OK for an ex- 
istence proof, but for practical purposes the constant 
behind the O’s need to be decreased. This can be 
done by algebraic transformations of the resulting Sd 
expression. 

/ 
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Joins JVCC has no special join operation, but can 
express it with 2 nested map’s (like in Subsection 2.2). 
Written like this, its complexity is 2’ = O(l), W = 
O(n2) (assuming both relations of size n). We can 
do better, by representing relations as sequences, sort- 
ing them, then using merge join: this gives us T = 
O(l), w = o(n’+E ), for arbitrarily small E > 0, which 
leads to a O(W’+E/P) parallel running time (equa- 
tion 1). But of course, we would do much better by 
using one of the existing specialized parallel join algo- 
rithm [SD89]. It is of interest to integrate our tech- 
niques for nested parallelism with existing specialized 
parallel algorithms for flat relations, by treating flat 
relations as special cases. 
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