
Disseminating Updates on Broadcast Disks

Swarup Acharya Michael Franklin
Brown University University of Maryland
saQcs . brown. edu franklin@cs.umd.edu

Stanley Zdonik
Brown University
sbzQcs.brown.edu

Abstract
Lately there has been increasing interest in the use of
data dissemination as a means for delivering data from
servers to clients in both wired and wireless environ-
ments. Using data dissemination, the transfer of data
is initiated by servers, resulting in a reversal of the tra-
ditional relationship between clients and servers. In
previous papers, we have proposed Broadcast Disks as
a model for structuring the repetitive transmission of
data in a broadcast medium. Broadcast Disks are in-
tended for use in environments where, for either phys-
ical or application-dependent reasons, there is asym-
metry in the communication capacity between clients
and servers. Examples of such environments include
wireless networks with mobile clients, cable and direct
satellite broadcast, and information dispersal applica-
tions. Our initial studies of Broadcast Disks focused on
the performance of the mechanism when the data be-
ing broadcast did not change. In this paper, we extend
those results to incorporate the impact of updates. We
first propose several alternative models for updates and
examine the fundamental tradeoff that arises between
the currency of data and performance. We then propose
and analyze mechanisms for implementing these vari-
ous models. The performance results show that, even
in a model where updates must be transmitted immedi-
ately, the performance of the Broadcast Disks technique
can be made quite mbust through the use of simple tech-
niques for propagating and prefetching data items.

1 Introduction
1.1 Broadcast Disks

Continuing advances in telecommunications, interconnectivity,
and mobile computing have brought about a new class of informa-
tion delivery applications based on dara dissemination. In contrast

Permission to copy without fee all or part of this material is granted
providedthat the copies are not made or distributedfor direct commercial
advantage, the VZDB copyright notice andthe title of the publication and
i&s date appeac and notice ir given that copying b by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee an&or special pernuksion from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

to traditional, “pull-based” approaches, where data is brought from
servers to client applications using remote procedure call (RPC) or
request-response protocols, data flow in dissemination-based sys-
tems is initiated in a “push-based” fashion, i.e., from the server-
side. Dissemination-based information systems have been pra-
posed and/or implemented for both wired and wireless networks
for a wide range of applications. Some examples include: stock
quotation and trading systems [Oki93], advanced traveler infor-
mation systems (ATIS) [Shek94], wireless classrooms [Katz94],
fast database lookup [Herm87, Bowe92], and news delivery in
both wireless [Giff90] and wired em961 environments.

In previous work, we proposed and analyzed the Broad-
ca.rt Disks model for disseminating data in a broadcast environ-
ment [Zdon94, Acha95bl. Specifically, Broadcast Disks are in-
tended for environments where the communication channel among
clients and servers is asymmetric. In an asymmetric communica-
tion environment, there is typically more communication capacity
available from servers to clients than in the opposite direction.
Such asymmetry can arise from physical network characteristics
such as bandwidth differences, as in wireless mobile networks with
cellular uplinks, cable TV with set-top boxes, and direct satellite
broadcasting environments, or from properties of the workload as
in information systems with a large ratio of clients to servers.

In an asymmetric communication environment, the data bmad-
cast can be used to exploit the servers’ advantage in transmission
bandwidth in order to provide responsive data access to clients.
The Broadcast Disks approach transmits data repetitively to a pop-
ulation of clients. A broadcast program is created containing all
the data items to be disseminated and this program is transmit-
ted cyclicly. The repetitive nature of the broadcast allows the
medium to be used as a type of storage device (“disk”); clients
that need to access a data item from the broadcast can obtain the
item at the point in the disk’s rotation when the item is transmit-
ted. Repetitive broadcast has been investigated in several previous
projects [Amma85, Wong88, Bowe92, Imie94al. The Broadcast
Disks model differs from this previous work in that it integrates
two main components: 1) a novel “multi-disk” structuring mech-
anism that allows data items to be broadcast non-uniformly, so
that bandwidth can be allocated to data items in proportion to the
importance of those items; and 2) client-side storage management
algorithms for data caching and prefetching that are tailored to the
multi-disk broadcast.

Using the multi-disk model, data items can be placed on “disks”
of varying size and rotational speed. An arbitrarily tine-grained
memory hierarchy can be created by constructing a multi-disk
broadcast such that the highest level is a disk that is relatively
small and spins relatively quickly, while subsequent levels are pm-

354

gressively larger and spin progressively slower. Such a broadcast
program is analogous to a traditional memory hierarchy ranging
from small, fast memories (e.g., cache) to larger, slower memories
(e.g., disks or near-line storage).

The client-side storage management policies take into account
both the local access probability (using heuristics such as LRU or
usage frequency) and the expected latency of a data item; items
that reside on slower disks have higher average latencies. The
caching policies [Acha95a] favor slow-disk data items, allowing
clients to use their local storage resources to retain pages which are
important locally, but are not sufficiently popular across all clients
to warrant placement on a faster disk. Such policies allow clients
to exploit their local resources in those cases where. their access
patterns differ from the average client population, while taking
advantage of the improved delivery rate of globally popular items
on the broadcast. The prefetching policies [Acha96] are more
dynamic in the sense that they take into consideration not just the
average latency for a data item, but rather, the time-to-tival for
items at a given instant. The prefetching policies strive to retain
items in a client’s cache during those portions of the broadcast
cycle where their time-to-arrival is at its highest.

1.2 Coping 64th Updates

The focus of our previous studies was on the performance of the
Broadcast Disks approach in the context of a read-only environ-
ment, where neither the broadcast program nor its contents were
changed. These studies uncovered fundamental properties of the
approach and demonstrated the impact of push-based data deliv-
ery on client cache management. Clearly, however, many of the
applications that can best profit from a broadcast-based approach
also require the dissemination of updates. Examples of such ap-
plications include: stock quotation systems, weather and traffic
reports, and logistics applications.

In the Broadcast Disks environment, there are four types of
changes that can be considered. These are:

Ifem Placement - Data items may be moved among the levels
of a given Broadcast Disks hierarchy (i.e., a set of disks of
varying sizes and speeds). Such movement may have an
impact on the mehics used by the client-side caching and
prefetching policies.

Disk Structure - The shape of the hierarchy itself may be
changed; for example, the ratios of the speeds of the disks
may be changed, slots may be added to or removed fmm a
given disk, an entire disk may be added or removed, etc.

Disk Confents - The set of data items being broadcast
changes, i.e., some pages being broadcast are no longer
broadcast and/or new items are added to the program.

Data Values - Updates are made to data items that are already
part of the broadcastprogram. Depending on the consistency
model used, these updates may require clients to remove stale
copies of the items fmm their caches.

For Item Placement and Disk Structure changes, there are no
updates to the actual data values being broadcast; only the rela-
tive frequencies and/or the order of appearance of the data items
already being broadcast are changed.’ The impact of these first
two types of changes, therefore, is primarily on performance. The

‘We assume that data items are self identifying. Alternatively, an
indexing scheme can be used to locate and identify items, as proposed
in [Imie94b].

metrics used by the caching and prefetching algorithms include
information about the latency of data items. Thus, changes due
to Item Placement and/or Disk Structure may cause the relative
values of data items to be incorrect, resulting in sub-optimal us-
age of the client storage resources. Performance problems that
might arise from such changes can be mitigated, to some extent,
by broadcasting advancenotice of the upcoming changes. This in-
formation would allow clients to appropriately adjust their caching
behavior.

With the third change type, changes to Disk Contents, items
that used to appear on the broadcast may be removed, while new
items may appear. While this type of change does have an impact
on the set of data items that appear on the broadcast, it can also
be considered to be an extreme case of Item Placement change;
items are moved to or from a disk having inEnite latency. Viewed
in this way then, given advance warning of the impending arrival
or disappearance of a data item, clients may choose to cache an
item before it is dropped from the broadcast or make room for an
item that will appear.

The fourth type of change, Data Value updates, is qualitatively
different from the others, as it raises the issue of data consistency.
In Broadcast Disks or any other data-dissemination environment,
clients access data from their local caches, while updates to data
values are collected at a server site. In order to keep the clients’
caches consistent with the updated data values, the client-cached
copies of modified items must be invalidated or updated. Different
applications, however, have differing consistency demands. Some
applications need to access only the most recent values of data
items, while others can tolerate some degree of staleness. Further-
more, in some consistency models, such as ACID transactions,
consistency must be preserved across reads of multiple data items.

In this paper we focus on the problem of efficiently sup-
porting Data Value updates. We propose and analyze exten-
sions to the original Broadcast Disks model that are necessary
to provide robust performance in workloads where the values
of the data items being broadcast are allowe‘d to change at the
server while copies of those items may be cached at clients.
As is discussed in Section 6, schemes for providing consistency
in dissemination-based environments have been studied previ-
ously [Alon90, Bowe92, Barb94, Jing95, Wu96]. Our techniques
differ from previous work due to the unique characteristics of the
Broadcast Disks approach, which arise due to the combination of
repetitive, multi-disk broadcast of data and associated client-side
cache management protocols.

The key contributions of this work are twofold. First, the
studies verify that the basic intuitions that were observed and the
techniques that were developed previously for Broadcast Disks and
the associated cache management policies in the read-only cases
remain valid even in the presence of data item updates; and second,
the results show that with the addition of a few simple mechanisms
(described in Section 3), the performance of the broadcast can be
made to approach that of the steady-state (no update) case for a
fairly wide range of update rates.

1.3 Overview of the Paper

The remainder of this paper is structured as follows: Section 2
briefly describes the shucture of Broadcast Disk programs, pm-
poses several alternative models of consistency in the presence
of data value updates, and lists our assumptions. Section 3 in-
troduces the basic techniques used to disseminate updates in this
environment. Section 4 presents a description of the simulation

355

HOT COLD

Disks

Chunks
El
,

Cl,1 C2,1 c2,2 c3,1 ‘3,2 c3,3 c3,4

Major Cycle

Minor Cycle

Figure 1: Deriving a Server Broadcast Program

environment used to study the various approaches to consistency.
Section 5 contains the experiments and results. Section 6 provides
a discussion of related work. Section 7 presents our conclusions
and future work.

2 Updates and Broadcast Disks

2.1 Broadcast Disk Programs

Iu this section we briefly describe the structure of broadcast pro-
grams. A Broadcast Disk is a cyclic broadcast of data items
(called pages) that are likely to be’of interest to the client pop-
ulation. Multiple disks can be simulated on a single broadcast
channel by broadcasting some pages more frequently than others.
Each disk corresponds to those pages that have the same broadcast
frequency. The desirable characteristics for a broadcast program
have been outlined in [Acha95a]. Briefly, a good broadcast pro-
gram is periodic, has fixed (or nearly fixed) inter-arrival times for
repeated occurrences of a page, and allocates bandwidth to pages
in accordance with their access probabilities.

The algorithm used by the server to generate the broadcast
program requires the following inputs - the number of disks,
the relative spin speeds of each disk and assignments of pages to
disks on which they are broadcast. In this paper we explain the
process using a simple example. For a detailed description of the
algorithm, the reader is referred to [Acha95a].

Figure 1 shows 11 pages that are divided into three ranges
of similar access probabilities. Each of these ranges will be a
separate “disk” in the broadcast. In the example, pages of the
Erst disk are to be bioadcast twice as often as those in the second
and four times as often as those of the slowest disk. To achieve
these relative frequencies, the disks are split into smaller equal-.
sized units called chunks (Ci,j refers to the jth chunk of disk
i); the number of chunks per disk is inversely proportional to
the relative frequencies of the disks. ‘In other words, the slowest
disk has the most chunks while the fastest disk has the fewest
chunks. In the example, the number of chunks am 1,2 and 4 for
disks DI, D2 and D3 respectively. The program is generated by
broadcasting a chunk fmm each disk and cycling through all the
chunks sequentially over all the disks. The figure shows a major
cycle which is one complete cycle of the broadcast and a minor
cycle which is a sub-cycle consisting of one chunkfrom each disk.
As desired, page 1 appears four times per major cycle, pages 2
and 3 appear twice and so on.

2.2 Models of Consistency

As stated in the introduction, allowing disseminated (and possibly
cached) data values to be updated creates the potential for data con-
sistency problems. The notion of data consistency is, of course,
application-dependent. In database systems data consistency is
traditionally tied to the notion of transaction serializability. In
practice, however, few applications demand or even want full se-
rializability, and much effort has gone into defining weaker forms
of correctness (e.g.,. pere95, Kort95]). Because dissemination-
based information systems are only now beginning to emerge, the
notion of data consistency for applications in such systems is even
less well-understood.

In this paperwe focus on aBroadcastDisks environmentwhere
all updates are collected at the server and clients access the data
in a read-only fashion. Such an access pattern is likely in many
data dissemination applications such as stock quotation systems,
news and weather services, etc. In such an environment there are
a number of reasonable choices for consistency models. These
include:

l Latest Value - Clients must always access the most recent
value of a data item. This level of consistency is what would
arise naturally if clients performed no caching and servers
broadcastonly the mostrecentvalues of items. Note that this
model, although often used in dissemination-based and/or
mobile database work, is far weaker than serializability -
there is no notion of mutual consistency among groups of
items.

Quasi-caching [Alon90] - Consistency can be defined on a
per-client basis using constraints that specify a tolerance of
slack compared to Latest Value. Some examples of such
constraints include values that must be within 2% of the
latest value (e.g., for scalar attributes) or within y minutes
of the latest value or within the last z changes of the value.
Quasi-caching gives clients the ability to use cached data
items in cases where they may otherwise be unsure of their
correctness, and may allow the server to more lazily dissem-
inate updates when the caching constraints of the clients are
known.

Periodic - Data values only change at specified intervals. In a
BroadcastDiskenvironmenf such intervals can be tied to the
major or minor cycles of the broadcast. If clients are allowed
to cache data, then they are guaranteed that such data will
remain valid for the remainder of the interval during which
the data was initially read. Such an approach was used in
the Datacycle system [Bowe92].

Seriulizubilify - If client reads and server updates are per-
formed within the context of transactions, then serializability
(or some reduced degrees of isolation [Bere95]) may be an
appropriate notion of consistency. Datacycle implemented
serializability using a combination of periodic update, opti-
mistic concurrency control at clients, and the broadcasting
of update logs.

Opportunistic - For some applications (or under certain con-
ditions) it may be acceptable to read any version of a data
item that is available. This notion of consistency is im-
plemented by allowing clients to freely access data from
their cache without worrying about consistency. Such an ap-
proach has obvious advantages for applications where long-
term disconnection from the server is likely. In some cases,

356

reading data of questionable quality may be preferable to
having no data access at all.

In this paper we focus on two models of consistency: Latest
Value and Periodic. These models allow us to study the consis-
tency maintenance techniques under two different levels of over-
head in a manner that is relatively independent of application
semantics. Latest Value is likely to cause the greatest overhead
for update dissemination-every update may require data cached
at clients to be immediately invalidated or updated. Thus, Latest
Value provides a good test of the efficiency of the mechanisms used
to ensure consistency. The Periodic model, which places fewer
demands on the efficiency of consistency maintenance, is useful
for several reasons. First, it fits well with the cyclic behavior of
the Broadcast Disk model. Also, it is similar to the basic approach
used in Datacycle, and, as shown in the Datacycle work, it can be
used as a foundation on which to build a serializable model. In
this paper, we use a Periodic model in which consistency actions
are performed once per major cycle.

Compared to the Latest Value and Periodic models, the Quasi-
caching and Opportunistic models depend more heavily on the
semantics of data access in specific applications. The Serializable
model is not relevant for our current model of Broadcast Disks,
as our c.hents are not transactional. Our focus in this paper is
on the fundamental tradeoffs involved with the mechanisms for
maintaining data consistency in the Broadcast Disks environment;
thus, we perform our experiments using the Gluiest Value and
Periodic models. Studies of the other three models, however, are
an interesting avenue for future work, particularly in the context
of specific applications.

2.3 Assumptions

The implementation of the various models of consistency requires
the coordination of both the server broadcast policy and client
cache management. For example, in order to implement the &esr
Value model, the server must, ata minimum, broadcast an inval-
idation message when a data item is updated, and clients must
either process that invalidation or refrain from accessing the data
item from their caches until its validity can be ascertained. In this
study, we make the following assumptions about the environment:

1.

2.

3.

4.

All updates areperformed at the serve): .+s stated previously,
we assume a system in which clients access data from the
broadcast in a read-only manner, while updates are applied
at the server and disseminated from there.

Clients have no back-channel capacity. In this study, clients
do not have a mechanism for sending messages to the server.
Thus,’ for example, clients can not send special requests to
the server for missing or invalidated data items.

Active clients continuously monitor the broadcast. We as-
sume an environment such as CNN-at-Work, in which ac-
tive clients can constantly monitor the broadcast. If a client
stops monitoring the broadcast, then it can no longer trust the
contents of its cache. Techniques for implementing cache
consistency for intermittently connected clients have been
studied in parb94, Jing95, Wu96].

Clients remain activefor signijic~tperiods of time. Once a
client begins momtoring the broadcast, it does so for a period
of time sufficient for its cache to fill and reach a steady state.
That is, we focus on the steady state behavior of connected
clients.

Given these assumptions and the Latest Value and Periodic data
consistency models as described in the previous section, we next
describe techniques that will be useful for disseminating updates
in a consistent manner in the Broadcast Disks environment.

3 Consistency Techniques
The implementation of data consistency requires mechanisms to
ensure that clients see only valid states of the data, or at least,
do not unknowingly access data that is stale according to the
rules of the consistency model. Each model of data consistency
places demands on both the server broadcast and on client cache
management. The server is responsible for informing clients either
prior to or at the instant that a page is broadcast that their cached
copy may be stale. In the broadcast environment, where servers
have no knowledge of the contents of client caches, the server
must broadcast consistency information for any clients that may
be affected. On the other hand, it is the responsibility of the
clients to obtain the consistency information and take appropriate
actions. In the case where a client may have missed consistency
information due to, say, disconnection or to broadcast errors, the
client must avoid accessing any mutable cached data until it can
ascertain the validity of its cache contents.

Problems related to consistency arise in most other sys-
tems where client caching is used, such as multi-processor
architectures [Arch86], distributed tile systems &evy90], dis-
tributed shared memory [Nitzgl], and client-server database sys-
tems [Fran96]. In such systems, there are two basic techniques for
communicating consistency information: invalidation (also called
Write-Invalidate) and propagation (also called Write-Broadcast).
For invalidation, the server sends outmessages to inform the client
of modified pages. The client removes these pages from its cache.
For propagation, the server sends updated values, and the client
replaces its old copy with the new one.

Invalidation and propagation are also useful techniques in the
Broadcast Disk environment. The nature of this new medium,
however, changes the relative tradeoffs between them and intro-
duces. some additional opportunities. In this section, we briefly
describe how these techniques are introduced into the broadcast
paradigm.

3.1 Invalidation

The quickest way to ensure that clients do not access stale data
is through the use of invalidation. Invalidation messages can be
quite small, requiring only that the page that has become invalid
be identified. When a client receives an invalidation, it checks to
see if it has a locally cached copy of the affected page, and if so,
removes the page from its cache (or simply marks it “invalid”).
In this paper invalidations are implemented through the use of
an invalidation list. An invalidation list is simply a structure
that contains the IDS of pages that should be invalidated at a
particular instant. Under the Periodic consistency model, updates
are saved up and an invalidation list containing possibly multiple
page IDS is broadcast at a pre-specified interval, such as at the
beginning of a major or minor cycle. In the systems studied in
this paper, invalidation lists contain the IDS of all pages that have
been updated since the last invalidation list was broadcast.

Invalidation, while efficient to implement, can have a dramatic
effect on the performance of client caches. When a client first
“tunes in” to a broadcast program, it faults in (or prefetches)
pages from the broadcast until its cache is full. From that point

357

on, the cache is managed using a cache replacementpolicy - if
a new page is to be brought into a full cache, an existing cached
page must be chosen as a victim and replaced from the cache.
The phase in which a client is initially loading its cache is known
as the warm-up phase. Once the cache has been full for some
time, and data is being cycled in and out of the cache, the client is
said to be in steady state. In the Broadcast Disk model, the best
broadcast program for clients in the warm-up phase is different
than the best program for clients in steady state. As described
in [Acha95a], once a client has warmed up its cache, it is wasteful
of bandwidth to frequently broadcastpagesthat are highly likely to
be in the cache. To address this issue, the Broadcast Disk model
includes the notion of o$ser. As is described in Section 4, the
oflet parameter moves the hottest pages from the fastest disk of
a Broadcast Disk hierarchy to the slowest disk. The use of oflet
provides the most efficient use of bandwidth when client caches
are in steady state.

Invalidations, however, have the effect of moving client caches
away from steady state. If a page is updated, it is removed frum
the client’s cache regardless of how recently or how often it has
been accessed. Thus, invalidations undermine the steady-state
assumption on which the use of o$ser is based, so a program that
is generated using oflet is likely to be sub-optimal in the presence
of invalidations.

3.2 Auto-prefetch

The potential negative performance impact of invalidations is ex-
acerbated if clients access the Broadcast Disk in a purely demand-
driven manner. When important pages are invalidated, a demand-
driven approach will fault them into a client’s cache one-at-a-time.
If o$set is used, the performance penalty can be tremendous, as
the most important pages have been placed on the slowest disks.
This problem, however, can be easily addressed in the Byadcast
Disk environment through the use of a technique we call auto-
prefetching. As demonstrated in [Acha96], the broadcast medium
is in general, highly conducive to data prefetching; data pages
continually flow past clients so the clients can choose to prefetch
passing pages without imposing any additional load on shared
resources (only the local client resources are impacted).

Auto-prefetching is based on the intuition that with good cache
management, the pages in a client’s cache tend to be pages that
are valuable to the client, whereas pages that are not cached tend
to be less valuable. Auto-prefetching simply turns on prefetching
at a client for any data pages that are invalidated from that client’s
cache. After apageis invalidated and marked for auto-prefetch, it
is automatically brought into the cache the next time it appears on
the broadcast. As will be shown in the performance experiments,
auto-prefetching goes a long way towards mitigating the negative
impact of invalidation.

3.3 Propagation

In contrast to invalidation, propagation delivers the new value of
a changed data page, allowing a client to install that new value
as a replacement for a cached value that would otherwise become
stale. The advantage of propagation is that it can help clients stay
closer to their steady state, especially when used in conjunction
with auto-prefetch, as described above. The disadvantage of prop-
agation is that it can be wasteful of bandwidth. When a page that
is not cached ai any clients (or cached at only very few clients)

CacheSize
ThinklGne

Client cache size (in pages)
Time between client page accesses
(in broadcast units)

AccessRange) # of pages in range accessed by client

Zipf Distribution
e 1 Ziof distribution narameter
RegionSize 1 # of pages per region

Table 1: Client Parameter Description

is propagated, the bandwidth used for that propagation effectively
goes unused.

In this paper, we implement propagation through the use of
a propagation list, which is simply a concatenation of new page
values. As with invalidations, propagations can be saved up and
broadcast periodically, or they can be broadcast immediately. It
is important to note however, that the dissemination of invalida-
tions and propagations need not be done using the same policy.
Correctness can be ensured tiugh the timely broadcast of invali-
dations, in which case propagation is performed as a performance
enhancement. Also, it is important to note that the maximum rate
of propagations is significantly lower than that of invalidations,
due to the differences in the bandwidth requirements - propaga-
tions cannot be transmitted any faster than the broadcast speed (in
pages per unit time) of the medium. In the system studied here,
a propagation list contains the values of all pages that have been
updated since the last propagation list was broadcast.

4 Modeling the Broadcast Environment
Our model of the broadcast environment has been described previ-
ously [AchBSa, Acha96]. The results presented in this paper are
based on the same underlying model, extended to include updates.
We briefly describe the model in this section.

In the broadcast environment, the performance of a single client
for a given broadcast program is independent of the presence
of other clients. As a result, we can study the environment by
simulating only a single client. However, the servercan potentially
generate a bruadcastprogram that is sub-optimal for any particular
client since it tries to balance the needs of all clients. 70 account
for this phenomenon, we model the client as accessing logical
pages that are mapped to the physical pages broadcast by the
server. By controlling the nature of the mapping, we vary how
close the broadcast program of the server matches the client’s
requirements. For example, having the client access only a subset
of the pages models the fact that the server is broadcasting pages
for other clients as well.

4.1 The Client Model

The parameters that describe the operation of the client are shown
in Table 1. The simulator measures performance in logical time
units called broadcast units. A broadcast unit is the time required
to broadcast a single page. The actual response time will depend
on the amount of real time required to transmit a page on the
broadcast channel. It is important to note that the relative perfor-
mance benefits are independent of the bandwidth of the broadcast
medium.

The client has a cache that can hold CacheSize pages. After
every read access, the client waits ThinkTime broadcast units and
then makes the next read request. The Thinki’ime parameter allows
the cost of client processing relative to page broadcast time to be

358

ServerDBSize No. of distinct pages in broadcast

~~ Relanve broadcast frequency of dtsk z

Table 2: Server Parameter Description

adjusted, thus it can be used to model workload pticessing as well
as the relative speeds of the CPU and the broadcast medium.

The client accesses pages from the range 1 to AccessRange,
which can be a subset of the pages that are broadcast. All pages
outside of this range have a zero probability of access at the client.
Within the range, the access probabilities follow a Zipf [Knut81]
distribution. The Zipf distribution with a parameter 8 is frequently
used to model non-uniform access. It produces access patterns
that become increasingly skewed as B increases. Similar to earlier
models of skewed access [Dan90], we partitioned the pages into
regions of RegionSize pages each, such that the probability of
accessing any page within aregion is uniform; the Zipf distribution
is applied to these regions.

4.1.1 Client Cache Management

We use the CZX[AchBSa, Acha96] algorithm to maintain the
client cache. CZX is a constant time implementation of the pure
cost-based algorithm PZX. PZX chooses as a victim the page
in the cache with the lowest p/z value, where p is the probability
of access and z the broadcast frequency of the page. Cost-based
caching strategies like .CZX (and PZX) have been shown to per-
form significantly better in a broadcastenvironmentthan strategies
Eke LRU which just use probability information [Acha95a].

LZX is a modification of LRU that takes into account the
broadcast frequency. LRU maintains the cache as a single linked-
list of pages. When a cache-residentpage is accessed, it is moved
to the top of the list. On a cache miss, the page at the end of the
chain is chosen for replacement. In contrast, tZX maintains a
number of smaller chains: one corresponding to each disk of the
broadcast(lZX reduces to LRU if tbe broadcast uses a single flat
disk). A page always enters the chain corresponding to the disk in
which it is broadcast. Like LRU, when a page is hit, it is moved
to the top of its own chain. When a new page enters the cache,
CZX evaluates a lix value (see next paragraph) only for the page
at the bottom of each chain. The page with the smallest lix value
is ejected, and the new page is inserted in the appropriate queue.
Because this queue might be different than the queue from which
the slot was recovered, the chains do not have fixed sixes. Rather,
they dynamically shrink or grow depending on the access pattern
at that time. CZX performs a constant number of operations per
page replacement (proportional to tire number of disks) which is
the same order as that of LRU.

,C:ZX evaluates the lix value of a page by dividing an estimated
probability value of this page by its frequency of broadcast. Sim-
ilar to [Acha96], we assume the client develops this probability
model for each page by sampling its own requests over a period
of time. We count the number of accesses for a page and divide
this number by the total number of accesses to compute the page’s
probability. As long as the access pattern is not changing, a longer
sampling period should produce more accuram results. For exper-
iments in this paper we chose a sample length of 10,000 accesses.
Though very simplistic, this model provides acceptable results.

4.2 The Server Model

4.2.1 Server Execution Model

The parameters that describe the operation of the server are shown
in Table 2. The server broadcasts pages in the range of 1 to
ServerDBSize, where ServerDBSize 2 AccessRange. These pages
are interleaved into a broadcast program as described in Sec-
tion 2.1. This program is broadcastrepeatedly by the server. The
structure of the broadcast program is described by several pa-
rameters. NumDisks is the number of levels (i.e., “disks”) in the
multidisk program. DiskSize;, i E [l.MmDisks], is the number
of pages assigned to each disk i. Each page is broadcast on ex-
actly one disk, so the sum of DiskSize; over all i is equal to the
ServerDBSize. The frequency of broadcast of each disk i relative
to the slowest disk is given by the parameter RelFreqi .

The remaining two parameters, Oflet and Noise, are used
to modify the mapping between the Logical pages requested by
the client and the physical pages broadcast by the server. When
Ofiet and Noise are both set to zero, then the logical to physical
mapping is simply the identity function. In this case, the DiskSize
hottest pages from the client’s perspective (i.e., 1 to DiskSizel) are
placed on Disk #l, the next DiskSize hottest pages are placed on
Disk #2, etc. However, this mapping may be sub-optimal due to
client caching. Some client cache management policies tend to
fix certain heavily accessed pages in the client’s buffer pool which
makes broadcasting them frequently a waste of bandwidth. In
such cases, the best broadcast can be obtained by shifting these
hottest pages from the fastest disk to the slowest disk. Oflet is the
number of pages that are shifted in this manner. A typical value
for Offsef is CacheSize, wherein the cache size hottest pages are
pushed to the slowest disk, bringing in the colder pages to faster
disks.

In contrastto offser, which is used to provide a better broadcast
for the client and is a property of the broadcasf the parameter Noise
is used to introduce disagreement between the needs of the client
and the broadcast program generated by the server and is a property
of the simulation. Disagreement can arise in many ways, including
dynamic client access patterns and conflicting access requirements
among a population of clients. Noise determines the percentage
of pages for which there may be a mismatch between the client
and the server. As the noise increases, the client’s performance
can be expected to degrade. For further implementation details,
the reader is referred to [Acha95a].

4.2.2 The Update Model

The parameters that describe the update model are shown in Ta-
ble 3. Updates are generated in the system by simulating a writer
process at the server. The writer process is a simple two-step
write-wait loop. After each write access, the writer waitsUpdate-
ThinkTi broadcast units before making the next update request
at the server. The CJpubeThinkTii parameter determines the rate
of updates in the system - smaller the value, more frequent the
updates.

The writer updates pages at tire server using a Zipf distribution
(with parameter 0,) similar to the read access distribution at the
client. However, unlike the read access, which is restricted to the
Erst AccessRange pages, the write distribution is spread over the
complete range 1 to DBSize. This is because unlike reads which
are local to a particular client, the updates happen at the server
(and are not specific to a single client) and Ems, encompass the
entire database.

359

Access Pattern

- Read

---- U.piate

1 K AccessRange DBSize

Figure 2: Read versus Update distribution

Time between updates at server

Update and read access deviation

Table 3: Update Parameter Description

We use a parameter UpdateOfiet to introduce disagreement
between the client access pattern and the update distribution at the
server (Figure 2). When UpdateOfiet is 0, the overlap between
the two distributions is the greatest, i.e., the client’s hottest pages
(for read access) are also the most frequently upbated pages. This
scenario would be expected to produce the worst performance for
the client. An UpdateODet of K shifts the update distribution by
K pages as shown in Figure 2 making the pages which are most
often updated be those that are of lesser interest to the client (for
read).

We assume that an invalidation list does not cost any bandwidth
and can be piggybacked on a regular page broadcast. This is a
reasonable assumption because the size of such a list would be
negligible compared to the size of a page. Every propagation of
a new value, however, consumes a page worth of bandwidth, i.e.,
one broadcast unit.

lf the server uses a propagation-based scheme to mitigate the
effect of invalidations, the regular order of the broadcast is dis-
turbed due to the infusion of the propagation list. The propagation
list is broadcast by Erst suspending the regular broadcast, then
transmitting the propagation list and then continuing the regular
broadcast. Note that the propagation list only changes the absolute
broadcast time of the pages (by the length of the list); the relative
order among pages in the broadcast structure remains the same.

5 Experimental Results
In this section, we use the simulation model to explore ,the influ-
ence of updates on the client. The primary performance metric is
the average response time (i.e., the expected delay) at the client
measured in broadcast units. Table 4 shows the parameter settings
for these experiments. The server database size (ServerDBSize)
was 3000 pages and the client access range (AccessRange) was
1000 pages. ‘Iwo sixes for the client cache were used in the ex-
periments - 100 and 500 pages. A three-disk broadcastwas used
for all the experiments. The size of the fastest disk was 300 pages,
the medium disk was 1200 pages and the slowest disk was 1500
pages. The relative spin speeds of the three disks were $3 and 1,
respectively. As illustrated in Section 2.1, these parameters gener-
ate a broadcast program with a major cycle of 6600 pages and 15
minor cycles of 440 pages each. The results in these experiments

ThinklIme 2
CJpdareZKnkTime 2,5,10,20,25
ServerDBSize 3000
AccessRange 1000
CacheSize lOO(Small), SOO(Large)
8, &I 0.95
Offset 0, CacheSize
UpdateOfset 0,500
Noise 0%.10%.25%.50%

Table 4: Parameter Settings

were obtained once the client performance reached steady-state.
As stated in Section 3, updates and subsequent invalidations

disturb the steady-state behavior of the client cache that we ob-
served in read-only workloads. This section shows that we do
not have to abandon the intuitions that were developed there. In
particular, the LZX caching algorithm is still sound and the use of
a broadcast offset can be retained without significant performance
degradation. The update case, however, introduces new trade-offs
that must be considered in order to stay close to the steady-state
performance shown before. This section explores these tradeoffs.

The rest of this section is as follows. We Erst study the client
perfomance when updates are transmitted at the beginning of
every major cycle. The next set of experiments are for the case
when the updates ate disseminated immediately as they happen
at the server. Finally, we describe refinements to the strategies
proposed in Section 3 and do a sensitivity analysis in the presence
of noise. Recall that noise is used as a mechanism to simulate
disagreement between the server broadcast and the client needs
due to the presence of multiple clients in the system.

It should be noted that the results presented here are a small
subset of those that have been obtained. They have been chosen
as representative samples to make this discussion as compact as
possible.

5.1 Major Cycle Update

First, we consider the case in which updates are communicated to
the client at the start of a major cycle. As was mentioned earlier,
this case is useful when the stability of values must be maintained.
This case illustrates some very fundamental principles regarding
the nature of the broadcast medium. The experiments in this
section are for the case when there is no noise in the system.

We begin by comparing three basic cache update techniques-
invalidafe,prefetch, which uses auto-prefetch (as described in Sec-
tion 3) to re-acquire invalidated pages, andpropagate, which com-
bines propagation with auto-prefetch. For invalidate, the server
sends a list of updated page numbers at the end of the cycle. For
propagate, the server follows the invalidation list with the actual
updated pages, and for prefetch, the server sends an invalidation
list at the end of a cycle, and the client prefetches new values of
the pages from the next major cycle.

Figure 3 shows a comparison of these three techniques for a
cache of 100 pages when the client’s hot pages (for read) are also
the most frequently updated (UpdateOfiet = 0). The graph on the
left (Fig 3a) is for the case of no offset while the graph on the right
(Figure 3b) represents the broadcast with an offset of CacheSize,

360

z-

800

d
2OOc-. I

5 700 ,1800-Q v” Q _

1: i :z.

s ii! 1200 -

2 400 -
E

= ‘000 - x-----K---~-.-.~.

F 300

E 800 - -Jc---._ -x -

i=
3 200 lnvafkfate

::

+ E 600 - n. . . lnvalkfate . . ,Y, ~...____..._,,_ + n.............

s 400 .

$ 100

P&etch --*-

S+
Prefetch --Jc--

K
200 - Propagate +3-

0 $ No Update o . , I

2 5 10 20 25 2 5 10 20 25

Update Think Time(Broadcast Units) Update mink Tirne(Broadcast Units)

(a)C@et=o (b) O$ser=lOO
Figure 3: Sensitivity to updates once a cycle, Cache=100 pages, Upda@fiet=O

i.e., the first 100 pages are shifted to the slowest disk. The x-axis,
UpdateT7GzkTie, reflects the intensity of updates at the server.
This is also measured in broadcast units, and is the number of
pages broadcast per update posted at the server. For an update
thinktime of 2, a page is updated for every two pages broadcast.
The solid line in all the graphs corresponds to the read-only case
(an infinite update think time).

The, first thing to notice in Figure 3a is that the response time
of invalidate is very poor. Here, a large number of pages are being
removed from the cache (recall that CJpd&eO$set = 0) at the end
of the cycle and they do not return until they are requested again.
The invalidation severely pushes us away from the steady-state
case. The latency caused by having to fault in those missing pages
one-at-a-tune is so large that many of the benefits of caching are
not realized and the performance suffers a great deal.

Prefetch and propagate have approximately the same perfor-
mance as the read-only case here, because the pages that are up-
dated tend to come back before a new request arrives. In the case of
propagate, the pages return in the propagation list which is broad-
cast immediately after the changes are communicated. Prefetch
does as well as propagate for two reasons. First, since there is no
offset, the client’s hottest pages are on the fastest disk and thus,
they are auto-prefetched without significant delay. Secondly; the
cache is small and it is quickly restored to the state before the
invalidations. Thus, prefetching is required in this case. Nothing
is gained from additional propagation when the updated pages are
on the fastest disk since the broadcast disk itself is acting as an
effective propagation medium.

Before leaving Figure 3a, we point out an interesting effect
that is an artifact of the CZX implementation. Notice that both
invalidate and propagate do a bit better than the pure read-only
case for UpdateT7zinkTime greater than 3 or 4. LZX approxi-
mates probabilities (as does LRU) and thus, sometimes makes
incorrect decisions for choosing victims during page replacement.
Since, in this case, the updates coincide with the access pattern,
updated pages (the ones ,!ZX should cache) are being pulled out
of the chains and reinserted at the top because they are later auto-
prefetched. Thus, the pages that are accessedinfrequently drift to
the bottom of the LRU chains faster, flushing them more quickly
from the cache than in the no-update case.

Figure 3b shows the same case as Figure 3a, but with an offset
equal to the cache size of 100. Recall that offset is used to improve
performance in the read-only case. Notice that here invalidate
does even worse than before, but also the performance of prefetch
deteriorates relative to propagate. At very high update rates, this

difference is roughly an 80 to 90% degradation, By introducing
an offset, the hot pages, which are also the most volatile pages,
are being broadcast relatively infrequently since they are now on
the slowest disk. The only way to improve this situation is to
propagate the new values to counteract the slowdown introduced
by the offset.

We now move on to the case in which the read access does
not match the update pattern. This is introduced by setting the
UpdateOfiet to 500 as in Figure 4. We start by looking at Figure 4a
in which Offset is zero. For lower update rates (the right-hand end
of the graph), invalidate is similar to propagate for three reasons:

1. Not many cached pages are invalidated.

2. Most of the cached pages are from the fast disk and thus have
a low latency.

3. The propagation list is small.

For the first two reasons, prefetch alone gets you back to the
read-only case, much as it did in Figure 3a. The number of
pages that must be re-acquired is small and the overhead of a
large propagation list is not cost effective. As we move to the
left, thereby increasing the update rate, the first and third reasons
are no longer true. More cached pages are invalidated and the
propagation list is longer.

Notice that in Figure 4a, prefetch is better than propagation
when the update rate is high. A fundamental principle at work
here is that pmpagation only helps when you are propagating what
the client needs. If the propagation includes pages that are not
needed, performance degrades because of the wasted bandwidth.
For items that are not accessedoften or that come back quickly in
the broadcast, it is good enough to allow them to drift back into
the cache through prefetch from the broadcast.

As we move to a larger cache size, the cached pages will come
from other than the fastest disk (ref. point 2 above). Recall that
the size of the first disk is 300 pages. When this happens, the need
for propagation becomes greater. The curves for large cache size
have been omitted because of space limitations, but their shape
is the same as those of Figure 4 with prefetch doing somewhat
w&e.

In Figure4b. we introduce an offset equalto the cache size (i.e.,
100). Here, the performance of invalidation is again extremely
poor since the hottest pages am on the slowest disk. Thus, point
2 in the above list is not true for this case. Both prefetch and
propagate perform well because they are both returning updated
pages to the cache fast enough to keep up with demand. This
differs from the the analogous VpdafeO~et=O case (Figure 3b)

361

z
800

; 700

lTi 8 600

g 500

= 400
E F 300

2 5 200 Invalidate -+-
% 100 Pretetch --X-

d 0
2 5 10 20 25

600

400

200

0
2 5 10 20 25

Update Think Time(Broadcast Units) Update Think Time(Broadcasi Units)

(a) O$wt=O (b) O@ef=lOO
Figure 4: Update does not match read access, Cache=100 pages, UpdafeO$Tset=SOO

in that the number of hot pages that are being updated is small.
Thus, prefetch is good enough (except at very high update rates).

In this set of studies, for the update once per major cycle case,
we have shown that there exist algorithms that can compensate for
updates in the system. The client, however, has to prefetch invali-
dated pages in order to do well. In general choosing propagation
in this context produces good results, although for UpdaleO$set
= 500, we can do, almost as well with prefetch alone. Given the
extremely high response times of the invalidate strategy, we will
no longer discuss its performance in the following sections.

As stated above, the best broadcast for steady-state situations is
one in which the hottest CacheSize pages are offset onto the slowest
disk. The benefit of an offset is visible in the lower response time
(by about 16%) for the no update case in Figure 3b (Ofiet=lOO)
over Figure 3a (Ofiet=O). We want our broadcast disk system to
perform well for both high and low update periods and for clients
that access volatile and non-volatile data. In order for the broadcast
to provide clients with the best performance possible, we strive to
retain the offset in the broadcastpmgram and implement strategies
which mitigate the effects of updates. Thus, we will only consider
the case of a CacheSize offset in what follows.

5.2 Continuous Update

In this section, we study an alternative consistency model in which
updates are communicated to the clients as quickly as possible.
Since we are only considering broadcasts with an offset, as ex-
plained above, the server must propagate; however, we now must
ask how often should the propagation occur since we are no longer
constrained to once per major cycle. The options we consider
are a) propagate continuously (immediately following invalida-
tions) b) propagate at minor cycle boundaries (although this is
an arbitrary intermediate point) and c) pmpagate at major cycle
boundaries.

The four graphs in Figure 5 illustrate various propagation rates
for small and large caches and for an UpdafeO$ser of 0 and 500. In
all of these cases, continuous propagation never beats minor cycle
propagation. The lesson here is that it is possible to propagate too
often since this will waste bandwidth. In other words, it is best
to pmpagate at a rate that just keeps up with demand- less often
causes expensive faults, and too often waste-s bandwidth. We will

study this tradeoff in more depth in what follows.
The two graphs in the left-hand column of Figure 5 show the

results for a small (Figure 5a) and a large (Figure 5c) cache with
an UpdateOffset of zero. In both of these cases, because items of

interest to the client are being updated, the server must propagate
more than once per major cycle. Notice the large gap between ma-
jor cycle propagate and minor cycle propagate. Surprisingly, there
is little difference between minor cycle propagate and continuous
propagate. In fact, with a small cache (Figure 5a) and a high
update rate (e.g., UpdafeZMzkThe = 2), minor cycle propagate
does slightly better than continuous propagate. This is because
minor cycle propagation gets updates to the client fast enough and
uses less bandwidth bi pmpagating a page that is updated multiple
times within a minor cycle only once. The additional bandwidth
consumed in continuous propagate by repeatedly propagating the
same page simply slows everything else down.

An UpdafeOffser of 500 is introduced for both the graphs in
the right-hand column of Figure 5. For a big cache (cache size
= 500), minor cycle propagation is still preferred over continuous
propagation (Figure 5d). Even though a smaller percentage of
cached pages are changing, a larger cache means that there are
still a significant number of pages that are being invalidated. The
penalty of not getting these pages back quickly makes major cycle
propagation unresponsive.

The small cache case (cache size = 100) with an Upda@O$set
of 500 is the only case in which minor cycle propagation does
not win(Figure 5b). Here, in the case of very high update rates, a
pure prefetch scheme is preferable but only by about 10%. When
the update does not match the read-access pattern and the cache
is small, pmpagating the changes degrades performance since it
uses bandwidth for uninteresting pages. The large number of
propagated pages, even at low rates such as once per major cycle,
is enough to slow down the normal broadcast.

In summary, minor cycle propagation does best in all cases
except for a small cache and a high update rate and when there is
a large discrepancy in the update and the access pattern. In this
case, prefetch alone performs better but only by a small amount.
Thus, for most cases minor cycle propagation is the technique of
choice.

5.3 Refining Our Results

In the previous section, we showed that undermost circumstances,
a propagation algorithm that strikes a balance between infrequent
(once a major cycle) and continuous propagation is the most de-
sirable. Propagating at minor cycle boundaries is one example of
such a compromise. In this section, we investigate the possibility
of propagating a “subset” of the changes as a way to ameliorate
the waste of bandwidth intmduced by frequent propagation. If we

362

z2
1600

; 1400

72 8 1200

3 1000

m_ 800
E F 600

% 0’ 400

:: 200
$ l-l

2 5 10 20 25 2 5 10 20 25

Update Think Time(Broadcast Units) Update ThinkTime(Broadcast Units)

(a)CacheSize=lOO, Upd&eOfiet=O (b)CucheSize=lOO, UpdureO$set=SOO

i?
F

800
I 600
s 400
% 2 200

0
2 5 10 20 25

Update Think Time(Broadcast Units) Update Think Time(Broadcast Units)

(c)CacheSize=500, UpdateOffset=O (d)CacheSize=500, UpdufeO$set=500

$ 900

f 800

-
3

700

p 600

Lg 500

s
400

5 350

5 8 300

“m
i?

250

9, 200
E F 150
m
g 100

8 50
d 0

2 5 10 20 25

Figure 5: Response Time vs. Continuous Update for various cache sizes and UpdareOffset

can propagate good bets frequently, we might be able to improve
our results.

We study three variations on this theme. Each of these algo-
rithms uses some static or dynamic information to filter the number
of pages propagated. The first, called Server+et, propagates
only the server’s offset pages. These are the pages which are
the hottest (for read) from the server’s viewpoint. Recall that
the server uses a probability distribution to generate the broadcast
which is a cumulative function over the access patterns of all the
clients in the system. When there is no noise in the system, the
servek’s distribution is exactly the same as the client’s distribution
(and so are their offset pages). However, as noise increases the
client’s access distribution drifts away from the server broadcast
and the overlap between the offset pages and the client’s hot pages
decreases, thereby, reducing the utility of the propagation list.

The next algorithm, called SlowDisk, propagates updates only
if they reside on the slowest disk. This is a simple strategy which
requires no probability information. Its goal is to propagate the
pages which, when invalidated, hurt the client most. Note that for
the parameter settings under consideration, it propagates at least
as many pages as the Server-Oflet algorithm. The last algorithm,
called Threshold, propagates a page only if its next arrival time
on the broadcast is greater than a fixed threshold. The threshold
is chosen as some percentage of the major cycle size. It uses a
dynamic metric and thus, is potentially expensive to implement.

We performed a sensitivity analysis on the value of the prop-
agation threshold. We found that for an UpdateOffset of zero, a
propagation threshold of 10% of a major cycle provides the best
response for most values of noise. For an UpdareOffset of 500,
the best threshold value was around 40%. When the write and

the read access coincide (UpduteO$ket=O), the threshold is low
because it is likely that an updated page will be accessed before
it is broadcast again. We use these best cases in the graphs that
follow. The results in this section consider the case when pages
are propagated once a minor cycle (with invalidations occurring
continuously).

Figure 6 shows the performance of all the algorithms for vary-
ing noise (on x-axis) for a cache size of 500 for the most update
intensive case studied earlier (UpdateTXakZIme = 2) and for two
values of UpdateOffset. Noise represents variance in the access
patterns of the clients. The key to good performance in steady-
state, is to give priority for cache real-estate to those pages which
are hot for the client locally but not globally popular and thus, not
broadcast often. Other pages are accessed off the broadcast. In
the read-only case, as long as the client has enough cache space
for such locally important pages, it can maintain its steady-state
performance even as the noise increases (up to a point). When
there are updates, the cache never quite reaches steady-state since
pages are being invalidated often. Noise only makes this worse,
since with increasing variance among the client access patterns (as
represented by noise), fewer of the clients’ locally popular pages
are also globally popular. The two graphs in Figure 6 show this
decline in performance as noise increases.

We see that no algorithm performs uniformly well. The
Server-O@et algorithm is by far the winner in most cases. It does
quite well in Figure 6a in which UpdateOffser=500. ServerBfiet
is a conservative policy- it only propagates pages that are known
to be hot from the server’s point of view (the server’s offset pages).
Since the server distribution is generated as an average over all the
client access patterns, it implies that the majority of clients’want

363

tj 3 600

3 500

g 400

E F 300

g 200

ZL * 100
d

0

450

400

350

300

250

200

150

100

50

0
0 10 25 35 50 0 IO 25 35 50

Noise % Noise %

(4 @I

Figure 6: Sensitivity to Noise, Cache=500 pages, (a)CJpdafeO$ser=500, (b)UpduteOj3et=O

these pages. The best Thresholdcase does as well as Server-Ofiet
with the Slow-Disk performing slightly poorer. The folly of ag-
gressively propagating every updated page is apparent from the
crossover of no propagate (i.e., prefetch alone) at around 25%
noise.

ServerQj%et is also a good bet for UpdateOffset= (Figure 6b)
when the noise is low. As the noise increases beyond lo%,
Server_O$set begins to do worse. With increasing noise, some of
the pages that have high access for the client and high update no
longer correspond to the server’s offset pages. Thus, Server.O$vet
does not propagate them, and they do not come by fast enough.
In fact, for UpdateO$set=O as noise increases, propagating all
pages performs very well. Since most of the updated pages are
accessed by the client, the extra bandwidth is well spent. The best
Threshold case (threshold of 10%) again performs the best when
the noise is high. However, the inability to find a threshold value
which does uniformly well over the complete simulation space
makes Threshold a less than viable option in its current form. An
algorithm which dynamically adjusts the threshold value can be
expected to do well and is part of our future study. We do not
show the performance of the no propagate case here because of its
extremely poorperformance (about 5 times worse than the others).

In general, Server-Ofiet is a good refinement to propagating
everything. It does well except in cases in which the update and
the read access coincide and in which the noise level is high. Note
that even here the loss is minimal when compared to prefetch
with no propagation. We would argue that high noise is not that
interesting for us. In order to maintain a Zipf distribution at the
server, there cannot be a wide variance in the client’s behaviors.
If the variance were high, the combined distribution at the server
would tend more toward uniformity.

6 Related Work
As stated in the introduction, the basic idea of broadcast-
ing information has been studied before ([Imie94a, Imie94b,
Iinie94c, Giff90, Wong88, Amma851). Our work differs from
these in that we consider multi-level disks and their relation-
ship to cache management. Influence of updates on perfor-
mance in dissemination-based environments has been studied in
[Alon90, Bowe92, Barb94, Jing95, Wu96]. In [Alon90], the no-
tion of quasi-copies was introduced where a replica was allowed
to deviate from the original copy in a controlled fashion, In this
environment, consistency could be defined on a per-client basis.
Based on the constraints supplied, the client would be guaranteed

to have the access to a value which was up-to date within the last t
minutes of the most recent value or within n% of the current value
(for scalar variables) and so on. The Datacycle Project [Bowe92]
at Bellcore was intended to exploit high bandwidth, optical com-
munication technology and employed customVLS1 data filters for
performing associative searches in parallel on the broadcast data.
The clients could execute queries or transactions locally and use
the upstream network to send updates back to the server. The sys-
tem provided consistency by ensuring that data items read within
a single broadcast cycle were mutually consistent. For queries
spanning over multiple cycles, the client used an optimistic pro-
tocol and the server broadcast a log of changes which was used to
detect conflicts. This periodic consistency guarantee is similar to
our once-a-major-cycle update technique.

[Barb941 addressed the problem of updates and consequently,
stale data in a client’s cache in a mobile setting where clients could
be disconnected for long periods of time. Among other ideas, they
proposed periodic broadcast of invalidations using signature based
schemes. [Jing95] and wu96] are recent papers which improve
upon the algorithms proposed in @ub94]. These papers differ sig-
nificantly from ours, however, because they assume a pull-bused
system where the client fetches data by making explicit requests
to the server via the back channel; only the invalidations are dis-
seminated. The techniques developed in this area, however, may
be useful for supporting intermittent connectivity in the Broadcast
Disk environment as well.

Finally, a discussion and comparison of the caching algorithms
(and techniques to cope with updates) in client-server systems is
available in [Fran96]. For similar surveys in other areas the reader
is referred to [Levy901 (distributed tile systems), [Nitz91] (dis-
tributed sharedmemory) and [Arch861 (multi-processor architec-
tures).

7 Conclusions
In this paper, we have examined the way in which updates affect
the performance of Broadcast Disks. As in our previous work, the
design considerations divide into client-side and server-side issues.
The server must decide how to modify its broadcast program in
order to most effectively communicate updates to the client. The
client must perform appropriate actions (e.g., prefetch) to bring
its cache contents back to steady-state. For the server, we have
experimented with invalidation and propagation lists. At the client,
our experiments examined cache invalidation and prefetch.

‘Itvo different consistency models were studied - immediate

364

and major-cycle boundary. We showed that for low to moderate
update rates, it is possible to approach the performance of the read-
only case, We also showed that in some cases prefetching is often
good enough. We demonstrated that propagating a page is useful
if the client makes use of the page before it would naturally get the
page back by prefetch or direct access. Otherwise, the propagation
wastes bandwidth. This is one of the fundamental tradeoffs in the
design of dissemination-based systems with update.

A key observation from our experiments is that, in general,
the Broadcast Disks model is robust in the presence of updates.
We have shown that with some very simple enhancements it is
possible to produce results that closely track the read-only case.
Thus, all of our intuitions and results that were observed for the
read-only case ([Acha95a], [Acha96]) are still valid in the update
setting.

In the future, we intend to extend this work by considering
some of the alternative models of consistency that were listed
in Section 2. For example, introducing a mechanism to support
ACID transactions into our design and exploring techniques for
query processing on the broadcast medium would be interesting
extensions.

We also plan to relax our assumption of no backchannel use
to see if small amounts of feedback from the client to the server
can improve performance. Intuitively, this seems to make sense
since the server can occasionally design a bad broadcast program
because it does not have enough information regarding the current
access patterns of the client or the current state of the client cache.
Also, the use of the back channel would allow clients to make
updates to their local copies and propagate the changes to the
server.

Another important study involves comparing various algo-
rithms on the basis of the listening requirements of the clients.
Requiring that the clients monitor the broadcast continually or for
extended periods of time may have deleterious effects on perfor-
mance especially when the broadcast is through a very high speed
channel (e.g., satellite) or if external constraints such as battery
life [Imie94a] are an issue.

References
[Acha95a] S. Acharya, R. Alonso, M. Franklin, S. Zdonik,

“Broadcast Disks: Data Management for Asymmetric Com-
munications Environments”, Proc. ACM SIGMOD Cont., San
Jose, CA, May, 1995.

[Acha95b] S. Acharya, M. Franklin, S. Zdonik, “Dissemination-
based Data Deliverv Using Broadcast Disks”. IEEE Personal
Communications, 2;6), DeGember, 1995. ‘

[Acha96] S. Acharya, M. Franklin, S. Zdonik, “Prefetching from

a Broadcast Disk”, 12th International Conference on Data En-
gineering, New Orleans, LA, February, 1996.

[Alon90] R. Alonso, D. Barbara, H. Garcia-Molina, “Data
Caching Issues in an Information Retrieval System”, ACM
TODS, 15(3), September, 1990.

[Amma85] M. Ammar, J. Wong, “The Design of Teletext Broad-
cast Cycles”, Perf Evaluation, 5 (1985).

[Arch861 J. Archibald, J. Baer, “Cache Coherence Protocols:
Evaluation Using a Multimocessor Simulation Model”. ACM
TOCS, 4(4), November, 1986.

IBarb D. Barbara, T. Imiehnski, “Sleepers and Workaholics:
Caching Strategies in Mobile Environments”, Proc. ACMSIG-
MOD Co@, Minneapolis, MN, May, 1994.

[Bere95] H. Berenson,P. Bernstein, J. Gray, J. Melton, B. O’Neil,
P. O’Neil, “A Critique of ANSI SQL Isolation Levels”, Proc.
ACM SIGMOD Co@, San Jose, CA, June, 1995.

[Bowe92] T. Bowen,G. Gopal, G. Herman, T. Hickey, K. Lee, W.
Mansfield, J. Raitz, A. Weinrib, “The Datacycle Architecture”,
CACM, 35(12), December, 1992.

[Dan901 A. Dan, D. M. Dias, P. Yu, “The Effect of Skewed Ac-
cess on Buffer Hits and Data Contention in a Data Sharing
Environment”, Pmt. 16th VLDB Conf, Aug., 1990.

[Fran921 M. Franklin, M. Carey, “Client-Server Caching Revis-
ited”, in Proceedings of the International Workshop on Dis-
tributed Object Management, Edmonton, Canada, August,
1992, (Published as Distributed Object Management, Ozsu,
Dayal, Vaduriez, eds., Morgan Kaufmann, San Mateo, CA.
1994).

[Fran961 M. Franklin, Client Data Caching: A Foundation for
High Performance Object Database Systems, Kluwer Aca-
demic Publishers, Boston, MA, February, 1996.

[Gift901 D. Gifford, “Polychannel Systems for Mass Digital
Communication”, CACM, 33(2), February, 1990.

[Herm87] G. Herman, G. Gopal, K. Lee, A. Weinrib, “The Dat-
acycle Architecture for Very High Throughput Database Sys-
tems”, Proc. ACM SIGMOD Cons, San Francisco, CA, May,
1987.

lImie94al T. Imiehnski, B. Badrinath, “Mobile Wireless Com-
puting: Challenges in Data Management”, CACM, 37(lo), Oc-
tober, 1994.

me94b] T. Imielinski, S. Viswanathan, B. Badrinath, “Energy
Efficient Indexine on Air”. Proc. ACM SIGMOD Conf. Min-
neapolis, MN, Miy, 1994.’

* ,

[Imie94c] T. Imielinski, S. Viswanathan, B. Badrinath, “Power
Efficient Filtering of Data on Air”, Proc. Conf on EDBT, 1994.

Fte96] Intel Corp., “CNN-at-work”, (description of prod-
uct that supports continuous broadcast and filtering
of CNN news stories over a departmental ethernet),
http://wrw.intel.com/comm-net/cnn-work/index.html

[Jing95] J. Jing, 0. Bukhres, A. Ehnargarmid, R. Alonso” “Bit-
Sequences: ANew CacheInvalidationMethod in Mobile Envi-
ronments”, Technical Report CSD-TR-94-074, Computer Sci-
ences Department, Purdue University, revised May 1995.

[Katz941 R. Katz, “Adaption and Mobility in Wireless Informa-
tion Systems”, IEEE Personal Communications, 1st Quarter,
1994.

[Knut81] D. Knuth, The Art of Computer Programming, Vol II,
Addison Wesley, 1981.

[Kort95] H. Korth, “The Double Lie of the Transaction Absnac-
tion: Fundamental Principle and Evolving System Concept”,
Proc. 21th VLDB Co&, Zurich, September, 1995.

[Levy901 E. Levy, A. Silbershatz, “Distributed File Systems:
Concepts and Examples”, ACM Computing Surveys, 22(4), De-
cember, 1990.

[Nitz91] B. Nitzberg, V Lo, “Distributed Shared Memory: A
Survey of Issues and Algorithms”, IEEE Computer, 24(8), Au-
gust, 1991.

[Oki93] B. Oki, M. Pfluegl, A. Siegel, D. Skeen, “The Informa-
tion Bus -An Architecture for Extensible Distributed Systems”,
Proc. 14th SOSP, Ashville, NC, December, 1993.

[Shek94] S. Shekhar, D. Liu, “Genesis and Advanced Traveler
Information Svstems (ATIS): Killer ADDkations for Mobile
Computing”, MoBIDATA Wkshp, Rutg&s Univ., NJ, 1994.

[Wong88] J. Wong, ‘Broadcast Delivery”, Proceedings of the
IEEE, 76(12), December, 1988.

[wu96] , K. Wu, P. S. Yu, M. Chen, “Energy-Efficient Caching
for Wirless Mobile Computing”, Proc. of ICDE, New Orleans,
Feb. 1996.

[Zdon94] S. Zdonik, M. Franklin, R. Alonso, S. Acharya, “Are
‘Disks in the Air’ Just Pie in the Skv?“. IEEE Workshoo on
Mobile Computing Systems andAppli&tions, Santa Cruz,‘CA,
December, 1994.

365

