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Abstract 

There are a variety of main-memory access 
structures, such as segment trees, and quad 
trees, whose properties, such as good worst- 
case behaviour, make them attractive for 
database applicdions. Unfortunately, the 
structures are typically ‘long and skinny’, 
whereas disk data structuies must be ‘short- 
and-fat (that is, have a high fanout and low 
height) in order to minimize I/O. 

We consider how to cluster the nodes (that 
is, map the nodes to disk pages) of main- 
memory access structures such that although 
a path may traverse many nodes, it only tra- 
verses a few disk pages. The number of disk 
pages traversed in a path is called the exter- 
nal path length. We address several versions 
of the clustering problem. We present a clus- 
tering algorithm for tree structures that gener- 
ates optimal worst-case external path length 
mappings; we also show how to make it dy- 
namic, to support updates. We extend the al- 
gorithm to generate mappings that minimize 
the average weighted external path lengths. 
We also show that some other clustering prob- 
lems, such as finding optimal external path 
lengths for DAG structures and minimizing 
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weights for optimal height mappings, are NP- 
complete. We present heuristics for these 
problems. 

We present a performance stuay (using quad- 
trees on actual image data as an example) 
which shows that our algorithms perform 
well. Our algorithms can also be applied for 
clustering complex objects in object-oriented 
databases. 

1 Introduction 

In earlier generation databases, access structures were 
specially design&l taking the page structuring of disks 
into account. For instance, B-trees have nodes whose 
size is a page. As database requirements grew to han- 
dle complex data types, the need was felt for spe- 
cialized data structures, such as spatial index struc- 
tures. Disk based spatial data structures such as R- 
trees [Gut841 and variants such as R* and !2+ trees 
[SRF87, BKSSSO] were developed for this task. 

However, there are a variety of specialized ap- 
plications for which main-memory access structures 
exist but not good disk based access structures. 
Various forms of quad-trees, which were developed 
for in-memory use, have been found useful in spa- 
tial database systems/geographic information systems 
such as Quilt [SSNSO]. Although disk versions of some 
kinds of quad trees have been developed, only in- 
memory versions have been developed for some vari- 
ants of quad trees; see Section 3. Interval trees have 
been proposed for handling time intervals in tem- 
poral databases [KTF95]. Versioning of data struc- 
tures is important in temporal databases, and ver- 
sioning techniques developed for main-memory struc- 
tures [DSST86] have been found to be useful in tem- 
poral databases [KTF95]. The two-dimensional index 
structure of [RS94] also demonstrates the importance 
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of using data structures developed for main-memory, 
in database systems. Furthermore, object-oriented 
database systems make it easy to reuse code developed 
for in-memory data structures in a persistent setting. 

Unfortunately, while the main-memory structures 
have very attractive worst-case properties in memory, 
they cannot usually be used directly to store data 
on disk. Main-memory access structures are typically 
constructed -as a set of dynamically allocated nodes 
linked by pointers. To perform a lookup on such 
a structure requires following one or more chains of 
pointers. Following fairly long chains of pointers is ac- 
ceptable for data structures in memory, so “tall-and- 
skinny” structures such as binary trees are acceptable 
in memory. In the disk versions however, the corre- 
sponding page structure must however be “short-and- 
fat” in order to minimize I/O; for instance disk access 
structures such as B-trees have a high fanout, such as 
100, and are short (perhaps 3 or 4 pages high). 

If we want to use an index structure designed for 
main-memory in a persistent environment where data 
must be stored on disk, we have two options - ei- 
ther redesign the index structure to give it a very high 
fanout, or map the nodes carefully to disk pages such 
that although a path may traverse many nodes, it only 
traverses a few disk pages even in the worst case. The 
first option has a high cost in terms of algorithm de- 
sign and implementation, but the cost is worthwhile 
for very commonly used data structures as has been 
proved by B-trees and R-trees. 

The second option, namely careful mapping of 
nodes to disk pages, is attractive for several reasons 
suchaas to re-use existing code and avoid the cost of 
designing new structures. The clustering or pagina- 
tion problem for a set of nodes is the question of how 
to allocate the nodes to disk pages to optimize some 
metric. An appropriate metric is the number of page 
I/O’s required for performing a point lookup in an 
access structure assuming no pages are in-memory ini- 
tially. We consider traversals on acyclic structures that 
start at a source (root) and go up to a sink (leaf). 
For a given,mapping, we define “external path length” 
of a traversal to be the number of I/O’s required for 
the traversal assuming no pages are in buffer initially, 
and the buffer holds only one page. For a given map- 
ping, the “page-height” of an acyclic access structure 
is then defined as the maximum of the external path 
lengths over all possible traversals on the access struc- 
ture. Our goal is to find a mapping that minimizes the 
“page-height” of access structures and this mapping is 
termed an “optimal” mapping. 

In this paper we describe and address various ver- 
sions of the pagination problem. The specific contri- 
butions of this paper are as follows: 

1. In the static version of the pagination problem, 
an access structure which is a tree (or a rooted 
DAG) is given, and an optimal mapping has to 
be found. 

(a) We present a pagination algorithm for tree 
structures that generates optimal mappings. 

(b) We extend the above algorithm to generate 
mappings that minimize the average of the 
external path lengths with given access fre- 
quencies for each leaf node. 

(c) We show that finding optimal mappings for 
DAG structures is NP-complete. We present 
efficient heuristics for this problem. 

2. In the dynamic version, we have an access struc- 
ture whose nodes have already been allocated to 
pages in an optimal fashion, and the problem is 
to incrementally update the mapping in the face 
of an update to the access structure to maintain 
the optimality of the mapping. 

We present an algorithm for incrementally updat- 
ing the optimal mapping on a tree structure. We 
show that the resultant mapping is equivalent to 
running the static mapping algorithm on the final 
tree. The algorithm works under a very general 
update model, and besides it only examines pages 
in the locality of affected pages, keeping the cost 
of reorganization small. 

3. We show that the problem of finding a minimum 
weight (number of pages that have been mapped 
into) mapping amongst the optimal mappings is 
NP complete, but present heuristics which can 
guarantee at least a 50% node occupancy. Our 
performance study indicates that actual occupan- 
cies are around 75%. 

4. We present a performance study (using quad- 
trees on actual image data) that shows that the 
the optimal mapping algorithm results in “page- 
heights” that are 33% to 60% of the worst case 
external path lengths generated by preorder clus- 
tering (linearly ordering nodes according to their 
preorder number and then sequentially assigning 
as many nodes to a page as is possible). More- 
over, the average of external path lengths (with 
all leaf nodes equally likely to be accessed) US- 

ing our basic pagination algorithm is better than 
the average of external path lengths of pre-order 
clustering by similar margins. 

We show that our merging heuristics result in 
occupancies of about 75%. Even on pre-order 
traversal (for which pre-order clustering is opti- 
mal) our algorithms result in a performance loss 
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of only around 30%, assuming all nodes in a path 
from the root to a leaf can fit into the buffer. 

Another important application of the pagination 
problem is in object-oriented databases, where pro- 
grammers tend to program much like they do with 
in-memory data structures, but the actual nodes are 
allocated on disk pages. OODBs allow special purpose 
access structures to be made persistent very easily. 
However, an intelligent mapping of nodes to disk pages 
is important for reducing access costs. For OODB 
data-structures similar to indices that require traver- 
sals from a root (or set of roots) to a leaf, minimizing 
the external path length in the paginated version of 
the structure helps in reducing access time. There has 
been work on clustering of data in OODBs based on 
access frequencies (see Section 3). However, to our 
knowledge our work is the first to address the issue of 
minimizing external path lengths, which is important 
for access structures even in an OODB. 

2 Problem Definition 

Suppose we are given an access structure consisting of 
nodes and directed links between nodes. We assume 
that the links are acyclic, and the access structure is 
rooted. (Non-rooted DAGs can be easilymade rooted 
by adding a pseudo-root.) We define the problem for 
the general case where nodes have varying sizes, but 
the special case where all nodes have the same size is 
also of considerable interest. 

Let N be the set of nodes, and B a set of pages, 
where ] B 111 N (. Let S(n) denote the size of node 
n, and let k denote the size of a page; we assume that 
that all nodes are smaller than a page. Let M be a 
mapping N --+ B. A legal mapping M is one such that 
for every page b E B, (c nEM-l(a)S(n)) < L That is, 
the sum of the sizes of the nodes mapped to a page 
does not exceed the size of the page. 

Given a legal mapping M, and a sequence of nodes 
P corresponding to an external path (path from a 
source to a sink) in the access structure, let n be the 
number of nodes in P and let us denote the jth node 
in the sequence by Pb], 1 <‘j 5 n. Then define the 
external path length of P under M, lengthM(P), as 

1+ ( {j : M(pli]) # M(Pf,.i -t- l]j,l I j < n) I 

In other words, lengthM(P) is the number of pages 
I/O’s that have to be incurred to follow path P under 
mapping M assuming a buffer size of 1. 

Given a set of nodes N and a legal mapping M, the 
weight of the mapping is the number of pages that have 
at least one node from N mapped to them (formally, 
the cardinality of the image of N under M). 

Given a tree or a DAG structure A and a map- 
ping M, the maximum of lengthM(P) over all exter- 
nal paths P in A is called the page height of A under 
M. We similarly define the page height of a node in a 
rooted tree to be the the number of pages I/O’s that 
have to be incurred to follow the path from the root 
to the node assuming a buffer size of 1. It will be clear 
from the context which page height we are referring to. 
Given an access structure A, the height minimization 
problem is to find a legal mapping M that minimizes 
the page height. Such a mapping is called a height min- 
imal mapping. The height-weight minimization prob- 
lem is to find the mapping of minimum weight among 
the height minimal mappings. The weight minimiza- 
tion problem is to find a legal mapping with the min- 
imum weight. The weight-height minimization prob- 
lem is to find a legal mapping that minimizes the page 
height amongst those mappings that are of minimum 
weight. 

We say that two mappings are equivalent to each 
other if one can be obtained from the other by a renum- 
bering of the pages. Formally, two mappings f and g 
fromasetofnodesNtoasetofpagesB={l...] B)} 
are equivalent if there is a permutation z on 1. . . ] B ) 
such that Vn E N,f(n) = ?r(g(n)). 

3 Related Work 

Bannerjee et al. [BKKG88] describe a technique for 
clustering DAGs for CAD databases, which extends 
earlier work by Schkolnick [Sch77]. Their approach is 
to perform a traversal of the DAG structure, such as 
a DFS, a BFS or a modified DFS called child-DFS, in 
order to get a linear ordering on the structure. The lin- 
ear ordering is then mapped to a B-tree. They describe 
how to maintain the mapping in the face of updates to 
the DAG structure. While their DFS based clustering 
is good for pre-order traversals of the DAG structure, 
it is not good for index traversals that follow a path 
from a root to a leaf. Right-most paths are particu- 
larly hard hit, and each node along such a path could 
be mapped to a different page, giving the tree or DAG 
structure a bad page height. Thus, worst case exter- 
nal path lengths could be high with their clustering 
technique. 

Numerous tree structures have been proposed to 
handle different kinds of spatial data, such as points, 
lines and regions, and to efficiently handle specific 
types of queries, such as point lookups or region 
lookups (see, e.g., [Sam95]). Most of these are designed 
primarily as in-memory structures. An example is the 
quad-tree, which partitions space in the same way for 
all data sets’ making it easier to perform spatial joins 

1The depth to which the partitioning goes depends on the 
data. 
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with a quad-tree than using an R-tree. Quad trees 
of various flavors have been proposed to handle differ- 
ent kinds of data, especially in geographic information 
systems (see, e.g., [Sam95]). 

Work more closely related to ours deal with map- 
ping specific index structures to disk. Shaffer and 
Brown [SB93] describe a quad-tree structure that they 
call a “leaf-less quad-tree”, and a way to map its nodes 
to disk pages in a pm-order fashion. They show that 
their structure occupies less space and is faster than 
the more commonly used linear quad-tree structure, 
which represents a quad-tree as a list of leaf nodes, 
stored in a B-tree. Their mapping is very similar to 
that of Banerjee et al. [BKKG88], and has the same 
drawbacks for simple lookups, although the pm-order 
traversal mapping is good if the entire tree is to be 
scanned. Other approaches to mapping quad-trees to 
disk have been based on linearizing space using space 
filling curves such as z-orders and Morton orders (see, 
e.g. [JagSO]). L inearizing orderings preserve spatial 
locality fairly well, but like pm-order traversals, while 
the mappings work well for some kinds of traversals 
and queries [Ore89, ,Ore90], they do not have good 
worst case properties for path lookups. 

A more closely connected paper is that of Ra- 
maswamy and Subramanian [RS94], which presents 
results on optimal pagination of certain extensions of 
binary trees such as segment trees and priority search 
trees. They present some interesting results on repli- 
cation of data associated with internal nodes (which 
they call path-caching), in order to reduce page traver- 
sals. However, their technique for mapping nodes to 
pages simply maps sub-trees of height loga to a 
page, where B is the number of nodes that can fit in a 
page. While this technique works reasonably well with 
full binary trees, clearly it can result in many partially 
filled nodes if the tree is not full, and the resultant 
trees will not necessarily be of minimal height. 

Although all the above mentioned work is related to 
spatial databases, we would like to stress that our tech- 
niques are general purpose techniques, and not tar- 
geted specifically at spatial databases. Therefore we 
do not attempt a direct comparison with any mapping 
technique specially designed for a particular applica- 
tion. 

Another related work is that of Kumar et al. 
[KTE95], which describes the design of access struc- 
tures for bitemporal databases. Instead of using seg- 
ment trees, they paginate interval trees, which were 
also developed for in-memory use. This work as well 
as [RS94] clearly demonstrate the importance of ex- 
tending in-memory structures to work well on disk. 
However, just like [RS94], their approach to mapping 
nodes to pages simply consists of mapping subtrees 
to a page. Each page is assigned a subtree of equal 

size, starting from the root of the tree. However, these 
mappings do not provide good worst-case guarantees; 
using trees of equal height is too pessimistic for normal 
tree structures since it assumes that the trees are bal- 
anced, while using trees of equal size does not provide 
good guarantees about the page height of the resultant 
structure. 

Nodine et. al. [NGV93] consider blocking (cluster- 
ing) and paging strategies for undirected graphs, in- 
cluding blocking strategies that replicate nodes. They 
present lower and upper bounds on the speedup (that 
is, reduction in I/O) that can be achieved, for traver- 
sals of (possibly cyclic) paths in the graph. Unlike 
the approach in this paper, their notion of optimal- 
ity are only asymptotic. Further, for the case of trees, 
their results are useful (even asymptotically) only with 
replication of nodes. 

There has been a lot of work on clustering in the 
area of object-oriented databases, but none of these 
addresses the issue of worst-case path lengths for 
access structures. Tsangaris and’ Naughton [TN91, 
TN921 have a stochastic approach to the problem of 
clustering. They use an object graph with edges be- 
tween objects indicating the probabilities of accessing 
one object after accessing the other. Their approach 
to clustering is to use a minimum weight partition- 
ing of the graph such that each partition fits in a 
page. While their approach has’advantages on arbi- 
trary graph structures, it does not make use of more 
specific traversal information associated with access 
structures. Their clustering algorithm can result in 
bad page heights for such structures. For example, on 
a full binary tree, with all leaves having equal proba- 
bility of access, every edge will have the same weight 
in their stochastic model. The clustering technique of 
Cheng and Hurson [CH91] also uses weighted graphs, 
and suffers from the same problem as above when ap- 
plied to access structures. Other work on clustering 
in object-oriented databases includes [CK89, LS92]. 
None of these addresses the issue of worst-case path 
lengths for access structures. 

4 Tree Structures 

In this section, we assume the access structure is a tree. 
We consider the case when the access structure is a 
DAG later. Section 4.1 addresses the static case, where 
the tree is given and its nodes have to be mapped 
to pages, and Section 4.2 addresses the dynamic case 
where a tree that has already been mapped is changed. 
Section 4.3 addresses minimization of average number 
of page traversals over all paths from the root to leaves. 
Finally, Section 4.4 addresses the weight minimization 
problem. 
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4.1 Static Height Minimization 

The algorithm for finding the height minimal mapping 
is given below: 

Algorithm Bottom-Up-Tree-Clust(T) 
Input: Tree T whose nodes are to be clustered 
Output: Mapping of nodes to pages 
/* Process tree T bottom-up as follows */ 
While there are nodes in T not yet processed 

Choose a node P that is either a leaf or all of 
whose children have already been processed 

process-node(P) 

Procedure process-node(P) 
If P is a leaf node create a new page C containing 

node P. 
Else { /* P is an internal node */ 

Let PI . . . P,, be the children of P. 
Let Cl . . . Cn be the pages containing PI . . . P,, 

respectively. 
Let Pi1 . . . Pi, be the children among the above 

whose page height is the greatest. 
If node P and the contents of the pages Gil . . .Ci, 

can be merged together,in a single page 
/* there is enough space */ 

Then merge the contents of C’il . . .Ci, into a 
new page C and delete (21 . . . G,. 

Else create a new page C containing only P 
/* Child pages not merged with their parents above 

are completed */ 

1 

Theorem 4.1 The mapping of nodes generated by 
Algorithm Bottom- Up- Tree-Clust as a height minimal 
mapping. Cl 

Proof: In the description of Algorithm Bottom-Up- 
Tree-Clust, let P be a node in tree T visited during 
the bottom-up traversal, and let C be the page it is 
mapped to. The proof follows once we prove the fol- 
lowing claim. 
Claim: The page mapping for the nodes in the subtree 
rooted at P (a) has the minimum page height over all 
mappings of the nodes in the subtree, and (b) among 
all mappings with minimum page height, page C has 
the lowest utilization. 

We prove the claim by induction on the height of 
node P in T. The base case is for height = 1, in 
which case P is a leaf node and is mapped to a page 
containing only itself thus proving the claim. For the 
induction step, suppose the claim is true for all the 
children PI . . . P,, of node P. 

Case 1: P is merged with Ci . . . C, (as described 
in the algorithm). 

Case 1.1: The page height of P is not minimum. 
Let the page height of P in the bottom-up solution 

be hi and let the minimum page height of P be h < hl. 
Therefore the page height of the children PI . . P, in 
the bottom-up solution is also hl which, by the induc- 
tion hypothesis is the minimum possible. Considering 
the mapping M in which P has page height h and re- 
stricting it to the nodes of the subtree rooted at PI, we 
get a mapping in which PI has page height 5 h < hl, 
contradicting the induction hypothesis. 

Case 1.2: The tree is of minimum height = hl, but 
the utilization of C is not the least. 

Let Sr . . . S,,, be the sum of the sizes of the nodes 
in the pages Ci . . . C, in the bottom-up solution. The 
total utilization of the page C is the bottom-up solu- 
tion is thus Sl + S2 + . . . + S, + size(P). Suppose 
there is a mapping M in which P has page height hl 
but the page C containing P has smaller utilization. 

Obviously P needs to be included in C. All the 
children PI . . . P, of P must be mapped to C - oth- 
erwise for some i, 1 5 i 5 m, the page height of Pi is 
< hl - a contradiction with the induction hypothesis. 

If we restrict M to the subtree rooted at Pi, we get 
a mapping of the nodes in this subtree such that Pi 
has page height hl and Pi is contained in page C. By 
the induction hypothesis, the sum of sizes of nodes in 
the subtree rooted at Pi which are mapped to C must 
be at least Si. Thus the sum of sizes of nodes mapped 
to C by M must be at least S1 + SF + . . . + S, + 
size(P), contradicting the fact that the utilization of 
C is less than that in the bottom-up solution. 

Case 2: P is not merged with Ci . . .C,,, by the al- 
gorithm. 

Case 2.1: The page height of P is not minimum. 
Arguing exactly as in case (1.2)) we can show that 

if there is a mapping M in which P has the same page 
height (hi) as PI . . . P,,,, then the sum of sizes of 
nodes in the page C containing P must exceed k, a 
contradiction. Thus the minimum page height for P 
is hl + 1, as obtained by the bottom-up algorithm. 

Case 2.2: The tree is of minimum height, but the 
utilization of page C is not the least. 

This case is trivially false, since P needs to be in C 
and and no node other than P is mapped to C. 

Hence the mapping obtained by the bottom-up al- 
gorithm has minimum page height. 0 

The Bottom-Up-Tree-Clust algorithm generates 
height minimal mappings, but may generate pages 
with low occupancy. It is easy to improve space oc- 
cupancy to at least 50% by arbitrarily merging nodes 
that are less than half-full. Merging nodes in such a 
manner does not increase the external path length and 
is therefore safe. 
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One point to note with arbitrary merging of nodes is 
that it can create cycles of the following form: a node 
,in one page points to a node in a second page and so on, 
till a node in the nth page points to some other node 
in the first page. Although the nodes form an acyclic 
structure, there is a cycle at the level of pages which 
may be undesirable under certain circumstances. A 
simple way to avoid cycles is to only merge pages whose 
root nodes are at the same page height. No page can 
then be merged with an ancestor, and all pointers from 
a page will only be to pages whose nodes are at a lower 
page height. Hence there will be no cycles. The heights 
of the root nodes of pages are already available since 
they are used to compute the node mappings. 

4.2 The Dynamic Case 

Updates to tree structure must start at the root and 
follow one or more paths. The tree after the update is 
related to the tree before the update as follows: some 
of the nodes in the paths followed by the update, are 
deleted, inserted, or updated. The relevant updates 
here are changes to the pointers in the nodes. Sub- 
trees of the original tree that are not in the path of 
the update remain unchanged. 

In our model of updates, we require two functions, 
new-node(node) that takes a node in the new sub-tree 
and returns true if it is a newly inserted node and false 
otherwise, and a function old-subtree(node) that takes 
a node in the old tree and returns true if the node and 
its sub-tree were not modified by the update, and false 
otherwise. We call a node an affected node if either it 
is a new-node or it is an old node for which oldsubtree 
is false. We call a node a fringe node if it is not af- 
fected but its parent is afleeted. We assume a function 
called fringe(node) exists that returns true if the node 
is a fringe node, false otherwise. We also assume that 
each node deleted is maintained in a list called the 
delete-list. More specific details of the update are not 
required. Thus our model of updates is very general, 
and not tied down to any specific access structure. 

The clustering algorithm described in the last sec- 
tion lends itself to dynamization since it is bottom-up. 
The result of clustering will not change for any sub- 
tree that is not affected by the update. However, the 
root of a particular subtree which has not been affected 
may have been clustered with its parent and siblings. 
A change to its parent or sibling could cause this clus- 
tering to be invalid. Therefore all that is required is 
to undo the clustering on any node for which either 
old-subtree(node) is false or the node is a fringe node 
in the same page ti its parent, and restart the bottom- 
up algorithm on the new nodes, and nodes whose clus- 
tering has been undone. 

Algorithm Recluster-Bottom Up(T) 
input: Tree T and functions new-node and old-subtree. 

List of deleted nodes, delete-list. 
Output: Update of node mapping to pages 

S={}; 
For each node n in delete-list 

Remove n from its current page 
If n is the last node in the page 

Then delete the page. 
decluster(root); 
/* S is now the set of nodes that are affected */ 
While there are nodes in S that are not yet processed { 

Choose an affected node P that is either a leaf or 
all of whose children are either not in S,’ 
or have been processed 

process-node(P); 

) 
procedure decluster(node n) 

add n to S 
if (!new-node(n)) { 

remove n from its current page. 
if n is the last node in the page 

Then delete the page. 

1 
for each child nl of n { 

if (new-node(n1) or ! old-subtree(nl) ) 
Then decluster(n1) 

else /* nl is a fringe node */ 
if (nl is in the same page as n) 

move nl and all its descendants in the same 
page as n to a new page 

1 

Theorem 4.2 The mapping of nodes to pages gener- 
ated by executing Algorithm Recluster-BottomUp after 
an update to a tree is equivalent to the mapping gener- 
ated by Algorithm Bottom-Up-Tree-C&s2 when applied 
to the tree after the update. 0 

An important property of the above algorithm is 
that it only reads and writes pages in the access path of 
the updates, plus some of the pages containing fringe- 
nodes. Thus reorganization is localized. 

Each page can be merged with an adjacent page (in 
terms of the order in which pages are completed) if 
their combined occupancy is less than lOO%, as men- 
tioned before. This technique works even in the dy- 
namic case, and still guarantees 50% occupancy. 

4.3 Average Path Length Minimization 

In this section, we consider the problem of finding a 
mapping from nodes to pages which minimizes the av- 
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erage external path length for tree structures. In other 
words, we want to find a mapping M from nodes to 
pages which minimizes 

where P(I) is the path from the root to the leaf 1 and 
f(l) is the given access frequency of leaf node 1. We 
call this quantity the total external path length for the 
mapping M. 

We assume that all nodes have the same size, and 
therefore without loss of generality assume the size is 
1. In the general case with nodes of different sizes, 
the problem can be easily shown to be NP-Hard by 
reducing the knapsack problem to it. 

Our algorithm is essentially an application of dy- 
namic programming. We assume the subtrees of a 
node P in the tree T are ordered in some fashion as we 
would like to consider them in some order (Note the 
actual order itself is not important but we only need 
to order them for convenience). For every node P in 
the tree T, we compute the quantities S[P, i, j] in a 
bottom-up manner, where S[P, i, j] denotes the min- 
imum total external path length for the tree rooted 
at P and containing only the first i subtrees of P, 
given that the page containing. P has exactly j nodes 
mapped. to it. Here, 0 < i 5 n and 1 2 j 5 k where 
n is the number of children of P and k is the size of 
a page. We also denote by &[P, j] the minimum total 
external path length in the subtree rooted at P, given 
that the page containing node P has exactly j nodes 
mapped to it. Thus Sl[P, j] = S[P, n, j]. Let &[P] be 
the minimum total external path length in the subtree 
rooted at P, S2[P] = minl<j<kSl[P, j]. Let F[P] be 
the sum of the access frequ&ies of the leaves in the 
sllbtree rooted at P. 

The main idea behind the algorithm is to find the 
minimum total external path length in the subtree 
rooted at each node assuming that the page containing 
the root node has exactly j nodes mapped to it. Un- 
like the bottom-up algorithm for the minimum height 
mapping, it is not sufficient to just compute the mini- 
mum total external path length mapping for each sub- 
tree, since it is possible that a suboptimal mapping for 
a subtree leads to an optimum mapping for the tree 
rooted at the parent. This happens as the page uti- 
lization in the page containing the root may be smaller 
in a suboptimal mapping thus allowing more mergings 
and greater reductions in total external path length 
for the tree rooted at the parent. 

Also the j nodes contained in the top page may 
be distributed arbitrarily amongst the subtrees of the 
root. If we do this naively, it would lead to an expo- 
nential time algorithm. However, we can avoid this 

by finding thdbest way of distributing the j nodes in 
the first i subtrees of the root. This is done for all 
values of j, 1 5 j 5 k, and for all values of i, 1 <i< n -- 
where n is the number of children, of the node. Thus, 
when considering the i + lth child, we assume that 
some m of the j nodes in.the page containing the root 
belong to this subtree and the remaining j - m nodes 
are distributed amongst the first i subtrees. Since we 
have already computed the best solution with these 
distributions, we can find the value of m which mini- 
mizes the total external path length subject to these 
restrictions. These computations can be represented 
succinctly by recurrence relations as shown below. 

We compute the quantities S[P, i, j], ,!?I [P, j], ,572 [P] 
and F[P] for all nodes in the tree by traversing the 
tree in a bottom-up fashion. For a given node P, we 
compute the values of S[P, i, j] in increasing order of i 
for all values of j in increasing order. 

For a leaf node I, we have S[/,O, l] = S1 [I, l] = 
Sz[l] = f(l) and S[1,0, j] = 00 for 2 5 j 5 k. Also 
F[l] = f(1). Let P b e any internal node in the tree 
andlet 9, . . . P,, be the children of P. Now, we define 
that S[P, 0, l] = 0 and S[P,O, j] = 03 for 2 _< j 5 k. 
We compute S[P, i, j] for i > 0 using the following 
recurrence: 

S[P, i, j] = min(A, B) 

where 

A = Sz[Pi] + F[Pi] + S[P, i - 1, j] 

and 

B = minl~,,+(S1[Pi,m] +S[P,i- 1,j - m]) 

Once the S[P, i, j] have been computed for all 0 5 
i 5 n and 1 5 j 5 ‘k, we can easily find S1 [f, j] and 
&[P]. Also F[P] can be computed easily as F[r] = 
CICiCn F[PJ. The value of &[R] for the root node 
R of tie tree T gives the minimum total external pat,h 
length for the original tree T. 

To find the actual clustering, we keep track of which 
quantity ip the recurrence gives the minimum and clus- 
ter accordingly after knowing the value of the opti- 
mal solution. Thus if for the root node R, Sz[R] = 
Sl[R, j] then the page containing the root node con- 
tains j nodes. To find how many of these belong to the 
nth subtree, we look up the value of m which gives the 
minimum value for S[R, n, j] in the recurrence, then 
put m nodes from this subtree in the top page. These 
can be identified by a similar procedure applied recur- 
sively to the nrh child. The remaining j - m nodes in 
the top page can be identified by applying a similar 
procedure to the first n - 1 subtrees of the root. 

The time complexity of this algorithm can be eas- 
ily seen to be O(k’N) while the space complexity is 
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O(kN) where N is the number of nodes in the origi- 
nal tree. The algorithm can be easily extended to the 
general case. Assuming, the input sizes are encoded in 
unary, the algorithm would be polynomial. 

Theorem 4.3 The clustering generated by the above 
recurrence equations has minimal average external 
path length, with the given access frequencies f(1) for 
each leaf node 1. 0 

Although the above algorithm is polynomial in Ic 
and N, R can be quite large (say, lOOO), leading to a 
fairly high cost. Therefore, the following heuristic may 
be of use: instead of trying each value of occupancy 
from 1 to Ic in the dynamic programming algorithm, 
try only a smaller number of occupancies, going up in 
steps. 9 

The dynamic programming in the above algorithm 
can be extended to give the mapping with minimal 
average external path length amongst mappings that 
are height-minimal. 

To the matrix S[P, i, j] we add another dimension, 
h. Now, S[P, i, j, h] denotes the minimum total exter- 
nal path length for the tree rooted at P and containing 
only the first i subtrees of P, given that the page con- 
taining P has exactly j nodes mapped to it, under the 
condition that the page height is less than or equal 
to h. The matrix S can be computed bottom-up, as 
before; we omit details. 

4.4 Weight Minimization 

In this section, we consider the issue of minimizing 
the number of pages in the mapping of a tree, which 
we call weight minimization. If we ignore the page 
height, finding a mapping that minimizes weight, is 
trivial when all nodes are of the same size. However, 
the problem is not very interesting, since we are inter- 
ested in reducing the height. 

The height-weight minimization problem (namely, 
finding legal mappings of minimum weight among 
those of minimum height) is less straightforward. In- 
terestingly, this problem is NP-complete even in the 
special case where all nodes have the same weight, as 
shown in the following theorem. 

Theorem 4.4 The height-weight minimization prob- 
lem is NP-complete even if all nodes are of the same 
size. 

Proof: We prove the NP-Completeness by reducing 
bin-packing to this problem. In the bin-packing prob- 
lem, we are given a set of n objects ~1,. . . , 2, with 
object xi having a size Si and bins of size k and have 
to find the minimum number of bins necessary to pack 
all the n objects such that the sum of sizes of objects in 

2k/ I-,' 
lo/ 

Figure 1: Mapping of Bin Packing 

a bin does not exceed k. We note that the decision ver- 
sion of the bin-packing problem ( deciding whether a 
given number of bins suffice ), is strongly NP-complete 
and the input numbers can be assumed to be encoded 
in a unary representation. Moreover we can also as- 
sume that n 5 k since we can always multiply all the 
object and bin sizes by a suitable constant without 
changing the solution. 

Now, given an instance of bin-packing satisfying 
these conditions, we construct a binary tree as shown 
in Figure 1. The tree has a left branch of height 2k, 
and the first n nodes on the left branch have right sub- 
trees that are right-most branches; the right branch of 
the ith node from the root has length Si. Let the 
size of each node be 1 and the size of a page be k, 
and let n 5 k. The minimum height mapping for this 
tree clearly has to be of height at least 2 since there 
is a path of length 2k. In fact it is easy to construct 
a mapping of height 2 as shown by the clustering in 
the figure. It is also easy to see that the nodes along 
the left-most path must be clustered together in two 
groups of k in any minimum height mapping. 

From this it follows that the nodes along each right 
branch of the tree must ‘be clustered together in any 
minimum height mapping. If they are not, the height 
of the tree would be at least 3. 

Now it is easy to see that the bin-packing prob- 
lem has a solution with m bins iff there is a minimum 
height mapping of the nodes in the tree with weight 
m+2. 

Showing that the decision version of the problem is 
in NP is straightforward. 0 

If node sizes differ, there is an even simpler re- 
duction of the bin packing problem which shows that 
finding even the minimum weight mapping is NP- 
complete. 

Since the height-weight minimization problem is 
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hard, we are forced to use heuristics for the problem. 
The basic problem is to merge pages of the height- 
optimal clustering to minimize weight which is again 
equivalent to bin packing. So we look at heuristics for 
this merging. The motivation for the heuristics that 
we study is that the merging should reduce the num- 
ber of I/O’s required for performing pre-order traversal 
(this could be the equivalent of a scan for some main 
memory index structures) and ease of implementation. 
The heuristic pre-order merging algorithm performs a 
pre-order traversal of the tree and merges pages in the 
order in which they are first encountered. At each 
stage there is a current page. If the contents of the 
next page and the current page will fit in a page, 
the next page is merged into the current page. Oth- 
erwise the next page becomes the current page, and 
the traversal continues. We consider another heuristic 
called the previous merging which is to merge pages 
in the order in which they are completed (see Proce- 
dure process-node). This can easily be incorporated 
into the clustering algorithm without requiring an ex- 
tra pass over the tree. We study the performance of 
these heuristics in Section 6. 

5 Minimum Height Mappings for DAG 
Structures 

We presented a linear time algorithm for finding the 
minimum height mapping for tree structures. The al- 
gorithm cannot be used on DAG structures, since as we 
proceed upwards from a node we may have to choose 
which of two or more parents to merge into the same 
page as the node, and there is no obvious way to choose 
among, the parents. In fact, we show that the problem 
is NP-complete fvr a DAG. 

Theorem 5.1 Finding the minimum height mapping 
of a DAG structure is NP-Hard. •I 

Since the page-height minimization problem is NP 
complete for DAG structures, we are forced to look 
at heuristics in order to get an efficient technique for 
mapping nodes to pages. We consider a heuristic that 
is a simple modification of the bottom-up optimiza- 
tion algorithm for tree structures. The difference from 
the tree case is that a node may have multiple par- 
ents and it is not clear which one to cluster the node 
with. The deepest-node-first heuristic chooses the par- 
ent which has the longest path from a root of the DAG. 
The algorithm implementing the above heuristic is as 
follows: 

Algorithm Heuristic-DAG-Clust(D) 

Input: DAG D whose nodes are to be clustered 

Output: Mapping of nodes to pages 

1. Order the nodes in the DAG such that if a node a 

precedes node b, the longest path from a root to a 

is no smaller than the longest path from a root to b. 
2. For each node n in the DAG in the above order 

process-node(n) ; 

/* see Algorithm Bottom-Up-Tree-Clust */ 

The ordering of the DAG nodes in the first step 
of the algorithm can be generated easily by a small 
modification of the standard topological search algo- 
rithm. Due to the order in which we consider nodes, 
each node is considered after all its children have been 
considered. If a node has multiple parents, one of the 
parents with maximum dipth from a root is considered 
first, and the page containing the node is either merged 
with the pages containing its siblings from that parent 
or is left unchanged. In either case, the page may later 
be merged with pages containing siblings from another 
parent. 

6 Preliminary Performance Evaluation 

We present results of a preliminary performance study 
of our algorithms. We implemented the tree clus- 
tering algorithm which provides the height minimal 
mapping, and the page merging heuristics that we in- 
troduced in Section 4.4, namely, the pre-order merg- 
ing and the previous merging. The merge techniques 
increase occupancy and reduce the cost of pre-order 
traversal without affecting the worst-case page height. 
We would like to emphasize that the study limits itself 
to studying the feasibility of the techniques we have 
proposed. 

The experiments were performed using a pointer- 
based quad tree implementation, and tests were run 
on two actual image data sets, shown in Figure 2. 
Both images are pixel maps where a pixel occupies 
1 byte of storage. The first, which we call landuse 
represents land usage data, and consists of a 406x285 
pixel map. The quadtree representation of the data 
requires about 212 KB of storage, and had 9 levels of 
nodes. The other, which we call ban, is an aerial pho- 
tograph of a region, and consists of a 256x256 pixel 
map; the quadtree representation of this dataset oc- 
cupies 1.2 MB of space (the larger size is because of a 
lot of variation within the image), and has 8 levels of 
nodes. In all cases, pointers were assumed to occupy 

eight bytes of data. 
We would like to repeat here that our techniques are 

meant to deal with arbitrary access structures, not just 
with quad trees or spatial data structures. Therefore 
we do not attempt a comparison with spatial access 
techniques, such as R-trees or linear quad-trees, which 
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are optimized for disk access structures. We use a 
quad-tree merely as a convenient example of a large 
access structure. Further, as mentioned in Section 3, 
none of the OODB clustering techniques attempts to 
optimize access path lengths, concentrating mainly on 
full traversals or on stochastic traversals. Thus their 
goals are very different from ours. We compare our 
techniques with only one of them, namely pre-order 
clustering, since we are interested in pre-order traver- 
sals in addition to access path traversals. 

The following numbers were measured: worst case 
page height, average case page height with each leaf 
node equally likely to be accessed, and the number of 
page traversals for performing a pre-order traversal of 
the entire tree. For the last measure, we assume there 
are enough buffers to hold a full path in the tree and 
all parent pages of a page being accessed are pinned in 
memory. Further, we measured the occupancy of the 
pages. 

We compare mappings using our height minimal 
clustering (incorporating the pm-order merge heuristic 
and the merge heuristic) with a pre-order clustering, 
and with a heuristic we call Smart-BFS. The pm-order 
clustering basically linearly orders the tree nodes ac- 
cording to their pre-order numbering and then maps 
as many nodes as it can into a page by considering the 
nodes in the above order. 

Our Smart-BFS clustering heuristic performs BFS 
locally, starting from the root. Once enough nodes 
have been visited to fill a node, or there are no more 
nodes to be searched, the nodes searched so far are 
assigned to a node. Each of the remaining nodes in the 
BFS queue then becomes the root of a separate Smart- 
BFS search. The recursion terminates when all nodes 
have been searched. Finally, there may be multiple 
pages with low occupancies, corresponding to Smart- 
BFS searches started at nodes near the leaf of the tree. 
These are merged together using a heuristic such as the 

Figure 2: Images: (a) Land use (b) Ban 

pre-order merging used for merging pages generated by 
optimal clustering. 

The results of the performance study are summa- 
rized in Table 1. The performance numbers show 
that the optimal height clustering is significantly bet- 
ter than pre-order clustering for the worst case as well 
as the average case page height. Pre-order clustering 
performs about 1.6 to 3 times worse on these measures. 
Smart-BFS performs about the same as optimal height 
clustering in most cases, with one exception (the lan- 
duse data set with page size at 4096) where it results 
in a greater worst-case height. 

Pre-order clustering is clearly the optimal way to 
cluster data for pre-order traversals. However, it is in- 
teresting to note’that even on pre-order traversals opti- 
mal height clustering with the pre-order merge heuris- 
tic is never more than about 30% worse than pre-order 
clustering. Optimal clustering and Smart-BFS were 
each better than the other on this metric on different 
data sets. 

The occupancy of pages is about 75% to 80% with 
optimal clustering along with either of the merging 
heuristics. This percentage is about the same as in 
B-trees, and therefore quite acceptable. The page size 
does not have a significant effect on the occupancy, al- 
though it appears that occupancy increases with the 
complexity of the tree, perhaps because more small 
clusters are formed. The occupancy of Smart-BFS 
shows more variation, ranging from 63% to 84%. 

The merge heuristics, of course, have no effect on 
the worst case page height. Although not illustrated 
by the datasets we used, the merge heuristics can have 
an effect on average case page heights. The main 
effect of the merge heuristics is on the cost of pre- 
order traversal, where pre-order merging is never much 
worse, and can be much better than previous merging. 
The number of pages generated with the two merg- 
ing techniques are always very similar, and it can be 
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Data Set Pagesize Clustering 

Optimal 
Ban 1024 Optimal 

PW0dCT 

Merging Max. Ht. Avg. Path Len. Preord. Trav. occup. 

Preorder 3 3.00 1473 80.7 
Prtwinna I? R m-l 1441 81 5 

- --._- -- -.-- ---- _ _-__ -__ None 8 5.37 1194 99:; 
Smart-BFS Preorder 3 2.999 1420 84.4 

Optimal Preorder 3 2.75 348 84.5 
Ban 4096 ODtillld Previous 3 2.75 346 85.0 

Pieorder None 7 4.58 295 99.7 
Smart-BFS Preorder 3 2.347 497 63.5 

Optimal Preorder 3 2.97 274 76.3 
Landuse 1024 Optimal Previous 3 2.98 329 76.0 

Preorder None 8 4.78 211 99.1 
Smart-BFS Preorder 3 2.92 257 84.0 

Optimal Preorder 2 2.00 69 75.1 
Landuse 4096 Optimal Previous 2 2.00 81 74.0 

Preorder None 6 3.81 52 99.6 
Smart-BFS Preorder 3 2.06 62 82.2 

Table 1: Costs With Different Clustering Techniques 

shown that with pre-order merging, the cost of pre- 
order traversal is exactly equal to the number of pages. 

To summarize, the optimal clustering with either of 
the merge techniques, and Smart-BFS both perform 
well across all the metrics we considered. Both can be 
computed by a simple linear time algorithm. The op- 
timal clustering has the important benefit that it will 
never generate a clustering with a worst case height 
greater than Smart-BFS. It is not hard to generate 
data sets where Smart-BFS generates a bad cluster- 
ing. One such data set can be constructed to having 
a collection of N balanced binary trees each of which 
has as many nodes as will fit in a page, and to link 
them up with the root of each tree but the first being 
the rightmost descendant of the previous tree. If the 
roots of all trees fit in a page, optimal clustering gives 
a height of 2, while Smart-BFS gives a height of N. 

‘7 Discussion 

An alternative to the definition of external path length 
of a path P under a mapping it4 in Section 2 would be 
to use the number of distinct pages in the mapping of 
P. This alternative is reasonable if we assume that no 
page in a path is removed from the buffer pool while 
traversing the path. Under this definition, the problem 
of minimizing external path length (with varying node 
sizes) is NP-complete. A simple reduction from bin- 
packing establishes this result. 

There are several avenues for future work. The 
first direction would be to expand the performance 
study. We would like to compare our algorithm with 
linear quad trees and evaluate our update algorithm 
for trees. Another direction is to try to derive approx- 

.imation algorithms for the DAG case and the height- 
weight minimization problem that can guarantee their 

results are within a constant factor of the optimal. 
The performance of heuristics for DAGs also need to 
be studied empirically. Yet another direction is to 
create dynamic versions of the DAG mapping heuris- 
tics/approximation algorithms. An updater can ac- 
cess an edge through a short path and delete it or 
insert a new one, causing changes in the mapping on 
long paths. Updating the mapping along a long path 
would result in a cost not proportional to the cost of 
the change in the DAG itself. Dynamic mapping tech- 
niques with limited propagation of updates along long 
paths would be of interest. 

Finally, it would be interesting to go beyond DAGS 
to arbitrary graph structures, but where certain kinds 
of traversals are defined and there are nocyclic traver- 
sals. A binary tree whose leaves are doubly linked 
would be an example of such a structure. One way to 
handle such structures is to ignore some links, such as 
back links in a doubly linked list. Alternative schemes 
would be of interest. Another direction is to con- 
sider more complex traversals, and to introduce lim- 
ited replication of data in the fashion of [RS94] to im- 
prove the cost of traversals. 

8 Conclusion 

We have presented several algorithms for mapping 
nodes in access structures to disk pages. We have 
shown how to generate a page height optimal map- 
ping, and presented heuristics for merging unrelated 
pages in the mapping to reduce storage costs. We 
have extended the algorithm to work with average path 
lengths with given access frequencies for leaf nodes, 
and to handle the dynamic case. We have shown that 
the mapping problem is hard if we must get mini- 
mum weight mappings among those of minimum page 
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height, as also if the structure to be mapped is a DAG. 
We presented heuristics to handle the above cases. Fi- 
nally we presented a performance study that bears out 
our analytical results, and shows that the optimal clus- 
tering and Smart-BFS techniques perform much bet- 
ter than pre-order clustering on path length measures, 
and only a little worse on pre-order traversal. 

Our techniques are likely to be of importance for 
creating special purpose access structures on disk, and 
can reduce effort significantly as compared to design- 
ing new disk access structures. Our technique are also 
likely to be of importance in object-oriented databases, 
which make creation of linked structures on disk very 
easy; in particular, our techniques will make it easy 
to get good performance from the access structures. 
The programmer will not have to worry either about 
where to map nodes, or how to convert long skinny 
structures to short fat structures. 
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