
Clustering Techniques for Minimizing
External Path Length

A. A. Diwan Sanjeeva Rane S. Seshadri S. Sudarshan
Department of Computer Science and Engineering

Indian Institute of Technology
Bombay 400076, India

{ aad,rane,seshadri,sudarsha}@cse.iitb.ernet .in

Abstract

There are a variety of main-memory access
structures, such as segment trees, and quad
trees, whose properties, such as good worst-
case behaviour, make them attractive for
database applicdions. Unfortunately, the
structures are typically ‘long and skinny’,
whereas disk data structuies must be ‘short-
and-fat (that is, have a high fanout and low
height) in order to minimize I/O.

We consider how to cluster the nodes (that
is, map the nodes to disk pages) of main-
memory access structures such that although
a path may traverse many nodes, it only tra-
verses a few disk pages. The number of disk
pages traversed in a path is called the exter-
nal path length. We address several versions
of the clustering problem. We present a clus-
tering algorithm for tree structures that gener-
ates optimal worst-case external path length
mappings; we also show how to make it dy-
namic, to support updates. We extend the al-
gorithm to generate mappings that minimize
the average weighted external path lengths.
We also show that some other clustering prob-
lems, such as finding optimal external path
lengths for DAG structures and minimizing

Permission to copy without fee all or part of this material ia
granted provided that the copies are not made or distributed foT
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying ia by permission of the Very Lal-ge Data Base
Endowment. To copy otherwige, OT to Tepubliah, requirea a fee
and/oT apecial permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

weights for optimal height mappings, are NP-
complete. We present heuristics for these
problems.

We present a performance stuay (using quad-
trees on actual image data as an example)
which shows that our algorithms perform
well. Our algorithms can also be applied for
clustering complex objects in object-oriented
databases.

1 Introduction

In earlier generation databases, access structures were
specially design&l taking the page structuring of disks
into account. For instance, B-trees have nodes whose
size is a page. As database requirements grew to han-
dle complex data types, the need was felt for spe-
cialized data structures, such as spatial index struc-
tures. Disk based spatial data structures such as R-
trees [Gut841 and variants such as R* and !2+ trees
[SRF87, BKSSSO] were developed for this task.

However, there are a variety of specialized ap-
plications for which main-memory access structures
exist but not good disk based access structures.
Various forms of quad-trees, which were developed
for in-memory use, have been found useful in spa-
tial database systems/geographic information systems
such as Quilt [SSNSO]. Although disk versions of some
kinds of quad trees have been developed, only in-
memory versions have been developed for some vari-
ants of quad trees; see Section 3. Interval trees have
been proposed for handling time intervals in tem-
poral databases [KTF95]. Versioning of data struc-
tures is important in temporal databases, and ver-
sioning techniques developed for main-memory struc-
tures [DSST86] have been found to be useful in tem-
poral databases [KTF95]. The two-dimensional index
structure of [RS94] also demonstrates the importance

342

of using data structures developed for main-memory,
in database systems. Furthermore, object-oriented
database systems make it easy to reuse code developed
for in-memory data structures in a persistent setting.

Unfortunately, while the main-memory structures
have very attractive worst-case properties in memory,
they cannot usually be used directly to store data
on disk. Main-memory access structures are typically
constructed -as a set of dynamically allocated nodes
linked by pointers. To perform a lookup on such
a structure requires following one or more chains of
pointers. Following fairly long chains of pointers is ac-
ceptable for data structures in memory, so “tall-and-
skinny” structures such as binary trees are acceptable
in memory. In the disk versions however, the corre-
sponding page structure must however be “short-and-
fat” in order to minimize I/O; for instance disk access
structures such as B-trees have a high fanout, such as
100, and are short (perhaps 3 or 4 pages high).

If we want to use an index structure designed for
main-memory in a persistent environment where data
must be stored on disk, we have two options - ei-
ther redesign the index structure to give it a very high
fanout, or map the nodes carefully to disk pages such
that although a path may traverse many nodes, it only
traverses a few disk pages even in the worst case. The
first option has a high cost in terms of algorithm de-
sign and implementation, but the cost is worthwhile
for very commonly used data structures as has been
proved by B-trees and R-trees.

The second option, namely careful mapping of
nodes to disk pages, is attractive for several reasons
suchaas to re-use existing code and avoid the cost of
designing new structures. The clustering or pagina-
tion problem for a set of nodes is the question of how
to allocate the nodes to disk pages to optimize some
metric. An appropriate metric is the number of page
I/O’s required for performing a point lookup in an
access structure assuming no pages are in-memory ini-
tially. We consider traversals on acyclic structures that
start at a source (root) and go up to a sink (leaf).
For a given,mapping, we define “external path length”
of a traversal to be the number of I/O’s required for
the traversal assuming no pages are in buffer initially,
and the buffer holds only one page. For a given map-
ping, the “page-height” of an acyclic access structure
is then defined as the maximum of the external path
lengths over all possible traversals on the access struc-
ture. Our goal is to find a mapping that minimizes the
“page-height” of access structures and this mapping is
termed an “optimal” mapping.

In this paper we describe and address various ver-
sions of the pagination problem. The specific contri-
butions of this paper are as follows:

1. In the static version of the pagination problem,
an access structure which is a tree (or a rooted
DAG) is given, and an optimal mapping has to
be found.

(a) We present a pagination algorithm for tree
structures that generates optimal mappings.

(b) We extend the above algorithm to generate
mappings that minimize the average of the
external path lengths with given access fre-
quencies for each leaf node.

(c) We show that finding optimal mappings for
DAG structures is NP-complete. We present
efficient heuristics for this problem.

2. In the dynamic version, we have an access struc-
ture whose nodes have already been allocated to
pages in an optimal fashion, and the problem is
to incrementally update the mapping in the face
of an update to the access structure to maintain
the optimality of the mapping.

We present an algorithm for incrementally updat-
ing the optimal mapping on a tree structure. We
show that the resultant mapping is equivalent to
running the static mapping algorithm on the final
tree. The algorithm works under a very general
update model, and besides it only examines pages
in the locality of affected pages, keeping the cost
of reorganization small.

3. We show that the problem of finding a minimum
weight (number of pages that have been mapped
into) mapping amongst the optimal mappings is
NP complete, but present heuristics which can
guarantee at least a 50% node occupancy. Our
performance study indicates that actual occupan-
cies are around 75%.

4. We present a performance study (using quad-
trees on actual image data) that shows that the
the optimal mapping algorithm results in “page-
heights” that are 33% to 60% of the worst case
external path lengths generated by preorder clus-
tering (linearly ordering nodes according to their
preorder number and then sequentially assigning
as many nodes to a page as is possible). More-
over, the average of external path lengths (with
all leaf nodes equally likely to be accessed) US-

ing our basic pagination algorithm is better than
the average of external path lengths of pre-order
clustering by similar margins.

We show that our merging heuristics result in
occupancies of about 75%. Even on pre-order
traversal (for which pre-order clustering is opti-
mal) our algorithms result in a performance loss

343

of only around 30%, assuming all nodes in a path
from the root to a leaf can fit into the buffer.

Another important application of the pagination
problem is in object-oriented databases, where pro-
grammers tend to program much like they do with
in-memory data structures, but the actual nodes are
allocated on disk pages. OODBs allow special purpose
access structures to be made persistent very easily.
However, an intelligent mapping of nodes to disk pages
is important for reducing access costs. For OODB
data-structures similar to indices that require traver-
sals from a root (or set of roots) to a leaf, minimizing
the external path length in the paginated version of
the structure helps in reducing access time. There has
been work on clustering of data in OODBs based on
access frequencies (see Section 3). However, to our
knowledge our work is the first to address the issue of
minimizing external path lengths, which is important
for access structures even in an OODB.

2 Problem Definition

Suppose we are given an access structure consisting of
nodes and directed links between nodes. We assume
that the links are acyclic, and the access structure is
rooted. (Non-rooted DAGs can be easilymade rooted
by adding a pseudo-root.) We define the problem for
the general case where nodes have varying sizes, but
the special case where all nodes have the same size is
also of considerable interest.

Let N be the set of nodes, and B a set of pages,
where] B 111 N (. Let S(n) denote the size of node
n, and let k denote the size of a page; we assume that
that all nodes are smaller than a page. Let M be a
mapping N --+ B. A legal mapping M is one such that
for every page b E B, (c nEM-l(a)S(n)) < L That is,
the sum of the sizes of the nodes mapped to a page
does not exceed the size of the page.

Given a legal mapping M, and a sequence of nodes
P corresponding to an external path (path from a
source to a sink) in the access structure, let n be the
number of nodes in P and let us denote the jth node
in the sequence by Pb], 1 <‘j 5 n. Then define the
external path length of P under M, lengthM(P), as

1+ ({j : M(pli]) # M(Pf,.i -t- l]j,l I j < n) I

In other words, lengthM(P) is the number of pages
I/O’s that have to be incurred to follow path P under
mapping M assuming a buffer size of 1.

Given a set of nodes N and a legal mapping M, the
weight of the mapping is the number of pages that have
at least one node from N mapped to them (formally,
the cardinality of the image of N under M).

Given a tree or a DAG structure A and a map-
ping M, the maximum of lengthM(P) over all exter-
nal paths P in A is called the page height of A under
M. We similarly define the page height of a node in a
rooted tree to be the the number of pages I/O’s that
have to be incurred to follow the path from the root
to the node assuming a buffer size of 1. It will be clear
from the context which page height we are referring to.
Given an access structure A, the height minimization
problem is to find a legal mapping M that minimizes
the page height. Such a mapping is called a height min-
imal mapping. The height-weight minimization prob-
lem is to find the mapping of minimum weight among
the height minimal mappings. The weight minimiza-
tion problem is to find a legal mapping with the min-
imum weight. The weight-height minimization prob-
lem is to find a legal mapping that minimizes the page
height amongst those mappings that are of minimum
weight.

We say that two mappings are equivalent to each
other if one can be obtained from the other by a renum-
bering of the pages. Formally, two mappings f and g
fromasetofnodesNtoasetofpagesB={l...] B)}
are equivalent if there is a permutation z on 1. . .] B)
such that Vn E N,f(n) = ?r(g(n)).

3 Related Work

Bannerjee et al. [BKKG88] describe a technique for
clustering DAGs for CAD databases, which extends
earlier work by Schkolnick [Sch77]. Their approach is
to perform a traversal of the DAG structure, such as
a DFS, a BFS or a modified DFS called child-DFS, in
order to get a linear ordering on the structure. The lin-
ear ordering is then mapped to a B-tree. They describe
how to maintain the mapping in the face of updates to
the DAG structure. While their DFS based clustering
is good for pre-order traversals of the DAG structure,
it is not good for index traversals that follow a path
from a root to a leaf. Right-most paths are particu-
larly hard hit, and each node along such a path could
be mapped to a different page, giving the tree or DAG
structure a bad page height. Thus, worst case exter-
nal path lengths could be high with their clustering
technique.

Numerous tree structures have been proposed to
handle different kinds of spatial data, such as points,
lines and regions, and to efficiently handle specific
types of queries, such as point lookups or region
lookups (see, e.g., [Sam95]). Most of these are designed
primarily as in-memory structures. An example is the
quad-tree, which partitions space in the same way for
all data sets’ making it easier to perform spatial joins

1The depth to which the partitioning goes depends on the
data.

344

with a quad-tree than using an R-tree. Quad trees
of various flavors have been proposed to handle differ-
ent kinds of data, especially in geographic information
systems (see, e.g., [Sam95]).

Work more closely related to ours deal with map-
ping specific index structures to disk. Shaffer and
Brown [SB93] describe a quad-tree structure that they
call a “leaf-less quad-tree”, and a way to map its nodes
to disk pages in a pm-order fashion. They show that
their structure occupies less space and is faster than
the more commonly used linear quad-tree structure,
which represents a quad-tree as a list of leaf nodes,
stored in a B-tree. Their mapping is very similar to
that of Banerjee et al. [BKKG88], and has the same
drawbacks for simple lookups, although the pm-order
traversal mapping is good if the entire tree is to be
scanned. Other approaches to mapping quad-trees to
disk have been based on linearizing space using space
filling curves such as z-orders and Morton orders (see,
e.g. [JagSO]). L inearizing orderings preserve spatial
locality fairly well, but like pm-order traversals, while
the mappings work well for some kinds of traversals
and queries [Ore89, ,Ore90], they do not have good
worst case properties for path lookups.

A more closely connected paper is that of Ra-
maswamy and Subramanian [RS94], which presents
results on optimal pagination of certain extensions of
binary trees such as segment trees and priority search
trees. They present some interesting results on repli-
cation of data associated with internal nodes (which
they call path-caching), in order to reduce page traver-
sals. However, their technique for mapping nodes to
pages simply maps sub-trees of height loga to a
page, where B is the number of nodes that can fit in a
page. While this technique works reasonably well with
full binary trees, clearly it can result in many partially
filled nodes if the tree is not full, and the resultant
trees will not necessarily be of minimal height.

Although all the above mentioned work is related to
spatial databases, we would like to stress that our tech-
niques are general purpose techniques, and not tar-
geted specifically at spatial databases. Therefore we
do not attempt a direct comparison with any mapping
technique specially designed for a particular applica-
tion.

Another related work is that of Kumar et al.
[KTE95], which describes the design of access struc-
tures for bitemporal databases. Instead of using seg-
ment trees, they paginate interval trees, which were
also developed for in-memory use. This work as well
as [RS94] clearly demonstrate the importance of ex-
tending in-memory structures to work well on disk.
However, just like [RS94], their approach to mapping
nodes to pages simply consists of mapping subtrees
to a page. Each page is assigned a subtree of equal

size, starting from the root of the tree. However, these
mappings do not provide good worst-case guarantees;
using trees of equal height is too pessimistic for normal
tree structures since it assumes that the trees are bal-
anced, while using trees of equal size does not provide
good guarantees about the page height of the resultant
structure.

Nodine et. al. [NGV93] consider blocking (cluster-
ing) and paging strategies for undirected graphs, in-
cluding blocking strategies that replicate nodes. They
present lower and upper bounds on the speedup (that
is, reduction in I/O) that can be achieved, for traver-
sals of (possibly cyclic) paths in the graph. Unlike
the approach in this paper, their notion of optimal-
ity are only asymptotic. Further, for the case of trees,
their results are useful (even asymptotically) only with
replication of nodes.

There has been a lot of work on clustering in the
area of object-oriented databases, but none of these
addresses the issue of worst-case path lengths for
access structures. Tsangaris and’ Naughton [TN91,
TN921 have a stochastic approach to the problem of
clustering. They use an object graph with edges be-
tween objects indicating the probabilities of accessing
one object after accessing the other. Their approach
to clustering is to use a minimum weight partition-
ing of the graph such that each partition fits in a
page. While their approach has’advantages on arbi-
trary graph structures, it does not make use of more
specific traversal information associated with access
structures. Their clustering algorithm can result in
bad page heights for such structures. For example, on
a full binary tree, with all leaves having equal proba-
bility of access, every edge will have the same weight
in their stochastic model. The clustering technique of
Cheng and Hurson [CH91] also uses weighted graphs,
and suffers from the same problem as above when ap-
plied to access structures. Other work on clustering
in object-oriented databases includes [CK89, LS92].
None of these addresses the issue of worst-case path
lengths for access structures.

4 Tree Structures

In this section, we assume the access structure is a tree.
We consider the case when the access structure is a
DAG later. Section 4.1 addresses the static case, where
the tree is given and its nodes have to be mapped
to pages, and Section 4.2 addresses the dynamic case
where a tree that has already been mapped is changed.
Section 4.3 addresses minimization of average number
of page traversals over all paths from the root to leaves.
Finally, Section 4.4 addresses the weight minimization
problem.

345

4.1 Static Height Minimization

The algorithm for finding the height minimal mapping
is given below:

Algorithm Bottom-Up-Tree-Clust(T)
Input: Tree T whose nodes are to be clustered
Output: Mapping of nodes to pages
/* Process tree T bottom-up as follows */
While there are nodes in T not yet processed

Choose a node P that is either a leaf or all of
whose children have already been processed

process-node(P)

Procedure process-node(P)
If P is a leaf node create a new page C containing

node P.
Else { /* P is an internal node */

Let PI . . . P,, be the children of P.
Let Cl . . . Cn be the pages containing PI . . . P,,

respectively.
Let Pi1 . . . Pi, be the children among the above

whose page height is the greatest.
If node P and the contents of the pages Gil . . .Ci,

can be merged together,in a single page
/* there is enough space */

Then merge the contents of C’il . . .Ci, into a
new page C and delete (21 . . . G,.

Else create a new page C containing only P
/* Child pages not merged with their parents above

are completed */

1

Theorem 4.1 The mapping of nodes generated by
Algorithm Bottom- Up- Tree-Clust as a height minimal
mapping. Cl

Proof: In the description of Algorithm Bottom-Up-
Tree-Clust, let P be a node in tree T visited during
the bottom-up traversal, and let C be the page it is
mapped to. The proof follows once we prove the fol-
lowing claim.
Claim: The page mapping for the nodes in the subtree
rooted at P (a) has the minimum page height over all
mappings of the nodes in the subtree, and (b) among
all mappings with minimum page height, page C has
the lowest utilization.

We prove the claim by induction on the height of
node P in T. The base case is for height = 1, in
which case P is a leaf node and is mapped to a page
containing only itself thus proving the claim. For the
induction step, suppose the claim is true for all the
children PI . . . P,, of node P.

Case 1: P is merged with Ci . . . C, (as described
in the algorithm).

Case 1.1: The page height of P is not minimum.
Let the page height of P in the bottom-up solution

be hi and let the minimum page height of P be h < hl.
Therefore the page height of the children PI . . P, in
the bottom-up solution is also hl which, by the induc-
tion hypothesis is the minimum possible. Considering
the mapping M in which P has page height h and re-
stricting it to the nodes of the subtree rooted at PI, we
get a mapping in which PI has page height 5 h < hl,
contradicting the induction hypothesis.

Case 1.2: The tree is of minimum height = hl, but
the utilization of C is not the least.

Let Sr . . . S,,, be the sum of the sizes of the nodes
in the pages Ci . . . C, in the bottom-up solution. The
total utilization of the page C is the bottom-up solu-
tion is thus Sl + S2 + . . . + S, + size(P). Suppose
there is a mapping M in which P has page height hl
but the page C containing P has smaller utilization.

Obviously P needs to be included in C. All the
children PI . . . P, of P must be mapped to C - oth-
erwise for some i, 1 5 i 5 m, the page height of Pi is
< hl - a contradiction with the induction hypothesis.

If we restrict M to the subtree rooted at Pi, we get
a mapping of the nodes in this subtree such that Pi
has page height hl and Pi is contained in page C. By
the induction hypothesis, the sum of sizes of nodes in
the subtree rooted at Pi which are mapped to C must
be at least Si. Thus the sum of sizes of nodes mapped
to C by M must be at least S1 + SF + . . . + S, +
size(P), contradicting the fact that the utilization of
C is less than that in the bottom-up solution.

Case 2: P is not merged with Ci . . .C,,, by the al-
gorithm.

Case 2.1: The page height of P is not minimum.
Arguing exactly as in case (1.2)) we can show that

if there is a mapping M in which P has the same page
height (hi) as PI . . . P,,,, then the sum of sizes of
nodes in the page C containing P must exceed k, a
contradiction. Thus the minimum page height for P
is hl + 1, as obtained by the bottom-up algorithm.

Case 2.2: The tree is of minimum height, but the
utilization of page C is not the least.

This case is trivially false, since P needs to be in C
and and no node other than P is mapped to C.

Hence the mapping obtained by the bottom-up al-
gorithm has minimum page height. 0

The Bottom-Up-Tree-Clust algorithm generates
height minimal mappings, but may generate pages
with low occupancy. It is easy to improve space oc-
cupancy to at least 50% by arbitrarily merging nodes
that are less than half-full. Merging nodes in such a
manner does not increase the external path length and
is therefore safe.

346

One point to note with arbitrary merging of nodes is
that it can create cycles of the following form: a node
,in one page points to a node in a second page and so on,
till a node in the nth page points to some other node
in the first page. Although the nodes form an acyclic
structure, there is a cycle at the level of pages which
may be undesirable under certain circumstances. A
simple way to avoid cycles is to only merge pages whose
root nodes are at the same page height. No page can
then be merged with an ancestor, and all pointers from
a page will only be to pages whose nodes are at a lower
page height. Hence there will be no cycles. The heights
of the root nodes of pages are already available since
they are used to compute the node mappings.

4.2 The Dynamic Case

Updates to tree structure must start at the root and
follow one or more paths. The tree after the update is
related to the tree before the update as follows: some
of the nodes in the paths followed by the update, are
deleted, inserted, or updated. The relevant updates
here are changes to the pointers in the nodes. Sub-
trees of the original tree that are not in the path of
the update remain unchanged.

In our model of updates, we require two functions,
new-node(node) that takes a node in the new sub-tree
and returns true if it is a newly inserted node and false
otherwise, and a function old-subtree(node) that takes
a node in the old tree and returns true if the node and
its sub-tree were not modified by the update, and false
otherwise. We call a node an affected node if either it
is a new-node or it is an old node for which oldsubtree
is false. We call a node a fringe node if it is not af-
fected but its parent is afleeted. We assume a function
called fringe(node) exists that returns true if the node
is a fringe node, false otherwise. We also assume that
each node deleted is maintained in a list called the
delete-list. More specific details of the update are not
required. Thus our model of updates is very general,
and not tied down to any specific access structure.

The clustering algorithm described in the last sec-
tion lends itself to dynamization since it is bottom-up.
The result of clustering will not change for any sub-
tree that is not affected by the update. However, the
root of a particular subtree which has not been affected
may have been clustered with its parent and siblings.
A change to its parent or sibling could cause this clus-
tering to be invalid. Therefore all that is required is
to undo the clustering on any node for which either
old-subtree(node) is false or the node is a fringe node
in the same page ti its parent, and restart the bottom-
up algorithm on the new nodes, and nodes whose clus-
tering has been undone.

Algorithm Recluster-Bottom Up(T)
input: Tree T and functions new-node and old-subtree.

List of deleted nodes, delete-list.
Output: Update of node mapping to pages

S={};
For each node n in delete-list

Remove n from its current page
If n is the last node in the page

Then delete the page.
decluster(root);
/* S is now the set of nodes that are affected */
While there are nodes in S that are not yet processed {

Choose an affected node P that is either a leaf or
all of whose children are either not in S,’
or have been processed

process-node(P);

)
procedure decluster(node n)

add n to S
if (!new-node(n)) {

remove n from its current page.
if n is the last node in the page

Then delete the page.

1
for each child nl of n {

if (new-node(n1) or ! old-subtree(nl))
Then decluster(n1)

else /* nl is a fringe node */
if (nl is in the same page as n)

move nl and all its descendants in the same
page as n to a new page

1

Theorem 4.2 The mapping of nodes to pages gener-
ated by executing Algorithm Recluster-BottomUp after
an update to a tree is equivalent to the mapping gener-
ated by Algorithm Bottom-Up-Tree-C&s2 when applied
to the tree after the update. 0

An important property of the above algorithm is
that it only reads and writes pages in the access path of
the updates, plus some of the pages containing fringe-
nodes. Thus reorganization is localized.

Each page can be merged with an adjacent page (in
terms of the order in which pages are completed) if
their combined occupancy is less than lOO%, as men-
tioned before. This technique works even in the dy-
namic case, and still guarantees 50% occupancy.

4.3 Average Path Length Minimization

In this section, we consider the problem of finding a
mapping from nodes to pages which minimizes the av-

347

erage external path length for tree structures. In other
words, we want to find a mapping M from nodes to
pages which minimizes

where P(I) is the path from the root to the leaf 1 and
f(l) is the given access frequency of leaf node 1. We
call this quantity the total external path length for the
mapping M.

We assume that all nodes have the same size, and
therefore without loss of generality assume the size is
1. In the general case with nodes of different sizes,
the problem can be easily shown to be NP-Hard by
reducing the knapsack problem to it.

Our algorithm is essentially an application of dy-
namic programming. We assume the subtrees of a
node P in the tree T are ordered in some fashion as we
would like to consider them in some order (Note the
actual order itself is not important but we only need
to order them for convenience). For every node P in
the tree T, we compute the quantities S[P, i, j] in a
bottom-up manner, where S[P, i, j] denotes the min-
imum total external path length for the tree rooted
at P and containing only the first i subtrees of P,
given that the page containing. P has exactly j nodes
mapped. to it. Here, 0 < i 5 n and 1 2 j 5 k where
n is the number of children of P and k is the size of
a page. We also denote by &[P, j] the minimum total
external path length in the subtree rooted at P, given
that the page containing node P has exactly j nodes
mapped to it. Thus Sl[P, j] = S[P, n, j]. Let &[P] be
the minimum total external path length in the subtree
rooted at P, S2[P] = minl<j<kSl[P, j]. Let F[P] be
the sum of the access frequ&ies of the leaves in the
sllbtree rooted at P.

The main idea behind the algorithm is to find the
minimum total external path length in the subtree
rooted at each node assuming that the page containing
the root node has exactly j nodes mapped to it. Un-
like the bottom-up algorithm for the minimum height
mapping, it is not sufficient to just compute the mini-
mum total external path length mapping for each sub-
tree, since it is possible that a suboptimal mapping for
a subtree leads to an optimum mapping for the tree
rooted at the parent. This happens as the page uti-
lization in the page containing the root may be smaller
in a suboptimal mapping thus allowing more mergings
and greater reductions in total external path length
for the tree rooted at the parent.

Also the j nodes contained in the top page may
be distributed arbitrarily amongst the subtrees of the
root. If we do this naively, it would lead to an expo-
nential time algorithm. However, we can avoid this

by finding thdbest way of distributing the j nodes in
the first i subtrees of the root. This is done for all
values of j, 1 5 j 5 k, and for all values of i, 1 <i< n --
where n is the number of children, of the node. Thus,
when considering the i + lth child, we assume that
some m of the j nodes in.the page containing the root
belong to this subtree and the remaining j - m nodes
are distributed amongst the first i subtrees. Since we
have already computed the best solution with these
distributions, we can find the value of m which mini-
mizes the total external path length subject to these
restrictions. These computations can be represented
succinctly by recurrence relations as shown below.

We compute the quantities S[P, i, j], ,!?I [P, j], ,572 [P]
and F[P] for all nodes in the tree by traversing the
tree in a bottom-up fashion. For a given node P, we
compute the values of S[P, i, j] in increasing order of i
for all values of j in increasing order.

For a leaf node I, we have S[/,O, l] = S1 [I, l] =
Sz[l] = f(l) and S[1,0, j] = 00 for 2 5 j 5 k. Also
F[l] = f(1). Let P b e any internal node in the tree
andlet 9, . . . P,, be the children of P. Now, we define
that S[P, 0, l] = 0 and S[P,O, j] = 03 for 2 _< j 5 k.
We compute S[P, i, j] for i > 0 using the following
recurrence:

S[P, i, j] = min(A, B)

where

A = Sz[Pi] + F[Pi] + S[P, i - 1, j]

and

B = minl~,,+(S1[Pi,m] +S[P,i- 1,j - m])

Once the S[P, i, j] have been computed for all 0 5
i 5 n and 1 5 j 5 ‘k, we can easily find S1 [f, j] and
&[P]. Also F[P] can be computed easily as F[r] =
CICiCn F[PJ. The value of &[R] for the root node
R of tie tree T gives the minimum total external pat,h
length for the original tree T.

To find the actual clustering, we keep track of which
quantity ip the recurrence gives the minimum and clus-
ter accordingly after knowing the value of the opti-
mal solution. Thus if for the root node R, Sz[R] =
Sl[R, j] then the page containing the root node con-
tains j nodes. To find how many of these belong to the
nth subtree, we look up the value of m which gives the
minimum value for S[R, n, j] in the recurrence, then
put m nodes from this subtree in the top page. These
can be identified by a similar procedure applied recur-
sively to the nrh child. The remaining j - m nodes in
the top page can be identified by applying a similar
procedure to the first n - 1 subtrees of the root.

The time complexity of this algorithm can be eas-
ily seen to be O(k’N) while the space complexity is

348

O(kN) where N is the number of nodes in the origi-
nal tree. The algorithm can be easily extended to the
general case. Assuming, the input sizes are encoded in
unary, the algorithm would be polynomial.

Theorem 4.3 The clustering generated by the above
recurrence equations has minimal average external
path length, with the given access frequencies f(1) for
each leaf node 1. 0

Although the above algorithm is polynomial in Ic
and N, R can be quite large (say, lOOO), leading to a
fairly high cost. Therefore, the following heuristic may
be of use: instead of trying each value of occupancy
from 1 to Ic in the dynamic programming algorithm,
try only a smaller number of occupancies, going up in
steps. 9

The dynamic programming in the above algorithm
can be extended to give the mapping with minimal
average external path length amongst mappings that
are height-minimal.

To the matrix S[P, i, j] we add another dimension,
h. Now, S[P, i, j, h] denotes the minimum total exter-
nal path length for the tree rooted at P and containing
only the first i subtrees of P, given that the page con-
taining P has exactly j nodes mapped to it, under the
condition that the page height is less than or equal
to h. The matrix S can be computed bottom-up, as
before; we omit details.

4.4 Weight Minimization

In this section, we consider the issue of minimizing
the number of pages in the mapping of a tree, which
we call weight minimization. If we ignore the page
height, finding a mapping that minimizes weight, is
trivial when all nodes are of the same size. However,
the problem is not very interesting, since we are inter-
ested in reducing the height.

The height-weight minimization problem (namely,
finding legal mappings of minimum weight among
those of minimum height) is less straightforward. In-
terestingly, this problem is NP-complete even in the
special case where all nodes have the same weight, as
shown in the following theorem.

Theorem 4.4 The height-weight minimization prob-
lem is NP-complete even if all nodes are of the same
size.

Proof: We prove the NP-Completeness by reducing
bin-packing to this problem. In the bin-packing prob-
lem, we are given a set of n objects ~1,. . . , 2, with
object xi having a size Si and bins of size k and have
to find the minimum number of bins necessary to pack
all the n objects such that the sum of sizes of objects in

2k/ I-,'
lo/

Figure 1: Mapping of Bin Packing

a bin does not exceed k. We note that the decision ver-
sion of the bin-packing problem (deciding whether a
given number of bins suffice), is strongly NP-complete
and the input numbers can be assumed to be encoded
in a unary representation. Moreover we can also as-
sume that n 5 k since we can always multiply all the
object and bin sizes by a suitable constant without
changing the solution.

Now, given an instance of bin-packing satisfying
these conditions, we construct a binary tree as shown
in Figure 1. The tree has a left branch of height 2k,
and the first n nodes on the left branch have right sub-
trees that are right-most branches; the right branch of
the ith node from the root has length Si. Let the
size of each node be 1 and the size of a page be k,
and let n 5 k. The minimum height mapping for this
tree clearly has to be of height at least 2 since there
is a path of length 2k. In fact it is easy to construct
a mapping of height 2 as shown by the clustering in
the figure. It is also easy to see that the nodes along
the left-most path must be clustered together in two
groups of k in any minimum height mapping.

From this it follows that the nodes along each right
branch of the tree must ‘be clustered together in any
minimum height mapping. If they are not, the height
of the tree would be at least 3.

Now it is easy to see that the bin-packing prob-
lem has a solution with m bins iff there is a minimum
height mapping of the nodes in the tree with weight
m+2.

Showing that the decision version of the problem is
in NP is straightforward. 0

If node sizes differ, there is an even simpler re-
duction of the bin packing problem which shows that
finding even the minimum weight mapping is NP-
complete.

Since the height-weight minimization problem is

349

hard, we are forced to use heuristics for the problem.
The basic problem is to merge pages of the height-
optimal clustering to minimize weight which is again
equivalent to bin packing. So we look at heuristics for
this merging. The motivation for the heuristics that
we study is that the merging should reduce the num-
ber of I/O’s required for performing pre-order traversal
(this could be the equivalent of a scan for some main
memory index structures) and ease of implementation.
The heuristic pre-order merging algorithm performs a
pre-order traversal of the tree and merges pages in the
order in which they are first encountered. At each
stage there is a current page. If the contents of the
next page and the current page will fit in a page,
the next page is merged into the current page. Oth-
erwise the next page becomes the current page, and
the traversal continues. We consider another heuristic
called the previous merging which is to merge pages
in the order in which they are completed (see Proce-
dure process-node). This can easily be incorporated
into the clustering algorithm without requiring an ex-
tra pass over the tree. We study the performance of
these heuristics in Section 6.

5 Minimum Height Mappings for DAG
Structures

We presented a linear time algorithm for finding the
minimum height mapping for tree structures. The al-
gorithm cannot be used on DAG structures, since as we
proceed upwards from a node we may have to choose
which of two or more parents to merge into the same
page as the node, and there is no obvious way to choose
among, the parents. In fact, we show that the problem
is NP-complete fvr a DAG.

Theorem 5.1 Finding the minimum height mapping
of a DAG structure is NP-Hard. •I

Since the page-height minimization problem is NP
complete for DAG structures, we are forced to look
at heuristics in order to get an efficient technique for
mapping nodes to pages. We consider a heuristic that
is a simple modification of the bottom-up optimiza-
tion algorithm for tree structures. The difference from
the tree case is that a node may have multiple par-
ents and it is not clear which one to cluster the node
with. The deepest-node-first heuristic chooses the par-
ent which has the longest path from a root of the DAG.
The algorithm implementing the above heuristic is as
follows:

Algorithm Heuristic-DAG-Clust(D)

Input: DAG D whose nodes are to be clustered

Output: Mapping of nodes to pages

1. Order the nodes in the DAG such that if a node a

precedes node b, the longest path from a root to a

is no smaller than the longest path from a root to b.
2. For each node n in the DAG in the above order

process-node(n) ;

/* see Algorithm Bottom-Up-Tree-Clust */

The ordering of the DAG nodes in the first step
of the algorithm can be generated easily by a small
modification of the standard topological search algo-
rithm. Due to the order in which we consider nodes,
each node is considered after all its children have been
considered. If a node has multiple parents, one of the
parents with maximum dipth from a root is considered
first, and the page containing the node is either merged
with the pages containing its siblings from that parent
or is left unchanged. In either case, the page may later
be merged with pages containing siblings from another
parent.

6 Preliminary Performance Evaluation

We present results of a preliminary performance study
of our algorithms. We implemented the tree clus-
tering algorithm which provides the height minimal
mapping, and the page merging heuristics that we in-
troduced in Section 4.4, namely, the pre-order merg-
ing and the previous merging. The merge techniques
increase occupancy and reduce the cost of pre-order
traversal without affecting the worst-case page height.
We would like to emphasize that the study limits itself
to studying the feasibility of the techniques we have
proposed.

The experiments were performed using a pointer-
based quad tree implementation, and tests were run
on two actual image data sets, shown in Figure 2.
Both images are pixel maps where a pixel occupies
1 byte of storage. The first, which we call landuse
represents land usage data, and consists of a 406x285
pixel map. The quadtree representation of the data
requires about 212 KB of storage, and had 9 levels of
nodes. The other, which we call ban, is an aerial pho-
tograph of a region, and consists of a 256x256 pixel
map; the quadtree representation of this dataset oc-
cupies 1.2 MB of space (the larger size is because of a
lot of variation within the image), and has 8 levels of
nodes. In all cases, pointers were assumed to occupy

eight bytes of data.
We would like to repeat here that our techniques are

meant to deal with arbitrary access structures, not just
with quad trees or spatial data structures. Therefore
we do not attempt a comparison with spatial access
techniques, such as R-trees or linear quad-trees, which

350

are optimized for disk access structures. We use a
quad-tree merely as a convenient example of a large
access structure. Further, as mentioned in Section 3,
none of the OODB clustering techniques attempts to
optimize access path lengths, concentrating mainly on
full traversals or on stochastic traversals. Thus their
goals are very different from ours. We compare our
techniques with only one of them, namely pre-order
clustering, since we are interested in pre-order traver-
sals in addition to access path traversals.

The following numbers were measured: worst case
page height, average case page height with each leaf
node equally likely to be accessed, and the number of
page traversals for performing a pre-order traversal of
the entire tree. For the last measure, we assume there
are enough buffers to hold a full path in the tree and
all parent pages of a page being accessed are pinned in
memory. Further, we measured the occupancy of the
pages.

We compare mappings using our height minimal
clustering (incorporating the pm-order merge heuristic
and the merge heuristic) with a pre-order clustering,
and with a heuristic we call Smart-BFS. The pm-order
clustering basically linearly orders the tree nodes ac-
cording to their pre-order numbering and then maps
as many nodes as it can into a page by considering the
nodes in the above order.

Our Smart-BFS clustering heuristic performs BFS
locally, starting from the root. Once enough nodes
have been visited to fill a node, or there are no more
nodes to be searched, the nodes searched so far are
assigned to a node. Each of the remaining nodes in the
BFS queue then becomes the root of a separate Smart-
BFS search. The recursion terminates when all nodes
have been searched. Finally, there may be multiple
pages with low occupancies, corresponding to Smart-
BFS searches started at nodes near the leaf of the tree.
These are merged together using a heuristic such as the

Figure 2: Images: (a) Land use (b) Ban

pre-order merging used for merging pages generated by
optimal clustering.

The results of the performance study are summa-
rized in Table 1. The performance numbers show
that the optimal height clustering is significantly bet-
ter than pre-order clustering for the worst case as well
as the average case page height. Pre-order clustering
performs about 1.6 to 3 times worse on these measures.
Smart-BFS performs about the same as optimal height
clustering in most cases, with one exception (the lan-
duse data set with page size at 4096) where it results
in a greater worst-case height.

Pre-order clustering is clearly the optimal way to
cluster data for pre-order traversals. However, it is in-
teresting to note’that even on pre-order traversals opti-
mal height clustering with the pre-order merge heuris-
tic is never more than about 30% worse than pre-order
clustering. Optimal clustering and Smart-BFS were
each better than the other on this metric on different
data sets.

The occupancy of pages is about 75% to 80% with
optimal clustering along with either of the merging
heuristics. This percentage is about the same as in
B-trees, and therefore quite acceptable. The page size
does not have a significant effect on the occupancy, al-
though it appears that occupancy increases with the
complexity of the tree, perhaps because more small
clusters are formed. The occupancy of Smart-BFS
shows more variation, ranging from 63% to 84%.

The merge heuristics, of course, have no effect on
the worst case page height. Although not illustrated
by the datasets we used, the merge heuristics can have
an effect on average case page heights. The main
effect of the merge heuristics is on the cost of pre-
order traversal, where pre-order merging is never much
worse, and can be much better than previous merging.
The number of pages generated with the two merg-
ing techniques are always very similar, and it can be

351

Data Set Pagesize Clustering

Optimal
Ban 1024 Optimal

PW0dCT

Merging Max. Ht. Avg. Path Len. Preord. Trav. occup.

Preorder 3 3.00 1473 80.7
Prtwinna I? R m-l 1441 81 5

- --._- -- -.-- ---- _ _-__ -__ None 8 5.37 1194 99:;
Smart-BFS Preorder 3 2.999 1420 84.4

Optimal Preorder 3 2.75 348 84.5
Ban 4096 ODtillld Previous 3 2.75 346 85.0

Pieorder None 7 4.58 295 99.7
Smart-BFS Preorder 3 2.347 497 63.5

Optimal Preorder 3 2.97 274 76.3
Landuse 1024 Optimal Previous 3 2.98 329 76.0

Preorder None 8 4.78 211 99.1
Smart-BFS Preorder 3 2.92 257 84.0

Optimal Preorder 2 2.00 69 75.1
Landuse 4096 Optimal Previous 2 2.00 81 74.0

Preorder None 6 3.81 52 99.6
Smart-BFS Preorder 3 2.06 62 82.2

Table 1: Costs With Different Clustering Techniques

shown that with pre-order merging, the cost of pre-
order traversal is exactly equal to the number of pages.

To summarize, the optimal clustering with either of
the merge techniques, and Smart-BFS both perform
well across all the metrics we considered. Both can be
computed by a simple linear time algorithm. The op-
timal clustering has the important benefit that it will
never generate a clustering with a worst case height
greater than Smart-BFS. It is not hard to generate
data sets where Smart-BFS generates a bad cluster-
ing. One such data set can be constructed to having
a collection of N balanced binary trees each of which
has as many nodes as will fit in a page, and to link
them up with the root of each tree but the first being
the rightmost descendant of the previous tree. If the
roots of all trees fit in a page, optimal clustering gives
a height of 2, while Smart-BFS gives a height of N.

‘7 Discussion

An alternative to the definition of external path length
of a path P under a mapping it4 in Section 2 would be
to use the number of distinct pages in the mapping of
P. This alternative is reasonable if we assume that no
page in a path is removed from the buffer pool while
traversing the path. Under this definition, the problem
of minimizing external path length (with varying node
sizes) is NP-complete. A simple reduction from bin-
packing establishes this result.

There are several avenues for future work. The
first direction would be to expand the performance
study. We would like to compare our algorithm with
linear quad trees and evaluate our update algorithm
for trees. Another direction is to try to derive approx-

.imation algorithms for the DAG case and the height-
weight minimization problem that can guarantee their

results are within a constant factor of the optimal.
The performance of heuristics for DAGs also need to
be studied empirically. Yet another direction is to
create dynamic versions of the DAG mapping heuris-
tics/approximation algorithms. An updater can ac-
cess an edge through a short path and delete it or
insert a new one, causing changes in the mapping on
long paths. Updating the mapping along a long path
would result in a cost not proportional to the cost of
the change in the DAG itself. Dynamic mapping tech-
niques with limited propagation of updates along long
paths would be of interest.

Finally, it would be interesting to go beyond DAGS
to arbitrary graph structures, but where certain kinds
of traversals are defined and there are nocyclic traver-
sals. A binary tree whose leaves are doubly linked
would be an example of such a structure. One way to
handle such structures is to ignore some links, such as
back links in a doubly linked list. Alternative schemes
would be of interest. Another direction is to con-
sider more complex traversals, and to introduce lim-
ited replication of data in the fashion of [RS94] to im-
prove the cost of traversals.

8 Conclusion

We have presented several algorithms for mapping
nodes in access structures to disk pages. We have
shown how to generate a page height optimal map-
ping, and presented heuristics for merging unrelated
pages in the mapping to reduce storage costs. We
have extended the algorithm to work with average path
lengths with given access frequencies for leaf nodes,
and to handle the dynamic case. We have shown that
the mapping problem is hard if we must get mini-
mum weight mappings among those of minimum page

352

height, as also if the structure to be mapped is a DAG.
We presented heuristics to handle the above cases. Fi-
nally we presented a performance study that bears out
our analytical results, and shows that the optimal clus-
tering and Smart-BFS techniques perform much bet-
ter than pre-order clustering on path length measures,
and only a little worse on pre-order traversal.

Our techniques are likely to be of importance for
creating special purpose access structures on disk, and
can reduce effort significantly as compared to design-
ing new disk access structures. Our technique are also
likely to be of importance in object-oriented databases,
which make creation of linked structures on disk very
easy; in particular, our techniques will make it easy
to get good performance from the access structures.
The programmer will not have to worry either about
where to map nodes, or how to convert long skinny
structures to short fat structures.

Acknowledgements

We would like to thank P. Venkatachalam of CSRE,
IIT Bombay, for providing the data sets on which we
ran our tests, and P.P.S. Narayan for implementing
the in-memory quad-tree code.

References

[BKKG88]

[BKSSSO]

[CH91]

[CK89]

[DSST86]

[Gut841

J. Banerjee, Won Kim, S-J. Kim, and J. F.
Garza. Clustering. a DAG for CAD databases.
IEEE Transactions on Software Engg., SG
14(11):1684-1699, November 1988.

N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R.-tree: An efficient and ro-
bust access method for points and rectangles.
In Procs. of the ACM SIGMOD Conf. on Man-
agement of Data, May 1990.

J. Cheng and A. Hurson. Effective clustering
of complex objects in object-oriented database
s. In Procs. of the ACM SIGMOD Conf. on
Management of Data, May 1991.

EIIis E. Chang and Randy H. Katz. Exploiting
inheritance and structure semantics for effec-
tive clustering and buffering in an object ori-
ented dbms. In Procs. of the ACM SIGMOD
Conf. on Management of Data, pages 348-357,
May 1989.

James R. Driscoll, Neil Sarnak, Daniel Sleator,
and Robert E. Tarjan. Making data structures
persistent. In Eighteenth Annual ACM Symp.
on Theory of Computing, 1986.

Antonin Guttman. R-trees: A dynamic index
structure for spatial searching. In Procs. of the
ACM SIGMOD Conf. on Management of Data,
pages 47-57, 1984.

[Jag901

[KTF95]

[LS92]

[NGV93]

[Ore891

[Ore901

[RS94]

[Sam951

[SB93]

[Sch77]

[SRF87]

[SSNSO]

[TN911

[TN921

H.V. Jagadish. Linear clustering of objects
with multiple attributes. In Procs. of the ACM
SIGMOD Conf. on Management of Data, May
1990.

AniI Kumar, Vassilis J. Tsotras, and Christos
FaIoutsos. Designing access methods for bitem-
poral databases. In Pre- VLDB’95 Workshop
on Temporal Databases, 1995.

Q. Li and J.L. Smith. A conceptual model
for dynamic clustering in object databases. In
Procs. of the International Conf. on Very Large
Databases, 1992.

Mark Nodine, Michael Goodrich, and Jeffrey S.
Vitter. Blocking for external graph searching.
In Procs. of the ACM Symp. on Principles of
Database Systems, 1993.

J. Orenstein. Redundancy in spatial databases.
In Procs. of the ACM SIGMOD Conf. on Man-
agement of Data, 1989.

J. Orenstein. A comparison of spatial query
processing techniques for native and parameter
spaces. In Procs. of the ACM SIGMOD Conf.
on Management ,of Data, May 1990.

Sridhar Ramaswamy and Sairam Subrama-
nian. Path caching: A technique for op-
timal external searching. In Procs. of the
ACM Symp. on Principles of Database Sys-
tems, 1994.

Hanan Samet. Spatial data structures. In Won
Kim, editor, Modern Database Systems, pages
361-385. ACM Press/Addison Wesley, 1995.

Clifford A. Shaffer and Patrick R. Brown. A
paging scheme for pointer-based Quadtrees.
In The 3rd International Symposium on Large
Spatial Databases, pages 89-104, 1993.

Mario Schkolnick. A clustering algorithm for
hierarchical structures. ACM Transactions on
Data Base Systems, 2(1):27-44, March 1977.

Timos SeIIis, Nick Roussopoulos, and Chris-
tos Faloutsos. The Rt-tree: A dynamic index
for multi-dimensional objects. In Procs. of the
International Conf. on Very Large Databases,
pages 507-518, 1987.

C. A. Shaffer, H. Samet, and R. C. Nel-
son. QUILT: A geographic information system
based on quadtrees. International Journal of
Geographical Information Systems, 4:103-131,
1990.

ManoIis M. Tsangaris and Jeffrey F. Naughton.
A stochastic approach for clustering in object
stores. In Procs. of the ACM SIGMOD Conf.
on Management of Data, pages 12-21, Denver,
Colorado, May 1991.

ManoIis Tsangaris and Jeffrey Naughton. On
the performance of object clustering tech-
niques. In procs. of the ACM SIGMOD Conf.
on Management of Data, 1992.

353

