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Abstract 

Some aggregate and grouping queries are con- 
ceptually simple, but difficult to express in 
SQL. This difficulty causes both conceptual 
and implementation problems for the SQL- 
based database system. Complicated queries 
and views are hard to understand and main- 
tain. Further, the code produced is sometimes 
unnecessarily inefficient, as we demonstrate 
experimentally using a commercial database 
system. In this paper, we examine a class 
of queries involving (potentially repeated) se- 
lection, grouping and aggregation over the 
same groups, and propose an extension of SQL 
syntax that allows the succinct representation 
of these queries. We propose a new relational 
algebra operation that represents several lev- 
els of aggregation over the same groups in 
an operand relation. We demonstrate that 
the extended relational operator can be eval- 
uated using efficient algorithms. We describe 
a translation from the extended SQL language 
into our algebraic language. We have im- 
plemented a preprocessor that evaluates our 
extended language on top of a commercial 
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database system. We demonstrate that on 
a variety of examples, our implementation 
improves performance over standard SQL rep- 
resentations of the same examples by orders of 
magnitude. 

1 Introduction 

Aggregation is an important component of a query 
language because it is very commonly and intensively 
used in a wide range of applications. Examples of 
such applications include decision support systems, 
business databases, statistical databases and scientific 
databases. In order to support such applications, it 
is crucial for a database query language to be able to 
succinct2y ezpcpress common aggregate queries, and for 
the query processing system to be able to eficiently 
evaluate such queries. 

Unfortunately, standard SQL (SQL92) does not al- 
low the concise expression of a number of conceptually 
simple queries involving (potentially repeated) group- 
ing and aggregation over the same groups. In order 
to express such queries in SQL, one has to perform 
additional joins, or to construct additional subqueries, 
while a kind of sequential processing of the grouped 
relation would be sufficient. The SQL versions of many 
such queries show a high degree of redundancy. There 
are two important consequences of such redundancy. 
First, it is very difficult to write, understand, and 
maintain such queries. Second, it is very difficult for 
a query optimizer to identify efficient algorithms for 
such queries, as we illustrate experimentally. 

In this paper we define an extension to SQL syntax 
that allows the succinct representation of various ag- 
gregate queries. We also propose a new relational alge- 
bra operation @ that concisely represents several levels 
of aggregation over the same groups in an operand 
relation. We show how @ can be implemented using 
efficient algorithms. We then show how queries can be 
translated from our SQL extension into our extended 
relational algebra. Our queries are significantly shorter 
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and simpler than their standard SQL counterparts, 
and are much more easily optimized. The syntax that 
we propose is significantly more general than previous 
proposals, and enables the concise solution of a number 
of well-known query representation problems. While + 
does not give additional expressive power to the rela- 
tional algebra, it allows an important subset of queries 
to be succinctly expressed and efficiently evaluated. 

We implemented a version of our extended SQL 
language on top of a commercial relational database 
system. We compare the performance of the extended 
system on examples in our exended language to that 
of the underlying commercial system on standard SQL 
representations of the same examples. Our experimen- 
tal results demonstrate orders of magnitude improve- 
ments in performance. We argue that extending SQL 
in a fashion similar to ours is essential in order for 
the query optimizer to be able to identify and utilize 
efficient evaluation techniques. 

The rest of the paper is organized as follows. Sec- 
tion 2 motivates the paper, presenting examples of 
queries, potential target implementation algorithms, 
and explaining why optimizing standard SQL versions 
of the example queries is hard. In Section 3 we de- 
scribe our extension of SQL and we take the relational 
algebra witbaggregation and extend it to enable the 
concise representation of our aggregate queries using 
a new operator a. Further, we show how our version 
of SQL can be translated into the extended relational 
algebra. Section 4 presents an algorithm to evaluate 
CE, and compares performance results using standard 
SQL of a commercial system and our implementation. 
Section 5 compares our work with related work, and 
we conclude in Section 6. 

2 Motivation 

In Section 2.1 we describe several motivating ex- 
amples, and show why they are conceptually more 
complex than yecessary. In Section 2.2 we describe 
an efficient target implementation for these queries. 
Section 2.3 explains why relational database systems 
might have difficulty identifying such implementations. 
given the specifications in Section 2.1. In the examples 
we shall use the following relation, taken from [LM96]. 

CALLS(FromAC,FromTel,ToAC,ToTel,Date,Length) 

The CALLS relation stores the calls placed on a tele- 
phone network over the period of one year. It includes 
the From number (area code and telephone number), 
the To number (area code and telphone number), the 
date and the length of the call. Each F’rom number 
corresponds to a customer. 

2.1 Motivating Examples 

Example 2.1: Consider the following queries to the 
relation described above: 

Ql. 

Q2. 

Q3. 

Q4. 

For each customer, find the longest call and the 
area code to which it was made. 

For each customer, show the average-length of 
calls made to area codes 201 and 301 (in the same 
output record). 

For each customer, show the number of calls 
made during the first 6 months that exceeded the 
average-length of all calls made during the year, 
and the number of calls made during the second 
6 months that exceeded the same average length. 

Suppose we are interested in those customers for 
whom the total length of their calls during sum- 
mer (June to August) exceeds one-third of the 
total length of their calls during the entire year. 
For these customers, we would like to find the 
longest call made during the summer period, and 
the area code to which it was made. 0 

Each of these examples is a query in which all aggrega- 
tion is grouped by the same grouping attributes. These 
are natural queries for a marketing application or for a 
decision support system. Hence we have an important 
practical class of queries. Additional examples may be 
found in textbooks [DD92], business-related articles 
[KS95], and benchmarks [Cou95]. 

All of the examples are cumbersome to express in 
SQL. In every case, they need to be expressed using 
joins or subqueries. Query Ql might be expressed in 
standard SQL as 

create view 9lView as 
select FromAC, FromTel, maxL=max(Length) 
from CALLS 
group by FromAC, FromTel 

select V.FromAC, V.FromTel, ToAC, Length 
from CALLS C, 9lView V 
where Length=maxL AND C.FromAC = V.FromAC 

AND C.FromTel=V.FromTel 

Conceptually, the query is simple. However, the 
SQL solution is unnatural in that it requires the user to 
think in terms of two passes through the CALLS relation 
rather than one. Furthermore, the resulting implemen- 
tation may be sub-optimal. (We shall address some 
of the resulting implementation difficulties in the next 
section.) Query Q2 is an example (a case of “Value-to- 
Attribute” conflict) of the well-known schematic dis- 
crepancies problem in database interoperability [KS91, 
KLK91, SCG93]. Data in one relation corresponds to 
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metadata in another, in this case the output result. 
Again, SQL needs a join of the CALLS relation with 
itself to express this query. A possible expression of 
Query Q2 in standard SQL is 

create view Q2Viewl as 
select FromAC, FromTel, avgL=avg(Length) 
from CALLS 
where ToAC = "201" 
group by FromAC, FromTel 

create view Q2View2 as 
select FromAC, FromTel, avgL=avg(Length) 
from CALLS 
where ToAC = "301" 
group by FromAC, FromTel 

select Q2Viewl.FromAC, Q2Viewl.FromTe1, 
Q2Viewl.avgL, Q2View2.avgL 

from Q2View1, Q2View2 
where Q2Viewl.FromAC=Q2View2.FromAC AND 

Q2Viewl.FromTel=Q2View2.FromTel 

Query Q3 illustrates the use of two levels of aggre- 
gation using the same grouping attributes. A first, ag- 
gregation (computing the average-length call) is used 
along with acondition on Date,to restricttuplesto be 
aggregated (count) at the second level. Queries with 
three or more levels of aggregation are also possible. 
In SQL, each aggregation has to be embodied in a 
separate subquery or view. even if the aggregates are 
over the same groups. Additionally, each such view 
needs to perform a join with the original relation. A 
standard SQL version of Query Q3 is shown below: 

create view Q3View as 
select FromAC, FromTel, avgL=avg(Length) 
from CALLS 
group by FromAC, FromTel 

create view Q3Viewl as 
select C.FromAC,C.FromTel,cnt=count(*) 
from CALLS C, Q3View V 
where C.FromAC = V.FromAC AND 

C.FromTel = V.FromTel AND 
Length > avgL AND Date<"96/07/01" 

group by CALLS.FromAC, CALLS.FromTel 

create view Q3View2 as 
select C.FromAC,C.FromTel,cnt=count(*) 
from CALLS C, Q3View V 
where C.FromAC = V.FromAC AND 

C.FromTel = V.FromTel AND 
Length > avgL AND Date>"96/06/30" 

group by CALLS.FromAC, CALLS.FromTel 

select Q3Viewl.FromAC, Q3Viewl.FromTe1, 
Q3Viewl.cnt, Q3View2.cnt 

from Q3View1, Q3View2 
where Q3Viewl.FromAC=Q3View2.FromAC AND 

Q3Viewl.FromTel=Q3View2.FromTel 

Query Q4 requires many of the features described 
above. It aggregates over one subset of each group 
and compares the resulting value with an aggregate 
over the whole group. Then a selection of a particular 
row of that subset (the one with the maximum length) 
has to be made. An SQL formulation of Query Q4 
is given below. Notice that it is important to define 
Q4View2 as a separate view and not incorporate it, as a 
where clause within Q4View3. We need the area codes 
(TOA~) in the final result and we cannot select, them 
in Q4View2 because standard SQL insists that selected 
attributes be grouping attributes. 

create view Q4Viewl as 
select FromAC, FromTel, sumL=sum(Length) 
from CALLS 
group by FromAC, FromTel 

create view Q4View2 as 
select * 
from CALLS 
where Date>"96/05/31" AND Date<"96/09/01" 

create view Q4View3 as 
select FromAC, FromTel, 

sumL=sum(Length),maxL=max(Length) 
from Q4View2 
group by FromAC, FromTel 

select Vl.FromAC, Vl.FromTel, 
V2.ToAC, V2.Length 

from Q4Viewl Vl, Q4View2 V2, Q4View3 V3 
where Vl.FromAC = V2.FromAC AND 

Vl.FromAC = V3.FromAC AND 
Vl.FromTel = V2.FromTel AND 
Vl.FromTel = V3.FromTel AND 
V3.sumL * 3 > Vl.sumL AND 
V2.Length = VS.maxL 

It is not easy to derive (and maintain) such a 
query! Further, it is not easy for a query optimizer to 
implement this query efficiently, as we shall see shortly. 

We have criticized standard SQL for its complexity 
in spgcifying queries involving multiple features of the 
same group. In this paper we present SQL extensions 
that reduce such complexity. While we shall delay 
the presentation of our SQL language to ‘Section 3, 
we present below our version of Query Q3. 
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Algorithm 2.1: General algorithm for aggregates 
over the same groups. 

Input: 

output: 

,Method: 

A relation R and a set V of grouping 
attributes. 
Aggregates (grouped by V) and selected 
records from R. 
Partition R according to the grouping at- 
tributes into buckets. Partitioning could 
be done by hashing or range-partitioning 
the grouping attributes. Read each bucket 
in turn, sort by the grouping attributes, 
and process the groups one by one. For 
each group make as many passes as neces- 
sary (aggregating or selecting records, using 
computed aggregates in subsequent passes) 
to answer the query on that group. g 

select FromAC,FromTel,count(X.*),count(Y.*) 
from CALLS 
group by FromAC, FromTel : X, Y 
suchthat (X.Date < “96/07/011V AND 

X.Length > avg(Length)) AND 
(Y .Date > “96/06/30” AND 
Y.Length > avg(Length)) 

‘The X and Y variables of the group-by clause denote 
tuple variables that range over the tuples in each 
group. We refer to X and Y as grouping variables. (If 
there are multiple relations in the from clause, then 
there is a grouping variable tuple for every combi- 
nation of underlying relation tuples that satisfy the 
where clause.) The newly introduced suchthat clause 
is used to define these grouping variables. The order in 
which they are declared in the group-by clause implies 
the order of evaluaticln. For example, the Y grouping 
variable could be defined in terms of aggregates over 
variable X. The having clause is still present, with a 
wider functionality as we shall see in Section 3. 

2.2 Target Implementation 

While conceptual complexity is an important issue, 
it is not the only reason for extending SQL with 
special features for grouping. There are also significant 
implementation issues. When performing aggregations 
and selections repeatedly over the same groups, there 
are specialized algorithms that can operate much more 
efficiently than standard joins and aggregations. The 
algorithms presented here are not particularly novel. 
However, they do illustrate the kinds of efficient im- 
plementation techniques that are available. 

We assume that we aggregate over one relation, R. 
If R is the result of a join, we first perform the join to 
materialize R. 

Algorithm 2.1 is a general implementation that applies 
to any aggregate query all of whose aggregates use 
the same grouping attributes. In particular, all of 
queries Ql though Q4 are of this form. If the main 
memory is big enough to hold each bucket’ then the 
total amount of I/O is one pass of R for the partition- 
ing, and one pass of the partitioned version of R to 
answer the query. Further, the total amount of CPU 
time required is linear in the number of aggregations 
and record selections performed in the query. 

For special cases, more efficient algorithms may be 
possible. We give one example below. 

Algorithm 2.2: Algorithm for min and max aggre- 
gates over the same groups. 

Input: A relation R and a set V of grouping 
attributes. 

Output: Single min and/or mart aggregates (grouped 
by V) and (optionally) records from R with 
minimal or maximal attribute values. 

Method: Make a single sequential scan of R. For 
each value v of the grouping attributes V 
keep the running minimum and maximum, 
and the record(s) from R with the minimum 
and/or maximum attribute value. 1 

Algorithm 2.2 applies to special kinds of queries in 
which a min or max is used, and the aggregated at- 
tribute is equated with the attribute itself. It could 
be used for Query Ql. If the main memory is large 
enough to hold one (or possibly several) records for 
each group, then the total I/O cost is one pass through 
R and a negligible CPU cost. When memory is limited, 
Algorithms 2.1 and 2.2 can be tuned for the amount 
of available memory; such issues are beyond the scope 
of this paper. 

We want to avoid naive implementations of the 
queries using joins and subqueries. Unfortunately, as 
we shall see in Section 2.3, it is very difficult to find 
good implementations when the queries are expressed 
in standard SQL. What we need is a syntax to express 
these queries succinctly, without any redundancy. The 
query can then be optimized appropriately based on its 
special characteristics, or translated into an algebraic 
operator that can be implemented more efficiently 
than general joins. 

2.3 Optimizing the Standard SQL Formula- 
tions is Hard 

The most noticeable feature of the SQL solutions to 
the queries presented above is redundancy. Informa- 
tion is repeated in several places. Consider the SQL 
solution to Query Q4. 

1 We choose the partitioning algorithm to generate sufficiently 
small buckets if possible. 

298 



The relation CALLS and the view Q4View2 are 
mentioned more than once. 

Grouping by FromAC, FromTel is mentioned more 
than once. 

Extra conditions equating the FromAC, FromTel 
attributes in the various views are necessary. 

The keywords select, from, and where appear 
multiple times. 

Why is removing redundancy so important? As we 
have already seen, redundancy leads to longer queries 
that are more difficult to understand and maintain. 
F’urther, redundancy makes the job of a query opti- 
mizer very hard. Consider a query optimizer trying 
to identify Algorithm 2.1 as a candidate strategy for 
the SQL specification of Query Q4. The optimizer has 
to identify aspects of the query that indicate multiple 
aggregations and selections over the same groups. In 
order to do that, it has to notice that 

l Both Q4Viewl and Q4View3 are grouped by the 
same attributes. 

l View Q4View3 includes the grouping attributes 
FromAC, FromTel. 

l The top-level query equates grouping attributes, 
compares aggregate values with attributes and 
other attribute values, but does not compare non- 
grouping attributes of the views. 

In addition, the optimizer has to be smart enough to 
ignore small changes that do not affect the applicabil- 
ity of the algorithm, but that might change the internal 
representation of the query. 

In general, such observations are global properties 
of the query, not local properties. The search space 
for observing these properties is prohibitively large, 
and so optimizers traditionally focus on sequences of 
local optimizations (with some global optimization 
to determine join orders). Thus, it is unreasonable 
to expect an optimizer to take the SQL version of 
Query Q4 and find Algorithm 2.1. 

The implementation of our extended SQL language, 
described in Section 4, shows dramatically improved 
performance because it is relatively easy (as we shall 
see) to identify good implementation techniques. 

3 Extending SQL with grouping vari- 
ables 

In this section we present our extension of SQL, show 
how it can be used to express the motivating examples, 
and provide a translation from the extended SQL to 
the relational algebra including a new operator 0. 

3.1 Syntax 

We propose the following SQL syntax extensions: 
From clause. There is no change. Suppose that 

the relations in the from clause are 7’1, . . . , Tp. 
Where clause. There is no change. Suppose that 

the conditions in the where clause are Di, . . . , D,. 
Group By clause. The group by clause is the 

same as in standard SQL, with the following addition: 
after specifying the grouping attributes it may contain 
grouping uclriables. These will range over the tuples 
within each group. For example, we may write 

group by FromAC, FromTel : R, S 

In the following description we shall assume that there 
are n grouping variables named ri , ~2, . . . , rn. Grouping 
variables range over tuples in the join of TI, . . . , Tp 
according to DI, . . . , D,. 

Suchthat clause. This clause defines the range 
of the grouping variables mentioned in the group by 
clause. (The suchthat clause is like a where clause 
for grouping variables.) It has the following form: 

Cl and Cz and . . . and Cn 

Any Ci may be omitted. Each Ci is a (potentially 
complex) condition involving the attributes of ri, con- 
stants, aggregate functions of ordinary attributes and 
aggregate functions of attributes of r-1, . . . , ri-1. 

Having clause. The having clause is a condition 
G of the form Gi and . . . and G,. Each Gi can be: 

l an expression where each subexpression involves 
only ordinary aggregates, aggregates of ri , . . . . r, 
and constants, such as “count(*) > 10 or 
sum(R.Length) < sum(Length)“, or 

l an expression where each subexpression involves 
an attribute of rj (for some fixed j) and some 
ordinary aggregate, an aggregate of ~1, . . . . r, or 
a constant, such as “R.Length = max(Length) or 
R.Length > 20”. 

Select clause. The select clause is the same as in 
standard SQL, with the following addition: attributes 
of the grouping variables, and aggregates of attributes 
of the grouping variables can also appear in the select 
clause. 

3.2 Semantics 

With the extended SQL syntax, we are able to de- 
fine (using the Cl,. . . , C,, conditions in the suchthat 
clause) n “areas” within a group, with each of 
Tl , . . . , T, ranging over one area. We can perform 
aggregation on each such area. The G condition can 
select tuples from these areas, or impose a condition 
on the group as a whole. Observe that the constraints 
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CmC~,... , C, in the having clause prevent cyclic defi- 
nitions of the grouping variables’ areas. Each group 
variable is restricted only by comparison with con- 
stants and aggregates of previous grouping variables. 
In other words, the C conditions (in the suchthat 
clause) are defining conditions for the grouping vari- 
ables, while the G conditions (in the having clause) are 
selection conditions. Furthermore, G is constrained to 
allow an efficient implementation as we will see later. 
Extended SQL queries for Example 2.1 are: 

(Ql) select FromAC, FromTel, 
R.ToAC, R.Length 

from CALLS 
group by FromAC, FromTel : R 
suchthat R.Length=max(Length) 

(Q2) select FromAC, FromTel, 
avg(R.Length), avg(S.Length) 

from CALLS 
group by FromAC, FromTel : R, S 
suchthat R.ToAC = “201” AND 

S .ToAC = “301” 

(Q3) select FromAC, FromTel, 
c0unt(1(.*), count(Y.*) 

from CALLS 
group by FromAC, FromTel : X, Y 
suchthat (X.Date<“96/07/01” AND 

X. Length>avg (Length) ) AND 
(Y .Date>“96/06/30” AND 
Y.Length>avg(Length)) 

(Q4) select FromAC, FromTel, 
R.ToAC, R.Length 

from CALLS 
group by FromAC, FromTel : R 
suchthat R.Date > “96/05/31” AND 

R. Date < “96/09/01” 
having sum(R.Length)*S>sum(Length) 

AND R.Length=max(R.Length) 

Note that non-aggregate attributes of the group- 
ing variables can appear in the select clause, as in 
queries Ql and Q4. These attributes do not necessarily 
have the same value for all rows in the group. That 
means that a join between the areas designated by the 
grouping variables may be necessary. This will become 
apparent in the following section, where we define 
our new aggregation operator in terms of relational 
algebra. 

If there is ambiguity about which relation an at- 
tribute of a group variable came from, such as when 
there are several relations in the from clause, it is 
explicitly specified as in R. CALLS. ToAC. An interesting 
aspect of our solution is the possible use of group- 
ing without aggregation (i.e., if we are interested in 

features of groups that do not require aggregation). 
Notice the conceptual simplicity of the specifications of 
these examples, and the absence of redundancy in the 
specifications. In particular, compare these examples 
with the SQL versions of section 2.1. 

3.3 Relational Algebra 

In this section we present the standard relational 
algebra with aggregation, and extend it with a new 
operator 9. 9 expresses multiple levels of selection 
and aggregation over the same groups. We show 
some examples of the use of 9. We argue that, even 
though + does not yield additional expressive power 
compared with the standard relational algebra with 
aggregation, it does allow an important class of queries 
to be expressed more succinctly. 

We assume that the reader is familiar with the 
standard relational algebra operations selection (a), 
projection (m), join (W), union (U), and difference 
(-). An additional renaming operator p is defined as 
follows: pi(R) simply prepends the label “i.” to every 
attribute name of R. There are several proposals for 
a grouping operator in the literature [EN89, MumSl]. 
We use a syntax similar to the syntax in [EN89]: an. 
aggregate function operation r is defined as 

<groupingattributes> FT[<f’JnctionJiSt>I (RI 

where <grouping&tributes> is the list of grouping at- 
tributes of the relation R, and <functionlist> is a list 
of the aggregate functions (min, max, count, average, 
sum), accompanied by an appropriate attribute of the 
relation specified in R. (These are the standard.SQL 
aggregate operators; the techniques described below 
would also be applicable to other aggregate operators.) 
The name of the aggregated attribute is obtained by 
prepending the aggregate function name before the 
attribute name, for example “avgLength.” So, for 
example 

~omAC,fiomTel~[SUm Length, ma Length](CALLS) 

computes a relation with four attributes, namely Fro- 
mAC, FromTel, sum-Length, and maxlength. For 
each (FkomACJ’romTel), there is a tuple in the result 
with the corresponding total and maximum length. 
(We may override the naming convention by placing an 
attribute name in the function list, as in “total=sum 
Length”.) An instance of T is given by the values of 
the grouping attributes and the function list. 

In what follows, the grouping arguments to func- 
tions F will be understood from the context; we 
may choose to omit the grouping attributes in F for 
notational convenience. When no aggregate functions 
are listed, F returns the grouping attributes only: this 
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aggregate operator is denoted by “-“. The selection 
function that selects all tuples is also denoted by I‘-“. 

Example 3.1: Consider how Query Q4 would be ex- 
pressed in relational algebra. First we have to define 
Q4View2, which consists of calls that were made 
during the summer period. 

Q4View2 = (JDate>96/05/31 and Date<96/09/01 (CALLS) 

The final result is then given by: 

nsae( c$[total=sum Length](CALLS) W 
cF[surn Length, max Lengthl(Q4View2) W 

Q4View2) 

where all joins are natural joins on the FromAC and 
FromTel attributes, and 

S = {FromAC, FromTel, ToAC, Length} 
0 = “sum-Length*3 > total and 

Length = maxlength” 
G = FromAC, FromTel cl 

Note that relational algebra suffers from the same 
problems observed for SQL: there are many joins and 
repeated s&expressions. 

We now define a new algebraic relational operator 
called @ that is more general than 7. The purpose of 
such an operator is twofold. First, it allows succinct 
representation of complex queries. Second, it can be 
implemented using specialized algorithms. 

Like .7-, 9 has some grouping attributes. However 
in addition * has a vector of selection conditions and 
a vector of aggregate functions that are applied to 9’s 
argument. 

As can be observed in Example 3.1, there is a nec- 
essary order of evaluation of the aggregate functions 
and the selection conditions. Certain aggregates are 
applied to tuples satisfying a previous set of selections, 
and tuples can be selected based on previous aggregate 
values. Our cf, operator expresses multiple sequen- 
tial selections and aggregations in a single operator. 
Within each group we initially aggregate over the 
whole group; later selection conditions may restrict 
tuples to a subset of the group. + returns a relation 
combining all of the computed aggregates and all of 
the copies of the argument relation that have been 
selected in various ways. 

Definition 3.1: Let R be a relation, and let V be a 
set of grouping attributes from R. Let n 2 0, and 
let Fe,..., F,, be instances of 7 that have grouping 
attributes V, and that. are well-defined on R. Let 
m,**., on be selection conditions. Each oi can men- 
tion attributes in R and attributes in the result of any 
of Fo,..., Fi-1. Let F’ denote the tuple (Fo, . . . , F,). 

and let a’ denote the tuple of selection conditions 
(~1,...,4 We now inductively define two sets 
RI,..., R, and Ao, . . . , A,. Given Ao,. . . , Ai-l, with 
1 5 i < n, we define 

where each join above is an equijoin on the group- 
ing attributes, and TR denotes a projection onto the 
attributes of R. We define Aa = FO (R) and for 
1 5 i 5 n, we define Ai = PiFi (Ri). Finally, we define 
the operator W’[V, 2, if] via 

ip”[V, $9 Z](R) = Aa W (WY=1 (piRi W Ai)) 

where each join equates the grouping attributes of the 
corresponding arguments. 0 

The result of @ will have attributes of R prepended 
with label 1 (from RI), attributes of R with label 
2 (from R2) and so on. Similarly, the result of + 
will have as attributes aggregates over R (from Ao), 
aggregates over RI prepended with label 1 (from Al), 
and so on. Intuitively, we can perform any number 
of aggregates, to any fixed nesting level, as long as 
the grouping attributes remain the same throughout. 
Note that there is an implicit order in the way that the 
aggregates are nested. Let us consider some examples 
of the use of ip. 

Example 3.2: Query Ql could be expressed as: 

~~ig~[(FromAC,FromTel}, 
( 7[max Length], -), 
(l.Length = maz-Length)](CALLS) 

where S = “FromAC, FromTel, l.ToAC, l.Length” 
Query Q4 could be expressed as: 

( T[sum Length], 7[sum Length, max Length]), 
(Date>96/05/31 and Date<96/09/Ol)](CALLS) 

where 0 = “l.sumLength*S > sum-Length and 
l.Length = l.maxlength” and S is as above. For 
Query Q4 the ip subexpression is computed using three 
relations, Ao, RI and Al. A0 contains the grouping 
attributes FromAC, FromTel and the total Length; 
R1 contains the call records having Date within the 
summer period; AI contains the total and maximum 
Length for tuples in RI, for each customer 0 

3.4 Translating Extended SQL to Relational 
Algebra with 9 

We now show how to systematically translate our 
extended SQL into relational algebra. This is im- 
portant for two reasons. Firstly, we will later show 
how to implement 9, and so the translation will give a 
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way to implement our extended SQL. Secondly, many 
query optimizers work on algebraic representations 
of queries, and try to optimize the order of opera- 
tions to minimize the cost while still computing an 
algebraically equivalent query. By compiling into an 
algebraic language, we facilitate query optimization. 

Let V denote the grouping attributes mentioned in 
the group by clause. Let R denote the join of all rela- 
tions in the from clause, according to the conditions in 
the where clause. Suppose ~1, . . . , T,, are the grouping 
variables, and that Cl,. . . , C,, and G are the condi- 
tions as given in Section 3.1. In each Ci (but not in G) 
we drop the grouping variable prefix on all nonaggre- 
gated attributes mentioned in conditions. We convert 
all remaining grouping variables ri into numbers i, so 
that ra.ToAC becomes 2.ToAC, for example. Aggregates 
are also modified, so that sum(1. Length) is converted 
to sum-l-Length, for example. The attributes and 
aggregates now appearing in the select statement are 
denoted by S., Then a query in our extended SQL 
syntax is translated into 

where 8 = (Ci,.*.,C,), @ = (Fc,...,F,J, and Fi 
has aggregate functions that return aggregates that 
are used in S, G, or some Cj with j > i. The 
constraints on the Ci’s ensure that the domains of the 
selections and aggregations match the requirements of 
Definition 3.1. 

Example 3.3: Let S be the attribute list “Fro- 
mAC, FromTel, avg-l-Length, avg2length”. Then 
Query Q2 from Section 3.2 would be translated to: 

(-, F[avg Length], .T[avg Length]), 
(ToAC = , “201” ToAC = ” 301)](CALLS) •I 

3.5 Null Values and Duplicate Values 

Consider Query Q2 executed on a database in which 
some customer has not made any calls to area code 
“201”. Both our algebra and our SQL extension would 
give no tuple for that customer in the result even if 
s/he has made calls to area code “301” (and therefore 
an average for that area code exists). A better answer 
to this query might be the specification of an answer 
tuple that gave the average length to area code “301”, 
together with a NULL value for the average length to 
area code “201”. 

Our algebraic operator 9 can be modified to give 
this behavior by changing some of the joins to outer 
joins. Similarly, our SQL language could be extended 
to put a keyword mandatory before each grouping 
variable that is required to take a NULL value if no 

matching tuples are found. The details are omitted 
due to lack of space. 

A related problem concerns duIjlicate values. If we 
take a multiset semantics for the algebraic operations, 
as would normally be the case for the target of an 
SQL-translation, we may find that our answers contain 
many more tuples than we expect. For example, 
Query Q3 from Example 3.3 would return k copies of 
the (FromAC, FromTel, count-l-*, count-2-*) answer, 
where k is the product of the number of calls having 
over-the-average length in the first 6 months with the 
number of calls having over-the-average length in the 
second 6 months. The problem here is that even 
though the attributes of CALLS1 and CALLS2 in Qi 
are projected out, these two relations still participate 
in the join and hence contribute to the multiplicity of 
the result. 

Our algebraic operator @ can be modified to omit 
a set of specified grouping variable relations from the 
join in order to prevent this behavior. In order to 
decide which of the grouping-variable relations should 
appear in the join of the definition of @ and which 
should not, we have to understand the nature of our 
class of queries. We usually want to define an “area” 
of the group in order to get certain aggregate values 
of this area. Then, these aggregates are used to select 
tuples from this or another area, or to define a new 
area. In most of the cases, we are only interested in 
the aggregates and not in the area being aggregated. 
In these cases, the grouping-variable relation should 
not participate in the join, unless we explicitly specify 
it. The term (piRi W Ai) in Definition 3.1 is replaced 
by Ai. Notice that with that replacement, we avoid 
the duplicate values problem, because Ai contains one 
tuple per group. For example, in query Q3 we want to 
output only the aggregates of the two areas defined in 
that query. As a result, CALLSi and CALLS2 should 
not participate in the join. +2 is given by the join of 
kc, A1 and AZ. CALL& and CALLS2 are defined as 
before, simply do not participate to the join. 

In order to determine which (piRi W AJ terms 
should be replaced by their aggregates Ai, we use 
the select and the having clauses from the original 
SQL specification. An Ri must have a non-omit 
status (i.e., its relation must participate in the join) 
if some attribute of I& is either in the select clause 
or the having clause, where the multiplicity would be 
significant. Otherwise, all grouping variables have an 
omit status, which means that their relations do not 
participate in the join. The rationale for such a choice 
is the following. If we do not output any attribute of 
a grouping variable Ri, or use it in the having clause, 
then its multiplicity is probably not significant and 
we omit it from the join. We can allow the user to 
force a grouping variable into the join, by writing the 
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keyword use before the grouping variable in the group 
by clause. 

4 Implement at ion 

In this section we present an algorithm and an im- 
plementation of the + operator. We compare perfor- 
mance results on the queries of Example 2.1, using 
standard SQL and our implementation. 

4.1 An Algorithm for Evaluating @ 

We have a translation from our extended SQL into 
our extended algebra (with a). We now show how 
to identify efficient candidate algorithms for ‘P, and 
consequently we will be able to use those algorithms to 
implement queries in our extended SQL language. We 
will not actually implement + directly since it may be 
a lot larger than we need. For example, in Query Q4 
(Example 3.2) the result of + would contain all the 
summer-period calls of the customers specified in that 
query. However, when combined with a selection and 
projection, the result is much smaller. Thus we shall 
identify implementations for operations of the form 
nsoe@(R). We show how to use Algorithm 2.1 to 
implement TS(OG(P[V, @, c?]))(R) where G is of the 
form “Gi and .a. and G+m” described in Section 3.1, 
a = (Q,“’ ,cr,), and F = (Fo,--.,F,). If R is a 
complex expression, then we first materialize R. 

Step 1 Partition R according to the grouping at- 
tributes into buckets. Read in a bucket and pro- 
cess each group. Ii a group has size g, then create 
n bitmaps br , . . . , b, of length g. The bitmaps en- 
code the underlying Ri relations in the definition 
?f 9n (on the current group). We process each 
group according to the following steps. 

Step 2 Make (n + 1) passes over the group. On 
the first pass (i = 0), the aggregates F. of the 
full group are computed. On subsequent passes 
1 5 i 5 n, the selections bi on ri and the 
aggregates Fi of ri are simultaneously computed. 
The selection result is stored in bi, with a bit set if 
the corresponding tuple (together with previously 
computed aggregate values) satisfies czi. If any 
selection result is empty, we can immediately 
move to the next group. 

Step 3 Because of the form of G, each Gj can be 
checked either (a) on the aggregate tables alone, 
or (b) on a single Ri relation together with the 
aggregate tables. For a group, there is a single 
tuple in each aggregate table. Hence selection 
conditions on the aggregate tables either include 
or exclude the group as a whole; if such a condi- 
tion is violated, we simply move to the next group. 

Conditions that mention an attribute from Ri are 
processed by making an additional pass, further 
restricting the bitmap bi. Again, if the resulting 
bitmap is all zeroes we immediately move to the 
next group. We make at most m additional passes 
over the group. 

Step 4 We now compose the join (according to the 
grouping attributes) of all of the Ri relations 
as indicated by their bitmaps, together with the 
aggregate values for the Ris. We project onto the 
attributes in S as we compute the join. 

In Step 3 above, we can process each condition in G 
in parallel. We make a single pass through the current 
group in the actual relation R, and process all of the 
corresponding bitmaps simultaneously. An important 
aspect of Step 4 of the algorithm is the computation 
of the join even for group variables that are not men- 
tioned in S. As discussed in Section 3.5, the join is 
necessary if we are using a multiset semantics for the 
underlying relational operations. If relation Ri is to 
be omitted from the result, as outlined in Section 3.5, 
then the join with grouping variable i can be omitted. 
In practice, the omission of some of the Ris will 
happen relatively often, limiting significantly the joins 
of step 4. Furthermore, the Ri’s that participate in 
the final result often have just a few tuples, making 
the cost of step 4 very small. 

While n + 1 passes is specified above, some queries 
employing Gpn can be answered in fewer passes. An 
example is Query Q2. One pass over each group would 
be sufficient to define both RI and Rs simultaneously, 
along with their aggregates. Some analysis of the 
arguments of @ can be performed in order to determine 
which Ri’s can be evaluated on the current pass, 
and which need to wait for an aggregate value to be 
computed. 

For special cases, more efficient algorithms can 
be identified. Algorithm 2.2 could be identified for 
Query Ql (Example 3.2) on the basis of the form 
of the aggregation (a maximum) and the subsequent 
selection (an equality with the previously calculated 
maximum). 

4.2 Experimental Platform and Results 

We used a state-of-the-art commercial relational 
database system, running on a Sparcserver 630MP 
with SunOS5.4. The time measurements are elapsed 
(wall-clock) times. We measure the performance in 
“units,” without giving the conversion to seconds, 
deliberately. We are not aiming to show how well (or 
badly) our commercial database system performs in 
absolute terms. Rather, we aim to show the speedups 
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Figure 1: Elapsed time versus size for different query syntax (for queries Q2 and Q4) 

that are potentially possible with an extended syn- 
tax and suitable evaluation techniques. Each mea- 
surement is the average of many runs, usually more 
than ten and repeated at different times of the day. 
During the experiments, we were the only users of the 
database system. The Sparcserver was very lightly 
loaded. 

In all experiments we do not write the query result 
back to disk. 

standard SQL performance is non-linear and much 
worse than our implementation. The optimizer was 
not able to identify that joins were unnecessary and 
that a kind of sequential processing would be sufficient, 
Even if we had indices or other join optimization 
techniques to speed up the process, we would still need 
to perform joins, a major cost. Our implementation 
avoids joins altogether. 

For the standard SQL measurements we used the 
standard SQL representations of Queries Ql to Q4 
given in Section 2. 

We have the same results on relations of bigger 
size, where the cost of standard SQL for queries like 
Query Q4 is in the range of hours. 

Our extended language is implemented as follows. 
A compilation phase reads in queries expressed in 
a version of our SQL extended language and gener- 
ates a C program that interacts with the commercial 
database system. The C program follows the steps of 
Algorithm 2.1 given in Section 4.1, except for Step 1. 
Instead of Step 1, the C program poses a subquery to 
the database system in which the group by attributes 
are also mentioned in an orderby clause. The results 
of this subquery are returned in a buffered fashion to 
the C program. The orderby clause ensures that the 
groups can be further processed one at a time. 

5 Related Work 

Aggregation queries are essential in decision support 
systems. This importance has been recognized quite 
recently and led to a number of papers on optimization 
of such queries. However, none of these addresses the 
optimization of our particular class of queries. These 
authors mainly examine which of a group by and a join 
should be executed first. As we have seen, joins in our 
class of queries could be avoided completely. 

The behavior of our implementation with respect 
to null and duplicate values (as was described in 
Section 3.5) is as follows. All grouping variables 
have a non-man&tog status; all grouping variables 
mentioned in the select clause have a non-omit status; 
the remaining grouping variables have an omit status. 

For the extended SQL measurements we measured 
the total elapsed time for execution. The queries used 
were the extended representations of Queries Ql to Q4 
given in Section 3.2. 

Yan and Larson in pL94, YL95] describe a class 
of transformations that allow the query optimizer to 
push a group-by past a join (eager aggregation) or 
pulls a group-by above a join (lazy aggregation). In 
a similar direction, Chaudhuri and Shim in [CS94, 
CS96] present a similar class of pull-up and push- 
down transformations. Furthermore, they incorpo- 
rate these transformations in optimizers and propose 
a cost-based optimization algorithm to pick a plan. 
In [GHQ95], Gupta, Harinarayan and Quass try to 
unify these transformations, viewing aggregation as an 
extension of duplicate-eliminating projection. 

The performance of queries Q2 and Q4 is shown in A different type of optimization is found in [LMS94, 
Figure 1. We have similar graphs for queries Ql and LM96]. While the above mentioned authors give crite- 
Q3. The first two graphs correspond to standard SQL ria on when to apply the pull-up and push-down tran- 
and the third to our extended SQL. In all cases, the formations(given a set of predicates), Levy and Mu- 
size of each group is twenty tuples and there are no mick consider an orthogonal problem. They present a 
indices. The main cost is CPU time. In all cases, method to infer predicates either for the attributes of 
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the view from the predicates on the attributes of the 
relations defining the view, or the other way around. 

Gray, Bosworth, Layman and Pirahesh propose 
a relational aggregation operator, called datacube, 
which is useful in data analysis applications [GB+96]. 
Each of the aggregation attributes is a dimension in 
a n-dimensional space. They propose an extension 
of SQL, using an argument similar to ours, i.e., the 
accomodation of this class of queries is important. 
The main contribution is a conceptualization of the 
the aggregation accross many dimensions. There is an 
overlapping of the class of queries that this operator 
expresses with our class. However, our techniques 
allow for significantly more complex aggregate queries. 

Several authors have pointed out that SQL cannot 
simply express a number of queries involving grouping 
and aggregation [DD92, KS95]. Kimball and Strehlo 
in [KS951 argued that SQL should be extended in order 
to be more powerful (in both syntax and performance) 
for queries related to grouping. They present some 
examples where standard SQL syntax is cumbersome 
and performance is bad, while the queries are concep- 
tually easy. They also propose a new keyword, called 
ALTERNATE, which is associated with a constraint. 
This constraint replaces all constraints on the same 
table in the surrounding query. While the change 
in SQL syntax is minimal, the expressivity of that 
keyword is limited. For example, they can have only 
one level of aggregation. 

Sybase allows some flexibility in the syntax of the 
select and having statements [Cor94]. In particu- 
lar, select and having statements can include any 
attribute, not just those mentioned in the group by 
clause. Sybase’s extended SQL can be used to express 
some group queries that would have to be phrased as 
a join in SQL92. In particular, Query Ql, can be 
expressed in a syntax similar to ours. The main idea is 
similar to ours: enabling succinct, optimizable aggre- 
gate queries. To a certain extent they were successful. 
However, their techniques are significantly less general 
than ours; their syntax corresponds roughly with al- 
lowing just one grouping variable. Consequently, their 
extended syntax cannot succinctly express Queries Q2, 
Q3, or Q4. 

Rae, Badia and Van Gucht address the issue of sup- 
porting quantified subqueries [RBV96]. Their work, 
which was done independently from ours, is motivated 
by similar concerns that SQL’s syntax is cumbersome 
for expressing and optimizing a natural class of queries. 

Our syntax can succinctly solve (for a known num- 
ber of columns) the so-called V&e-to-Attribute con- 
flict, a case of schematic discrepancies in interoper- 
able databases. This conflict occurs when the same 
information is expressed as values in one table and as 
attributes in another [KS91, KLK91, SCG93, Roz94]. 

ln [SCG93] the complexity of the SQL solution to this 
problem is criticized and a new operator is proposed. 
Rozenshtein emphasizes that the Value-to-Attribute 
conflict (which he calls Table-Pivoting) can be solved 
in just one pass over the grouped relation, and pro- 
poses a solution using the notion of characteristic 
functions [Roz94]. Again, our syntax expresses a 
significantly more general class of queries. 

6 Conclusions 

We have identified redundancy in both relational al- 
gebra and SQL in the way these languages specify 
a number of conceptually simple aggregate queries. 
This redundancy leads to queries that are difficult 
to write, maintain, understand, and, optimize. We 
have extended both relational algebra and SQL to 
enable the succinct representation of these queries. We 
provided a translation of our SQL language into our, 
algebra, and demonstrated that efficient algorithms for 
queries expressed in our algebra exist and are easy for 
an optimizer to identify. We experimentally verified 
that orders of magnitude savings in processing time 
can be achieved by using our extended syntax. 

The impact of this work is twofold. First, using our 
syntax allows conceptually simple aggregate queries 
to be expressed simply, reducing the effort required 
for ‘writing and maintaining such queries. Second, 
it allows such queries to be optimized and executed 
efficiently; naive plans resulting from an inability to 
recognize the special form of the query may be orders 
of magnitude slower. 
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