
Querying Multiple Features of Groups in Relational
Databases

Damianos Chatziantoniou Kenneth A. ROSS*
Department of Computer Science, Columbia University

damianos,karQcs.columbia.edu

Abstract

Some aggregate and grouping queries are con-
ceptually simple, but difficult to express in
SQL. This difficulty causes both conceptual
and implementation problems for the SQL-
based database system. Complicated queries
and views are hard to understand and main-
tain. Further, the code produced is sometimes
unnecessarily inefficient, as we demonstrate
experimentally using a commercial database
system. In this paper, we examine a class
of queries involving (potentially repeated) se-
lection, grouping and aggregation over the
same groups, and propose an extension of SQL
syntax that allows the succinct representation
of these queries. We propose a new relational
algebra operation that represents several lev-
els of aggregation over the same groups in
an operand relation. We demonstrate that
the extended relational operator can be eval-
uated using efficient algorithms. We describe
a translation from the extended SQL language
into our algebraic language. We have im-
plemented a preprocessor that evaluates our
extended language on top of a commercial

l This research was supported by a grant from the AT&T
Foundation, by a David and Lucile Packard Foundation Fel-
lowship in Science and Engineering, by a Sloan Foundation
Fellowship, by NSF grants IRI-9209029, CDA-90-24735, and by
an NSF Young Investigator award.

Permission to copy without fee all or part of this material is
gmnted provided that the wpier are not made or distributed for
direct commercial advantage, the VLDB wpyrinht notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

database system. We demonstrate that on
a variety of examples, our implementation
improves performance over standard SQL rep-
resentations of the same examples by orders of
magnitude.

1 Introduction

Aggregation is an important component of a query
language because it is very commonly and intensively
used in a wide range of applications. Examples of
such applications include decision support systems,
business databases, statistical databases and scientific
databases. In order to support such applications, it
is crucial for a database query language to be able to
succinct2y ezpcpress common aggregate queries, and for
the query processing system to be able to eficiently
evaluate such queries.

Unfortunately, standard SQL (SQL92) does not al-
low the concise expression of a number of conceptually
simple queries involving (potentially repeated) group-
ing and aggregation over the same groups. In order
to express such queries in SQL, one has to perform
additional joins, or to construct additional subqueries,
while a kind of sequential processing of the grouped
relation would be sufficient. The SQL versions of many
such queries show a high degree of redundancy. There
are two important consequences of such redundancy.
First, it is very difficult to write, understand, and
maintain such queries. Second, it is very difficult for
a query optimizer to identify efficient algorithms for
such queries, as we illustrate experimentally.

In this paper we define an extension to SQL syntax
that allows the succinct representation of various ag-
gregate queries. We also propose a new relational alge-
bra operation @ that concisely represents several levels
of aggregation over the same groups in an operand
relation. We show how @ can be implemented using
efficient algorithms. We then show how queries can be
translated from our SQL extension into our extended
relational algebra. Our queries are significantly shorter

295

and simpler than their standard SQL counterparts,
and are much more easily optimized. The syntax that
we propose is significantly more general than previous
proposals, and enables the concise solution of a number
of well-known query representation problems. While +
does not give additional expressive power to the rela-
tional algebra, it allows an important subset of queries
to be succinctly expressed and efficiently evaluated.

We implemented a version of our extended SQL
language on top of a commercial relational database
system. We compare the performance of the extended
system on examples in our exended language to that
of the underlying commercial system on standard SQL
representations of the same examples. Our experimen-
tal results demonstrate orders of magnitude improve-
ments in performance. We argue that extending SQL
in a fashion similar to ours is essential in order for
the query optimizer to be able to identify and utilize
efficient evaluation techniques.

The rest of the paper is organized as follows. Sec-
tion 2 motivates the paper, presenting examples of
queries, potential target implementation algorithms,
and explaining why optimizing standard SQL versions
of the example queries is hard. In Section 3 we de-
scribe our extension of SQL and we take the relational
algebra witbaggregation and extend it to enable the
concise representation of our aggregate queries using
a new operator a. Further, we show how our version
of SQL can be translated into the extended relational
algebra. Section 4 presents an algorithm to evaluate
CE, and compares performance results using standard
SQL of a commercial system and our implementation.
Section 5 compares our work with related work, and
we conclude in Section 6.

2 Motivation

In Section 2.1 we describe several motivating ex-
amples, and show why they are conceptually more
complex than yecessary. In Section 2.2 we describe
an efficient target implementation for these queries.
Section 2.3 explains why relational database systems
might have difficulty identifying such implementations.
given the specifications in Section 2.1. In the examples
we shall use the following relation, taken from [LM96].

CALLS(FromAC,FromTel,ToAC,ToTel,Date,Length)

The CALLS relation stores the calls placed on a tele-
phone network over the period of one year. It includes
the From number (area code and telephone number),
the To number (area code and telphone number), the
date and the length of the call. Each F’rom number
corresponds to a customer.

2.1 Motivating Examples

Example 2.1: Consider the following queries to the
relation described above:

Ql.

Q2.

Q3.

Q4.

For each customer, find the longest call and the
area code to which it was made.

For each customer, show the average-length of
calls made to area codes 201 and 301 (in the same
output record).

For each customer, show the number of calls
made during the first 6 months that exceeded the
average-length of all calls made during the year,
and the number of calls made during the second
6 months that exceeded the same average length.

Suppose we are interested in those customers for
whom the total length of their calls during sum-
mer (June to August) exceeds one-third of the
total length of their calls during the entire year.
For these customers, we would like to find the
longest call made during the summer period, and
the area code to which it was made. 0

Each of these examples is a query in which all aggrega-
tion is grouped by the same grouping attributes. These
are natural queries for a marketing application or for a
decision support system. Hence we have an important
practical class of queries. Additional examples may be
found in textbooks [DD92], business-related articles
[KS95], and benchmarks [Cou95].

All of the examples are cumbersome to express in
SQL. In every case, they need to be expressed using
joins or subqueries. Query Ql might be expressed in
standard SQL as

create view 9lView as
select FromAC, FromTel, maxL=max(Length)
from CALLS
group by FromAC, FromTel

select V.FromAC, V.FromTel, ToAC, Length
from CALLS C, 9lView V
where Length=maxL AND C.FromAC = V.FromAC

AND C.FromTel=V.FromTel

Conceptually, the query is simple. However, the
SQL solution is unnatural in that it requires the user to
think in terms of two passes through the CALLS relation
rather than one. Furthermore, the resulting implemen-
tation may be sub-optimal. (We shall address some
of the resulting implementation difficulties in the next
section.) Query Q2 is an example (a case of “Value-to-
Attribute” conflict) of the well-known schematic dis-
crepancies problem in database interoperability [KS91,
KLK91, SCG93]. Data in one relation corresponds to

296

metadata in another, in this case the output result.
Again, SQL needs a join of the CALLS relation with
itself to express this query. A possible expression of
Query Q2 in standard SQL is

create view Q2Viewl as
select FromAC, FromTel, avgL=avg(Length)
from CALLS
where ToAC = "201"
group by FromAC, FromTel

create view Q2View2 as
select FromAC, FromTel, avgL=avg(Length)
from CALLS
where ToAC = "301"
group by FromAC, FromTel

select Q2Viewl.FromAC, Q2Viewl.FromTe1,
Q2Viewl.avgL, Q2View2.avgL

from Q2View1, Q2View2
where Q2Viewl.FromAC=Q2View2.FromAC AND

Q2Viewl.FromTel=Q2View2.FromTel

Query Q3 illustrates the use of two levels of aggre-
gation using the same grouping attributes. A first, ag-
gregation (computing the average-length call) is used
along with acondition on Date,to restricttuplesto be
aggregated (count) at the second level. Queries with
three or more levels of aggregation are also possible.
In SQL, each aggregation has to be embodied in a
separate subquery or view. even if the aggregates are
over the same groups. Additionally, each such view
needs to perform a join with the original relation. A
standard SQL version of Query Q3 is shown below:

create view Q3View as
select FromAC, FromTel, avgL=avg(Length)
from CALLS
group by FromAC, FromTel

create view Q3Viewl as
select C.FromAC,C.FromTel,cnt=count(*)
from CALLS C, Q3View V
where C.FromAC = V.FromAC AND

C.FromTel = V.FromTel AND
Length > avgL AND Date<"96/07/01"

group by CALLS.FromAC, CALLS.FromTel

create view Q3View2 as
select C.FromAC,C.FromTel,cnt=count(*)
from CALLS C, Q3View V
where C.FromAC = V.FromAC AND

C.FromTel = V.FromTel AND
Length > avgL AND Date>"96/06/30"

group by CALLS.FromAC, CALLS.FromTel

select Q3Viewl.FromAC, Q3Viewl.FromTe1,
Q3Viewl.cnt, Q3View2.cnt

from Q3View1, Q3View2
where Q3Viewl.FromAC=Q3View2.FromAC AND

Q3Viewl.FromTel=Q3View2.FromTel

Query Q4 requires many of the features described
above. It aggregates over one subset of each group
and compares the resulting value with an aggregate
over the whole group. Then a selection of a particular
row of that subset (the one with the maximum length)
has to be made. An SQL formulation of Query Q4
is given below. Notice that it is important to define
Q4View2 as a separate view and not incorporate it, as a
where clause within Q4View3. We need the area codes
(TOA~) in the final result and we cannot select, them
in Q4View2 because standard SQL insists that selected
attributes be grouping attributes.

create view Q4Viewl as
select FromAC, FromTel, sumL=sum(Length)
from CALLS
group by FromAC, FromTel

create view Q4View2 as
select *
from CALLS
where Date>"96/05/31" AND Date<"96/09/01"

create view Q4View3 as
select FromAC, FromTel,

sumL=sum(Length),maxL=max(Length)
from Q4View2
group by FromAC, FromTel

select Vl.FromAC, Vl.FromTel,
V2.ToAC, V2.Length

from Q4Viewl Vl, Q4View2 V2, Q4View3 V3
where Vl.FromAC = V2.FromAC AND

Vl.FromAC = V3.FromAC AND
Vl.FromTel = V2.FromTel AND
Vl.FromTel = V3.FromTel AND
V3.sumL * 3 > Vl.sumL AND
V2.Length = VS.maxL

It is not easy to derive (and maintain) such a
query! Further, it is not easy for a query optimizer to
implement this query efficiently, as we shall see shortly.

We have criticized standard SQL for its complexity
in spgcifying queries involving multiple features of the
same group. In this paper we present SQL extensions
that reduce such complexity. While we shall delay
the presentation of our SQL language to ‘Section 3,
we present below our version of Query Q3.

297

Algorithm 2.1: General algorithm for aggregates
over the same groups.

Input:

output:

,Method:

A relation R and a set V of grouping
attributes.
Aggregates (grouped by V) and selected
records from R.
Partition R according to the grouping at-
tributes into buckets. Partitioning could
be done by hashing or range-partitioning
the grouping attributes. Read each bucket
in turn, sort by the grouping attributes,
and process the groups one by one. For
each group make as many passes as neces-
sary (aggregating or selecting records, using
computed aggregates in subsequent passes)
to answer the query on that group. g

select FromAC,FromTel,count(X.*),count(Y.*)
from CALLS
group by FromAC, FromTel : X, Y
suchthat (X.Date < “96/07/011V AND

X.Length > avg(Length)) AND
(Y .Date > “96/06/30” AND
Y.Length > avg(Length))

‘The X and Y variables of the group-by clause denote
tuple variables that range over the tuples in each
group. We refer to X and Y as grouping variables. (If
there are multiple relations in the from clause, then
there is a grouping variable tuple for every combi-
nation of underlying relation tuples that satisfy the
where clause.) The newly introduced suchthat clause
is used to define these grouping variables. The order in
which they are declared in the group-by clause implies
the order of evaluaticln. For example, the Y grouping
variable could be defined in terms of aggregates over
variable X. The having clause is still present, with a
wider functionality as we shall see in Section 3.

2.2 Target Implementation

While conceptual complexity is an important issue,
it is not the only reason for extending SQL with
special features for grouping. There are also significant
implementation issues. When performing aggregations
and selections repeatedly over the same groups, there
are specialized algorithms that can operate much more
efficiently than standard joins and aggregations. The
algorithms presented here are not particularly novel.
However, they do illustrate the kinds of efficient im-
plementation techniques that are available.

We assume that we aggregate over one relation, R.
If R is the result of a join, we first perform the join to
materialize R.

Algorithm 2.1 is a general implementation that applies
to any aggregate query all of whose aggregates use
the same grouping attributes. In particular, all of
queries Ql though Q4 are of this form. If the main
memory is big enough to hold each bucket’ then the
total amount of I/O is one pass of R for the partition-
ing, and one pass of the partitioned version of R to
answer the query. Further, the total amount of CPU
time required is linear in the number of aggregations
and record selections performed in the query.

For special cases, more efficient algorithms may be
possible. We give one example below.

Algorithm 2.2: Algorithm for min and max aggre-
gates over the same groups.

Input: A relation R and a set V of grouping
attributes.

Output: Single min and/or mart aggregates (grouped
by V) and (optionally) records from R with
minimal or maximal attribute values.

Method: Make a single sequential scan of R. For
each value v of the grouping attributes V
keep the running minimum and maximum,
and the record(s) from R with the minimum
and/or maximum attribute value. 1

Algorithm 2.2 applies to special kinds of queries in
which a min or max is used, and the aggregated at-
tribute is equated with the attribute itself. It could
be used for Query Ql. If the main memory is large
enough to hold one (or possibly several) records for
each group, then the total I/O cost is one pass through
R and a negligible CPU cost. When memory is limited,
Algorithms 2.1 and 2.2 can be tuned for the amount
of available memory; such issues are beyond the scope
of this paper.

We want to avoid naive implementations of the
queries using joins and subqueries. Unfortunately, as
we shall see in Section 2.3, it is very difficult to find
good implementations when the queries are expressed
in standard SQL. What we need is a syntax to express
these queries succinctly, without any redundancy. The
query can then be optimized appropriately based on its
special characteristics, or translated into an algebraic
operator that can be implemented more efficiently
than general joins.

2.3 Optimizing the Standard SQL Formula-
tions is Hard

The most noticeable feature of the SQL solutions to
the queries presented above is redundancy. Informa-
tion is repeated in several places. Consider the SQL
solution to Query Q4.

1 We choose the partitioning algorithm to generate sufficiently
small buckets if possible.

298

The relation CALLS and the view Q4View2 are
mentioned more than once.

Grouping by FromAC, FromTel is mentioned more
than once.

Extra conditions equating the FromAC, FromTel
attributes in the various views are necessary.

The keywords select, from, and where appear
multiple times.

Why is removing redundancy so important? As we
have already seen, redundancy leads to longer queries
that are more difficult to understand and maintain.
F’urther, redundancy makes the job of a query opti-
mizer very hard. Consider a query optimizer trying
to identify Algorithm 2.1 as a candidate strategy for
the SQL specification of Query Q4. The optimizer has
to identify aspects of the query that indicate multiple
aggregations and selections over the same groups. In
order to do that, it has to notice that

l Both Q4Viewl and Q4View3 are grouped by the
same attributes.

l View Q4View3 includes the grouping attributes
FromAC, FromTel.

l The top-level query equates grouping attributes,
compares aggregate values with attributes and
other attribute values, but does not compare non-
grouping attributes of the views.

In addition, the optimizer has to be smart enough to
ignore small changes that do not affect the applicabil-
ity of the algorithm, but that might change the internal
representation of the query.

In general, such observations are global properties
of the query, not local properties. The search space
for observing these properties is prohibitively large,
and so optimizers traditionally focus on sequences of
local optimizations (with some global optimization
to determine join orders). Thus, it is unreasonable
to expect an optimizer to take the SQL version of
Query Q4 and find Algorithm 2.1.

The implementation of our extended SQL language,
described in Section 4, shows dramatically improved
performance because it is relatively easy (as we shall
see) to identify good implementation techniques.

3 Extending SQL with grouping vari-
ables

In this section we present our extension of SQL, show
how it can be used to express the motivating examples,
and provide a translation from the extended SQL to
the relational algebra including a new operator 0.

3.1 Syntax

We propose the following SQL syntax extensions:
From clause. There is no change. Suppose that

the relations in the from clause are 7’1, . . . , Tp.
Where clause. There is no change. Suppose that

the conditions in the where clause are Di, . . . , D,.
Group By clause. The group by clause is the

same as in standard SQL, with the following addition:
after specifying the grouping attributes it may contain
grouping uclriables. These will range over the tuples
within each group. For example, we may write

group by FromAC, FromTel : R, S

In the following description we shall assume that there
are n grouping variables named ri , ~2, . . . , rn. Grouping
variables range over tuples in the join of TI, . . . , Tp
according to DI, . . . , D,.

Suchthat clause. This clause defines the range
of the grouping variables mentioned in the group by
clause. (The suchthat clause is like a where clause
for grouping variables.) It has the following form:

Cl and Cz and . . . and Cn

Any Ci may be omitted. Each Ci is a (potentially
complex) condition involving the attributes of ri, con-
stants, aggregate functions of ordinary attributes and
aggregate functions of attributes of r-1, . . . , ri-1.

Having clause. The having clause is a condition
G of the form Gi and . . . and G,. Each Gi can be:

l an expression where each subexpression involves
only ordinary aggregates, aggregates of ri , r,
and constants, such as “count(*) > 10 or
sum(R.Length) < sum(Length)“, or

l an expression where each subexpression involves
an attribute of rj (for some fixed j) and some
ordinary aggregate, an aggregate of ~1, r, or
a constant, such as “R.Length = max(Length) or
R.Length > 20”.

Select clause. The select clause is the same as in
standard SQL, with the following addition: attributes
of the grouping variables, and aggregates of attributes
of the grouping variables can also appear in the select
clause.

3.2 Semantics

With the extended SQL syntax, we are able to de-
fine (using the Cl,. . . , C,, conditions in the suchthat
clause) n “areas” within a group, with each of
Tl , . . . , T, ranging over one area. We can perform
aggregation on each such area. The G condition can
select tuples from these areas, or impose a condition
on the group as a whole. Observe that the constraints

299

CmC~,... , C, in the having clause prevent cyclic defi-
nitions of the grouping variables’ areas. Each group
variable is restricted only by comparison with con-
stants and aggregates of previous grouping variables.
In other words, the C conditions (in the suchthat
clause) are defining conditions for the grouping vari-
ables, while the G conditions (in the having clause) are
selection conditions. Furthermore, G is constrained to
allow an efficient implementation as we will see later.
Extended SQL queries for Example 2.1 are:

(Ql) select FromAC, FromTel,
R.ToAC, R.Length

from CALLS
group by FromAC, FromTel : R
suchthat R.Length=max(Length)

(Q2) select FromAC, FromTel,
avg(R.Length), avg(S.Length)

from CALLS
group by FromAC, FromTel : R, S
suchthat R.ToAC = “201” AND

S .ToAC = “301”

(Q3) select FromAC, FromTel,
c0unt(1(.*), count(Y.*)

from CALLS
group by FromAC, FromTel : X, Y
suchthat (X.Date<“96/07/01” AND

X. Length>avg (Length)) AND
(Y .Date>“96/06/30” AND
Y.Length>avg(Length))

(Q4) select FromAC, FromTel,
R.ToAC, R.Length

from CALLS
group by FromAC, FromTel : R
suchthat R.Date > “96/05/31” AND

R. Date < “96/09/01”
having sum(R.Length)*S>sum(Length)

AND R.Length=max(R.Length)

Note that non-aggregate attributes of the group-
ing variables can appear in the select clause, as in
queries Ql and Q4. These attributes do not necessarily
have the same value for all rows in the group. That
means that a join between the areas designated by the
grouping variables may be necessary. This will become
apparent in the following section, where we define
our new aggregation operator in terms of relational
algebra.

If there is ambiguity about which relation an at-
tribute of a group variable came from, such as when
there are several relations in the from clause, it is
explicitly specified as in R. CALLS. ToAC. An interesting
aspect of our solution is the possible use of group-
ing without aggregation (i.e., if we are interested in

features of groups that do not require aggregation).
Notice the conceptual simplicity of the specifications of
these examples, and the absence of redundancy in the
specifications. In particular, compare these examples
with the SQL versions of section 2.1.

3.3 Relational Algebra

In this section we present the standard relational
algebra with aggregation, and extend it with a new
operator 9. 9 expresses multiple levels of selection
and aggregation over the same groups. We show
some examples of the use of 9. We argue that, even
though + does not yield additional expressive power
compared with the standard relational algebra with
aggregation, it does allow an important class of queries
to be expressed more succinctly.

We assume that the reader is familiar with the
standard relational algebra operations selection (a),
projection (m), join (W), union (U), and difference
(-). An additional renaming operator p is defined as
follows: pi(R) simply prepends the label “i.” to every
attribute name of R. There are several proposals for
a grouping operator in the literature [EN89, MumSl].
We use a syntax similar to the syntax in [EN89]: an.
aggregate function operation r is defined as

<groupingattributes> FT[<f’JnctionJiSt>I (RI

where <grouping&tributes> is the list of grouping at-
tributes of the relation R, and <functionlist> is a list
of the aggregate functions (min, max, count, average,
sum), accompanied by an appropriate attribute of the
relation specified in R. (These are the standard.SQL
aggregate operators; the techniques described below
would also be applicable to other aggregate operators.)
The name of the aggregated attribute is obtained by
prepending the aggregate function name before the
attribute name, for example “avgLength.” So, for
example

~omAC,fiomTel~[SUm Length, ma Length](CALLS)

computes a relation with four attributes, namely Fro-
mAC, FromTel, sum-Length, and maxlength. For
each (FkomACJ’romTel), there is a tuple in the result
with the corresponding total and maximum length.
(We may override the naming convention by placing an
attribute name in the function list, as in “total=sum
Length”.) An instance of T is given by the values of
the grouping attributes and the function list.

In what follows, the grouping arguments to func-
tions F will be understood from the context; we
may choose to omit the grouping attributes in F for
notational convenience. When no aggregate functions
are listed, F returns the grouping attributes only: this

300

aggregate operator is denoted by “-“. The selection
function that selects all tuples is also denoted by I‘-“.

Example 3.1: Consider how Query Q4 would be ex-
pressed in relational algebra. First we have to define
Q4View2, which consists of calls that were made
during the summer period.

Q4View2 = (JDate>96/05/31 and Date<96/09/01 (CALLS)

The final result is then given by:

nsae(c$[total=sum Length](CALLS) W
cF[surn Length, max Lengthl(Q4View2) W

Q4View2)

where all joins are natural joins on the FromAC and
FromTel attributes, and

S = {FromAC, FromTel, ToAC, Length}
0 = “sum-Length*3 > total and

Length = maxlength”
G = FromAC, FromTel cl

Note that relational algebra suffers from the same
problems observed for SQL: there are many joins and
repeated s&expressions.

We now define a new algebraic relational operator
called @ that is more general than 7. The purpose of
such an operator is twofold. First, it allows succinct
representation of complex queries. Second, it can be
implemented using specialized algorithms.

Like .7-, 9 has some grouping attributes. However
in addition * has a vector of selection conditions and
a vector of aggregate functions that are applied to 9’s
argument.

As can be observed in Example 3.1, there is a nec-
essary order of evaluation of the aggregate functions
and the selection conditions. Certain aggregates are
applied to tuples satisfying a previous set of selections,
and tuples can be selected based on previous aggregate
values. Our cf, operator expresses multiple sequen-
tial selections and aggregations in a single operator.
Within each group we initially aggregate over the
whole group; later selection conditions may restrict
tuples to a subset of the group. + returns a relation
combining all of the computed aggregates and all of
the copies of the argument relation that have been
selected in various ways.

Definition 3.1: Let R be a relation, and let V be a
set of grouping attributes from R. Let n 2 0, and
let Fe,..., F,, be instances of 7 that have grouping
attributes V, and that. are well-defined on R. Let
m,**., on be selection conditions. Each oi can men-
tion attributes in R and attributes in the result of any
of Fo,..., Fi-1. Let F’ denote the tuple (Fo, . . . , F,).

and let a’ denote the tuple of selection conditions
(~1,...,4 We now inductively define two sets
RI,..., R, and Ao, . . . , A,. Given Ao,. . . , Ai-l, with
1 5 i < n, we define

where each join above is an equijoin on the group-
ing attributes, and TR denotes a projection onto the
attributes of R. We define Aa = FO (R) and for
1 5 i 5 n, we define Ai = PiFi (Ri). Finally, we define
the operator W’[V, 2, if] via

ip”[V, $9 Z](R) = Aa W (WY=1 (piRi W Ai))

where each join equates the grouping attributes of the
corresponding arguments. 0

The result of @ will have attributes of R prepended
with label 1 (from RI), attributes of R with label
2 (from R2) and so on. Similarly, the result of +
will have as attributes aggregates over R (from Ao),
aggregates over RI prepended with label 1 (from Al),
and so on. Intuitively, we can perform any number
of aggregates, to any fixed nesting level, as long as
the grouping attributes remain the same throughout.
Note that there is an implicit order in the way that the
aggregates are nested. Let us consider some examples
of the use of ip.

Example 3.2: Query Ql could be expressed as:

~~ig~[(FromAC,FromTel},
(7[max Length], -),
(l.Length = maz-Length)](CALLS)

where S = “FromAC, FromTel, l.ToAC, l.Length”
Query Q4 could be expressed as:

(T[sum Length], 7[sum Length, max Length]),
(Date>96/05/31 and Date<96/09/Ol)](CALLS)

where 0 = “l.sumLength*S > sum-Length and
l.Length = l.maxlength” and S is as above. For
Query Q4 the ip subexpression is computed using three
relations, Ao, RI and Al. A0 contains the grouping
attributes FromAC, FromTel and the total Length;
R1 contains the call records having Date within the
summer period; AI contains the total and maximum
Length for tuples in RI, for each customer 0

3.4 Translating Extended SQL to Relational
Algebra with 9

We now show how to systematically translate our
extended SQL into relational algebra. This is im-
portant for two reasons. Firstly, we will later show
how to implement 9, and so the translation will give a

301

way to implement our extended SQL. Secondly, many
query optimizers work on algebraic representations
of queries, and try to optimize the order of opera-
tions to minimize the cost while still computing an
algebraically equivalent query. By compiling into an
algebraic language, we facilitate query optimization.

Let V denote the grouping attributes mentioned in
the group by clause. Let R denote the join of all rela-
tions in the from clause, according to the conditions in
the where clause. Suppose ~1, . . . , T,, are the grouping
variables, and that Cl,. . . , C,, and G are the condi-
tions as given in Section 3.1. In each Ci (but not in G)
we drop the grouping variable prefix on all nonaggre-
gated attributes mentioned in conditions. We convert
all remaining grouping variables ri into numbers i, so
that ra.ToAC becomes 2.ToAC, for example. Aggregates
are also modified, so that sum(1. Length) is converted
to sum-l-Length, for example. The attributes and
aggregates now appearing in the select statement are
denoted by S., Then a query in our extended SQL
syntax is translated into

where 8 = (Ci,.*.,C,), @ = (Fc,...,F,J, and Fi
has aggregate functions that return aggregates that
are used in S, G, or some Cj with j > i. The
constraints on the Ci’s ensure that the domains of the
selections and aggregations match the requirements of
Definition 3.1.

Example 3.3: Let S be the attribute list “Fro-
mAC, FromTel, avg-l-Length, avg2length”. Then
Query Q2 from Section 3.2 would be translated to:

(-, F[avg Length], .T[avg Length]),
(ToAC = , “201” ToAC = ” 301)](CALLS) •I

3.5 Null Values and Duplicate Values

Consider Query Q2 executed on a database in which
some customer has not made any calls to area code
“201”. Both our algebra and our SQL extension would
give no tuple for that customer in the result even if
s/he has made calls to area code “301” (and therefore
an average for that area code exists). A better answer
to this query might be the specification of an answer
tuple that gave the average length to area code “301”,
together with a NULL value for the average length to
area code “201”.

Our algebraic operator 9 can be modified to give
this behavior by changing some of the joins to outer
joins. Similarly, our SQL language could be extended
to put a keyword mandatory before each grouping
variable that is required to take a NULL value if no

matching tuples are found. The details are omitted
due to lack of space.

A related problem concerns duIjlicate values. If we
take a multiset semantics for the algebraic operations,
as would normally be the case for the target of an
SQL-translation, we may find that our answers contain
many more tuples than we expect. For example,
Query Q3 from Example 3.3 would return k copies of
the (FromAC, FromTel, count-l-*, count-2-*) answer,
where k is the product of the number of calls having
over-the-average length in the first 6 months with the
number of calls having over-the-average length in the
second 6 months. The problem here is that even
though the attributes of CALLS1 and CALLS2 in Qi
are projected out, these two relations still participate
in the join and hence contribute to the multiplicity of
the result.

Our algebraic operator @ can be modified to omit
a set of specified grouping variable relations from the
join in order to prevent this behavior. In order to
decide which of the grouping-variable relations should
appear in the join of the definition of @ and which
should not, we have to understand the nature of our
class of queries. We usually want to define an “area”
of the group in order to get certain aggregate values
of this area. Then, these aggregates are used to select
tuples from this or another area, or to define a new
area. In most of the cases, we are only interested in
the aggregates and not in the area being aggregated.
In these cases, the grouping-variable relation should
not participate in the join, unless we explicitly specify
it. The term (piRi W Ai) in Definition 3.1 is replaced
by Ai. Notice that with that replacement, we avoid
the duplicate values problem, because Ai contains one
tuple per group. For example, in query Q3 we want to
output only the aggregates of the two areas defined in
that query. As a result, CALLSi and CALLS2 should
not participate in the join. +2 is given by the join of
kc, A1 and AZ. CALL& and CALLS2 are defined as
before, simply do not participate to the join.

In order to determine which (piRi W AJ terms
should be replaced by their aggregates Ai, we use
the select and the having clauses from the original
SQL specification. An Ri must have a non-omit
status (i.e., its relation must participate in the join)
if some attribute of I& is either in the select clause
or the having clause, where the multiplicity would be
significant. Otherwise, all grouping variables have an
omit status, which means that their relations do not
participate in the join. The rationale for such a choice
is the following. If we do not output any attribute of
a grouping variable Ri, or use it in the having clause,
then its multiplicity is probably not significant and
we omit it from the join. We can allow the user to
force a grouping variable into the join, by writing the

302

keyword use before the grouping variable in the group
by clause.

4 Implement at ion

In this section we present an algorithm and an im-
plementation of the + operator. We compare perfor-
mance results on the queries of Example 2.1, using
standard SQL and our implementation.

4.1 An Algorithm for Evaluating @

We have a translation from our extended SQL into
our extended algebra (with a). We now show how
to identify efficient candidate algorithms for ‘P, and
consequently we will be able to use those algorithms to
implement queries in our extended SQL language. We
will not actually implement + directly since it may be
a lot larger than we need. For example, in Query Q4
(Example 3.2) the result of + would contain all the
summer-period calls of the customers specified in that
query. However, when combined with a selection and
projection, the result is much smaller. Thus we shall
identify implementations for operations of the form
nsoe@(R). We show how to use Algorithm 2.1 to
implement TS(OG(P[V, @, c?]))(R) where G is of the
form “Gi and .a. and G+m” described in Section 3.1,
a = (Q,“’ ,cr,), and F = (Fo,--.,F,). If R is a
complex expression, then we first materialize R.

Step 1 Partition R according to the grouping at-
tributes into buckets. Read in a bucket and pro-
cess each group. Ii a group has size g, then create
n bitmaps br , . . . , b, of length g. The bitmaps en-
code the underlying Ri relations in the definition
?f 9n (on the current group). We process each
group according to the following steps.

Step 2 Make (n + 1) passes over the group. On
the first pass (i = 0), the aggregates F. of the
full group are computed. On subsequent passes
1 5 i 5 n, the selections bi on ri and the
aggregates Fi of ri are simultaneously computed.
The selection result is stored in bi, with a bit set if
the corresponding tuple (together with previously
computed aggregate values) satisfies czi. If any
selection result is empty, we can immediately
move to the next group.

Step 3 Because of the form of G, each Gj can be
checked either (a) on the aggregate tables alone,
or (b) on a single Ri relation together with the
aggregate tables. For a group, there is a single
tuple in each aggregate table. Hence selection
conditions on the aggregate tables either include
or exclude the group as a whole; if such a condi-
tion is violated, we simply move to the next group.

Conditions that mention an attribute from Ri are
processed by making an additional pass, further
restricting the bitmap bi. Again, if the resulting
bitmap is all zeroes we immediately move to the
next group. We make at most m additional passes
over the group.

Step 4 We now compose the join (according to the
grouping attributes) of all of the Ri relations
as indicated by their bitmaps, together with the
aggregate values for the Ris. We project onto the
attributes in S as we compute the join.

In Step 3 above, we can process each condition in G
in parallel. We make a single pass through the current
group in the actual relation R, and process all of the
corresponding bitmaps simultaneously. An important
aspect of Step 4 of the algorithm is the computation
of the join even for group variables that are not men-
tioned in S. As discussed in Section 3.5, the join is
necessary if we are using a multiset semantics for the
underlying relational operations. If relation Ri is to
be omitted from the result, as outlined in Section 3.5,
then the join with grouping variable i can be omitted.
In practice, the omission of some of the Ris will
happen relatively often, limiting significantly the joins
of step 4. Furthermore, the Ri’s that participate in
the final result often have just a few tuples, making
the cost of step 4 very small.

While n + 1 passes is specified above, some queries
employing Gpn can be answered in fewer passes. An
example is Query Q2. One pass over each group would
be sufficient to define both RI and Rs simultaneously,
along with their aggregates. Some analysis of the
arguments of @ can be performed in order to determine
which Ri’s can be evaluated on the current pass,
and which need to wait for an aggregate value to be
computed.

For special cases, more efficient algorithms can
be identified. Algorithm 2.2 could be identified for
Query Ql (Example 3.2) on the basis of the form
of the aggregation (a maximum) and the subsequent
selection (an equality with the previously calculated
maximum).

4.2 Experimental Platform and Results

We used a state-of-the-art commercial relational
database system, running on a Sparcserver 630MP
with SunOS5.4. The time measurements are elapsed
(wall-clock) times. We measure the performance in
“units,” without giving the conversion to seconds,
deliberately. We are not aiming to show how well (or
badly) our commercial database system performs in
absolute terms. Rather, we aim to show the speedups

303

7

IM) 200 300 400 500 600 700
Size(hrples)

(a) Standard SQL for Q2

100 200 300 400 500 ml 700
sm(tuples)

(b) Standard SQL for Q4

100 200 300 4oQ 500 600 700
Size(hlples)

(c) Extended SQL for Q2 and Q4

Figure 1: Elapsed time versus size for different query syntax (for queries Q2 and Q4)

that are potentially possible with an extended syn-
tax and suitable evaluation techniques. Each mea-
surement is the average of many runs, usually more
than ten and repeated at different times of the day.
During the experiments, we were the only users of the
database system. The Sparcserver was very lightly
loaded.

In all experiments we do not write the query result
back to disk.

standard SQL performance is non-linear and much
worse than our implementation. The optimizer was
not able to identify that joins were unnecessary and
that a kind of sequential processing would be sufficient,
Even if we had indices or other join optimization
techniques to speed up the process, we would still need
to perform joins, a major cost. Our implementation
avoids joins altogether.

For the standard SQL measurements we used the
standard SQL representations of Queries Ql to Q4
given in Section 2.

We have the same results on relations of bigger
size, where the cost of standard SQL for queries like
Query Q4 is in the range of hours.

Our extended language is implemented as follows.
A compilation phase reads in queries expressed in
a version of our SQL extended language and gener-
ates a C program that interacts with the commercial
database system. The C program follows the steps of
Algorithm 2.1 given in Section 4.1, except for Step 1.
Instead of Step 1, the C program poses a subquery to
the database system in which the group by attributes
are also mentioned in an orderby clause. The results
of this subquery are returned in a buffered fashion to
the C program. The orderby clause ensures that the
groups can be further processed one at a time.

5 Related Work

Aggregation queries are essential in decision support
systems. This importance has been recognized quite
recently and led to a number of papers on optimization
of such queries. However, none of these addresses the
optimization of our particular class of queries. These
authors mainly examine which of a group by and a join
should be executed first. As we have seen, joins in our
class of queries could be avoided completely.

The behavior of our implementation with respect
to null and duplicate values (as was described in
Section 3.5) is as follows. All grouping variables
have a non-man&tog status; all grouping variables
mentioned in the select clause have a non-omit status;
the remaining grouping variables have an omit status.

For the extended SQL measurements we measured
the total elapsed time for execution. The queries used
were the extended representations of Queries Ql to Q4
given in Section 3.2.

Yan and Larson in pL94, YL95] describe a class
of transformations that allow the query optimizer to
push a group-by past a join (eager aggregation) or
pulls a group-by above a join (lazy aggregation). In
a similar direction, Chaudhuri and Shim in [CS94,
CS96] present a similar class of pull-up and push-
down transformations. Furthermore, they incorpo-
rate these transformations in optimizers and propose
a cost-based optimization algorithm to pick a plan.
In [GHQ95], Gupta, Harinarayan and Quass try to
unify these transformations, viewing aggregation as an
extension of duplicate-eliminating projection.

The performance of queries Q2 and Q4 is shown in A different type of optimization is found in [LMS94,
Figure 1. We have similar graphs for queries Ql and LM96]. While the above mentioned authors give crite-
Q3. The first two graphs correspond to standard SQL ria on when to apply the pull-up and push-down tran-
and the third to our extended SQL. In all cases, the formations(given a set of predicates), Levy and Mu-
size of each group is twenty tuples and there are no mick consider an orthogonal problem. They present a
indices. The main cost is CPU time. In all cases, method to infer predicates either for the attributes of

304

the view from the predicates on the attributes of the
relations defining the view, or the other way around.

Gray, Bosworth, Layman and Pirahesh propose
a relational aggregation operator, called datacube,
which is useful in data analysis applications [GB+96].
Each of the aggregation attributes is a dimension in
a n-dimensional space. They propose an extension
of SQL, using an argument similar to ours, i.e., the
accomodation of this class of queries is important.
The main contribution is a conceptualization of the
the aggregation accross many dimensions. There is an
overlapping of the class of queries that this operator
expresses with our class. However, our techniques
allow for significantly more complex aggregate queries.

Several authors have pointed out that SQL cannot
simply express a number of queries involving grouping
and aggregation [DD92, KS95]. Kimball and Strehlo
in [KS951 argued that SQL should be extended in order
to be more powerful (in both syntax and performance)
for queries related to grouping. They present some
examples where standard SQL syntax is cumbersome
and performance is bad, while the queries are concep-
tually easy. They also propose a new keyword, called
ALTERNATE, which is associated with a constraint.
This constraint replaces all constraints on the same
table in the surrounding query. While the change
in SQL syntax is minimal, the expressivity of that
keyword is limited. For example, they can have only
one level of aggregation.

Sybase allows some flexibility in the syntax of the
select and having statements [Cor94]. In particu-
lar, select and having statements can include any
attribute, not just those mentioned in the group by
clause. Sybase’s extended SQL can be used to express
some group queries that would have to be phrased as
a join in SQL92. In particular, Query Ql, can be
expressed in a syntax similar to ours. The main idea is
similar to ours: enabling succinct, optimizable aggre-
gate queries. To a certain extent they were successful.
However, their techniques are significantly less general
than ours; their syntax corresponds roughly with al-
lowing just one grouping variable. Consequently, their
extended syntax cannot succinctly express Queries Q2,
Q3, or Q4.

Rae, Badia and Van Gucht address the issue of sup-
porting quantified subqueries [RBV96]. Their work,
which was done independently from ours, is motivated
by similar concerns that SQL’s syntax is cumbersome
for expressing and optimizing a natural class of queries.

Our syntax can succinctly solve (for a known num-
ber of columns) the so-called V&e-to-Attribute con-
flict, a case of schematic discrepancies in interoper-
able databases. This conflict occurs when the same
information is expressed as values in one table and as
attributes in another [KS91, KLK91, SCG93, Roz94].

ln [SCG93] the complexity of the SQL solution to this
problem is criticized and a new operator is proposed.
Rozenshtein emphasizes that the Value-to-Attribute
conflict (which he calls Table-Pivoting) can be solved
in just one pass over the grouped relation, and pro-
poses a solution using the notion of characteristic
functions [Roz94]. Again, our syntax expresses a
significantly more general class of queries.

6 Conclusions

We have identified redundancy in both relational al-
gebra and SQL in the way these languages specify
a number of conceptually simple aggregate queries.
This redundancy leads to queries that are difficult
to write, maintain, understand, and, optimize. We
have extended both relational algebra and SQL to
enable the succinct representation of these queries. We
provided a translation of our SQL language into our,
algebra, and demonstrated that efficient algorithms for
queries expressed in our algebra exist and are easy for
an optimizer to identify. We experimentally verified
that orders of magnitude savings in processing time
can be achieved by using our extended syntax.

The impact of this work is twofold. First, using our
syntax allows conceptually simple aggregate queries
to be expressed simply, reducing the effort required
for ‘writing and maintaining such queries. Second,
it allows such queries to be optimized and executed
efficiently; naive plans resulting from an inability to
recognize the special form of the query may be orders
of magnitude slower.

References
[Cor94] Sybase Corporation. Sybase SQL Server. @e&r-

ence manual, Vol. 1. Sybase, Inc, 1994.

[Cou95] Transaction Processing Performance Council.
TPC-D benchmark description. (available from
http: //uw . tpc . org), April 1995.

pw Surajit Chaudhuri and Kyuseok Shim. Includ-
ing group-by in query optimization. In VLDB
Conference, pages 354-366, 1994.

[CS96] Surajit Chaudhuri and Kyuseok Shim. Cptimiz-
ing queries with aggregate views. In Extending
Database Technology, pages 167-182, 1996.

[DD92] C. J. Date and H. Darwen. Relational Database
Writings 1989-1991. Addison-Wesley, 1992.

[EN891 Ramez Elmasri and Shamkant Navathe. fin-
damentals of Database Systems. The Ben-
jamin/Cummings Publishing Company, 1989.

[CB+96] J. Gray, A. Bosworth, A. Layman, and H. Pi-
rahesh. Datacube : A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. In IEEE International Conference on
Data Engineering, pages 152-159, 1996.

305

[GHQ95] Ashish Gupta, Venky Harinarayan, and Dallan
Quass. Aggregate-query processing in data ware-
housing environments. In VLDB Coirference,
pages 358-369, 1995.

[KLKSl] Ravi Krishnamurthy, Witold Litwin, and
William Kent. Language features for interop-
erability of databases with schematic discrepan-
cies. In ACM SIGMOD, Conference on Manage-
ment of Data, pages 4&49, 1991.

[KS911 Won Kim and Jungyum Seo. Classifying
schematic and data heterogeneity in multi-
database systems. IEEE Computer, 24(12):12-
18, 1991.

[KS951 Ralph Kimball and Kevin Strehlo. Why deci-
sion support fails and how to fix it. SIGMOD
RECORD, 24(3):92-97, 1995.

[LM96] Alon Levy and Inderpal Singh Mumick. Reason-
ing with aggregation constraints. In Extending
Database Technology, pages 514-534, 1996.

[LMS94] Alon Levy, Inderpal Singh Mumick, and
Yehoshua Sagiv. Query optimization by predi-
cate movearound. In VLDB Conference, pages
96-107, 1994.

[Mum911 I. S. Mumick. Query Optimization in Deductive
and Relational Databases. PhD thesis, Depart-
ment of Computer Science, Stanford University,
1991.

[RBV96] Sudhir Rao, Antonio
Badia, and Dirk Van Gucht. Providing better
support for a class of decision support queries.
In ACM SIGMOD, Conference on Management
of Data, pages 217-227, 1996.

[Roz94] David Rozenshtein. Linguistic optimization: A
new approach to writing efficient SQL queries.
In Ventures in Research, Long Island University,
1994.

[SCG93] F. Saltor, M.G. Castelanos, and M. Gsrcia-
Solace. Overcoming schematic discrepancies
in interoperable databases. In Interopemble
Database Systems, pages 191-205. Elsevier Sci-
ence Pub N.V. (North-Holland), 1993.

[YL94] Weipeng P. Yan and Per-Ake Larson. Performing
Group-By before Join. In IEEE Internation’al
Conference on Data Engineering, pages 89-100,
1994.

[YL95] Weipeng P. Yan and Per-Ake Larson. Eager
aggregation and lazy aggregation. In VLDB
Conference, pages 345-357, 1995.

306

