
ZOO: A Desktop Experiment Management Environment*

Yannis E. Ioannidist Miron Livny Shivani Gupta Nagavamsi Ponnekanti
Department of Computer Sciences, University of Wisconsin, Madison, WI 53706

{yannis,miron,shivani,vamsi} @cs.wisc.edu

Abstract
Over the last decade, a dramatic increase has been
observed in the ability of individual experimen-
tal scientists to generate and store data, which has
not been matched by an equivalent development
of adequate data management tools. In this pa-
per, we present the results of our efforts to develop
a Desktop Experiment Management Environment
that many experimental scientists would like to
have on their desk. The environment is called
ZOO and is developed in collaboration with do-
main scientists from Soil Sciences and Biochem-
istry. We first describe the overall architecture of
ZOO, and then focus on key features of its various
components. We specifically emphasize aspects of
the object-oriented database server that is at the
core of the system, the experimentation manager
that initiates the execution of experiments as a re-
sult of scientists’ requests, and the mechanisms
that the modules of the system use to communicate
between them. Finally, we briefly discuss our ex-
periences with the use of the current ZOO proto-
type in the context of plant-growth simulation ex-
periments and NMR spectroscopy experiments.

1 Introduction

In the past few years, several scientific communities have
initiated very ambitious and broad-ranged projects in their
disciplines. The NASA Eos effort and the NIH Hu-
man Genome project are two examples of such national

* Work supported in part by the National Science Foundation (“Sci-
entific Databases Initiative”) under Grant IRI-9224741.

t Additionally supported in part by the National Science Foundation
under Grant IRI-9 157368 (PYI Award) and by grants from DEC, IBM, HP,
AT&T, Oracle, and Informix.

Permission to copy withoutfee all or part of this material is grantedpro-
vided that the copies are not made or distributedfor direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or specialpermission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

and international scientific endeavors. A major part of
these projects is the collection of huge amounts of data
(sometimes measured in petabytes) on complex phenom-
ena. Managing this surge of scientific data poses significant
challenges, many of which cannot be effectively addressed
by existing database technology. This has resulted in much
research activity in the area of Scientijc Database Systems
[FJFYO, SOW84].

Despite the renewed interest in the area, still little atten-
tion has been devoted to the needs of small teams of scien-
tists who perform individual experimental studies in their
laboratories. In particular, a major problem that many ex-
perimental scientists are facing is that there are no adequate
experiment management tools that are powerful enough to
capture the complexity of the experiments and at the same
time are natural and intuitive to the non-expert. A small lab-
oratory that can easily generate and store several megabytes
of data per day is still dependent on the good old paper note-
book when it comes to keeping track of the data.

Over the past three years, in collaboration with several
domain scientists, we have studied the needs of a wide
range of experimental disciplines, developed solutions to
some of the basic problems in experiment managemerit,
and have made significant progress towards implementing
a simple Desktop Experiment Management Environment
(DEME) called Zoo. Our work has proceeded in a tight
loop between developing generic experiment management
technology that is implemented in a generic tool, Zoo, and
installing customized enhancements of the tool that con-
stitute full systems (complete Customized Desktop Exper-
iment Management Systems (CDEMSs)) in laboratories’ of
interest. New technology has been continuously transferred
to these laboratories, while feedback from installed soft-
ware as tested and evaluated in real-life settings has affected
our research directions and decisions. Because of our em-
phasis on the genericity of the basic technology developed,
we believe that the main research results and software tools
are applicable to a wide range of experimental disciplines.

1 We use the term ‘laboratory’ to indicate any scientific environment
where experiments are conducted, be it a physical laboratory in the tm-
ditional sense, or a virtual laboratory involving scientists collaborating
across the network, simulation-based modeling, etc.

274

In this paper, we first describe the overall philosophy
and architecture of Zoo, thus making it a defining docu-
ment of the entire project. We then focus on key features
of its core components, i.e., the object-oriented database
server, the experimentation manager that initiates the exe-
cution of experiments as a result of scientists’ requests, and
the mechanisms that the modules of the system use to com-
municate between them. Finally, we briefly discuss our ex-
periences with the use of the current Zoo prototype in the
context of plant-growth simulation experiments and NMR
spectroscopy experiments. Some aspects of the project
and some of the Zoo modules emphasizing user interfaces
have already been discussed elsewhere: the role of schemas
in Zoo [IL92], the theoretical framework used for schema
visualization [HIL94] and the resulting prototype schema
manager [HIL95, ILBH961, the data model and query lan-
guage of the system [WI93], and the object-to-file translator
[AIL96]. This paper concentrates on the internal engines of
the system, which have not been presented earlier. It briefly
touches upon those of the above issues that are necessary for
a comprehensive understanding of the system, but focuses
on the overall system architecture and implementation, and
on the technical contributions of the work in the areas of
data management and experimentation.

2 Life-Cycle of Experimental Studies
We have been in an on-going dialog with experimental sci-
entists who represent many experimental disciplines: pri-
marily groups in soil sciences and biochemistry, but also
physics, genetics, biotechnology, molecular biology, earth
sciences, and manufacturing. Although these sciences have
very little in common, typical experimental studies in any
of them (and even in experimental computer science, as
we have experienced it in our own work on DeNet [Liv88]
and Condor [LLM88]) seem to go through very similar life-
cycles. In particular, we have identified the following stages
in the typical experiment life-cycle (we have given more de-
tails elsewhere [IL92]):

w Design of Experiment: The experimental frame (i.e.,
the experiment structure) of a study is laid out [Zei76],
specifying which variables will be controlled and what
will be measured as output. This is typically done on
paper.

l Data Collection: Experiments are actually conducted.
The scientist specifies the experiment set-up and the
values of the input parameters, and the relevant output
data is then collected. This is done using some exper-
imentation tool, e.g., a simulator or some laboratory
equipment.

l Data Exploration: The collected data is studied so that
conclusions about the subject of the experiment may
be drawn. This is typically done using a variety of sys-
terns for retrieving, analyzing, or visualizing the data.

Note that the life-cycle described only captures the ac-
tivities involved in conducting the experiments and not

those involved in preparing the appropriate experimenta-
tion tools, e.g., implementing the necessary simulators or
setting up the necessary laboratory equipment.

To illustrate the above life-cycle, we discuss experi-
ments in the area of soil sciences, conducted by a group of
domain scientists with whom we have been collaborating
the longest. They have developed the Cupid model [NC83,
NC89], which represents an attempt to define collective
plant-environment interactions by combining knowledge
from the disciplines of meteorology, soil physics, plant
physiology, microbiology, entomology, and plant pathol-
ogy into a single manageable package. Cupid is quite com-
plex (more than 10K lines of Fortran) and is used in about a
dozen laboratories in the U.S. and abroad. Typically about
a hundred parameters are input to Cupid and over three hun-
dred are received as output for any specific application.

Traditionally, an experimental study using Cupid goes
through the following stages. Experiment Design: The in-
put and output variables that are important to the study are
chosen among all those dealt with by the model. This is
done with pencil and paper and the final outcome is kept in
notebooks. Data Collection: Input files are constructed in
the format required by Cupid, containing the combinations
of input variables to be tested. Cupid is called on each one
of these files, generating each time an output file in a spe-
cific format. Data Exploration: Unix scripts are written to
extract the required data for every different research ques-
tion that the scientists may have in the course of their study.

A major impediment to exploiting the full power of Cu-
pid has been keeping track of the numerous input and out-
put files that are associated with a study. Over time liter-
ally thousands of files are generated, making the task of data
exploration a nightmare. Another major problem has been
that scientists are forced to use very different tools during
each of the three life-cycle stages, making the whole pro-
cess difficult to manage.

A key objective of our effort has been for Zoo to be an in-
tegrated software package with a uniform user interface that
(a) supports the entire life-cycle of an experimental study
allowing smooth transitions between its stages, (b) trans-
parently manages all the data generated by the study, and
(c) hides the details of any underlying software used. An-
other key objective is to blur the separating line between the
data collection and data exploration stages, in the sense that
data exploration may implicitly involve some data collec-
tion. When a scientist is studying a phenomenon, whether
a specific piece of information has already been collected or
needs to be collected via an experiment is irrelevant. Thus,
some requests in the data exploration stage may generate or-
ders for datacollection. The following section describes the
architecture of Zoo, which has been influenced significantly
by the above objectives.

275

3 Architecture of Zoo
Zoo is designed to be a generic Desktop Experiment
Management Environment (DEME). To become a com-
plete Customized Desktop Experiment Management Sys-
tem (CDEMS) and be installed in a specific laboratory,
e.g., the Cupid laboratory, it must be enhanced with some
custom-made pieces, which can be generated usually with
little effort. The overall architecture of Zoo and a result-
ing CDEMS is shown in Figure 1. Blocks with white back-
ground are generic Zoo modules and files; for ease of refer-
ence, a short description of these modules is shown in Ta-
ble 1. Blocks with gray background must be generated sep-
arately for each complete Zoo-based CDEMS. Blocks with
striped background are external systems with which a given
CDEMS needs to communicate. Among them there is UC
least one experimentation system2, where the experiments
are conducted during the data collection stage. In addition,
there may be other external systems that are useful in the
data exploration stage, e.g., for statistical analysis or visu-
alization.

3.1 Zoo Module Functionality

At the core of the system is Horse (Heavy-duty Object
Repository for Scientific Experiments), its database server.
It is based on the Moose (Modeling Objects Of Scientific
Environments) object-oriented data model and the Fox
(finding Objects of experiments) query language [IL89b,
WI93], which we have designed for Zoo. Understand-
ing the rest of the paper requires some familiarity with the
Moose data model, so its salient features are briefly de-
scribed below.

There are various kinds of object classes in Moose. The
primitive classes are integer, real, boolean, and character-
string. Tuple classes have objects consisting of a prespeci-
fied number of other objects, called purrs, identified by la-
beled relationships. Collectionclasses have objects consist-
ing of an arbitrary number of other objects, all from a single
elements class. Collection classes are distinguished into set,
multiset (bag), sequenced-set (list or array), and indexed-set
classes. An indexed-set is essentially an array indexed by
(the elements of) another arbitrary collection object; the lat-
ter is called the keys& of the indexed-set and its elements are
called keys.

276

There are five kinds of binary object relationships in
Moose. The structure of a tuple class is defined by an ar-
bitrary number of has-part relationships, each pointing to a.
single object. The structure of a collection class is defined
by a single set-of relationship, unless it is an indexed-set
class in which case its structure is defined by a single set-
of and a number of indexed-by relationships equal to the di-
mensionality of the indexed-set. Association relationships

Figure 2 shows a simple Moose schema in graph form
that is used as an example throughout the rest of the pa-
per. It represents a (simplified) soil-science study to deter-
mine the total yield and quality of a crop depending on the
weather and’on how various types of plants are distributed
in a large piece- of huid divided into zones. Each Experi-
menr is modeled as a complex object, with sub-objects rep-
resenting its Input and its Output. Its output is a pair of the
total yield and quality of the harvest. Its input consists of
the Weather and a Plant_community, which is an indexed-
set of Plants indexed by the set of land Zones so that the
zone where each plant is grown is recorded independently
for each Plant-community in which the plant participates.
The weather is captured by rainfall, temperature, and wind-
speed values, and may be windy (derived as wind-speed >
.30 mph), in which case wind-direction becomes impoflant
as well, dry (derived as rainfall < 2 in), in which case air hu-
midity becomes important as well, or disaster, which com-
bines the two. (The derivation conditions are not shown.)

2 We use the term ‘system’ in a general sense, to include both soft-
ware systems and physical systems possibly involving humans in their
operation.

Module
EMU
FOX
FROG

HORSE

MOOSE
OPOSSUM
SQUID
TURTLE

Description
Experimentation manager
Declarative object-oriented query language
Visual tool for specifying mappings between
Moose objects and Ascii files
Object-oriented database server based on
Moose and Fox
Object-oriented data model
Visual schema manager
Visual query manager
Translator between Moose objects and Ascii files

Table 1: Alphabetical list of Zoo modules with short de-
scriptions

do not define any structure but simply connect individual
objects in two arbitrary classes (of any kind). Finally, an is-
a relationship between two classes has the usual meaning.

Any relationship from a class A to a class B may be spec-
ified as derived, meaning that for each A object, the re-
lated B object is constructed or identified based on other
objects that are (indirectly) connected to the A object via
other relationships. The construction or identification may
be through a Fox query, or may require processing by an ex-
ternal system that receives as input a file containing (parts
of) these other objects. Likewise, any subclass may be spec-
ified as derived, meaning that the members of its superclass
that belong to it are identified through some query or other
computation.

Note that the output of an experiment is indicated as a
derived relationship (label (D)). Although not shown in the
figure, the derivation is based on the input part of an experi-
ment (in particular, the values in the primitiveleaf classes of
that complex object class) and is realized by the execution
of an external program (e.g., Cupid, although Cupid deals
with much more complex experiments).

model u metaphor
files

DEFAULT 1
model

3

metaphor
files

TURTLE

I I

I

-m-s ___________-_------------- -----

r--l ZOO-based CDEMS boundary ---

II ZOOboundary
Database

Figure 1: Overall architecture of ZOO

l- -W has-part ’
I -s setof

I] Generic module I tile

Custom-made module I tile

m External System

- association

Input

($-q&, &z(yJ name ,* height
\ /’

-.I Zones

-T zone-name

C

Figure 2: Sample Moose schema of Soil Sciences experiment

277

Opossum (Obtaining Presentations Of Semantic Sche-
mas Using Metaphors) and Squid (System for Queries
Updates Insertions Deletions) make up the user interface
of Zoo. Opossum is a schema manager [HIL95] and Squid
is a query/update manager. Opossum and Squid have been
built following a visualization framework that we have de-
veloped that separates the data domain from its visualiza-
tion [HIL94] for maximum flexibility. In particular, they
are generic visual systems whose inputs are files with spec-
ifications of a data model or query language (which are al-
ways Moose and Fox for Zoo, respectively), a visual model,
and a metaphor that indicates the correspondence between
visualizations and underlying schemas or queries. For ex-
ample, the most useful visual model for Moose schemas is
that of graphs and the most useful corresponding metaphor
maps graph nodes to Moose classes, graph edges to Moose
relationships, etc. (Figure 2 presupposes such a metaphor.)
Receiving these, Opossum is customized to operate for the
specific data model and visualization style. (Likewise for
Squid.) Although for Zoo the data model and query lan-
guage are fixed, Opossum and Squid still offer much flexi-
bility in defining different ways in which schemas or queries
may be visualized.

Emu (Experimentation Management Unit) is responsible
for transforming user requests into actions at external sys-
tems and preparing everything necessary for these actions.
It interacts with Horse for retrieving the necessary user re-
quests and with custom-built agents, one for each external
system that the specific Zoo-based CDEMS needs to com-
municate with. It also interacts with Turtle, to which it del-
egates the necessary object-to-file translations.

Turtle (Translation Unit of Run lime ‘of Large Experi-
ments) is the system’s translator from Moose objects to
Ascii files and vice versa. It is also a generic module; it re-
ceives as input a map-jile that contains specifications of how
the various parts of a complex object correspond to the var-
ious areas of an external file, and based on that, it performs
the actual translations.

Frog (Files Related to Objects Graphically) is a visual
tool for generating the map-files required by Turtle. In one
window, it has a sample (input or output) file of the external
system, and in another, it has the Moose schema for the ex-
periment concerned, managed by Opossum. By highlight-
ing a specific area in the file and clicking on the appropriate
part of the schema, the designer specifies what objects cor-
respond to what area of the file. Printing details, e.g., pre-
cision, are guessed by Frog and can be overwritten by the
user.

3.2 Installation of Zoo-based CDEMS

Each external system with which communication is desired
may have specialized usage requirements that are impossi-
ble to include in a generic system. Thus, installation Of a
Zoo-based CDEMS in a specific laboratory or fora specific

study entails a customized enhancement of the system:
N

l For each external system of interest, a customized
agent is built incorporating all the specific details re-
quired for interacting with and monitoring the system.
The agent is registered with Zoo and information about
it is stored in a system-defined class (Section 6).

For example, our soil-science collaborators want to exechte
the Cupid simulator under Condor [LLM88], so the corre-
sponding agent takes care of all the Condor communication.
On the other hand, our biocheyistry collaborators run ex-
periments on spectrometers that are operated by humans, so
the corresponding agent uses electronic mail to send the ap-
propriate messages to designated technicians and to collect
the output from designated files. Agents for new external
systems can be built and registered dynamically, even after
experiments have been run.

Both modules in the user-interface ofZoo, Opossum and
Squid, are generic and need some customized input to be-
come operational. Graph-based visualizations of schemas
and queries are universally useful and intuitive, so the ap-
propriate model and metaphor files have been constructed
and are provided for scientists to use directly. If, however,
the scientists desire different schema or query visualiza-
tions, then the following activity becomes necessary at in-
stallation time as well:

l Opossum is used as a meta-schema manager to cre-
ate the files containing the data and visual models and
metaphors required by the scientists. Meta-model and
metaphor files that are “manually” constructed for this
bootstrapping process are used as input t<Opossum.
The resulting meta-schemas are then storedin files and
used as Opossum and Squid inputs [HIL95].

New visual models and metaphors can also be designed dy-
namically. /

Note that, unless new visual models and metaphors are
desired, installation only requires some programming in a
regular programming language to build the agents but no
database expertise, which is one of the goals of our effort.

3.3 Experiment Design

During the design stage of an experiment’s life-cycle,

l Opossum is used to specify the schema of the exper-
iment, which is then used to generate a database un-
der Horse. This schema contains derived relationships
corresponding to external systems associated with the
given Zoo-based CDEMS.

Since Turtle is also a generic module, to be able to per-
form the appropriate translations between objects and files,
it needs some customized input. Therefore, experiment de-
sign includes the following activity as well:

278

l Frog is used to specify mappings between the designed
Moose schema and the input and output files required
by each external system. The resulting map-files are
then stored and used as Turtle input [AIL96].

Again, no real database expertise is required for experiment
design, as both Opossum and Frog are visual tools offering
a high-level intuitive interface.

3.4 Data Collection and Exploration

As mentioned in Section 2, an important feature of Zoo is
that it blurs the distinction between the data collection and
data exploration stages if the scientist so desires. In partic-
ular, the scientist may use Squid to request results of exper-
iments without any knowledge of whether they have been
run yet or not. When they have been run, Horse retrieves
the necessary information from its database and returns it to
Squid for display. When not, Horse invokes the mechanism
for dealing with derived relationships (recall that the output
of an experiment is derived), which eventually triggers the
necessary actions at the appropriate external system.

4 Information Storage and Shipping
A Zoo-based CDEMS deals with a wide variety of informa-
tion types, i.e., the contents of the database associated with
each experimental study, results of queries that have been
posed to a database and are important enough for the scien-
tific study to store away, the queries themselves, visual rep-
resentations of the database schemas, and eventually maybe
even the models and metaphors required by Opossum or
the map-files required by Turtle. For uniformity, genericity,
and extensibility of storage by Horse and of communica-
tion between the various Zoo modules, Zoo views any piece
of information of any of the above flavors as an object in
a Moose database [IL89a]. This is done recursively, in the
sense that the schema of each one of these databases is also
an object in a different, higher-level meta-database, until
some mot databases are reached, whose schemas are known
to all modules (Horse in particular) in a hardwired fashion.
There are three root databases: one storing all user-defined
Moose schemas in the Zoo-based CDEMS, one storing all
saved Fox queries,‘and one storing all visual models that
are used for visualization. Figure 3 shows the schema of
the Moose-schema database. We do not present the other
two, since we have not described Fox or the visualization
methodology in any detail for these schemas to be compre-
hensible, Figure 3 is self-explanatory (the attributes of Re-
lationship capture its kind, its forward and reverse labels
(fname and mame), and its forward and reverse properties
represented as a bitmap (fprop and t-prop), e.g., cardinality,
mutability, etc.). Note that derivation rules are part of the
schema and each one is associated with one of the relation-
ships. Currently, derivation rules are represented as plain
text, but in principle, one could develop a schema rooted at
the DerivationRule class capturing the rules’ structure.

Figure 3: Meta-schema of user-defined Moose schemas

There are several important implications of the overall
approach above with respect to information storage:

1. Schemas are a commodity whose usage goes way be-
yond the typical one in the context of database sys-
tems. Scientists can define them, examine them, or
modify them, thus affecting the experimental frame of
their studies, without thinking about them as express-
ing database structures. In fact, a schema does not nec-
essarily have to be associated with a database, but may
exist uninstantiated.
A schema of one database can be simply copied and be
used as part of another schema. It is common for ex-
perimental studies in the same field to share pieces of
their overall setup, so during experiment design, it is
very convenient for scientists to simply take and reuse
an existing schema. In fact, even subschemas can be
reused this way. For example, several Cupid studies
may need the exact same modeling of weather as in
the schema of Figure 2; scientists can simply copy that
subschema to their own and avoid the trouble of re-
designing it.

2. Whole databases can be made part of larger databases,
as subobjects. In fact, databases can be shared by
multiple larger databases that need to use the contents
of these subdatabases without replicating them: Sim-
ilarly to point 1 above, experimental studies in the
same field often share not just their design but even
some of the data that they use as input. This is of-
ten the case in modeling studies (simulation studies),
where part of the input is actual measurements or ob-
servations. Then, specific datasets that have been col-
lected at some point and have properties that are well-
known tend to be used continuously, so database shar-
ing comes very handy and saves much space. Contin-
uing on with the example in point 1, a study may need

279

not only the schema of the Weather class, but even
the actual data with which this class and its subclasses
have been populated (because, say, these represent ac-
tual weather characteristics observed in a specific geo-
graphic area of interest). This can be seen as a simple
special case of schema/database merging in heteroge-
neous databases [KLK9 I] where there are no semantic
inconsistencies in the merged schemas, all of them are
in the same data model, and they are reused without
any transformation.
Expanding this notion of database sharing, Horse per-
vmits scientists to pose requests that span multiple
databases. Scientists can bring up throughbpossum or
Squid (visualizations of) any number of schemas and
then pose queries on them. In some sense, this is like
generating an ad hoc new database that has the actual
databases as parts. This capability is very important,
as scientists often want to access the results of multi-
ple separate studies to correlate or combine their re-
sults. For example assume that two different studies
have the exact same schema of Figure 2. One may be
a study that has used the Cupid simulator, while the
other may be a study actually done on the fields con-
taining actual measurements. Scientists may then re-
quest pairs of yield values for every experiment that
has the same input. This would allow them to validate
Cupid‘and calibrate it appropriately if any major dis-
crepancy arises in the results of the two studies.

3. Queries are a commodity as well, and can be saved and
reused at will. A query that resulted in data that leads
to interesting insights needs to be saved (together with
its result), for later reuse, to serve as a starting point for
modifying it to obtain other similar queries, or to be
eventually reported in scientific publications. More-
over, it can be used in the context of other studies hop-
ing to generate similar insights, to identify correlations
between results of different studies, etc.

4. Multiple visualizations can be used for the same
schema, query, or object. For example, three separate
visualizations could be stored for the schema captured
in Figure 2: the specific graph layout of the figure, a
completely different graph layout (possibly generat-
ing different intuitions about the experiment design),
and some other non-graph representation. Scientists
can switch among these depending on their aesthetic
preferences or needs and the appropriate visualization
would come to the screen.

5. Visualizations are a commodity as well and can be ma-
nipulated accordingly. All schema and query copying
and sharing in points 1 and 3 above are in fact done us-
ing Opossum and Squid through visualizations, which
are copied and shared as well. Likewise, visual models
for schemas, queries, or object are a commodity that

can be reused. For example a visual model for graphs
generated to capture Moose schemas, may be useful in
capturing many other types of objects as well. The de-
signer can simply copy it instead of reconstructing it.

The above schema/meta-object approach has important
implications on information transfer between Zoo modules
as well. Everything that is shipped is an object in some
schema that has also been specified in the same or an earlier
shipment. Schemas, queries, objects, visualizations, etc.,
everything is shipped as an instance of a known schema. By
receiving the schema before the object, the recipient module
has all the necessary information to interpret the object ap-
propriately. Thus, all Zoo modules communicate with each
other following the exact same generic protocol, using the
exact same code, which we call shipping code.

The shipping code has been developed so that each mod-
ule could run on a separate machine, communicating via
messages. Thus, on both ends of a communication link be-
tween modules, there are transformation mechanisms be-
tween the internal representation used by the module and
the Ascii representation required by the shipping code. This
has given great portability to Zoo, since it does not depend
on any machine-specific characteristic for communication.

Since the shipped objects may be quite complex (essen-
tially, arbitrary Moose objects), their shipping (Ascii) rep-
resentation is quite flexible. Essentially, an object to be
shipped is an array with an entry for each individual object
that is part of the overall object shipped. The relationships
between these objects are captured as indices into the ar-
ray rather than memory pointers as these have to be shipped
across the network. Figure 4 shows the full structure of an
input object based on the schema of Figure 2 in graph form.
This is similar to the schema graph, so what the actual ob-
ject is should be clear. Figure 5 shows the corresponding
shipping representation for that object.

5 The Horse Database Server
Horse is the backbone of the entire Zoo environment, be-
ing a server for all other modules3. It has been developed
in a layered fashion for flexibility and extensibility. At the
front-end, it accepts Moose data definition requests and Fox
query and update requests in shipping form, but can also
operate in a stand-alone mode, accepting textual requests.
At the back-end, it is currently using the Informix relational
database system as a storage server. There are many reasons
for the Informix choice. First, we wanted a commercial
piece of software that was unquestionably reliable so that
scientists would feel comfortable storing their data under
it. Second, we preferred a relational over an object-oriented
database system (which would have a data model concep-
tually closer to Moose) because the 00 systems that ex-
isted when we-started required that the schema of a database

3 It is truly a workhorse!

280

Envy Class Value Array of relationship linked lists

1 string “wheat” ----_-_

2 integer 5 -_--___

3 integer 10 ___- ___

4

Figure 4: Graph representation of input object

be essentially compiled with any code developed on top of
them, which is clearly inadequate for a dynamic environ-
ment like Zoo where many experiment/schema designs will
be defined over time. Third, Informix was donated to us
for free! Our experience with Informix has been extremely
positive, so we are happy that we made that choice. More-
over, thanks to the layered implementation of Horse, we can
easily port the system to use as a storage server any other
relational or non-relational system. (We have taken some
initial steps in this direction, to port Horse on top of Shore
[c+94].)

The most significant function of Horse is to translate
Moose and Fox into the Relational model and SQL, respec-
tively. Most aspects of these translations are quite straight-
forward and similar to other efforts. The interesting parts
are those that deal with unique or uncommon Moose and
Fox features: sets and indexed-sets (which are very impor-
tant in scientific experiments) and deep path expressions.
Due to lack of space, we do not present any details on these
translations, which can be found in the extended version of
this paper.

6 Experimentation Management
As mentioned earlier, in Zoo, experimentation and any
other form of external processing is achieved through the
derived relationship mechanism. To support this mecha-
nism, Horse uses two system-defined classes, the Task class

5

6

1

8

9

10

I1

12

13

14

15

16

17

18

,

name width
Plant I - IM IM IM height

I I

String “rice” _-- ____

integer 6 __ _____

integer 7 _-__ ___

Plant

String “21”

name width height

___i___

String “22” -----_-

Zones - I I zone-names

I
1

String “grains” ---_ _ --

Plant- Plant Zones name
community - lxl-m+mUU-IUZH

integer 30 - --___ _

integer 50 --___--

integer 20 _ -____ _

input
Plant-community

I

Weather

and the Agent class, whose schemas and their relationship
Figure 5: Shipping representation of same object

are shown in Figure 6. At any point, the Task class contains
one object for each external computation/activity sched-
uled. It records a status code for the computation (waiting-
to-be-scheduled, scheduled, and complete), the class of the
output object (an object in the schema database (Figure 3)),
the oid of the object whose relationship is derived (embed-
ded in the FullId class, which we use to express objects
of any class), and a list with the oids of the input,objects
(whose parts will be placed in the input file). The Agent
class contains one object for each registered agent. The
attributes of the class include the agent’s name (which is
what Emu uses to call the agent for execution), the map-file
names for the input and output files for the agent’s corre-
sponding external system, and possibly the map-file name
for the file returned with status information from that exter-
nal system during processing.

When Horse receives a request for data that requires
some experimentation (or other processing) at an external
system, it generates an object in the Task class and pop-
ulates its parts with all the necessary information for the
experiment to run. Emu periodically inquires Horse and
whenever it finds new objects in the Task class, it initiates
the corresponding experiments. Specifically, it first calls
Turtle and passes to it the aid(s) of the object(s) that cap-
ture the experiment’s input as well as the name of the appro-
priate map-file that has been generated during experiment

281

Figure 6: Schemas of the Task and Agent classes

design by Frog, all of which are found by Emu in the Task
and Agent objects related to the experiment. Turtle inter-
prets the map-file, uses the given object aid(s) to call Horse
and extract the needed data from the database, and eventu-
ally constructs the appropriate input file. Then, Emu com-
municates with the appropriate agent sending to it the in-
put file, and the experiment starts. Periodically, Emu polls
the agents and when it detects that the experiment is over, it
calls Turtle again and passes to it the name of the output file
generated by the experimentation system and the name of a
different map-file that has also been generated by Frog ear-
lier. Turtle now operates in the oppositedirection, interprets
the map-file, and constructs database object(s) from the out-
put file, which are then stored in the database and possibly
sent to Squid for visualization as well.

During an experiment’s execution, status requests by the
scientists are supported through the last relationship of the
Agent class. Specifically, registration of an agent may also
involve the specification of a schema for status information,
which in general would be different for various agents. To
accommodate this schema, conceptually, the class that rep-
resents the external derivation process is accompanied by a
shadow subclass, which is nof part of the scientist’s schema
and is therefore not normally visible. At any point, the
shadow subclass contains only objects representing deriva-
tions that are in-flight, which are removed when the deriva-
tion process completes. The root of the status schema is
connected to the shadow subclass via a derived relation-
ship. Any status query triggers the appropriate derivation,
just like any other external request, and results in a status
call to the appropriate agent and eventually to the external
system. Since status schemas are (on purpose) not visible,
queries requesting the output of an experiment when that
output has the special value inflight are interpreted as status
queries. Horse redirects the query to the shadow subclass
and modifies it to request a status object instead of an out-
put object.

For example, consider the schema in Figure 2. The Ex-
periment class captures external computations and its rela-
tionship to the Output class provides connection to the re-
sults of these computations. Ignoring the structure below
the Input class, Figure 7 shows the same schema enhanced

with the shadow subclass IF-Experiment (‘IF’ for In-Flight)
and a simple status schema connected to it. The enhance-
ment is shown in dashed lines, as it is not normally visi-
ble. In the example, the status consists of the experiment’s
elapsed time, the last stage in the external process that has
completed, and a prediction of the amount of time required
for final convergence. Any query requesting for the output
object of some experiment that is still in progress will return
a status object consisting of the three pieces of information
mentioned above.

7 Status and Experience

Zoo is being implemented in C++. Not counting any vi-
sual libraries (Interviews, Tcl/Tk) or database libraries (In-
formix) that it uses, Zoo is currently approximately 144K
lines of code, with about 51K in Horse and the shipping
code, 74K in Opossum, 8K in Squid (not counting the Opos-
sum code it uses), and 11K in Frog, Turtle, and Emu. An
initial version of the system is operational and used for test-
ing by experimental scientists. Some of the functionality
described in this paper as part of the system’s design is still
under development: only the Moose metaschema hierarchy
of Section 4 is supported within Horse; Squid provides a vi-
sual language that captures only a subset of the expressive
power of Fox; the meta-model and metaphor files are not
complete for Opossum (Figure I), so models and metaphors
are specified in text form; the Emu and agent functionality is
provided by the same module and so a Zoo-based CDEMS
only works with a single external system at a time.

Zoo has been successfully tested by the Cupid group for
experimentation. A custom-built Emu/agent combination
has been implemented as a single module, for communica-
tion with the Cupid simulator. The resulting CDEMS has
been used to drive test runs on Cupid. The interface offered
by Opossum for experiment design has played a key role in
the positive reception the system has had. Our soil-science
collaborators have been able to learn the tool and then orga-
nize and layout large experiment schemas with hundreds of
classes within a few hours. (The input part of the full Cupid
schema alone has 159 classes.) The tool has also brought
substantial improvements in other aspects of the scientists’

282

date

Figure 7: Schema enhanced with shadow Experiment class to capture status

work: For example, before Opossum, the Cupid group had
to refer to the input data file to a Fortran program, which had
grown increasingly fractured and confusing over the years.
They now use the corresponding visual schema as their ref-
erence in thinking about the model, planning experiments,
and explaining the model and experiments to other scien-
tists. Likewise, not having to deal directly with large num-
bers of input and output files is considered a great benefit of
using Zoo.

In addition to the Cupid group in Soil Sciences, Zoo has
also been tested by a collaborating group in Biochemistry.
A Zoo-based CDEMS has been partially developed for ex-
periments run on various spectrometers. Test experiments
have been designed with Opossum (having in the order
of 350 classes in the corresponding schemas), customized
Emu/agent modules have been developed, and object-to-file
translations have been specified with Frog. Tests with the
system have been successfully run and the reaction of the
scientists involved has been very positive again. The same
group has also used Opossum to design a large relational
schema for the Biological Magnetic Resonance Databank,
an international repository of data on biological macro-
molecules derived from NMR spectroscopy.

Finally, Opossum has been used as a stand-alone schema
manager for the relational and E-R data models, using a va-
riety of visual models and metaphors. In fact, customized
(through its input files) to visualize E-R schemas as the tra-
ditional E-R diagrams, Opossum is currently being used in
our database courses as a database design tool.

8 Current Practice and Related Work
Currently, many scientists use notebooks to keep track of
where data is stored and search these notebooks manually
whenever they need to retrieve data. They have to write
application programs in procedural languages in order to
access the data, and for every different type of question
they want to explore, a different program has to be writ-
ten. In some cases, relational database systems are used, but
what they can offer is not adequate. Declarative textual lan-
guages do not correspond to the intuition of scientists and
thus are hard to use. For example, writing an SQL query
that retrieves information regarding a phenomenon that has
hundreds of parameters is a very time consuming process.

Scientists must look around the catalogs to identify the ap-
propriate relations and the query must be spelled out, which
involves specifying a large number of joins and selections.
Finally, in some cases, scientists use specialized software
tools developed just for experiments in their field. For ex-
ample, CERN (European Center for Nuclear Physics) has
developed PAW [BCVZSS] and HEPDB [Shi93], which are
currently used by high-energy physicists to deal with data
from accelerator experiments. Tools like these, however,
usually lack much of the desired functionality that Zoo in-
tends to offer, especially the visual style of user interaction,
the ability to communicate with several external systems
from the same interface, and of course genericity. Thus,
the current state of affairs forces scientists to spend time
on learning data access and manipulation software systems,
when they should be focusing on scientific analysis.

There ‘are a few other projects that share some of the
goals of Zoo. These include the “Laboratory Notebook”
effort at Los Alamos [Nel90], the “Chromosome Infor-
mation System” (CIS) database at LBL supported by the
SDT [MF91] and ERDRAW [SM91] design tools, the OPM
model and tools at LBL as well [CM95], the Computational
Chemistry Database project at OGI [CMR+94], the “Soft-
ware Testpilot” project on DBMS performance assessment
at CWI [KK93], and others. The focus of each project is
different, so comparisons with Zoo are not always mean-
ingful. In general, the most important aspects of Zoo are
its generic nature, its flexible schema/meta-object hierarchy
for all forms of information, its powerful data model and
query language, its emphasis on visual interaction based on
declaratively specified metaphors, and its open architecture
to multiple external systems.

With respect to experimentation management, the OPM
data model [CM951 employs special protocol classes to
capture the flow of experiments, something that Zoo is
capturing indirectly through the derived relationships in
Moose. The relative expressibility of the two approaches
is a question that we plan to investigate in the future. The
computational proxies mechanism [CMR+94] addresses
the issue of finding out what input objects are the output ob-
jects of an experiment associated with. Within Zoo, this is
handled by the translation mechanisms of Turtle.

Final& with respect to data management independent of

283

experiment management, Horse offers some unique char-
acteristics not found elsewhere. In addition to the novel
features of Moose and Fox [WI93], the view of schemas
as commodity objects, separate from their instantiations,
opens up many new opportunities for information sharing
and system communication. This also holds for all the other
commodity objects discussed in Section 4 enabling varied
visualizations for the same information, experiment result
sharing, etc. We are not aware of any other system follow-
ing this approach. All database systems store their schemas
in catalogs as data, but the catalogs are known only to the
particular database.

9 Conclusions

The Zoo effort has been driven by two major forces: a) to
advance the state of the art in experiment management tech-
nology and b) to enhance the productivity of many experi-
mentation laboratories. The Zoo environment that we have
discussed in this paper represents the contributions that we
have made in (a), while the positive feedback that we have
been getting by our collaborating scientists testing the sys-
tem captures the achievements in (b).

There are several issues that we plan to continue work-
ing on in the future, enhancing the performance, function-
ality, and applicability of Zoo. In addition to completing
its implementation based on this papers’ description, some
of the other important issues are porting Zoo from on top
of Informix to on top of Shore [C+94] (so that the use of
our tool does not depend on the purchase of a commercial
DBMS), porting Opossum and Squid to Tcl/Tk or Java, and
providing the ability to express arbitrarily complex experi-
ment protocols that may involve communicating with sev-
eral external systems as part of a singleexperiment instance.
When the system is thoroughly tested, we intend to dis-
tribute it over the network to external laboratories.

Acknowledgements: We would like to thank all those
who have been or currently are associated with Zoo:
Natassa Ailamaki, Martha Anderson, Vaishnavi Anjur,
David Argentar, Jian Bao, Roger Chylla, Eben Haber, Mu-
rali Krishnan, John Markley, David Melski, Renee Miller,
John Norman, Andy Therber, Odysseas Tsatalos, Tom
Wang, Janet Wiener, and Eldon Ulrich.

References

[AIL961 V. Anjur, Y. Ioannidis, and M. Livny. Frog
and Turtle: Visual bridges between files and
object-oriented data. In Proc. 8th Interna-
tional Conference on Scientijc and Statistical
Database Management, pages 76-85, Stock-
holm, Sweden, June 1996.

[BCVZSS] R. Brun, 0. Couet, C. Vandoni, and I? Za-
narini. Physics analysis workstation. Tech-

[c+94]

[CM951

nical Report Program Library 4121, CERN
Computer Center, 1988.

M. Carey et al. Shoring up persistent appli-
cations. In Proc. of the 1994 ACM-SIGMOD
Conference on the Management of Data, pages
383-394, Minneapolis, MN, May 1994.

I-M. Chen and V Markowitz. An overview of
the object protocol model (opm) and the opm
data management tools. Information Systems,
20(5):393-418, July 1995.

[CMR+94] J. Cushing, D. Maier, M. Rao, D. Abel,
D. Feller, and D. DeVaney. Computational
proxies: Modeling scientific applications in
object databases. In Proc. 7th Intema-
tional Conference on Statistical and Scientific
Database Management, Charlottesville, VA,
September 1994.

W’901

mL941

[HIL95]

[IL89a]

[IL89b]

1~921

[ILBH96]

J. C. French, A. K. Jones, and J. L. Pfaltz. Sum-
mary of the final report of the NSF workshop
on scientific database management.
ACM-SIGMOD record, 19(4):32-40,, Decem-
ber 1990.

E. Haber, Y. Ioannidis, and M. Livny. Foun-
dations of visual metaphors for schema dis-
play. Journal of Intelligent Information Sys-
tems, 3(3/4):263-298, July 1994.

E. Haber, Y. Ioannidis, and M. Livny. Opos-
sum: Desk-top schema management through
customizable visualization. In Proc. 2Zst Inter-
national VLDB Conference, pages 527-538,
Zurich, Switzerland, September 1995.

Y. Ioannidis and M. Livny. Data model map-
per generators in observation dbmss. In Proc.
Workshop on Heterogeneous Database Sys-
tems, Chicago, IL, December 1989.

Y. Ioannidis and M. Livny. MOOSE: Model-
ing objects in a simulation environment. In
G. X. Ritter, editor, Information Processing
89, pages 821-826. North Holland, August
1989.

Y. Ioannidis and M. Livny. Conceptual
schemas: Multi-faceted tools for desktop sci-
entific experiment management. Journal of
Intelligent and Cooperative Information Sys-
tems, 1(3):451-474, December 1992.

Y. Ioannidis, M. Livny, J. Bao, and E. Haber.
User-oriented visual layout at multiple granu-
larities. In Proc. 3rd International Workshop

284

[KK93]

[KLK91]

[Liv88]

[LLM88]

[MF911

[NC831

[NC891

[Ne190]

[Shi93]

[SM9 13

on Advanced Visual Interfaces, pages 184-
193, Gubbio, Italy, May 1996.

M. L. Kersten and F. Kwakkel. Design and
implementation of a dbms performance assess-
ment tool. In Proc. 4th International DEXA
Conference, pages 265-276, Prague, Czech
Republic, September 1993;

R. Krishnamurthy, W. Litwin,
and W. Kent. Language features for interop-
erability of databases with semantic discrepan-
cies. In Proc. ACM-SIGMOD Conference on
the Management of Data, pages 40-49, Den-
ver, CO, May 199 1.

M. Livny. DeNet User’s Guide, Version 1.0.
Computer Sciences Dept., University of wis-
consin, Madison, March 1988.

M. Litzkow, M. Livny, and M. W. Mutka. Con-
dor - a hunter of idle workstations. In Proc.
of the 8th International Conference on Dis-
tributed Computing Systems, San Jose, CA,
June 1988.

V. M. Markowitz and W. Fang.
SDT - a database schema design and trans-
lation tool. Technical Report LBL-27843,
Lawrence Berkeley Laboratory, Berkeley, CA,
May 1991.

J. M. Norman and G. S. Campbell. Applica-
tion of a plant-environment model to problems
in irrigation. In D. I. Hillel, editor, Advances
in Irrigation, volume II, pages 155-168. Aca-
demic Press, New York, NY, 1983.

J. M. Norman and G. S. Campbell. Canopy
structure. In R.W. Pearcy et al., editors, Physi-
ologicalplant ecology: Field methods and in-
strumentation, pages 301-325. Chapman Hall,
Ltd., London, UK, 1989.

D. Nelson. The laboratory notebook technical
manual. Technical Report LA-UR 88-1256,
Los Alamos National Laboratory, Los Alamos,
NM, 1990.

J. Shiers. High-energy physics data base.
Technical Report Program Library Q180,
CERN Computer Center, 1993.

E. Szeto and V. M. Markowitz. ERDRAW -
a graphical schema specification tool. Techni-
cal Report LBL-PUB-3084, Lawrence Berke-
ley Laboratory, Berkeley, CA, May 1991.

[SOW841

[WI931

[Zei76]

A. Shoshani, F. Olken, and H. K. T. Wong.
Characteristics of scientific databases. In Proc.
10th International VLDB Conference, pages
147-160, Singapore, August 1984.

J. Wiener and Y. Ioannidis. A Moose and a
Fox can aid scientists with data management
problems. In Proc. 4th International Workshop
on Database Programming Languages, pages
376-398, New York, NY, August 1993.

B. I? Zeigler. Theory of Modeling and Simu-
lation. John Wiley & Sons, New York, N.Y.,
1976.

285

