
SchemaSQL - A Language for Interoperability in
Relational Multi-database Systems*

Laks V. S. Lakshmanan+ Fereidoon SadriS Iyer N. Subramaniant

Abstract

We provide a principled extension of SQL, called
SchemaSQL , that offers the capability of uni-
form manipulation of data and meta-data in re-
lational multi-database systems. We develop a
precise syntax and semantics of SchemaSQL in
a manner that extends traditional SQL syntax
and semantics, and demonstrate the following. (1)
SchemaSQL retains the flavour of SQL while sup-
porting querying of both data and meta-data. (2)
It can be used to represent data in a database
in a structure substantially different from origi-
nal database, in which data and meta-data may
be interchanged. (3) It also permits the cre-
ation of views whose schema is dynamically de-
pendent on the contents of the input instance. (4)
While aggregation in SQL is restricted to values
occurring in one column at a time, SchemaSQL
permits “horizontal” aggregation and even aggre-
gation over more general “blocks” of informa-
tion. (5) SchemaSQL provides a great facility
for interoperability and data/meta-data manage-
ment in relational multi-database systems. We
provide many examples to illustrate our claims.
We outline an architecture for the implementa-
tion of SchemaSQL and discuss implementation
algorithms based on available database technology
that allows for powerful integration of SQL based
relational DBMS.

l This work was supported by grants from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC),
the National Science Foundation (NSF), and The University of
North Carolina at Greensboro.

t Dept of Computer Science, Concordia University, Mon-
treal, Canada. {laks,subbu}Ocs.concordia.ca

$ Dept of Mathematical Sciences, University of North Car-
olina, Greensboro, NC. sadri@uncg.edu

Permission to copy without fee all or port of this material is
gmnted provided that the copies ore not, mode or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its dote appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires o fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

In recent years, there has been a tremendous pro-
liferation of databases in the work place, dominated
by relational database systems. An emerging need
for sharing data and programs across the different
databases has motivated the need for Multi-database
systems (MDBS), sometimes also referred to as hetero-
geneous database systems and federated database sys-
tems. Systems capable of operating over a distributed
network and encompassing a heterogeneous mix of
computers, operating systems, communication links,
and local database systems have become highly desir-
able, and commercial products are slowly app’earing
on the market. For surverys on MDBS, see [ACM901
(in particular, Sheth and Larson, and Litwin, hark,
and Roussopoulos), and Hsiao [Hsi92].

One of the fundamental requirements in a multi-
database system is interoperabikty, which is the ability
to uniformly share, interpret, and manipulate informa-
tion in component databases in a MDBS. Almost all
factors of heterogeneity in a MDBS pose challenges for
interoperability. These factors can be classified into se-
mantics issues (e.g., interpreting and cross-relating in-
formation in different local databases), syntactic issues
(e.g., heterogeneity in database schemas, data models,
and in query processing, etc.), and systems issues (e.g.,
operating systems, communication protocols, consis-
tency management, security management, etc). We
focus on syntactic issues here. We consider the prob-
lem of interoperability among a number of component
relational databases storing semantically similar infor-
mation in structurally dissimilar ways. As was pointed
out in [KLKSl], the requirements for interoperability
even in this case fall beyond the capabilities of conven-
tional languages like SQL.

Some of the key features required of a language for
interoperability in a (relational) MDBS are the fol-
lowing. (1) The language must have an expressive
power that is independent the schema with which a
database is structured. For instance, in most conven-
tional relational languages, some queries (e.g., “find all
department names”) expressible against the database
univ-A in Figure 2 are no longer expressible when the
information is reorganized according to the schema of,
say, univ-B there. This is undesirable and should be
avoided. (2) To promote interoperability, the language

239

must permit the restructuring of one database to con-
form to the schema of another. (3) The language
must be easy to use and yet sufficiently expressive.
(4) The language must provide the full data manip-
ulation and view definition capabilities, and must be
downward compatible with SQL, in the sense that it
must be compatible with SQL syntax and semantics.
We impose this requirement in view of the importance
and popularity of SQL in the database world. (5) Fi-
nally, the language must admit effective and efficient
implementation. In particular, it must be possible to
realize it non-intrusive implementation that would re-
quire minimal additions to component RDBMS.
Ccmtcibutions: (1) We propose a language called
SchemaSQL which meets the above criteria, re-
view the syntax and semantics of SQL, and develop
SchemaSQL as a principled extension of SQL. As a
result, for a SQL user, adapting to SchemaSQL is
relatively easy. (2) We illustrate via examples the fol-
lowing powerful features of SchemaSQL : (i) uniform
manipulation of data and meta-data; (ii) creating re-
structured views and the ability to dynamically create
output schemas; (iii) the ability to express sophisti-
cated aggregate computations far beyond those express-
ible in conventional languages like SQL (Sections 3.1,
4.1). (3) We propose an implementation architecture
for SchemaSQL that is designed to build on existing
RDBMS technology, and requires minimal additions to
it, while greatly enhancing its power (Section 5). We
provide an implementation algorithm for SchemaSQL,
and establish its correctness. We, also discuss novel
query optimization issues that arise in the context of
this implementation. (4) Finally, we propose an ex-
tension to SchemaSQL for systematically resolving the
semantic heterogeneity problem arising in a MDBS en-
vironment (Section 6).

In this paper we illustrate the semantics of
SchemaSQL mainly via examples. A precise seman-
tics of SchemaSQL, together with many more exam-
ples illustrating its powerful features can be found in
[LSS96b].

2 Syntax
Our goal is to develop SchemaSQL as a principled
extension of SQL. To this end, we briefly analyze
the syntax of SQL, and then develop the syntax of
SchemaSQL as a natural extension. Our discussion
below is itself a novel way of viewing the syntax and
gemantics of SQL, which, in our opinion, helps a better
understanding of SQL subtleties.

In an SQL query, the (tuple) variables are declared
in the from clause. A variable declaration has the
form <range> <var>. For example, in the query in
Figure l(a), the expression employees T declares T as

a variable that ranges over the (tuples of the) relation
employees (in the usual SQL jargon, these variables
are called aliases.) The select and where clauses re-
fer to (the extension of) attributes, where an attribute
is denoted as <var>. <attName>, var being a (tuple)
variable declared in the from clause, and attName be-
ing the name of an attribute of the relation (extension)
over which var ranges.

When no ambiguity arises, SQL permits certain ab-
breviations. Queries of Figure l(b,c) are equivalent to
the first one, and are the most common ways such
queries are written in practice. Note that in Figures
l(b) and l(c), empl 0 y ees acts essentially as a tuple
variable.
The SchemaSQL syntax extends that of SQL in sev-
eral directions.

The federation consists of databases, with each
database containing relations. The syntax allows
to distinguish between (the components of) dif-
ferent databases.

To permit meta-data queries and restructuring
views, SchemaSQL permits the declaration of
other types of variables in addition to the (tuple)
variables permitted in SQL.

Aggregate operations are generalized in
SchemaSQL to make horizontal and block aggre-
gations possible, in addition to the usual vertical
aggregation in SQL.

In this section we will concentrate on the first two
aspects. Restructuring views and aggregation are dis-
cussed in Section 4.
Variable Declarations in SchemaSQL

SchemaSQL permits the declaration of variables
that can range over any of the following five sets: (i)
names of databases in a federation; (ii) names of the
relations in a database; (iii) names of the attributes in
the scheme of a relation; (iv) tuples in a given relation
in a database; and (v) values appearing in a column
corresponding to a given attribute in a relation. Vari-
able declarations follow the same syntax as <range>
<var> in SQL, where var is any identifier. However,
there are two major differences. (1) The only kind of
range permitted in SQL is a set of tuples in some re-
lation in the database, whereas in SchemaSQL any of
the five kinds of ranges above can be used to declare
variables. (2) More importantly, the range specifica-
tion in SQL is made using a constant, i.e. an identifier
referring to a specific relation in a database. By con-
trast, the diversity of ranges possible in SchemaSQL
permits range specifications to be nested, in the sense
that it is possible to say, e.g., that X is a variable rang-
ing over the relation names in a database D, and that
T is a tuple in the relation denoted by X. These ideas
are made precise in the following definition.

240

select T. name
from employees T
where T.department =

“Marketing”
(a>

select employees.name select name
from from employees
where

employees
employees.department =

“Marketing”
where department =

(b)
“Marketing”

cc>

Figure 1: Syntax of simple SQL queries
Definition 2.1 (Range Specifications) The con- section we discuss SchemaSQL queries with a fixed
cepts of range specifications, constant, and variable output schema. The topics of dynamic output schema
identifiers are simultaneously defined by mutual recur- and restructuring views are discussed in the next sec-
sion as follows: tion.

1. Range specifications are one of the following five
types of expressions, where db , rel , attr are

any constant or variable identifiers (defined in 2
below).

The following federation of databases is used as
our running example. Consider the federation con-
sisting of four databases, univ-A, univ-B, univ-C,
and univ-D. Each database has (one or more) rela-
tion(s) that record(s) the salary floors for employees
by their categories and their departments, as follows: (4

0)

(4

(4

(4

The expression -> denotes a range corre-
sponding to the set of database names in the
federation.
The expression db-> denotes the set of rela-
tion names in the database db.
The expression db: :rel-> denotes the set of
names of attm’butes in the scheme of the re-
lation rel in the database dbl.
db: :rel denotes the set of tuples in the re-
lation rel in the database db.
db: :rel. attr denotes. the set of values ap-
pearing in the column named attr in the re-
lation rel in the database db.

2. A variable declaration is of the form <range>
<var> where <range> is one of the range speci-
fications above and <var> is an identifie?. An
identifier <var> is said to be a variable if it is de-
clared as a variable by an expression of the form
<range> <var> in the from clause. Variables de-
clared over the ranges (a) to (e) are called db-
name, rel-name, attr-name, tuple, and domain
variables, respectively. Any identifier not so de-
clared is a constant.

As an illustration of the idea of nesting variable dec-
larations, consider the clause from dbl-> X, dbl: :X
T. This declares X as variable ranging over the set of
relation names in the database dbl and T as a vari-
able ranging over the tuples in each relation X in the
database dbl.

The following sections provide several examples
demonstrating various capabilities of-SchemaSQL.

3 Fixed Output Schema

In this and the next section, we illustrate via examples
the many powerful features of SchemaSQL . In this

‘The intuition for the notation is that we can regard the
attributes of a relation as written to the right of- the relation
name itself!

‘Abbreviations similar in spirit to those allowed for SQL are
also allowed in SchemclSQL .

univ-A has a relation salInf o (category,
dept , salFloor).

univ-B has a relation salInfo (category,
deptl, dept2, . . . >. Note that the domains of
deptl, dept2, . . . are the same as the domain
of salFloor in univ-A: : salInf o.

univ-C has one relation for each department with
the scheme depti (category, salFloor).

univ-D has a relation salInfo (dept, catl,
cat2, . . . >. Note that the domains of cat 1,
cat2, . . . are the same as the domain of
salFloor in univ-A: : salInf o.

Figure 2 shows some sample data in each of these four
databases.
Example 3.1 List the departments in univ-A that
pay a higher salary floor to their technicians compared
with the same department in univ-B.

select A.dept
from univ-A::salInfo A, univ-B::salInfo B,

where
univiFi;salInfo-> httB

<> category” and
A. dept = AttB and

(91) A.category = “technician” and
B.category = “technician” and
A.salFloor > B.AttB

Explanation: Variables A and B are (SQL-like) tupie
variables ranging over the relations univ-A : : salInf o
and univ-B : : salInf o, respectively. The variable
AttB is declared as an attribute name of the rela-
tion univ-B: : salInfo. It is intended to be a depti
attribute lhence the condition AttB <> “category”
in the where clause). The rest of the query is self-
explanatory. 8

Example 3.2 List the departments in univ-C that
pay a higher salary floor to their technicians compared
with the same department in univ-D.

241

univ-B

univ-A

salInf0

Figure 2: Representing Similar Information
and univ-D

salInf0

-1

univ-D
salInf0

pyipz&q

Using Different Schemas in Multiple Databases univ-A, univ-B, univ-C,

pl;ct RelC
unlv-C-> RelC, univ-C::RelC C,
univ-D::salInfo D

(02) where RelC = D.dept and .
C. category = “tec6nician” and
C.salFloor > D.technician

3.1 Aggregation with Fixed Output Schema

In SQL, we are restiicted to %ertical” (or column-
wise) aggregation on a predetermined set of columns,
while SchemaSQL allows “horizontal” (or row-wise)
aggregation, and also aggregation over more general
“blocks” of information. We illustrate these points
with examples. The formal development of semantics
can be found in [LSS96b].

Example 3.3 The query

(co)
select
from

where
group by

T.category, avg(T.D)
univ-B::salInfo-> D,
univ-B : : salInfo T
D 0 “category”
T.category

computes the average salary floor of each category of
employees over all departments in univ-6. This cap-
tures horizontal aggregation. The condition D <>
“category” enforces the variable D to range over de-
partment names. Hence a knowledge of department
names (and even the number of departments) is not
required to express this query. Alternatively, we could
enumerate the departments, e.g., use the condition (D
= “Math” or D = “CS” or . ..)“. By contrast, the query

select T.category, avg(T.salFloor)
(cm from univ-C-> D, univ-C::D T

group by T.category

computes a similar information from univ-C. Notice
that the aggregation is computed over a multiset of
values obtained from several relations in univ-C. In a

3An elegant solution would be to specify some kind of “type
hierarchy” for the attributes which can then be used for saying
“D is an attribute of the following kind’, rather than “D is
one of the following attributes”. Our proposed extension to
SchemaSQL discussed in Section 6, addresses this issue.

univ-C

cs

Math
category salFloor
Prof 70,000
Assoc Prof 60.000

I I

similar way, aggregations over values collected from
more than one database can also -be expressed. Block
aggregations of a more sophisticated form are illus-
trated in Example 4.3. n

4 Dynamic Output
structuring Views

The result, of an SQL query

Schema and Re-

(or view definition) is a
single relation. Our discussion in the previous section
was limited to the fragment of SchemaSQL queries
that produce one relation, with a fixed schema, as out-
put. In this section, we provide examples to demon-
strate the following capabilities of SchemaSQL . (i)
declaration of dynamic output schema, (ii) restruckr-
ing views, and (iii) interaction between dynamic output
schema creation and aggregation.

We illustrate the capabilities of SchemaSQL for $he
generation of an output schema which can dynami-
cally depend on the input instance (i.e. the databases
in the federation). While aggregation in SQL is re-
stricted to vertical aggregation on a predetermined set
of columns, we have so far seen that SchemaSQL can
express horizontal aggregation and aggregation over
more general “blocks” (see Example 3.3). In this sec-
tion, we shall see that the combination of dynamic
output schema and meta-data variables allows us to
express vertical aggregation on a variable number of
columns as well. The examples in this and later sec-
tions are based on the database schema of Figure 2.

Example 4.1 Consider the relation saIInfo in the
database univ-B. The following SchemaSQL view def-
inition restructures this inform&ion into the format of
the schema univ-A : : salInf o.

create view
BtoA::salInfo(category, dept, salFloor) as

select T.category, D, T.D
(95) from univ-B::salInfo-> D,

where
univ-9::salInfy T
D <> category

242

Explanation: Two variables are declared in the
from clause: T is a tuple variable ranging over the
tuples of relation univ-B: : salInf o, and D is an
attribute-name variable ranging over the attributes of
univ-B : : salInf o. The condition in the where clause
forces D to be a department name. Finally, each output
tuple (T . category, D , T . D) lists the category, depart-
ment, name, and the corresponding salary floor (which
is in the format of univ-A : : salInf 0).

Note that each tuple in the univ-B: : salInf o for-
mat generates several tuples in the univ-A : : salInf o
scheme. The mapping, in this respect, is one-to-many.
But each instantiation of the variables in the query,
actually contributes to one output tuple. n

The following example illustrates restructuring involv-
ing dynamic creation of output schema.

Example 4.2 This view definition restructures data
in univ-A: : salInf o into the format of the schema
univ-B::salInfo.

create view AtoB: : salInf o (cateEory , D> as
select A. category, A. salFlo& -

(06) from univ-A: : salInfo A, A.dept D

Explanation: Each tuple of univ-A: : salInf o con-
tains the salary floor for one category in a single de-
partment, while each tuple of univ-B: : salInf o con-
tains the salary floors for one category in every de-
partment. Intuitively, all tuples in univ-A : : salInf o
corresponding to the same category are grouped to-
gether and “merged” to produce one output tuple.

Another aspect of this restructuring view is the use
of variables in the create view clause. The variable D
in create view AtoB: : salInfo(category, D) is de-
clared as a domain variable ranging over the values of
the dept attribute in the relation univ-A: : salInf o.
Hence, the schema of the view AtoB : : salInf o is “dy-
namicalljr” declared as AtoB : : salInf o (category,
deptl, deptn) , where dept 1, . . . , deptn are
the values occurring in the dept column in the relation
univ-A: : salInf o.

The restructuring in this example corresponds to
a many-to-one mapping from instantiations to output
tuples. n

In the full paper [LSS96b], we present additional ex-
amples to illustrate restructuring views that distribute
values from one tuple into many relations, and vice-
versa. Examples of many-to-many mappings (e.g.
mappings between schemes of univ-B and univ-D) are
also given there.

4.1 Aggregation with Dynamic View Defini-
tion

In Section 3, we illustrated the capability of
SchemaSQL for computing (i) horizontal aggregation
and (ii) aggregation over blocks of information col-
lected from several relations, or even databases. In this

section, we shall see that when SchemaSQL aggrega-
tion is combined with its view definition facility, it is
possible to express vertical aggregation over a variable
number of columns, determined dynamically by the
input instance.

Example 4.3 Suppose’that in the database univ-D
in Figure 2, there is an additional relation
f acuity (dname , f name> relating each department to
its faculty. Consider the query

select U.fname, avg(T.C)
from univ-D::salInfo-> C,

(Q7) univ-D::salInfo T, univ-D::faculty U
where C <> “dept” and T.dept = U.dname
group by U.fname

is essentially defined using the query Q7.

Q7 computes, for each faculty, the faculty-wide av-
erage floor salary of all employees (over all depart-
ments) in the faculty. Notice that the aggregation
is performed over ‘rectangular blocks’ of information.
Consider now the following view definition QS, which

create view averages::salInfo(faculty, C) as
select U.fname, avg(T.C)
from univ-D::salInfo-> C,

(Q8) univ-D : :salInfo T, univ-D::faculty U
where C 0 “dept” and T.dept = U.dname
group by U.fname

The view defined by QS actually computes, for each
faculty, the average floor salary in each category of em-
ployees (over all departments) in the faculty. This is
achieved by using the variable C, ranging over cat-
egories, in the dynamic output schema declaration
through the create view statement. n

5 Implementation Issues

In this section we describe the architecture of a sys-
tem for implementing a multidatabase querying and
restructuring facility based on SchemaSQL. A high-
light of our architecture is that it builds on existing
architecture in a non-intrusive way, requiring mini-
mal extensions to prevailing database technology. This
makes it possible to build a SchemaSQL system on top
of (already available) SQL systems. We also identify
novel query optimization opportunities that arise in a
multidatabase setting.

The architecture consists of a SchemaSQL server
that communicates with the local databases in the fed-
eration. We assume that the meta-information com-
prising of component database names, names of the
relations in each database, names of the attributes
in each relation, and possibly other useful informa-
tion (such as statistical information on the component
databases useful for query optimization) are stored in
the SchemaSQL server in the form of a relation called

243

Federation System Table (FST). Due to the varying
degrees of autonomy component databases enjoy in a
multidatabase system, some or all of this information
may not available. In [LSS96b] we describe a flex-
ible architecture that makes use of as much of the
available information as possible. In discussions here,
we assume that the component database names as
well as their schema information is available in the
SchemaSQL server.

In our architecture, global SchemaSQL queries are
submitted to the SchemaSQL server, which deter-
mines a series of local SQL queries and submits them
to the local databases. The SchemaSQL server then
collects the answers from local databases, and, using
its own resident SQL engine, executes a final series of
SQL queries to produce the answer to the global query.
Intuitively, the task of the SchemaSQL server is to
compile the instantiations for the variables declared in
the query, and enforce the conditions, groupings, ag-
gregations, and mergings to produce, the output. Many
query optimization opportunities at different stages,
and at different levels of abstraction, are possible, and
should be employed for efficiency (see discussions at
the end of this section). Figure 3 depicts our archi-
tecture for implementing SchemaSQL. Algorithm 5.1,
gives a more detailed account of our query processing
strategy.

Query processing in a SchemaSQL environment
consists of two major phases. In the first phase, ta-
bles called VIT’s (Variable Instantiation Table) cor-
responding to the variable declaration in the from
clause of a SchemaSQL statement are generated. The
schema of a VIT consi&s of all the variables in one
or more variable declarations in i&e from clause and
its contents correspond to instantiat’ions of these vari-
ables. VIT’s are materialized by executing appro-
priate SQL queries on the FST and/or component
databases. In the second phase, the SchemaSQL query
is rewritten into an equivalent SQL query on the
VIT’s and the generated answer is appropriately pre-
sented to the user. Our algorithm below considers
SchemaSQL queries with a fixed output schema pos-
sibly with aggregation. A complete algorithm for
the implementation of the fuil language, as well as
novel query optimization strategies are discussed in
[LSS96b].

In the following, we assume that the FST has
the scheme FST (db-name, rel-name, attr-name).
Also, we refer to the db-name, rel-name, and attr-
name variables (defined in Definition 2.1) collectively
as meta-variables.

Algorithm 5.1 SchemaSQL Query Processing
INPUT: A SchemaSQL query with a fixed output
schema and aggregation.

OUTPUT: Bindings for the variables appearing in the
select clause of the SchemaSQL statement.
METHOD: The algorithm consists of two phases.
(1) Corresponding to a set of variable declarations in
the from clause, create VITs using one or more SQL
queries against soine local databases and/or the FST.
(2) Rewrite the original SchemaSQL query against the
federation into an equivalent query against the set of
VIT relations and run it using the resident SQL server.
Phase I
(0) The input SchemaSQL statement is rewritten into
the following form such that the conditions in the
where clause are in conjunctive normal form.

select Sl,...,S,
from (rangel) VI, . . . , (rangek) Vk
where (condl) and . . . and (cond,)
groupby groupList
having haveconditions

(1) Consider the variable declaration for variable Vi.
(a) If Vi is a meta-variable: In this case, all variables
in the declaration (rangei) Vi range over meta-data.
Create VITi with a schema consisting of Vi and any
variables appearing in (rangei), and contents obtained
using an appropriate SQL query against the FST. For
example, let 'D: :rel-> Vi ’ be the declaration and
one of the conditions in the where clause be ‘Vi .op. c’
where .op. is a (in)equality operator and c is a constant.
Obtain VITi corresponding to VITi as:

select db-name as D, attr-name as Vi
from FST
where rel-name = ‘rel’ and attr-name .op. c

Meta-variable declarations of other forms are han-
dled in a similar way.
(b) If Vi is a domain variable: Group together domain
variable declarations that are declared using the same
tuple variable as for Vi. Create VITi with schema con-
sisting of the domain variables in the group. Obtain
the (tuple of) bindings for the attr-name variables (in
the range declarations) in the group, using their cor-
responding VIT’s. Using this, generate a set of SQL
queries against local databases. The contents of VITi
will be the union of answers to these queries. For ex-
ample, let db::rel T be a tuple variable declaration,
‘T.A Vi’ be the declaration for the domain variable
and ‘Vi .op. c’ be a condition in the where clause, where
.op. is a (in)equality operator and c is a constant. Let
‘T.attr Vj’ be another domain variable declaration in
the from clause.

(i) Obtain the bindings for attr-name variable A from
its VIT, and name it relation T.

(ii) For a E T, generate an SQL query against
database db:
select a as Vi, attr as Vj
from rel
where a .op. c

(iii) Obtain VITi as the union of answers to all the
SQL queries generated in (ii), against db..

Domain-variable declarations of other forms (e.g.
when db, rel, attr are also variables) are handled in a
similar way.

244

< >

Resident
SQL Engine

final series of
answers to yp SQL queries

queries Ql . . . Qn ,
collected

Federation
User

SchemaSQL

Query

‘schemaSQL final answer
---m-e-----

Server

optimized local

SQL query Qn

Figure 3: SchemaSQL - Implementation Architecture

(c) If Vi is a tuple variable: Generate bindings for the
meta-variables in (rangei) as in case (a). The at-
tributes of the VIT corresponding to Vi are obtained
by analyzing the select, where, group by, and having
clauses. We consider a variable V as relevant in the
context of tuple variable Vi, if (i) V is of the form Vi.C
or Vi.c (C, c are a variable and constant respectively)
and occurs in the select, groupby, or having clause, or
(ii) V occurs in the declaration of Vi and either is com-
pared with a variable in the where clause, or occurs in
the select clause, or (iii) V occurs in a relevant variable
of the form Vi.V and V is compared with a variable in
the where clause. The schema of the VIT is the set
consisting of all relevant variables in the context of Vi.
Findly, the ontents of VIT are obtained by generat-
ing approp l-f late SQL queries against local databases.
In general, if there are occurrences of the form Vi.C
in the select or the where clause, the VIT would be
obtained as a union of several SQL queries.

For example, let the select clause contain an aggre-
gation of the form avg(Vi.C), the variable declaration
be ‘db::R Vi’ and two of the conditions in the where
clause be ‘Vi.al .op. Vj.az’ and ‘Vi.as .op. c’, where
al, a2, as, c are constants.

6)

(ii)

(ii)

Obtain a VIT corresponding to db-> R (as in (a)
above) and name it T.

The schema of VITi is {&.C:, K.al}.

For each T E T, obtain the attribute names in re-
lation T (using an SQL query on the FST) and
reycate the following SQL statement.

1,. . . , ck be the instantiations of C, corre-
sponding to T.
select cl as Vi.C, al as Vi.al
from r
where Vi.as .op. c
UNION
. . .
UNION
select ck as vi.c, al as vi.al
from r
where Vi.a3 .op. c

(iii) Obtain VITi as the union of all the SQL state-
ments generated in (ii).

Tuple variable declarations of other forms are han-
dled in a similar way.
Phase II

Execution of this phase happens in the SchemaSQL
server. The SchemaSQL query is rewritten into an
equivalent conventional SQL statement on the VIT’s
generated in Phase I, in the following way. (a) The se-
lect, group by, and having clauses of the rewritten query
are obtained by copying the corresponding clauses in
the SchemaSQL query after disambiguating the at-
tribute names that appear in more than one VIT; (b)
the from clause consists of the subset of VIT’s relevant
to the final result, and (c) the where clause is obtained
by retaining the conditions involving tuple variables
and by adding a condition ‘VITi.X = VITj.X’ for
tables VITi and VITj having a common attribute.

It is interesting to note that using our algorithm,
the novel horizontal aggregation (Section 3.1, Exam-
ple 3.3) which cannot be performed in a conventional
SQL system, can be easily realized in our framework.
More general kind of ‘block’ aggregations can also be
handled in a similar way - details can be found in
[LSS96b], which also contains the proof of the follow-
ing theorem.

Theorem 5.1 Algorithm 5.1 correctly computes an-
swers to SchemaSQL queries.

Example 5.1 In this example, we illustrate our al-
gorithm using a variant of the query Q2 of Example
3.2.
‘List the departments in univ-C that pay a higher
salary floor to their technicians compared with the
same department in univ-D. List also the (higher)
pay.’

245

Figure 4: Example - Query Processing

select RelC, C.salFloor
from univ-C-B RelC, univ-C::RelC C,

univ-D::salInfo D
where RelC = D.dept and

C.category = “technician” and
C.salFloor > D.technician

Phase I
VITl corresponding to the variable declaration

univ-C-> RelC is created using:

;;el;ct $-+-name as RelC

where db-name = ‘univ-C’

Figure 4 shows VITl. To generate the SQL state-
ment that creates VITz, the following SQL queries are
issued against the FST.

select attr-name
;f;ro~~FsT
db-name = ‘univ-C’
and rel-name = ’ cs’

select attr-name
from FST
where
db-name = ‘univ-C’
and rel-name = ‘math’

Let the answer to both the queries be {category,
salFloor). VITz, corresponding to univ-C : : RelC C is
obtained by querying the database univ-C using:

select
from
where

select

from
where

‘cs’ as RelC, cs.salFloor as C.salFloor

Z . category = ‘technician’

‘%gv as RelC,
iE;k.salFloor as C.salFloor
math.category = ‘technician’

To obtain VIT3 corresponding to univ-D : : salInf o
D, querying is first done on the FST to obtain the
grvebof the attributes in relation sa.Unfo of database

select attr-name
from FST
where db-name = ‘univ-D’ & rel-name = ‘salInfo’

Let the answel;to this query be {dept, prof, techni-
cian}. VITS, shown in Figure 4 is obtained by query-
ing the database univ-D:

select dept as D.dept,

from
“,B,+$i.gim as D.technician

Phase II
Having obtained all the VIT’s corresponding to the

variable declarations, Phase II now consists of rewrit-
ing the SchemaSQL statement into the following SQL
statement to obtain the final answer.
select RelC, C.salFloor
from VIT2, VIT3
where RelC = D.deDt and

C.salFloor >*D.technician
n

A SchemaSQL system on the PC-Windows plat-
form is currently under implementation.

Query Optimization
There are several opportunities for query optimization
which are peculiar to the MDBS environment. In the
following, we identify the major optimization possi-
bilities and sketch how they can be incorporated in
Algorithm 5.1.

1.

2.

3.

4.

5.

The conditions in the where clause of the input
SchemaSQL query should be pushed inside the lo-
cal spawned SQL queries so that they are as ‘tight’
as possible. Algorithm 5.1 incorporates this opti-
mization to some extent.

Knowledge of the variables in the select and where
clauses can be made use of to minimize the size
of the VIT’s generated in Phase I. For example, if
certain attributes are not required for processing
in Phase II, they can ‘dropped’ while generating
the local SQL queries.

If more than one tuple variable refers to the same
database, and their relevant where conditions do
not involve data from another database, the SQL
statements corresponding to these variable dec-
larations should be combined into one. This
would have the effect of combining the VIT’s
corresponding to these variable declarations and
thus reducing the number of spawned local SQL
queries. This can be incorporated by modifying
the step I(c) of our algorithm.

One of the costliest factors for query evaluation in
a multidatabase environment is database connec-
tivity. We should minimize the number of times
connections are made to a database during query
evaluation. Thus, the spawned SQL statements
need to be submitted (in batches) to the compo-
nent databases in such a way that they are eval-
uated in minimal number of connections to the
databases.

In view,of the sideways information passing (sip)
[BFU36] technique inherent in our algorithm, re-
ordering of variable declarations would result in
more efficient query processing. However, the
heuristics that meta-variables obtain a signifi-
cantly less number of bindings when compared
to other variables in a multidatabase setting,

246

presents novel issues in reordering. For instance
the order ‘db: :r.a R, -> D, D-> R’ suggested
by the conventional reordering strategies could be
worse than ‘ -> D, D-> R, db::r.a R’ because
of the lower number of bindings R obtains for
T/IT2 in the latter.

We should make use of works such as [LN90,
LNSSO] to determine which of the VIT’s should
be generated first so that the tightest bindings
are passed for generating subsequent VITs.

If parallelism can be supported, SQL queries to
multiple databases can be submitted in parallel.

Replication and Inconsistency
Replication of data, and inconsistency among data
from local databases are common in multidatabase sys-
tems. The view facility of SchemaSQL and our archi-
tecture provide the means to cope with these difficul-
ties.
Controlled (intentional) replication can be addressed
through the Federation System Table, FST. A copy of
the replicated data is identified as the pramay copy,
and the FST routes all references to the replicated data
to the primary copy. The choice of the primary copy
is influenced by factors such as efficiency of query pro-
cessing, network connectivity, and the load at local
sites. In a dynamic scheme, the FST is updated in
response to changes in the network (e.g., network dis-
connection) and the load at local sites.
Data replication and overlap among (independent) lo-
caI sites, with the possibility of inconsistency, is much
subtler. The view facility:of SchemaSQL can be used
to resolve inconsistencies by exposing only the appro-
priate data through the view. This is similar to the
approach taken in multidatabase systems utilizing an
(integrated) global schema. Our architecture is more
flexible, and does not require a global schema, yet, the
view facility can mimic the role played by the global
schema for resolving data inconsistency.

6 Semantic Heterogeneity

One of the roadblocks to achieving true interoperabil-
ity is the heterogeneity that arises due to the differ-
ence in the meaning and interpretation of similar data
across the component systems. This semantic hetero-
geneity problem has been discussed in detail in [Siggl],
[KCGS93], [HM93]. A promising approach to dealing
with semantic heterogeneity is the proposal of Sciore,
Siegel, and Rosenthal [SSR94]. The main idea behind
their proposal is the notion of semantic vdues, ob-
tained by introducing an explicit context information
to each data object in the database. In applying this
idea to the relational model, they develop an exten-
sion of SQL called Context-SQL (C-SQL) that allows

for explicitly accessing the data as well as its context
information.

In this section, we sketch how SchemaSQL can be
extended with the wherewithal to tackle the seman-
tic heterogeneity problem. We extend the proposal
of [SSR94], by associating the context information
to relation names as well as attribute names, in ad-
dition to the values in a database. Also, in the
SchemaSQL setting, there is a natural need for in-
cluding the type information of an object as part of
its context information. We propose techniques for in-
tensionally specifying the semantic values as well as
for algorithmically deriving the (intensional) semantic
value specification of a restructured database, given
the old specification and the SchemaSQL view defi-
nition. The following example illustrates our ideas.
Details can be found in [LSS96b].

Example 6.1 Consider the database univlnfoA hav-
ing a single relation stats with scheme {cat, cs, math,
Ontario, quebec}. This database stores information on
the floor salary of various employee categories for each
department (as in univ-B of the university federation)
as well as information on the average number of years
it takes to get promoted to a category, in each province
in the country. The type information of the objects in
the database univlnfoA is stored in a relation called isa
and is captured using the following rules4:
isa(cs, dept) t
isa(math, dept) t
isa(ontario,prov) e
isa(quebec, pruv) t
isa(C,cat) t stats[cat + C]
isa(S, sal) t stats[D + S], isa(D, dept)
isa(Y, gear) t stats[P -+ Y], isa(P,prov)

Now, consider restructuring univlnfoA into univln-
foB which consists of two relations salstats{dept, prof,
assoc-prof} and timestats{prov, prof, assoc-prof}. sal-
stats has tuples of the form < d, sr, sz >, represent-
ing the fact that d is a department that has a floor
salary of si for category professor, and sz for asso-
ciate professor. A tuple of the form < p, yr , yz > in
timestats says that p is a province in which the av-
erage time it takes to reach the category professor is
yi and to reach the category associate professor is yz.
The following SchemaSQL statements perform the re-
structuring that yields univlnfoB.

create view
univInfoB: :salstats(dept, T.cat) as

select D, T.D
from univInfoA: : stats T,

univInf oA: : stats-> D,
where D isa ‘dept’
create view

4The syntax of the type specification rules is ‘baaed on the
syntax of SM [LSS96a].

247

’ univInfoB::timestats(prov, T.cat) as
select P, T.P
from univInf oA: : stats T,

where
univInfoA::stats-> P,
P isa ‘prov’

Note how the type information is used in the where
clause to elegantly specify the range of the attribute
variables. Our algorithm that processes the restructur-
ing view definitions derives the following intensional
type specification for univlnfoB:
isa(prof, cat) t
isa(assoc-prof, cat) t
isa(D,dept) t saZstats[dept + D]
isa(S, sal) t saZstats[C + S], isa(C, cat)
isa(P,prov) t timestats[prov + P]
isa(Y, year) t timestats[P + Y], isa(P,prov)

Query processing in this setting involves the fol-
lowing modification to the processing of comparisons
mentioned in the user’s query. The comparison is per-
formed after (a) finding the type information using the
specification, (b) finding the associated context infor-
mation, and (c) applying the appropriate conversion
functions. [LSS96b] has the details.

7 Comparison with Related Work

In this section, we compare and. contrast our proposal
against some of the related work for meta-data manip-
ulation and multidatabase interoperability.

The features of SchemaSQL that distinguishes it
from similar works include

Uniform treatment of data and metadata.

No explicit use of object identifiers.

Downward compatibility with SQL.

Comprehensive aggregation facility.

Restructuring views, in which data and meta-data
may be interchanged.

Designed specifically for interoperability in multi-
database systems.

Further, we also discuss the implementation of
SchemaSQL on a platform of SQL servers.

In [Lit89, GLRS93], Litwin et al. propose a multi-
database manipulation language called MSQL that is
capable of expressing queries over multiple databases
in a single statement. MSQL extends the traditional
functions of SQL to the context of a federation of
databases. The salient, features of this language in-
clude the ability to retrieve and update relations in
different databases, define multi-database views, and
specify compatible and equivalent domains across dif-
ferent databases. [MR95] extends MSQL with fea-
tures for accessing external functions (for resolving
semantic heterogeneity) and for specifying a global

schema against which the component databases could
be mapped. Though MSQL (and its extension) has
facilities for ranging variables over multiple database
names, its treatment of data and meta-data is non-
uniform in that relation names and attribute names
are not given the same status as the data values. The
issues of schema independent querying and resolving
schematic discrepancies of the kind discussed in this
paper, are not addressed in their work.

Many object-oriented query languages, by virtue of
treating the schema information as objects, are ca-
pable of powerful meta-data querying and manipula-
tion Some of these languages include XSQL (Kifer,
Kim, and Sagiv [KKS92]), HOSQL (Ahmed et al.
[ASD+Sl]), and OSQL (Chomicki and Litwin [CL93]).

XSQL ([KKS92]) has its logical foundations in F-
logic ([KLW95]) d an is capable of querying and re-
structuring object-oriented databases. However, it
is not suitable for the needs addressed in this pa-
per as its syntax was not designed with interoper-
ability as a main goal. Besides, the complex nature
of this query language raises concerns about effective
and efficient implementability, a concern not addressed
in [KKS92]. The Pegasus Multi-database system
([ASD+Sl]) uses a language called HOSQL as its data
manipulation language. HOSQL is a functional object-
oriented language that incorporates non-procedural
statements to manipulate multiple databases. OSQL
([CL93]), an extension of HOSQL is capable of tackling
schematic discrepancies among heterogeneous object-
oriented databases with a common data model. Both
HOSQL and OSQL do not provide for ad-hoc queries
that refer to many local databases in the federation in
one shot. While XSQL, HOSQL, and OSQL have a
SQL flavor, unlike SchemaSQL , they do not appear
to be downward compatible with SQL syntax and se-
mantics. In other related work, [Ros92] proposes an
interesting algebra and calculus that treats relation
names at par with the values in a relation. However,
its expressive power is limited in that attribute names,
database names, and comprehensive aggregation capa-
bilities are not supported.

In [LBT92], Lefebvre, Bernus, and Topor use F-
logic ([KLW95]), t o reconcile schematic discrepan-
cies in a federation of relational databases. Unlike
SchemaSQL which can provide a ‘dynamic global
schema’, ad hoc queries that refer the data and schema
components of the local databases in a single state-
ment cannot be posed in their framework.

UniSQL/M [KGK+95] is a multidatabase system
for managing a heterogeneous collection of relational
database systems. The language of UniSQL/M,
known as SQL/M, provides facilities for defining a
global schema over related entities in different local
databases, and to deal with semantic heterogeneity is-

248

sues such as scaling and unit transformation. How-
ever, it does not have facilities for manipulating meta-

. data. Hence features such as restructuring views that
transform data into metadata and vice versa, dynamic
schema definitions, and extended aggregation facilities
supported in SchemaSQL are not available in SQL/M.
The emerging standard for SQL3 ([SQL96, Bee93])
supports ADTs and oid’s, and thus shares some fea-
tures with higher-order languages. However, even
though it is computationally complete, to our knowl-
edge it does not directly support the kind of higher-
order features in SchemaSQL.

Krishnamurthy and Naqvi [KN88] and Krishna-
murthy, Litwin, and Kent [KLKSl] are early and influ-
ential proposals that demonstrated the power of using
variables that uniformly range over data and meta-
data, for schema browsing and interoperability. While
such ‘higher-order variables’ admitted in SchemaSQL
have been inspired by these proposals, there are major
differences that distinguish our work from the above
proposals. (i) These languages have a syntax closer
to that of iogic programming languages, and far from
that of SQL. (ii) M ore importantly, these languages
do not admit tuple variables of the kind permitted in
SchemaSQL (and even SQL). This limits their expres-
sive power. (iii) Lastly, aggregate computations of the
kind discussed in Sections 3.1 and 4.1 are unique to
our framework, and to our knowledge, not addressed
elsewhere in the litefature.

In the context of multi-dimensional databases
(MDDB) and on-line analytical processing (OLAP),
there is a great need for powerful languages expressing
complex forms of aggregation ([CCS95]). The power-
ful features of SchemaSQL for horizontal and block ag-
gregation will be especially useful in this context (e.g.
see Examples 3.3, 4.3). We have recently observed
that the Data Cube operator proposed by Gray et al.
([GBLP96]) can be simulated in SchemaSQL. Unlike
the cube operator, SchemaSQL can express any subset
of the data cube to any level of granularity.

In other rel&ed work, Gyssens et al. ([GLS96]) de-
velop a general data model called Tabular Data Model,
which subsumes relations and spreadsheets as special
cases. They develop an algebra for querying and re-
structuring tabular information and show that the al-
gebra is complete for a broad .class of natural tra;ns-
formations. They also demonstrate that the tabular
algebra can serve as a foundation for OLAP. Restruc-
turing views expressible in SchemaSQL can also be ex-
pressed in their algebra but they do not address aggre-
gate computations.

In [LSS96a, LSS93], we proposed a logic-based
query/restructuring language SchemaLog, for facil-
itating interoperability in multidatabase systems.
SchemaLog admits a simple syntax and semantics, but

allows for expressing powerful queries and programs in
the context of schema browsing and interoperability.
A formal account of SchemaLog’s syntax and seman-
tics can be found in [LSS96a]. SchemaLog can also
express the complex forms of aggregation discussed in
this paper.

SchemaSQL has been to a large extent inspired
by SchemaLog. Indeed, the logical underpinnings of
SchemaSQL can be found in SchemaLog [LSS96b].
However, SchemaSQL is not obtained by simply
“SQL-izing” SchemaLog. There are important differ-
ences between the two languages. (i) SchemaSQL has
been designed to be as close as possible to SQL. In this
vein, we have developed the syntax and semantics of
SchemaSQL by extending that of SQL. SchemaLog on
the other hand has a syntax based on logic program-
ming. (ii) Answers to SchemaSQL queries come with
an associated schema. In SchemaLog, as in other logic
programming systems, answers to queries are simply a
set of (tuples of) bindings of variables in the query (un-
less explicitly specified using a restructuring rule). (iii)
The aggregation semantics of SchemaSQL is based on
a ‘merging’ operator ([LSS96b]). There is no obvious
way to simulate merging in SchemaLog. (iv) To facil-
itate an ordinary SQL user to adapt to SchemaSQL
in an easy way, we have designed SchemaSQL with-
out the following features present in SchemaLog - (a)
function symbols and (b) explicit access to tuple-id’s.
As demonstrated in this paper, the resulting language
is simple, yet powerful for the interoperability needs
in a federation.
Acknowledgements: We would like to thank
Fr6d&ic Gingras for his valuable comments at various
stages of evolution of this paper and the anonymous
referees for their suggestions that helped improve the
paper.

References
[ACM901 ACM. ACM Computing Surveys, vol-

ume 22, Sept 1990. Special issue on HDBS.

[ASD+Sl] Ahmed, R., Smedt, P., Du, W., Kent, W.,
Ketabchi, A., and Litwin, W. The Pegasus
heterogeneous multidatabase system. IEEE
Computer, December 1991.

[Bee931 Beech, D. Collections of objects in SQL3.
In Proc. 19th VLDB Conference, 1993.

[BR86] Bancilhon, F. and Ramakrishnan, R. An
amateur’s introduction to recursive auerv-
processing strategies. In Proc. ACM’ SIb-
MOD, 1986.

[CCS95] Codd, E.F., Codd, S.B., and Sal-
ley C.T. Providing OLAP (on-line
analytical processing) to user-analysts:
An IT mandate, 1995. White paper
www.arborsoft.com/papers/coddTOC.html

249

[CL931

[GBLP96]

[GLR$93]

[GLS96]

[HM93]

[Hsi92]

[KCGS93]

Chomicki, J. and Litwin, W. Declar-
ative definition of object-oriented multi-
database mappings. In Ozsu, M.T, Dayal,
U, and Valduriez, P, editors, Distributed
Object Management. M. Kaufmann Pub-
lishers, Los Altos, California, 1993.

Gray, J., Bosworth, A., Layman, A., and
Pirahesh H. Data Cube: A relational ag-
gregation operator generalizing group-bi,
cross-tab, and sub-totals. In Proceedinas of
the 12th hernational Conference on Da&
Engineering, pages 152-159,1996.

John Grant, Witold Litwin, Nick Rous-
sopoulos, and Timos Sellis. Query
languages for relational multidatabases.
VLDB Journal, 2(2):153-171, 1993.

Gyssens, Marc, Lakshmanan, L.V.S., and
Subramanian, I. N. Tables as a paradigm
for querying and restructuring. In Proc.
ACM Symposium on Principles of Database
Systems (PODS), June 1996.

Hammer, J. and McLeod, D. An approach
to resolving semantic heterogeneity in a
federation of autonomous, heterogeneous
database systems. Intl Jouma2 of Intelli-
gent & Cooperative Information Systems,
2(l), 1993.

Hsiao. D.K. Federated databases and sys-
tems:’ Part-one - a tutorial on their d&a
sharing. VLDB Journa2, 1:127-179, 1992.

Kim, W., Choi, I., Gala, S.K., and
Scheevel, M. On resolving schematic het-
erogeneity in multidatabase systems. Dis-
tributed and Parallel Databases, l(3), 1993.

[KGK+95] Kelley, W., Gala, S. K., Kim, W., Reyes,
T.C.. and Graham. B. Schema architecture
of the UniSQL/M multidatabase system. In
Modern Database Systems. 1995.

[KKS92]

[KLKSl]

[KLW95]

[KN88]

Kifer, Michael, Kim, Won, and Sa-
giv, Yehoshua., Querying object-oriented
databases. In Proc. ACM SIGMOD, pages
393-402, 1992.

Krishnamurthy, R., Litwin, W., and Kent,
W. Language features for interoperability
of databases with schematic discrepancies.
In Proc. ACM SIGMOD, 1991.

Kifer M., Lausen G., and Wu J. Logical
foundations for object-oriented and frame-
based languages. Journal of ACM, May
1995.

Krishnamurthy, R. and Naqvi, S. Towards
a real horn clause language. In Proc. 14th
VLDB Conf., pages 252-263,1988.

[LBT92]

[Lit891

[LN90]

[LNSSO]

[LSS93]

[LSS96a]

[LSS96b]

[MR95]

[Ros92]

[SigSl]

[SQL961

[SSR94]

Lefebvre, A., Bernus, P., and Topor, R.
Query transformation for accessing hetero-
geneous databases. In Workshop on Deduc-
tive Databases in conjunction with JICSLP,
pages 31-40, November 1992.

Litwin, W. MSQL: A multidatabase lan-
guage. Information Science, 48(2), 1989.

Lipton, Richard and Naughton, Jeffrey.
Query size estimation by adaptive sam-
pling. In Proc. ACM PODS, 1990.

Lipton, Richard, Naughton, Jeffrey, and
Schneider, Donovan. Practical selectivity
estimation through adaptive sampling. Iti
Proc. ACM SIGMOD, 1990.

Lakshmanan, L.V.S., Sadri, F., and Sub-
ramanian, I. N. On the logical foun-
dations of schema integration and evolu-
tion in heterogeneous database systems.
In Proc. 3rd International Conference on
Deductive and Object-Oriented Databases
(DOOD ‘93). Springer-Verlag, LNCS-760,
December 1993.

Lakshmanan, L.V.S., Sadri, F., and Sub-
ramanian, I. N. Logic and algebraic lan-
guages for interoperability in multidatabase
systems. Technical report, Concordia Uni-
versity, Montreal, Feb 1996. Accepted to
the Journal of Logic Programming.

Lakshmanan, L.V.S., Sadri, F., and Subra-
manian, I. N. SchemaSQL - a language for
querying and restructuring multidatabase
systems. Technical report, Concordia Uni-
versity, Montreal, 1996. In Preparation.

Missier, P. and Rusinkiewicz, Marek. Ex-
tending a multidatabase manipulation lan-
guage to resolve schema and data conflicts.
In Proc. Sixth IFIP TC-2 Working Confer-
ence on Data Semantics (DS-6), Atlanta,
May 1995.

Ross, Kenneth. Relations with relation
names as arguments: Algebra and calcu-
lus. In Proc. 11th ACM Symp. on PODS,
pages 346-353, June 1992.

Semantic Issues in Multidatabase Systems.
Sigmod Record, 20(4), December, 1991.
Special Issue Edited by Amit Sheth.

SQL Standards Home Page. SQL 3
articles and publications, 1996. URL:
www.jcc.com/sql-articles.html.

Sciore, E., Siegel, M., and Rosenthal, A.
Using semantic values to facilitate interop-
erability among heterogeneous information
systems. ACM Transactions on Database
Systems, 19(2):254-290, June 1994.

250

