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Abstract 

We provide a principled extension of SQL, called 
SchemaSQL , that offers the capability of uni- 
form manipulation of data and meta-data in re- 
lational multi-database systems. We develop a 
precise syntax and semantics of SchemaSQL in 
a manner that extends traditional SQL syntax 
and semantics, and demonstrate the following. (1) 
SchemaSQL retains the flavour of SQL while sup- 
porting querying of both data and meta-data. (2) 
It can be used to represent data in a database 
in a structure substantially different from origi- 
nal database, in which data and meta-data may 
be interchanged. (3) It also permits the cre- 
ation of views whose schema is dynamically de- 
pendent on the contents of the input instance. (4) 
While aggregation in SQL is restricted to values 
occurring in one column at a time, SchemaSQL 
permits “horizontal” aggregation and even aggre- 
gation over more general “blocks” of informa- 
tion. (5) SchemaSQL provides a great facility 
for interoperability and data/meta-data manage- 
ment in relational multi-database systems. We 
provide many examples to illustrate our claims. 
We outline an architecture for the implementa- 
tion of SchemaSQL and discuss implementation 
algorithms based on available database technology 
that allows for powerful integration of SQL based 
relational DBMS. 
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1 Introduction 

In recent years, there has been a tremendous pro- 
liferation of databases in the work place, dominated 
by relational database systems. An emerging need 
for sharing data and programs across the different 
databases has motivated the need for Multi-database 
systems (MDBS), sometimes also referred to as hetero- 
geneous database systems and federated database sys- 
tems. Systems capable of operating over a distributed 
network and encompassing a heterogeneous mix of 
computers, operating systems, communication links, 
and local database systems have become highly desir- 
able, and commercial products are slowly app’earing 
on the market. For surverys on MDBS, see [ACM901 
(in particular, Sheth and Larson, and Litwin, hark, 
and Roussopoulos), and Hsiao [Hsi92]. 

One of the fundamental requirements in a multi- 
database system is interoperabikty, which is the ability 
to uniformly share, interpret, and manipulate informa- 
tion in component databases in a MDBS. Almost all 
factors of heterogeneity in a MDBS pose challenges for 
interoperability. These factors can be classified into se- 
mantics issues (e.g., interpreting and cross-relating in- 
formation in different local databases), syntactic issues 
(e.g., heterogeneity in database schemas, data models, 
and in query processing, etc.), and systems issues (e.g., 
operating systems, communication protocols, consis- 
tency management, security management, etc). We 
focus on syntactic issues here. We consider the prob- 
lem of interoperability among a number of component 
relational databases storing semantically similar infor- 
mation in structurally dissimilar ways. As was pointed 
out in [KLKSl], the requirements for interoperability 
even in this case fall beyond the capabilities of conven- 
tional languages like SQL. 

Some of the key features required of a language for 
interoperability in a (relational) MDBS are the fol- 
lowing. (1) The language must have an expressive 
power that is independent the schema with which a 
database is structured. For instance, in most conven- 
tional relational languages, some queries (e.g., “find all 
department names”) expressible against the database 
univ-A in Figure 2 are no longer expressible when the 
information is reorganized according to the schema of, 
say, univ-B there. This is undesirable and should be 
avoided. (2) To promote interoperability, the language 
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must permit the restructuring of one database to con- 
form to the schema of another. (3) The language 
must be easy to use and yet sufficiently expressive. 
(4) The language must provide the full data manip- 
ulation and view definition capabilities, and must be 
downward compatible with SQL, in the sense that it 
must be compatible with SQL syntax and semantics. 
We impose this requirement in view of the importance 
and popularity of SQL in the database world. (5) Fi- 
nally, the language must admit effective and efficient 
implementation. In particular, it must be possible to 
realize it non-intrusive implementation that would re- 
quire minimal additions to component RDBMS. 
Ccmtcibutions: (1) We propose a language called 
SchemaSQL which meets the above criteria, re- 
view the syntax and semantics of SQL, and develop 
SchemaSQL as a principled extension of SQL. As a 
result, for a SQL user, adapting to SchemaSQL is 
relatively easy. (2) We illustrate via examples the fol- 
lowing powerful features of SchemaSQL : (i) uniform 
manipulation of data and meta-data; (ii) creating re- 
structured views and the ability to dynamically create 
output schemas; (iii) the ability to express sophisti- 
cated aggregate computations far beyond those express- 
ible in conventional languages like SQL (Sections 3.1, 
4.1). (3) We propose an implementation architecture 
for SchemaSQL that is designed to build on existing 
RDBMS technology, and requires minimal additions to 
it, while greatly enhancing its power (Section 5). We 
provide an implementation algorithm for SchemaSQL, 
and establish its correctness. We, also discuss novel 
query optimization issues that arise in the context of 
this implementation. (4) Finally, we propose an ex- 
tension to SchemaSQL for systematically resolving the 
semantic heterogeneity problem arising in a MDBS en- 
vironment (Section 6). 

In this paper we illustrate the semantics of 
SchemaSQL mainly via examples. A precise seman- 
tics of SchemaSQL, together with many more exam- 
ples illustrating its powerful features can be found in 
[LSS96b]. 

2 Syntax 
Our goal is to develop SchemaSQL as a principled 
extension of SQL. To this end, we briefly analyze 
the syntax of SQL, and then develop the syntax of 
SchemaSQL as a natural extension. Our discussion 
below is itself a novel way of viewing the syntax and 
gemantics of SQL, which, in our opinion, helps a better 
understanding of SQL subtleties. 

In an SQL query, the (tuple) variables are declared 
in the from clause. A variable declaration has the 
form <range> <var>. For example, in the query in 
Figure l(a), the expression employees T declares T as 

a variable that ranges over the (tuples of the) relation 
employees (in the usual SQL jargon, these variables 
are called aliases.) The select and where clauses re- 
fer to (the extension of) attributes, where an attribute 
is denoted as <var>. <attName>, var being a (tuple) 
variable declared in the from clause, and attName be- 
ing the name of an attribute of the relation (extension) 
over which var ranges. 

When no ambiguity arises, SQL permits certain ab- 
breviations. Queries of Figure l(b,c) are equivalent to 
the first one, and are the most common ways such 
queries are written in practice. Note that in Figures 
l(b) and l(c), empl 0 y ees acts essentially as a tuple 
variable. 
The SchemaSQL syntax extends that of SQL in sev- 
eral directions. 

The federation consists of databases, with each 
database containing relations. The syntax allows 
to distinguish between (the components of) dif- 
ferent databases. 

To permit meta-data queries and restructuring 
views, SchemaSQL permits the declaration of 
other types of variables in addition to the (tuple) 
variables permitted in SQL. 

Aggregate operations are generalized in 
SchemaSQL to make horizontal and block aggre- 
gations possible, in addition to the usual vertical 
aggregation in SQL. 

In this section we will concentrate on the first two 
aspects. Restructuring views and aggregation are dis- 
cussed in Section 4. 
Variable Declarations in SchemaSQL 

SchemaSQL permits the declaration of variables 
that can range over any of the following five sets: (i) 
names of databases in a federation; (ii) names of the 
relations in a database; (iii) names of the attributes in 
the scheme of a relation; (iv) tuples in a given relation 
in a database; and (v) values appearing in a column 
corresponding to a given attribute in a relation. Vari- 
able declarations follow the same syntax as <range> 
<var> in SQL, where var is any identifier. However, 
there are two major differences. (1) The only kind of 
range permitted in SQL is a set of tuples in some re- 
lation in the database, whereas in SchemaSQL any of 
the five kinds of ranges above can be used to declare 
variables. (2) More importantly, the range specifica- 
tion in SQL is made using a constant, i.e. an identifier 
referring to a specific relation in a database. By con- 
trast, the diversity of ranges possible in SchemaSQL 
permits range specifications to be nested, in the sense 
that it is possible to say, e.g., that X is a variable rang- 
ing over the relation names in a database D, and that 
T is a tuple in the relation denoted by X. These ideas 
are made precise in the following definition. 
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select T. name 
from employees T 
where T.department = 

“Marketing” 
(a> 

select employees.name select name 
from from employees 
where 

employees 
employees.department = 

“Marketing” 
where department = 

(b) 
“Marketing” 

cc> 

Figure 1: Syntax of simple SQL queries 
Definition 2.1 (Range Specifications) The con- section we discuss SchemaSQL queries with a fixed 
cepts of range specifications, constant, and variable output schema. The topics of dynamic output schema 
identifiers are simultaneously defined by mutual recur- and restructuring views are discussed in the next sec- 
sion as follows: tion. 

1. Range specifications are one of the following five 
types of expressions, where db , rel , attr are 

any constant or variable identifiers (defined in 2 
below). 

The following federation of databases is used as 
our running example. Consider the federation con- 
sisting of four databases, univ-A, univ-B, univ-C, 
and univ-D. Each database has (one or more) rela- 
tion(s) that record(s) the salary floors for employees 
by their categories and their departments, as follows: (4 

0) 

(4 

(4 

(4 

The expression -> denotes a range corre- 
sponding to the set of database names in the 
federation. 
The expression db-> denotes the set of rela- 
tion names in the database db. 
The expression db: :rel-> denotes the set of 
names of attm’butes in the scheme of the re- 
lation rel in the database dbl. 
db: :rel denotes the set of tuples in the re- 
lation rel in the database db. 
db: :rel. attr denotes. the set of values ap- 
pearing in the column named attr in the re- 
lation rel in the database db. 

2. A variable declaration is of the form <range> 
<var> where <range> is one of the range speci- 
fications above and <var> is an identifie?. An 
identifier <var> is said to be a variable if it is de- 
clared as a variable by an expression of the form 
<range> <var> in the from clause. Variables de- 
clared over the ranges (a) to (e) are called db- 
name, rel-name, attr-name, tuple, and domain 
variables, respectively. Any identifier not so de- 
clared is a constant. 

As an illustration of the idea of nesting variable dec- 
larations, consider the clause from dbl-> X, dbl: :X 
T. This declares X as variable ranging over the set of 
relation names in the database dbl and T as a vari- 
able ranging over the tuples in each relation X in the 
database dbl. 

The following sections provide several examples 
demonstrating various capabilities of-SchemaSQL. 

3 Fixed Output Schema 

In this and the next section, we illustrate via examples 
the many powerful features of SchemaSQL . In this 

‘The intuition for the notation is that we can regard the 
attributes of a relation as written to the right of- the relation 
name itself! 

‘Abbreviations similar in spirit to those allowed for SQL are 
also allowed in SchemclSQL . 

univ-A has a relation salInf o (category, 
dept , salFloor). 

univ-B has a relation salInfo (category, 
deptl, dept2, . . . >. Note that the domains of 
deptl, dept2, . . . are the same as the domain 
of salFloor in univ-A: : salInf o. 

univ-C has one relation for each department with 
the scheme depti (category, salFloor). 

univ-D has a relation salInfo (dept, catl, 
cat2, . . . >. Note that the domains of cat 1, 
cat2, . . . are the same as the domain of 
salFloor in univ-A: : salInf o. 

Figure 2 shows some sample data in each of these four 
databases. 
Example 3.1 List the departments in univ-A that 
pay a higher salary floor to their technicians compared 
with the same department in univ-B. 

select A.dept 
from univ-A::salInfo A, univ-B::salInfo B, 

where 
univiFi;salInfo-> httB 

<> category” and 
A. dept = AttB and 

(91) A.category = “technician” and 
B.category = “technician” and 
A.salFloor > B.AttB 

Explanation: Variables A and B are (SQL-like) tupie 
variables ranging over the relations univ-A : : salInf o 
and univ-B : : salInf o, respectively. The variable 
AttB is declared as an attribute name of the rela- 
tion univ-B: : salInfo. It is intended to be a depti 
attribute lhence the condition AttB <> “category” 
in the where clause). The rest of the query is self- 
explanatory. 8 

Example 3.2 List the departments in univ-C that 
pay a higher salary floor to their technicians compared 
with the same department in univ-D. 
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univ-B 

univ-A 

salInf0 

Figure 2: Representing Similar Information 
and univ-D 

salInf0 

-1 

univ-D 
salInf0 

pyipz&q 

Using Different Schemas in Multiple Databases univ-A, univ-B, univ-C, 

pl;ct RelC 
unlv-C-> RelC, univ-C::RelC C, 
univ-D::salInfo D 

(02) where RelC = D.dept and . 
C. category = “tec6nician” and 
C.salFloor > D.technician 

3.1 Aggregation with Fixed Output Schema 

In SQL, we are restiicted to %ertical” (or column- 
wise) aggregation on a predetermined set of columns, 
while SchemaSQL allows “horizontal” (or row-wise) 
aggregation, and also aggregation over more general 
“blocks” of information. We illustrate these points 
with examples. The formal development of semantics 
can be found in [LSS96b]. 

Example 3.3 The query 

(co) 
select 
from 

where 
group by 

T.category, avg(T.D) 
univ-B::salInfo-> D, 
univ-B : : salInfo T 
D 0 “category” 
T.category 

computes the average salary floor of each category of 
employees over all departments in univ-6. This cap- 
tures horizontal aggregation. The condition D <> 
“category” enforces the variable D to range over de- 
partment names. Hence a knowledge of department 
names (and even the number of departments) is not 
required to express this query. Alternatively, we could 
enumerate the departments, e.g., use the condition (D 
= “Math” or D = “CS” or . ..)“. By contrast, the query 

select T.category, avg(T.salFloor) 
(cm from univ-C-> D, univ-C::D T 

group by T.category 

computes a similar information from univ-C. Notice 
that the aggregation is computed over a multiset of 
values obtained from several relations in univ-C. In a 

3An elegant solution would be to specify some kind of “type 
hierarchy” for the attributes which can then be used for saying 
“D is an attribute of the following kind’, rather than “D is 
one of the following attributes”. Our proposed extension to 
SchemaSQL discussed in Section 6, addresses this issue. 

univ-C 

cs 

Math 
category salFloor 
Prof 70,000 
Assoc Prof 60.000 

I I 

similar way, aggregations over values collected from 
more than one database can also -be expressed. Block 
aggregations of a more sophisticated form are illus- 
trated in Example 4.3. n 

4 Dynamic Output 
structuring Views 

The result, of an SQL query 

Schema and Re- 

(or view definition) is a 
single relation. Our discussion in the previous section 
was limited to the fragment of SchemaSQL queries 
that produce one relation, with a fixed schema, as out- 
put. In this section, we provide examples to demon- 
strate the following capabilities of SchemaSQL . (i) 
declaration of dynamic output schema, (ii) restruckr- 
ing views, and (iii) interaction between dynamic output 
schema creation and aggregation. 

We illustrate the capabilities of SchemaSQL for $he 
generation of an output schema which can dynami- 
cally depend on the input instance (i.e. the databases 
in the federation). While aggregation in SQL is re- 
stricted to vertical aggregation on a predetermined set 
of columns, we have so far seen that SchemaSQL can 
express horizontal aggregation and aggregation over 
more general “blocks” (see Example 3.3). In this sec- 
tion, we shall see that the combination of dynamic 
output schema and meta-data variables allows us to 
express vertical aggregation on a variable number of 
columns as well. The examples in this and later sec- 
tions are based on the database schema of Figure 2. 

Example 4.1 Consider the relation saIInfo in the 
database univ-B. The following SchemaSQL view def- 
inition restructures this inform&ion into the format of 
the schema univ-A : : salInf o. 

create view 
BtoA::salInfo(category, dept, salFloor) as 

select T.category, D, T.D 
(95) from univ-B::salInfo-> D, 

where 
univ-9::salInfy T 
D <> category 
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Explanation: Two variables are declared in the 
from clause: T is a tuple variable ranging over the 
tuples of relation univ-B: : salInf o, and D is an 
attribute-name variable ranging over the attributes of 
univ-B : : salInf o. The condition in the where clause 
forces D to be a department name. Finally, each output 
tuple (T . category, D , T . D) lists the category, depart- 
ment, name, and the corresponding salary floor (which 
is in the format of univ-A : : salInf 0). 

Note that each tuple in the univ-B: : salInf o for- 
mat generates several tuples in the univ-A : : salInf o 
scheme. The mapping, in this respect, is one-to-many. 
But each instantiation of the variables in the query, 
actually contributes to one output tuple. n 

The following example illustrates restructuring involv- 
ing dynamic creation of output schema. 

Example 4.2 This view definition restructures data 
in univ-A: : salInf o into the format of the schema 
univ-B::salInfo. 

create view AtoB: : salInf o (cateEory , D> as 
select A. category, A. salFlo& - 

(06) from univ-A: : salInfo A, A.dept D 

Explanation: Each tuple of univ-A: : salInf o con- 
tains the salary floor for one category in a single de- 
partment, while each tuple of univ-B: : salInf o con- 
tains the salary floors for one category in every de- 
partment. Intuitively, all tuples in univ-A : : salInf o 
corresponding to the same category are grouped to- 
gether and “merged” to produce one output tuple. 

Another aspect of this restructuring view is the use 
of variables in the create view clause. The variable D 
in create view AtoB: : salInfo(category, D) is de- 
clared as a domain variable ranging over the values of 
the dept attribute in the relation univ-A: : salInf o. 
Hence, the schema of the view AtoB : : salInf o is “dy- 
namicalljr” declared as AtoB : : salInf o (category, 
deptl, . . . . deptn) , where dept 1, . . . , deptn are 
the values occurring in the dept column in the relation 
univ-A: : salInf o. 

The restructuring in this example corresponds to 
a many-to-one mapping from instantiations to output 
tuples. n 

In the full paper [LSS96b], we present additional ex- 
amples to illustrate restructuring views that distribute 
values from one tuple into many relations, and vice- 
versa. Examples of many-to-many mappings (e.g. 
mappings between schemes of univ-B and univ-D) are 
also given there. 

4.1 Aggregation with Dynamic View Defini- 
tion 

In Section 3, we illustrated the capability of 
SchemaSQL for computing (i) horizontal aggregation 
and (ii) aggregation over blocks of information col- 
lected from several relations, or even databases. In this 

section, we shall see that when SchemaSQL aggrega- 
tion is combined with its view definition facility, it is 
possible to express vertical aggregation over a variable 
number of columns, determined dynamically by the 
input instance. 

Example 4.3 Suppose’that in the database univ-D 
in Figure 2, there is an additional relation 
f acuity (dname , f name> relating each department to 
its faculty. Consider the query 

select U.fname, avg(T.C) 
from univ-D::salInfo-> C, 

(Q7) univ-D::salInfo T, univ-D::faculty U 
where C <> “dept” and T.dept = U.dname 
group by U.fname 

is essentially defined using the query Q7. 

Q7 computes, for each faculty, the faculty-wide av- 
erage floor salary of all employees (over all depart- 
ments) in the faculty. Notice that the aggregation 
is performed over ‘rectangular blocks’ of information. 
Consider now the following view definition QS, which 

create view averages::salInfo(faculty, C) as 
select U.fname, avg(T.C) 
from univ-D::salInfo-> C, 

(Q8) univ-D : :salInfo T, univ-D::faculty U 
where C 0 “dept” and T.dept = U.dname 
group by U.fname 

The view defined by QS actually computes, for each 
faculty, the average floor salary in each category of em- 
ployees (over all departments) in the faculty. This is 
achieved by using the variable C, ranging over cat- 
egories, in the dynamic output schema declaration 
through the create view statement. n 

5 Implementation Issues 

In this section we describe the architecture of a sys- 
tem for implementing a multidatabase querying and 
restructuring facility based on SchemaSQL. A high- 
light of our architecture is that it builds on existing 
architecture in a non-intrusive way, requiring mini- 
mal extensions to prevailing database technology. This 
makes it possible to build a SchemaSQL system on top 
of (already available) SQL systems. We also identify 
novel query optimization opportunities that arise in a 
multidatabase setting. 

The architecture consists of a SchemaSQL server 
that communicates with the local databases in the fed- 
eration. We assume that the meta-information com- 
prising of component database names, names of the 
relations in each database, names of the attributes 
in each relation, and possibly other useful informa- 
tion (such as statistical information on the component 
databases useful for query optimization) are stored in 
the SchemaSQL server in the form of a relation called 
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Federation System Table (FST). Due to the varying 
degrees of autonomy component databases enjoy in a 
multidatabase system, some or all of this information 
may not available. In [LSS96b] we describe a flex- 
ible architecture that makes use of as much of the 
available information as possible. In discussions here, 
we assume that the component database names as 
well as their schema information is available in the 
SchemaSQL server. 

In our architecture, global SchemaSQL queries are 
submitted to the SchemaSQL server, which deter- 
mines a series of local SQL queries and submits them 
to the local databases. The SchemaSQL server then 
collects the answers from local databases, and, using 
its own resident SQL engine, executes a final series of 
SQL queries to produce the answer to the global query. 
Intuitively, the task of the SchemaSQL server is to 
compile the instantiations for the variables declared in 
the query, and enforce the conditions, groupings, ag- 
gregations, and mergings to produce, the output. Many 
query optimization opportunities at different stages, 
and at different levels of abstraction, are possible, and 
should be employed for efficiency (see discussions at 
the end of this section). Figure 3 depicts our archi- 
tecture for implementing SchemaSQL. Algorithm 5.1, 
gives a more detailed account of our query processing 
strategy. 

Query processing in a SchemaSQL environment 
consists of two major phases. In the first phase, ta- 
bles called VIT’s (Variable Instantiation Table) cor- 
responding to the variable declaration in the from 
clause of a SchemaSQL statement are generated. The 
schema of a VIT consi&s of all the variables in one 
or more variable declarations in i&e from clause and 
its contents correspond to instantiat’ions of these vari- 
ables. VIT’s are materialized by executing appro- 
priate SQL queries on the FST and/or component 
databases. In the second phase, the SchemaSQL query 
is rewritten into an equivalent SQL query on the 
VIT’s and the generated answer is appropriately pre- 
sented to the user. Our algorithm below considers 
SchemaSQL queries with a fixed output schema pos- 
sibly with aggregation. A complete algorithm for 
the implementation of the fuil language, as well as 
novel query optimization strategies are discussed in 
[LSS96b]. 

In the following, we assume that the FST has 
the scheme FST (db-name, rel-name, attr-name). 
Also, we refer to the db-name, rel-name, and attr- 
name variables (defined in Definition 2.1) collectively 
as meta-variables. 

Algorithm 5.1 SchemaSQL Query Processing 
INPUT: A SchemaSQL query with a fixed output 
schema and aggregation. 

OUTPUT: Bindings for the variables appearing in the 
select clause of the SchemaSQL statement. 
METHOD: The algorithm consists of two phases. 
(1) Corresponding to a set of variable declarations in 
the from clause, create VITs using one or more SQL 
queries against soine local databases and/or the FST. 
(2) Rewrite the original SchemaSQL query against the 
federation into an equivalent query against the set of 
VIT relations and run it using the resident SQL server. 
Phase I 
(0) The input SchemaSQL statement is rewritten into 
the following form such that the conditions in the 
where clause are in conjunctive normal form. 

select Sl,...,S, 
from (rangel) VI, . . . , (rangek) Vk 
where (condl) and . . . and (cond,) 
groupby groupList 
having haveconditions 

(1) Consider the variable declaration for variable Vi. 
(a) If Vi is a meta-variable: In this case, all variables 
in the declaration (rangei) Vi range over meta-data. 
Create VITi with a schema consisting of Vi and any 
variables appearing in (rangei), and contents obtained 
using an appropriate SQL query against the FST. For 
example, let 'D: :rel-> Vi ’ be the declaration and 
one of the conditions in the where clause be ‘Vi .op. c’ 
where .op. is a (in)equality operator and c is a constant. 
Obtain VITi corresponding to VITi as: 

select db-name as D, attr-name as Vi 
from FST 
where rel-name = ‘rel’ and attr-name .op. c 

Meta-variable declarations of other forms are han- 
dled in a similar way. 
(b) If Vi is a domain variable: Group together domain 
variable declarations that are declared using the same 
tuple variable as for Vi. Create VITi with schema con- 
sisting of the domain variables in the group. Obtain 
the (tuple of) bindings for the attr-name variables (in 
the range declarations) in the group, using their cor- 
responding VIT’s. Using this, generate a set of SQL 
queries against local databases. The contents of VITi 
will be the union of answers to these queries. For ex- 
ample, let db::rel T be a tuple variable declaration, 
‘T.A Vi’ be the declaration for the domain variable 
and ‘Vi .op. c’ be a condition in the where clause, where 
.op. is a (in)equality operator and c is a constant. Let 
‘T.attr Vj’ be another domain variable declaration in 
the from clause. 

(i) Obtain the bindings for attr-name variable A from 
its VIT, and name it relation T. 

(ii) For a E T, generate an SQL query against 
database db: 
select a as Vi, attr as Vj 
from rel 
where a .op. c 

(iii) Obtain VITi as the union of answers to all the 
SQL queries generated in (ii), against db.. 

Domain-variable declarations of other forms (e.g. 
when db, rel, attr are also variables) are handled in a 
similar way. 
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Figure 3: SchemaSQL - Implementation Architecture 

(c) If Vi is a tuple variable: Generate bindings for the 
meta-variables in (rangei) as in case (a). The at- 
tributes of the VIT corresponding to Vi are obtained 
by analyzing the select, where, group by, and having 
clauses. We consider a variable V as relevant in the 
context of tuple variable Vi, if (i) V is of the form Vi.C 
or Vi.c (C, c are a variable and constant respectively) 
and occurs in the select, groupby, or having clause, or 
(ii) V occurs in the declaration of Vi and either is com- 
pared with a variable in the where clause, or occurs in 
the select clause, or (iii) V occurs in a relevant variable 
of the form Vi.V and V is compared with a variable in 
the where clause. The schema of the VIT is the set 
consisting of all relevant variables in the context of Vi. 
Findly, the ontents of VIT are obtained by generat- 
ing approp l-f late SQL queries against local databases. 
In general, if there are occurrences of the form Vi.C 
in the select or the where clause, the VIT would be 
obtained as a union of several SQL queries. 

For example, let the select clause contain an aggre- 
gation of the form avg(Vi.C), the variable declaration 
be ‘db::R Vi’ and two of the conditions in the where 
clause be ‘Vi.al .op. Vj.az’ and ‘Vi.as .op. c’, where 
al, a2, as, c are constants. 

6) 

(ii) 

(ii) 

Obtain a VIT corresponding to db-> R (as in (a) 
above) and name it T. 

The schema of VITi is {&.C:, K.al}. 

For each T E T, obtain the attribute names in re- 
lation T (using an SQL query on the FST) and 
reycate the following SQL statement. 

1,. . . , ck be the instantiations of C, corre- 
sponding to T. 
select cl as Vi.C, al as Vi.al 
from r 
where Vi.as .op. c 
UNION 
. . . 
UNION 
select ck as vi.c, al as vi.al 
from r 
where Vi.a3 .op. c 

(iii) Obtain VITi as the union of all the SQL state- 
ments generated in (ii). 

Tuple variable declarations of other forms are han- 
dled in a similar way. 
Phase II 

Execution of this phase happens in the SchemaSQL 
server. The SchemaSQL query is rewritten into an 
equivalent conventional SQL statement on the VIT’s 
generated in Phase I, in the following way. (a) The se- 
lect, group by, and having clauses of the rewritten query 
are obtained by copying the corresponding clauses in 
the SchemaSQL query after disambiguating the at- 
tribute names that appear in more than one VIT; (b) 
the from clause consists of the subset of VIT’s relevant 
to the final result, and (c) the where clause is obtained 
by retaining the conditions involving tuple variables 
and by adding a condition ‘VITi.X = VITj.X’ for 
tables VITi and VITj having a common attribute. 

It is interesting to note that using our algorithm, 
the novel horizontal aggregation (Section 3.1, Exam- 
ple 3.3) which cannot be performed in a conventional 
SQL system, can be easily realized in our framework. 
More general kind of ‘block’ aggregations can also be 
handled in a similar way - details can be found in 
[LSS96b], which also contains the proof of the follow- 
ing theorem. 

Theorem 5.1 Algorithm 5.1 correctly computes an- 
swers to SchemaSQL queries. 

Example 5.1 In this example, we illustrate our al- 
gorithm using a variant of the query Q2 of Example 
3.2. 
‘List the departments in univ-C that pay a higher 
salary floor to their technicians compared with the 
same department in univ-D. List also the (higher) 
pay.’ 
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Figure 4: Example - Query Processing 

select RelC, C.salFloor 
from univ-C-B RelC, univ-C::RelC C, 

univ-D::salInfo D 
where RelC = D.dept and 

C.category = “technician” and 
C.salFloor > D.technician 

Phase I 
VITl corresponding to the variable declaration 

univ-C-> RelC is created using: 

;;el;ct $-+-name as RelC 

where db-name = ‘univ-C’ 

Figure 4 shows VITl. To generate the SQL state- 
ment that creates VITz, the following SQL queries are 
issued against the FST. 

select attr-name 
;f;ro~~FsT 
db-name = ‘univ-C’ 
and rel-name = ’ cs’ 

select attr-name 
from FST 
where 
db-name = ‘univ-C’ 
and rel-name = ‘math’ 

Let the answer to both the queries be {category, 
salFloor). VITz, corresponding to univ-C : : RelC C is 
obtained by querying the database univ-C using: 

select 
from 
where 

select 

from 
where 

‘cs’ as RelC, cs.salFloor as C.salFloor 

Z . category = ‘technician’ 

‘%gv as RelC, 
iE;k.salFloor as C.salFloor 
math.category = ‘technician’ 

To obtain VIT3 corresponding to univ-D : : salInf o 
D, querying is first done on the FST to obtain the 
grvebof the attributes in relation sa.Unfo of database 

select attr-name 
from FST 
where db-name = ‘univ-D’ & rel-name = ‘salInfo’ 

Let the answel;to this query be {dept, prof, techni- 
cian}. VITS, shown in Figure 4 is obtained by query- 
ing the database univ-D: 

select dept as D.dept, 

from 
“,B,+$i.gim as D.technician 

Phase II 
Having obtained all the VIT’s corresponding to the 

variable declarations, Phase II now consists of rewrit- 
ing the SchemaSQL statement into the following SQL 
statement to obtain the final answer. 
select RelC, C.salFloor 
from VIT2, VIT3 
where RelC = D.deDt and 

C.salFloor >*D.technician 
n 

A SchemaSQL system on the PC-Windows plat- 
form is currently under implementation. 

Query Optimization 
There are several opportunities for query optimization 
which are peculiar to the MDBS environment. In the 
following, we identify the major optimization possi- 
bilities and sketch how they can be incorporated in 
Algorithm 5.1. 

1. 

2. 

3. 

4. 

5. 

The conditions in the where clause of the input 
SchemaSQL query should be pushed inside the lo- 
cal spawned SQL queries so that they are as ‘tight’ 
as possible. Algorithm 5.1 incorporates this opti- 
mization to some extent. 

Knowledge of the variables in the select and where 
clauses can be made use of to minimize the size 
of the VIT’s generated in Phase I. For example, if 
certain attributes are not required for processing 
in Phase II, they can ‘dropped’ while generating 
the local SQL queries. 

If more than one tuple variable refers to the same 
database, and their relevant where conditions do 
not involve data from another database, the SQL 
statements corresponding to these variable dec- 
larations should be combined into one. This 
would have the effect of combining the VIT’s 
corresponding to these variable declarations and 
thus reducing the number of spawned local SQL 
queries. This can be incorporated by modifying 
the step I(c) of our algorithm. 

One of the costliest factors for query evaluation in 
a multidatabase environment is database connec- 
tivity. We should minimize the number of times 
connections are made to a database during query 
evaluation. Thus, the spawned SQL statements 
need to be submitted (in batches) to the compo- 
nent databases in such a way that they are eval- 
uated in minimal number of connections to the 
databases. 

In view,of the sideways information passing (sip) 
[BFU36] technique inherent in our algorithm, re- 
ordering of variable declarations would result in 
more efficient query processing. However, the 
heuristics that meta-variables obtain a signifi- 
cantly less number of bindings when compared 
to other variables in a multidatabase setting, 
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presents novel issues in reordering. For instance 
the order ‘db: :r.a R, -> D, D-> R’ suggested 
by the conventional reordering strategies could be 
worse than ‘ -> D, D-> R, db::r.a R’ because 
of the lower number of bindings R obtains for 
T/IT2 in the latter. 

We should make use of works such as [LN90, 
LNSSO] to determine which of the VIT’s should 
be generated first so that the tightest bindings 
are passed for generating subsequent VITs. 

If parallelism can be supported, SQL queries to 
multiple databases can be submitted in parallel. 

Replication and Inconsistency 
Replication of data, and inconsistency among data 
from local databases are common in multidatabase sys- 
tems. The view facility of SchemaSQL and our archi- 
tecture provide the means to cope with these difficul- 
ties. 
Controlled (intentional) replication can be addressed 
through the Federation System Table, FST. A copy of 
the replicated data is identified as the pramay copy, 
and the FST routes all references to the replicated data 
to the primary copy. The choice of the primary copy 
is influenced by factors such as efficiency of query pro- 
cessing, network connectivity, and the load at local 
sites. In a dynamic scheme, the FST is updated in 
response to changes in the network (e.g., network dis- 
connection) and the load at local sites. 
Data replication and overlap among (independent) lo- 
caI sites, with the possibility of inconsistency, is much 
subtler. The view facility:of SchemaSQL can be used 
to resolve inconsistencies by exposing only the appro- 
priate data through the view. This is similar to the 
approach taken in multidatabase systems utilizing an 
(integrated) global schema. Our architecture is more 
flexible, and does not require a global schema, yet, the 
view facility can mimic the role played by the global 
schema for resolving data inconsistency. 

6 Semantic Heterogeneity 

One of the roadblocks to achieving true interoperabil- 
ity is the heterogeneity that arises due to the differ- 
ence in the meaning and interpretation of similar data 
across the component systems. This semantic hetero- 
geneity problem has been discussed in detail in [Siggl], 
[KCGS93], [HM93]. A promising approach to dealing 
with semantic heterogeneity is the proposal of Sciore, 
Siegel, and Rosenthal [SSR94]. The main idea behind 
their proposal is the notion of semantic vdues, ob- 
tained by introducing an explicit context information 
to each data object in the database. In applying this 
idea to the relational model, they develop an exten- 
sion of SQL called Context-SQL (C-SQL) that allows 

for explicitly accessing the data as well as its context 
information. 

In this section, we sketch how SchemaSQL can be 
extended with the wherewithal to tackle the seman- 
tic heterogeneity problem. We extend the proposal 
of [SSR94], by associating the context information 
to relation names as well as attribute names, in ad- 
dition to the values in a database. Also, in the 
SchemaSQL setting, there is a natural need for in- 
cluding the type information of an object as part of 
its context information. We propose techniques for in- 
tensionally specifying the semantic values as well as 
for algorithmically deriving the (intensional) semantic 
value specification of a restructured database, given 
the old specification and the SchemaSQL view defi- 
nition. The following example illustrates our ideas. 
Details can be found in [LSS96b]. 

Example 6.1 Consider the database univlnfoA hav- 
ing a single relation stats with scheme {cat, cs, math, 
Ontario, quebec}. This database stores information on 
the floor salary of various employee categories for each 
department (as in univ-B of the university federation) 
as well as information on the average number of years 
it takes to get promoted to a category, in each province 
in the country. The type information of the objects in 
the database univlnfoA is stored in a relation called isa 
and is captured using the following rules4: 
isa(cs, dept) t 
isa(math, dept) t 
isa(ontario,prov) e 
isa(quebec, pruv) t 
isa(C,cat) t stats[cat + C] 
isa(S, sal) t stats[D + S], isa(D, dept) 
isa(Y, gear) t stats[P -+ Y], isa(P,prov) 

Now, consider restructuring univlnfoA into univln- 
foB which consists of two relations salstats{dept, prof, 
assoc-prof} and timestats{prov, prof, assoc-prof}. sal- 
stats has tuples of the form < d, sr, sz >, represent- 
ing the fact that d is a department that has a floor 
salary of si for category professor, and sz for asso- 
ciate professor. A tuple of the form < p, yr , yz > in 
timestats says that p is a province in which the av- 
erage time it takes to reach the category professor is 
yi and to reach the category associate professor is yz. 
The following SchemaSQL statements perform the re- 
structuring that yields univlnfoB. 

create view 
univInfoB: :salstats(dept, T.cat) as 

select D, T.D 
from univInfoA: : stats T, 

univInf oA: : stats-> D, 
where D isa ‘dept’ 
create view 

4The syntax of the type specification rules is ‘baaed on the 
syntax of SM [LSS96a]. 
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’ univInfoB::timestats(prov, T.cat) as 
select P, T.P 
from univInf oA: : stats T, 

where 
univInfoA::stats-> P, 
P isa ‘prov’ 

Note how the type information is used in the where 
clause to elegantly specify the range of the attribute 
variables. Our algorithm that processes the restructur- 
ing view definitions derives the following intensional 
type specification for univlnfoB: 
isa(prof, cat) t 
isa(assoc-prof, cat) t 
isa(D,dept) t saZstats[dept + D] 
isa(S, sal) t saZstats[C + S], isa(C, cat) 
isa(P,prov) t timestats[prov + P] 
isa(Y, year) t timestats[P + Y], isa(P,prov) 

Query processing in this setting involves the fol- 
lowing modification to the processing of comparisons 
mentioned in the user’s query. The comparison is per- 
formed after (a) finding the type information using the 
specification, (b) finding the associated context infor- 
mation, and (c) applying the appropriate conversion 
functions. [LSS96b] has the details. 

7 Comparison with Related Work 

In this section, we compare and. contrast our proposal 
against some of the related work for meta-data manip- 
ulation and multidatabase interoperability. 

The features of SchemaSQL that distinguishes it 
from similar works include 

Uniform treatment of data and metadata. 

No explicit use of object identifiers. 

Downward compatibility with SQL. 

Comprehensive aggregation facility. 

Restructuring views, in which data and meta-data 
may be interchanged. 

Designed specifically for interoperability in multi- 
database systems. 

Further, we also discuss the implementation of 
SchemaSQL on a platform of SQL servers. 

In [Lit89, GLRS93], Litwin et al. propose a multi- 
database manipulation language called MSQL that is 
capable of expressing queries over multiple databases 
in a single statement. MSQL extends the traditional 
functions of SQL to the context of a federation of 
databases. The salient, features of this language in- 
clude the ability to retrieve and update relations in 
different databases, define multi-database views, and 
specify compatible and equivalent domains across dif- 
ferent databases. [MR95] extends MSQL with fea- 
tures for accessing external functions (for resolving 
semantic heterogeneity) and for specifying a global 

schema against which the component databases could 
be mapped. Though MSQL (and its extension) has 
facilities for ranging variables over multiple database 
names, its treatment of data and meta-data is non- 
uniform in that relation names and attribute names 
are not given the same status as the data values. The 
issues of schema independent querying and resolving 
schematic discrepancies of the kind discussed in this 
paper, are not addressed in their work. 

Many object-oriented query languages, by virtue of 
treating the schema information as objects, are ca- 
pable of powerful meta-data querying and manipula- 
tion Some of these languages include XSQL (Kifer, 
Kim, and Sagiv [KKS92]), HOSQL (Ahmed et al. 
[ASD+Sl]), and OSQL (Chomicki and Litwin [CL93]). 

XSQL ([KKS92]) has its logical foundations in F- 
logic ([KLW95]) d an is capable of querying and re- 
structuring object-oriented databases. However, it 
is not suitable for the needs addressed in this pa- 
per as its syntax was not designed with interoper- 
ability as a main goal. Besides, the complex nature 
of this query language raises concerns about effective 
and efficient implementability, a concern not addressed 
in [KKS92]. The Pegasus Multi-database system 
([ASD+Sl]) uses a language called HOSQL as its data 
manipulation language. HOSQL is a functional object- 
oriented language that incorporates non-procedural 
statements to manipulate multiple databases. OSQL 
([CL93]), an extension of HOSQL is capable of tackling 
schematic discrepancies among heterogeneous object- 
oriented databases with a common data model. Both 
HOSQL and OSQL do not provide for ad-hoc queries 
that refer to many local databases in the federation in 
one shot. While XSQL, HOSQL, and OSQL have a 
SQL flavor, unlike SchemaSQL , they do not appear 
to be downward compatible with SQL syntax and se- 
mantics. In other related work, [Ros92] proposes an 
interesting algebra and calculus that treats relation 
names at par with the values in a relation. However, 
its expressive power is limited in that attribute names, 
database names, and comprehensive aggregation capa- 
bilities are not supported. 

In [LBT92], Lefebvre, Bernus, and Topor use F- 
logic ([KLW95]), t o reconcile schematic discrepan- 
cies in a federation of relational databases. Unlike 
SchemaSQL which can provide a ‘dynamic global 
schema’, ad hoc queries that refer the data and schema 
components of the local databases in a single state- 
ment cannot be posed in their framework. 

UniSQL/M [KGK+95] is a multidatabase system 
for managing a heterogeneous collection of relational 
database systems. The language of UniSQL/M, 
known as SQL/M, provides facilities for defining a 
global schema over related entities in different local 
databases, and to deal with semantic heterogeneity is- 
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sues such as scaling and unit transformation. How- 
ever, it does not have facilities for manipulating meta- 

. data. Hence features such as restructuring views that 
transform data into metadata and vice versa, dynamic 
schema definitions, and extended aggregation facilities 
supported in SchemaSQL are not available in SQL/M. 
The emerging standard for SQL3 ([SQL96, Bee93]) 
supports ADTs and oid’s, and thus shares some fea- 
tures with higher-order languages. However, even 
though it is computationally complete, to our knowl- 
edge it does not directly support the kind of higher- 
order features in SchemaSQL. 

Krishnamurthy and Naqvi [KN88] and Krishna- 
murthy, Litwin, and Kent [KLKSl] are early and influ- 
ential proposals that demonstrated the power of using 
variables that uniformly range over data and meta- 
data, for schema browsing and interoperability. While 
such ‘higher-order variables’ admitted in SchemaSQL 
have been inspired by these proposals, there are major 
differences that distinguish our work from the above 
proposals. (i) These languages have a syntax closer 
to that of iogic programming languages, and far from 
that of SQL. (ii) M ore importantly, these languages 
do not admit tuple variables of the kind permitted in 
SchemaSQL (and even SQL). This limits their expres- 
sive power. (iii) Lastly, aggregate computations of the 
kind discussed in Sections 3.1 and 4.1 are unique to 
our framework, and to our knowledge, not addressed 
elsewhere in the litefature. 

In the context of multi-dimensional databases 
(MDDB) and on-line analytical processing (OLAP), 
there is a great need for powerful languages expressing 
complex forms of aggregation ([CCS95]). The power- 
ful features of SchemaSQL for horizontal and block ag- 
gregation will be especially useful in this context (e.g. 
see Examples 3.3, 4.3). We have recently observed 
that the Data Cube operator proposed by Gray et al. 
([GBLP96]) can be simulated in SchemaSQL. Unlike 
the cube operator, SchemaSQL can express any subset 
of the data cube to any level of granularity. 

In other rel&ed work, Gyssens et al. ([GLS96]) de- 
velop a general data model called Tabular Data Model, 
which subsumes relations and spreadsheets as special 
cases. They develop an algebra for querying and re- 
structuring tabular information and show that the al- 
gebra is complete for a broad .class of natural tra;ns- 
formations. They also demonstrate that the tabular 
algebra can serve as a foundation for OLAP. Restruc- 
turing views expressible in SchemaSQL can also be ex- 
pressed in their algebra but they do not address aggre- 
gate computations. 

In [LSS96a, LSS93], we proposed a logic-based 
query/restructuring language SchemaLog, for facil- 
itating interoperability in multidatabase systems. 
SchemaLog admits a simple syntax and semantics, but 

allows for expressing powerful queries and programs in 
the context of schema browsing and interoperability. 
A formal account of SchemaLog’s syntax and seman- 
tics can be found in [LSS96a]. SchemaLog can also 
express the complex forms of aggregation discussed in 
this paper. 

SchemaSQL has been to a large extent inspired 
by SchemaLog. Indeed, the logical underpinnings of 
SchemaSQL can be found in SchemaLog [LSS96b]. 
However, SchemaSQL is not obtained by simply 
“SQL-izing” SchemaLog. There are important differ- 
ences between the two languages. (i) SchemaSQL has 
been designed to be as close as possible to SQL. In this 
vein, we have developed the syntax and semantics of 
SchemaSQL by extending that of SQL. SchemaLog on 
the other hand has a syntax based on logic program- 
ming. (ii) Answers to SchemaSQL queries come with 
an associated schema. In SchemaLog, as in other logic 
programming systems, answers to queries are simply a 
set of (tuples of) bindings of variables in the query (un- 
less explicitly specified using a restructuring rule). (iii) 
The aggregation semantics of SchemaSQL is based on 
a ‘merging’ operator ([LSS96b]). There is no obvious 
way to simulate merging in SchemaLog. (iv) To facil- 
itate an ordinary SQL user to adapt to SchemaSQL 
in an easy way, we have designed SchemaSQL with- 
out the following features present in SchemaLog - (a) 
function symbols and (b) explicit access to tuple-id’s. 
As demonstrated in this paper, the resulting language 
is simple, yet powerful for the interoperability needs 
in a federation. 
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