
PESTO: An Integrated Query/Browser
for Object Databases

Michael Careyt Laura Haast

tIBM Almaden Research Center
San Jose, CA

{Carey, laura, williams}Qalmaden.ibm.com

Vivek Maganty$ John Williamst

IComputer Sciences Department
University of Wisconsin, Madison, WI

magantyQinformix.com

Abstract

This paper describes the design and imple-
mentation of PEST0 (Portable Explorer of
Snuctured Objects), a user interface that
supports browsing and querying of object
databases. PEST0 allows users to navigate
the relationships that exist among objects. In
addition, users can formulate complex object
queries through an integrated query paradigm
(“query-in-place”) that presents querying as a
natural extension of browsing. PEST0 is de-
signed to be portable to any object database
system that supports a high-level query lan-
guage; in addition, PEST0 is extensible, pro-
viding hooks for specialized predicate forma-
tion and object display tools for new data
types (e.g., images or text).

uniformly and manipulated using an object-oriented
dialect of SQL. One component of this project, which
is joint work between IBM Almaden and the Uni-
versity of Wisconsin, is the development of a graph-
ical user interface called PEST0 (Portable Explorer
of STructured Objects). We refer to the PEST0 in-
terface as a query/browser, as it marries navigational
object browsing’ with declarative querying; it inte-
grates browsing and querying via a “query-in-place”
paradigm that provides a powerful yet natural user in-
terface for exploring the contents of object databases.

1 Introduction

The Garlic project at the IBM Almaden Research Cen-
ter [Care951 is developing a system and associated
tools for managing large quantities of heterogeneous
multimedia information. The goal of Garlic is to per-
mit both traditional and multimedia data residing in
a variety of existing data repositories (including re-
lational databases, document managers, image repos-
itories, and files) to be presented to application de-
velopers and end users via a unified, object-oriented
schema. The heterogeneous data can then be queried

The rest of this paper describes the design of
PESTO. Like other object database browsers, PEST0
provides a hypertext-like navigational capability that
enables users to navigate the relationships between
database objects. In addition, PEST0 enables users to
query the contents of an object database without hav-
ing to write (or even look at) object queries; query-
ing is treated as a natural and direct extension of
browsing. As a result, the query facilities of PEST0
are intuitive yet powerful, supporting basic query ca-
pabilities such as selections, value-based joins, nega-
tion, and disjunction; they also enable complex object
queries involving structural predicates and universal
quantification to be expressed in an intuitive manner.
While PEST0 has been developed as part of the Garlic
project, it can be ported to any system that supports
an object-based data model and a declarative query
interface. In fact, in addition to Garlic, it currently
runs on top of an SQL-based interface to the Object-
Store database system, described in [Kier95], and that
version of PEST0 was used to generate the figures and
queries shown throughout the paper.

Permission to copy without fee all o+ part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, 07 to republish, requires a fee
and/or special pemrission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

The remainder of this paper is organized as follows.
Section 2 briefly reviews related work on user inter-
faces and explains how PEST0 differs from existing
database browsing and query tools. Section 3 describes
the basic look and feel of PESTO, conveying its in-
tegrated approach to browsing and querying through
the use of several examples; PESTO’s support for it-
erative query refinement is also described briefly. Sec-

203

tion 4 then discusses PESTO’s query capabilities more
technically, focusing on PESTO’s support for complex
OODB queries and on the semantics and the limita-
tions of PEST0 as a query language. Section 5 briefly
highlights a few interesting details of PESTO’s current
implementation, including its portability features and
the way that new data types (such as images) and as-
sociated predicate formation tools can be added. Fi-
nally, Section 6 summarizes the paper and discusses
our future plans for PESTO.

2 Related Work

We begin here with a brief review of related work on
graphical database interfaces. We then highlight, ways
that PEST0 differs from this work.

2.1 Commercial Interfaces

Virtually all relational database system vendors of-
fer graphical interfaces for their systems, and a num-
ber of other vendors sell graphical query and applica-
tion development tools that run against multiple rela-
tional database engines. Existing commercial products
have been influenced by early research in this area,
including efforts such as Timber [Ston82], FORMAN-
AGER Cyao84], FADS [Rowe85], and of course, the
seminal work on QBE [210077]. However, commercial
relational front-ends such as Access, Paradox, Visual-
izer, BusinessObjects, and FindOut! have long since
surpassed the early work due to advances in worksta-
tions, window systems, and user interface toolkits.

Most commercial relational front-ends allow users
to choose among several “views” of their databases.
For example, Access provides four: a datasheet view
that displays data from a table or query in a tabular
format, a form view that displays a single record at a
time, a query view in which the user can form a new
query or edit an old one, and a report view in which
data is formatted, usually for printing. These views
are separate from one another; for example, the query
view, even in l Paradox - which provides an excellent
implementation of the Query-by-Example paradigm -
is totally separate from the data views that are of-
fered. Thus, a strong distinction is made in these prod-.
ucts between the act of query formation and the act
of browsing a query’s result set. This is quite different
from the query-in-place approach that PEST0 takes;
this difference is particularly important in the world
of object databases, as Section 3 will show.

Some commercial relational front-ends now provide
users with the ability to specify the “business ob
jects” that they want to work with. Good examples
of such systems are BusinessObjects 3.1 and Open
Data’s FindOut ! . “Business objects” are typically just
business-relevant views of the underlying data that are

set up by a database administrator to make browsing
and querying easier for end users; they should not be
confused with the kinds of objects that object database
systems are intended to manage. The closest these in-
terfaces come to true object support is a feature of
FindOut!, which uses the relationships defined among
the object views to allow users to do simple naviga-
tion among their objects. However, even the Findout!
interface provides no support for the more powerful
kinds of object queries (e.g., queries over nested sets
of inter-object references) that PEST0 supports.

One other type of interface is also relevant to
PESTO. Web browsers, e.g., Mosaic and Netscape,
have taken the world by storm. This is due in part
to their natural browsing paradigm and in part to the
world that they provide access to. However, these in-
terfaces are designed for a world without a schema,
where the data model consists of objects and (mostly)
untyped inter-object references; thus, they do not of-
fer object query facilities. One of our goals in devel-
oping PEST0 has been to provide a similarly friendly
browsing interface, and to augment this interface with
an equally natural paradigm for integrating querying
and query refinement with browsing.

2.2 Related Research

In general, user interfaces have been neglected as a
database research topic [Ston89, Ston93]. Still, a body
of work exists in this area; a comprehensive survey
and taxonomy of graphical user interfaces for database
systems can be found in [BatiSl] . Aside from the early
work on graphical relational interfaces, most research
has focused on the design of interfaces for databases
based on richer data models such as E-R, semantic,
and object-oriented models.

Visual interfaces for database browsing are very at-
tractive for systems based on richer data models, as
such models make explicit the relationships between
data objects in the database. Good examples of visual
browsers that have been developed for such data mod-
els include KIVIEW [Motr88], Databrowse [Catt88],
LID [Fogg84], and OdeView [AgraSO]. KIVIEW in-
troduced the notion of synchronous browsing of re-
lated objects; OdeView also emphasized this notion.
Synchronous browsing is very important in PEST0 as
well. Unlike KIVIEW, where users explicitly indicate
the synchronizing links, PEST0 uses an implicit sub-
windowing approach that we believe is more conve-
nient and intuitive. PEST0 is closest in style to Ode-
View; we were heavily influenced by OdeView’s brows-
ing facilities. However, OdeView implements querying
and browsing as separate mechanisms, as do virtually
all other interfaces that we have seen. Also, Ode-
View requires object class definers to provide certain

204

display- and query-oriented functions for their classes;
in contrast, PESTO’s object displays and query inter-
actions are schema-driven and require no coding.

Work on an early graphical query interface for the
functional data model, based on directly extending
the QBE approach, can be found in [Heil85]. Object
database interfaces that support giaphical query for-
mation are typified by Pasta-3 [Kunt89] and SNAP
[Bryc86] (though SNAP could also be classified as
a schema browser). In SNAP, querigs are posed
against the database schema to return browsable data,
whereas the query context for PEST0 users is at the
data level. Pasta-3 provides a drag-and-drop paradigm
for graphically forming and refining queries. Like
Pasta-3, PEST0 provides support for query refine-
ment , but PEST0 differs in its integration of querying
and browsing. In Pasta-3, the query and browser win-
dows are maintained separately. We feel that PESTO,
with its support for querying at the instance level,
and its blurred distinction between querying and re-
sult browsing, provides a more intuitive interface for
exploring object databases.

In addition to these interfaces, a number of inter-
faces provide graphical support for browsing database
schemas, including ISIS, GUIDE, SKI, and OPOS-
SUM (see [Care961 for references to these and other
systems). Our work on PEST0 has focused mainly on
support for exploratory access to database objects; we
expect to enhance PESTO’s support for schema ex-
ploration later, drawing on related work in this area.
Finally, the research literature on database user inter-
faces also includes papers, on tools for building graph-
ical interfaces, graphical. primitives for manipulating
object data, and novel ways of visualizing data. These
papers are less directly relevant to PESTO.

2.3 What’s New About PESTO?

There are two key differences between PEST0 and the
work just discussed. One difference is that, unlike the
commercial tools, PEST0 is designed for exploring ob-
ject databases. Resulting challenges include the need
to provide graphical support for path predicates, set,-
valued attributes, and method &vocations, as well as
continued support for ad hoc joins. These challenges
are important, given the increasing commercial focus
on object-oriented and object-relational data models.
Few object-oriented database systems provide declara-
tive ad hoc query support or graphical interfaces other
than browsers. PEST0 is unique in its support for
advanced object query features.

Another important difference is PESTO’s inte-
grated query-in-place support for both querying and
browsing. Existing graphical query tools make a sharp
distinction between query formation and answer set

browsing. In contrast, PEST0 allows users to directly
restrict the displayed data, much as some relational
front-end tools (e.g., table browsers) permit updates
in place. Moreover, PEST0 generalizes existing no-
tions of jiltenzd browsing by allowing filters to be spec-
ified (1) in place, on the browse structure, (2) on any
level(s) of nested sets, and (3) with arbitrarily complex
predicates (including explicit and implicit joins). Con-
sequently, PEST0 users can simultaneously browse
objects at some levels of a complex object structure
while querying (filtering) the objects at other levels.
PEST0 also provides support. for iterative query re-
finement throughout a query/browse session.

3 Browsing and Query-In-Place

In this section we describe PESTO’s basic support for
synchronized browsing, its notion of query-in-place,
and its support for iterative query refinement. We
begin by presenting the schema for a simple object,
database that will be used in our examples.

3.1 Example Schema

Given below is an object schema for a hypothetical uni-
versity database. ODL, the ODMG-93 DDL [Catt94],
has been used to express the schema. The class defini-
tions should be largely self-explanatory; note that the
schema accomodates both undergraduate and gradu-
ate students. Each class has an associated collection
(its e&e&) in which all instances of the class and its
subclasses are recorded.

class Student (extent Students)
(Int ss-no;

String last-name;
String first-name;
Float gpa;
Flef<Professor> advisor;
Set<Ref<Department>> major;
Set<Ref<Course>> taking;)

class GradStudent: Student
(extent GradStudents)
C String office;

String phone;)

-lass Professor (extent Professors)
C String last-name;

String rank;
String area;
Int phd-year ; I
RefCImage> photo;
RefCDepartmenW dept;
Ref<Course> course;
Set<Ref<Student>> advisees;)

205

class Department (extent Departments)
(String name;

Flef<Professor> chair;
SetGlef<Professor>> faculty;
Set<Ref<Student>> majors;)

class Course (extent Courses)
C String id;

String name;
Ref<Text> description;
RefcProfessor> instructor;
Set<Ref<Student>> takers;)

3.2 Browsing Complex Objects

To begin a PEST0 query/browse session, the user se-
lects a database to explore and chooses one or more
collections from which to begin querying and brows-
ing. The bottom left-hand corner of Figure 1 shows
PESTO’s startup window, titled “00-SQL/QB.” This
window lists the available databases; in Figure 1 the
user has chosen to explore the database called Uni-
vDB, so the window also lists all the top-level collec-
tions in the UnivDB database. In Figure 1 the user has
chosen to use the Students collection as an entry point
for browsing. PEST0 is entirely schema-driven, so the
student window (labeled “StudentsO”) shown on the
left side of PEST03 “Data Browser” window in Fig-
ure 1 is the default display window that PEST0 pro-
duces for Student objects. Immediately underneath
this student window’s pulldown menu’bar and row of
buttons is a label bar indicating the source of the win-
dow. It contains the label “StudentsO” to indicate that
it is a window for browsing the Students collection;‘“O”
is needed because a user can browse a collection inde-
pendently through more than one window, in which
case the additional student windows would be labeled
“Studentsl,” “Students2,” and so on. This bar also
tells which element of the collection is being examined
and how large the collection is.

Each attribute of the Student class is visible in the
default student windowi, and this window currently
displays a Student object that was returned by the un-
derlying object database system. Attributes of prim-
itive data types, e.g., ss-no and last-name, are shown
‘as being contained in the Student object. Attributes

I that are references or collections of references are pre-
sented as buttons that will bring up other windows for
displaying the object(s) targeted by the reference(s).
The advisor attribute is an example of a reference at-
tribute, and in Figure 1 the user has clicked on it to
bring up a window for the referenced Professor oh-

1 Default display wmdows can be customised by usipg a pull-
down menu to selectively hide attributes.

ject; the user then repeated this action on the advi-
sor window’s photo attribute to bring up the advisor’s
photograph as well. The user has clicked on the but-
ton for the taking attribute to bring up a course win-
dow (labeled “StudentsO,taking,” as per the window
labeling convention described below), which currently
shows the first of several courses that the displayed
student is enrolled in, and on the course window’s de-
scription button to bring up the associated Text object
describing that course.2 Each window created by nav-
igating via button clicks from the student window has
a label bar that indicates how it depends on the other
windows (e.g., “StudentsO.advisor” for the professor
window, “StudentsO.advisor.photo” for the associated
Image window); in addition, lines are drawn to visually
connect dependent windows in the browse area.

Near the top left of Figure l’s student window are
PREVIOUS and NEXT arrow buttons for stepping
through the objects in the Students collection. When
a collection window is displaying the first (last) ob-
ject in the collection, the PREVIOUS (NEXT) arrow
is disabled and grayed out; otherwise, both arrows are
enabled and shown in solid black. Because a student
can take several courses, the course window also has
PREVIOUS and NEXT buttons. This window repre-
sents a nested collection of objects, and at present it
contains the first element of the taking set for the CUT-

rently displayed student (Navin Kabra). The NEXT
and PREVIOUS arrows of this window can be used
to browse through the set of courses that this stu-
dent is taking. The other windows shown have no
NEXT/PREVIOUS arrows because they were derived
from single-valued references, so each has just one as-
sociated object. When dependent windows are being
displayed, browsing is synchronous (as in KIVIEW and
OdeView) - when the user clicks on the NEXT (PRE-
VIOUS) arrow in the student window, this window
will advance to the next (previous) object in the Stu-
dents collection. When this happens, the contents of
the dependent windows change as well - the profes-
sor window displays that student’s advisor, the course
window displays the first of that student’s courses, and
so on. The course window’s NEXT and PREVIOUS
arrows can then be used to browse through the set of
courses that this next student is enrolled in.

Continuing across the top row of buttons in the stu-
dent window in Figure 1, the button to the right of the
NEXT arrow is the EXPAND button for the window.

2By default, a PEST0 reference button contains the ref-
erenced class name and an indication of whether it is for a
reference or a set of references (Student.advisor versus Stu-
dent.taking). Optionally, a class definer can override this by
providing a special icon for references to a given Class (Profes-
sor.photo, Courscdescription). A custom displayer can also be
provided for the instances of a given class if desired. The image
and text data types in Figure I illustrate such overrides.

206

Figure 1: Synchronously browsing students.

This button gives the user the option of seeing the
window’s objects as a member of their most specific
applicable class - for example, clicking on the student
window’s EXPAND button will allow the user to view
the extra information available for those students that
are graduate students. To the right of the EXPAND
button is the QUERY (?) button, which is discussed
in the next subsection. Next to the QUERY button
is the TABLE button, which will allow the user to see
multiple objects of a single collection at a time. At the
far right is the EXIT button, which closes the window
and its dependent sub-windows.

3.3 Query&In-Place

While browsing all students and their courses might
be of interest to some UnivDB users, many would pre-
fer to browse only a selected subset of the students, or
perhaps only a selected subset of their courses. This
can be done by utiliring PESTO’s query-in-place fea-
tures to perform filtered browsing - i.e., by specifying
and then browsing a subset of a given collection of
objects. PEST0 allows any collection-valued window
- whether toplevel or nested - to be the target of
a query, and browsing the result objects of a query
has the look and feel of browsing an unrestricted ob-
ject collection (except that only objects satisfying the
query specification are visible).

As an example, suppose a user is browsing students

together with their courses and associated instructors,
but really only cares about students with grade point
averages over 3.5 who are taking one or more computer
science graduate courses from instructors whose re-
search area is databases. To restrict the set of students
being browsed, the user can use the QUERY button in
the student window to put it (and its dependent win-
dows) in query mode; the boxes associated with each
attribute value become predicate entry boxes. The
user can then type their GPA predicate into the stu-
dent window, graduate-level CS course predicate into
the course window, and instructor area predicate into
the professor window, as shown in Figure 2. Click-
ing GO tells PEST0 to execute the query and return
to browse mode to view the results.3 The resulting
browse state is similar to basic synchronous browsing.
Now, however, the set of browsable Student objects
is restricted to those satisfying the user’s criteria, and
the magnifying glass icon in the student window will
be highlighted to remind the user that the query is ac-
tive there. The NEXT and PREVIOUS buttons in the
student window enable the user to browse through all
students that satisfy the query predicate. The NEXT
and PREVIOUS buttons in the course window still en-
able the user to browse through any/all courses that
the current student is taking, not just graduate CS

SThe box that says “Execute Query” appears in the figure
because PESTO’s “balloon help” feature has been enabled.

207

Figure 2: Students with high GPAs who are taking a CS graduate course taught by a database professor.

courses taught by database professors, as the purpose
of the predicate was only to restrict the set of Students
being browsed.

In the example above, the user wished to see only
those elements in a toplevel collection (e.g., Students)
that satisfy some criteria. Because PEST0 is intended
for object databases, where objects can contain nested
collections of (e.g., sets of references to) other objects,
PEST0 permits queries to be specified in any window
associated with a collection - whether it is a top-level
collection or a dependent collection. In contrast to
the previous example, suppose that the user wishes to
browse all students, but to see only their CS courses
taught by database professors. Starting from the same
browse state as the previous example, Figure 3 shows
how this can be done. This time, the user clicks on
the QUERY button of the course window to place the
course window and its subordinate professor window in
query mode; the student window will remain in browse
mode this time. The user enters the desired predicates
on courses and their instructors, as shown in the fig-
ure, and then hits GO to launch the course query. In
the resulting browse state, the student window can
be used to browse through all of the students, as in
unfiltered browsing. However, the dependent course
window now provides broivse access, for each student,
just to courses that are CS courses taught by database
professors. The filter icon in the course window is
highlighted as a reminder that this window is show-
ing only a filtered subset of its associated objects (like
the magnifying glass for a toplevel collection). The
user is now browsing a top-level collection (Students)
in an unfiltered manner, but filtering the contents of a
nested collection (Students.taking).

In general, PEST0 allows simultaneous queries (fil-
ters) at as many levels as a user wishes. This generality
is one of PESTO’s most useful and unique features, as

it allows users iteratively to browse through a complex
database and narrow their browsing scope as they go.
Filter predicates can be added to any window associ-
ated with a collection, at any level of nesting, at any
time during a browse session. Thus, users can begin
by synchronously browsing a collection, decide that
they don’t want to see everything, add a filter, decide
that they don’t really want to see all of the objects
in a given subwindow, add a filter to limit the objects
being browsed there, and so on.

In addition to this query-in-place support for ob-
jects at multiple levels of nesting, PEST0 provides a
short cut for an important special case. Consider again
the query shown in Figure 2, where the user asked to
browse students with high GPAs who are enrolled in
a graduate CS course taught by a datab&e profes-
sor. PESTO’s response to this query allowed the user
to synchronously browse these students and all of the
courses that they are taking (together with the instruc-
tors of those courses). This is what the user wanted in
our earlier example. However, a different user might
wish to use the students’ course criteria (graduate CS
courses taught by database instructors) to filter the
courses as well - thereby viewing only those courses
that caused each student to be selected for browsing.
To support the case where a user wants to place an ex-
istential predicate on a nested collection, and to place
the identical query predicate on the nested collection
itself, PEST0 provides a FILTER button in nested
ccllection windows whenever a query on an ancestor
window causes them to enter query mode. To use it,
the user would proceed as in Figure 2 - but before say-
ing GO, the user would click the FILTER button in
the course window to ask PEST0 to filter the Course
objects as well.

208

Figure 3: All students plus their CS graduate courses taught by database professors

3.4 Iterative Query Refinement

PEST0 includes features that allow iterative query re-
finement throughout a query/browse session. PEST0
provides support for returning to and then editing the
previous query. Also supported is a query history
mechanism that enables older queries to be located,
refined, and resubmitted. Together, these features en-
sure that PEST0 users can incrementally focus their
attention on the objects of interest and can back up
and try again if they discover that they have taken a
“wrong turn.”

3.4.1 Refining’ the Last Query

Whenever a user enters query mode, the latest query
is recalled to the screen, ready for incremental editing.
For example, if the user’s query in Figure 2 turned out
to be too selective, e.g., due to an overly high choice of
GPA, the user could hit QUERY and modify that por-
tion of the query predicate; hitting GO then launches
the newly modified query. Also, PEST0 allows abort-
ing a query without losing the browse state. If a user
gets part way through specifying a new query, and then
decides not to proceed with it after all, the REVERT
button (the “turn back” arrow visible when a window
is in query mode) returns to the exact browse state
- with the same objects in the same windows - that,
existed right before entering query mode.

These query refinement features also serve another
purpose - recovery from disorientation during a com-
plex query/browse session. After entering a query, al-
though a magnifying glass or filter icon indicates that
the query is active, no details of the query predicate
are displayed while the results are being browsed. If
the user forgets the details of their query, they can re-
enter query mode by pushing the QUERY button in
the query’s target window - causing PEST0 to re-

.

(if any).

display the query. Having refreshed their memory,
they can then revert back to browsing.

3.4.2 Query History Support

Being able to edit the most recent query addresses the
most common case, but it doesn’t handle cases where
a user makes an exploratory mistake (or a series of
such mistakes) and wishes to back out through sev-
eral queries - returning to an earlier, perhaps more
successful query. To handle such cases, PEST0 in-
cludes a query history feature when windows are in
query mode. PEST0 remembers the last it4 queries
that targeted each window. The UP and DOWN ar-
row buttons in a query window can be used to walk
back and forth through its history to select a previous
query to edit. Once the desired query has been found
and edited, it is appended to the window’s query his-
tory as its most-recently-issued query.

4 Semantics & Complex Queries

In this section, we discuss PESTO’s conceptual model
and complex query capabilities.

4.1 Object-Oriented User Interaction

It should be clear that the interaction model that
PEST0 presents to its users is heavily object-oriented;
there is a direct correspondence between each window
in PESTO’s browse area and an object in the under-
lying database.4 PESTO’s query-in-place approach is
intended to allow users to directly examine and ma-
nipulate the displayed objects. As a result, in browse
mode, each window keeps track of the OID of its dis-
played object; windows represent “live” objects. We

‘One exception will be discussed later - ad hoc join queries
lead to “synchronimr” windows that do not directly correspond
to stored objects.

209

will not discuss updates or method invocation in detail
here, but the PEST0 design allows users to update an
object displayed in a browse window by choosing an
update action and then directly editing its contents;
similarly, users can invoke an object’s methods from a
pulldown list provided in the display window’s menu
options.

PESTO’s behavior (and semantics) in query mode
is based on a similarly tight correspondence between
windows and objects in the database. Each window in
query mode represents an object variable in a query
formed through the user’s actions. Every query is
rooted at a particular window, the one that the user
placed in query mode, and its meaning is “let me
browse the objects that satisfy the predicate specified
here and in any/all dependent windows.” Each top-
level collection window represents an object quantifier
over its associated collection in the resulting query.
Each dependent collection window represents a quan-
tifier that ranges over the appropriate collection in
its parent window’s current object. Dependent refer-
ence windows can be thought of similarly (i.e., as one-
element collections), though most object query lan-
guages support path expressions that make explicit
quantifiers unnecessary in this case.

To make this clear, the following is the OO-
SQL [Kier95] that PEST0 generates and associates
with the student window when the user hits GO in
Figure 2:

select distinct S, S.* from Students S
where S.gpa > 3.5 and exists (

select T from (S.taking) T
where (T.id >= ‘CS 760’
and T.id C ‘CS 900’
and T.instructor is not null
and T.instructor..area = ‘Databases’));

As an aside, this discussion highlights a key differ-
ence between PESTO’s query capabilities and those of
QBE and its commercial descendants. QBE makes a
strong distinction between queries and results - tab
ular forms are used to specify queries; in general, a
separate result table is needed to browse the query re-
sults. In contrast, PESTO’s query criteria are entered,
in place, into browse windows that have simply been
placed in query mode. PEST0 displays the results in
the same windows, thus retaining their complex object
structure and enabling their component objects to be
“live.” As mentioned earlier, PEST0 allows users to
simultaneously browse at some levels of a complex ob-
ject structure while querying at others. This is another
feature that distinguishes PEST0 from QBE-like in-
terfaces.

4.2 Expressing Complex Queries

Earlier, we claimed that PEST0 makes it “easy” for
users to express complex queries. We now examine
this claim by explaining how PEST0 supports a wide
variety of object queries. We then discuss certain kinds
of queries that PEST0 cannot express (and why).

4.2.1 Select/Project Queries

The most basic form of query in PEST0 is
roughly equivalent to a relational select/project query.
PESTO’s support for filtered browsing of a top-level
collection, combined with its support for hiding some
of the attributes of the objects to be displayed in a
given browse window, provides this level of expressive
power. As illustrated earlier, users specify their se-
lection criteria by entering values or expressions into
the attribute entry boxes of the collection’s display
window after putting it in query mode. Users can en-
ter values to specify equality predicates (or SQL-style
like patterns for strings), and PEST0 supports a sim-
ple predicate language that has the usual compara-
tors and logical connectives (and, or, and not) to al-
low complex predicates to be expressed for individual
attributes. (E.g., see the course id predicate in Fig-
ure 2.) Between attribute boxes in a given window,
PESTO’s semantics are conjunctive, as one might ex-
pect. Finally, PEST0 supports complex negative se-
lection predicates by providing a NOT button in each
query window; when pressed, this button negates the
entire predicate implied by that window (and any de-
pendent windows).

4.2.2 Complex Queries on Objects

References in an object database can be null-valued;
e.g., a student may not have an advisor yet, or a self-
paced course may not have an instructor. PEST0
must therefore provide users with a way to specify
whether or not they want the parent object to qual-
ify when a query involves predicates on a dependent
object and the reference is null. By default, depen-
dent objects are said to be mandatory, meaning that
a parent object is considered to satisfy its full query
predicate only if a dependent object exists and satis-
fies its portion of the query predicate. For example,
consider again the query of Figure 3, where, for each
student, the user wants to browse CS graduate courses
taught by database professors. Courses with a null in-
structor attribute will not be browsable in the result,
as they do not qualify by default. To allow users to
opt to see such courses as well, PEST0 includes the
button labeled OPTIONAL in the dependent profes-
sor window of Figure 3. Pressing this button, which
appears in every dependent window of a query win-
dow, makes the existence of a dependent object op-

210

tional there instead of mandatory. This same idea
applies to dependent collection windows. Back in Fig-
ure 2, the course id predicate and the instructor area
predicate combine to specify that the user wishes to
see students that are taking at least one CS graduate
course from a database professor. If the OPTIONAL
button were pressed in the course window there, the
user would also see students who are taking no courses
at all.

Collection-valued reference attributes raise another
question - does the user want to require the predicate
to be true f?r some members of the collection, or for all
of its members? The former case corresponds to exis-
tential quantification, and the latter to universal quan-
tification. To support both cases, PEST0 provides an
additional button, labeled ALL, whenever a dependent
window corresponds to a collection-valued attribute.
By default, a predicate in such a window has exis-
tential (or “some”) semantics; pushing the ALL but-
ton means “this predicate must hold for a11 objects in
this nested collection,” For example, the query shown
in Figure 4 means that the user wants to browse CS
courses in which all enrolled students have high GPAs
and an advisor, if any, who is a full professor.

PESTO’s provision of OPTIONAL and ALL makes
it possible for users to ask queries that would otherwise
be complicated to express in an object query syntax.
Compare Figure 4 to what the user would need to say
in 00-SQL to achieve the same semantics:

select distinct C, C.*
from Courses C
where C.id like ‘CS %’
and not exists (

select T from (C.takers) T
where not (T.gpa > 3.5
and (T.advisor is null or

T.advisor. .rank = ‘Professor’)));

Finally, it is worth noting that the ALL and NOT
buttons in a dependent window can be combined to
say “none.” NOT helps to form the window’s local
predicate, while ALL modifies the type of quantifier
associated with the window. For example, by pressing
the course window’s ALL and NOT buttons in Fig-
ure 4, the user could instead ask to browse CS courses
in which none of the enrolled students have both high
GPAs and an advisor, if any, who is a full professor
(i.e., CS courses in which all enrolled students do not
have both high GPAs and an advisor, if any, who is a
full professor).

4.2.3 Disjunctive Queries

As mentioned earlier, PEST0 supports a small pred-
icate language for specifying conditions on attributes.

Simple disjunctive predicates can be specified using
this facility. To support a wider range of disjunctive
queries, queries that would otherwise fall outside the
expressive power of PEST0 (unlike their conjunctive
counterparts), PEST0 provides “power users” with
the notion of an OR-stack that can be associated with
a collection window when it is the target of a query.

As an example, suppose that a user wishes to
browse students with high GPAs who are taking CS
courses taught by a database professor OT with low
GPAs who are taking English courses from a profes-
sor named “Smith.” To express this request, the user
would enter the first part of this disjunctive query just
as in Figure 2. However, instead of pushing GO at this
point, the user will instead push the OR button in the
student window, thereby activating its OR-stack. In
response, PEST0 records the first part of the predicate
and then clears the student window and its dependent
windows so that another disjunct may be entered. The
user can now fill in the rest of the conditions. The OR
button is highlighted to indicate the presence of multi-
ple disjuncts on the OR-stack, and the UP and DOWN
arrows to the right of the OR button can be used to
navigate the OR-stack; this allows each of the query’s
disjuncts to be viewed and modified while the window
is in query mode.

4.2.4 Ad Hoc Joins (Links & Synchronizers)

As described in [BatiSl], many graphical query tools
that support object-like queries, such as E-R-based
tools, only permit joins along paths in the database
that are supported by existing relationships. In con-
trast, PEST0 supports value-based linking as well
- and in a way that fits naturally with the rest of
PESTO’s object query facilities. We introduce the
concept of a SyttChmniZeT, which is a transient ob-
ject resulting from a query that binds together two or
more otherwise unrelated database objects. To users,
PEST0 synchronizers look like database objects that
contain only reference attributes; they provide a han-
dle for conveniently and synchronously browsing the
results of an ad hoc join query in a way that is con-
sistent with the treatment of other browsed collec-
tions. Such a concept is not necessary (and there-
fore not found) in relational query tools, as users of
those tools bra vse result tables containing attribute
data that has been copied out of the query’s source
tables. In contrast, PESTO’s synchronizers enable the
user to retain links to the underlying (live) objects in
the database. As a result, all of PESTO’s query-in-
place and query refinement features work when a user
is querying and/or browsing via synchronizers as well.

Suppose that a user wishes to browse stu-
dent/professor pairs where the student and the pro-

211

Figure 4: CS courses in which all students have high GPAs and full professors (if any) for advisors.

fessor have the same last name. They begin by open-
ing independent top-level windows on the Students
and Professors collections and placing one of them in
query mode. To specify the join criterion, they linlc the
last-name attributes by clicking on last-name, first in
the window in query mode and then in the other win-
dow. PEST0 detects the link request, highlighting the
source and target attribute names as they are selected.
When the link target is selected and found to be in an
independent window, PEST0 creates a synchronizer
window, placing both previously independent windows
under its control and in query mode. PEST0 also dis-
plays a menu bar at the top of the browse area that
shows the linking (comparison) operators that make
sense given the selected .link attributes’ data type. Fig-
ure 5 shows the screen at this stage of the join process.

In this case, the user selects the ‘I=” comparator.
At this point, PEST0 is ready for the user to enter
any additional query predicates and press GO to exe-
cute the query. Additional predicates could be other
links or path predicates rooted at either (or both) of
the collections being joined. Note that the join query
as a whole is rooted in the synchronizer window, which
is where the GO button is located. Once the user hits
GO, the synchronizer can be used to sequence through
the results. It behaves like any other top-level ob-
ject window with respect to result browsing; when its
NEXT (PREVIOUS) button is pressed, PEST0 will
show the user the next (previous) student/professor
pair whose last names match. When the user is done
browsing the join results, pushing the EXIT button in
the synchronizer window will free. the student and pro-
fessor windows (making them each independent top-
level browse windows again) and remove the synchro-
nizer from the screen.

PESTO’s links can support a variety of queries. In
addition to joins of independent collections, links can

Figure 5: Student/Professor join (in progress).

be used to join across existing dependent and top-level
windows, in which case no top-level synchronizer win-
dow is created. Moreover, links can be made between
simple attributes, pairs of reference attributes, a refer-
ence attribute and a nested collection of references,
or a simple attribute value and a nested collection
of values. By combining links with the features for
negation and universal quantification, many complex
queries can be expressed, such as “browse the students
who are taking no courses taught by their advisor.”

212

4.2.5 Type-Specific Predicates

Last but not least, PEST0 also allows for special-
ized data types, like Text or Image data, that re-
quire type-specific query predicates when formulating
queries (e.g., approximate image matching, or key-
word searches for text). PEST0 was heavily influ-
enced here by the approach that the Garlic project’s
object SQL dialect takes to handling such predicates
[Care95]; namely, they are expressed as method calls.
PEST0 supports an extensible set of type-specific
methods called piclcers for such data types. The class
definer for a specialized data type is permitted to add
a picker function that PEST0 can call. This function
interacts with the user, presumably by putting up a
window, and is expected to return a string contain-
ing a method call or a boolean expression made up of
method calls. (See [Cody95, Care961 for more about
this approach.)

4.2.6 Limitations

PEST0 is quite powerful in terms of the types of ob-
ject queries that users can ask. Of course, while it sup-
ports quite a range of queries, it is not a relationally
complete query facility (nor is it intended to be). It
can express many of the queries that 00-SQL [Kier95]
supports, including queries that involve selection, pro-
jection, path expressions, nested sets, existential and
universal quantification, value-based joins, and type-
specific predicates. In addition, we are prototyping
extensions to support sorted results for collection win-
dows, aggregates, and certain kinds of method calls
in queries. All of this work is driven by PESTO’s
user interaction model - namely, that windows on the
screen, in almost all cases, should represent live objects
drawn from collections in the underlying database.
This model is important for PESTO’s intended us-
age, which is to support interactive exploration and
manipulation of the contents of object databases. In
addition, there is an important tradeoff to be made
between the expressiveness of PEST0 as a query lan-
guage and its usability and consistency as a tool for
non-expert users; we do not wish to sacrifice the latter
in favor of the former.

So what are the limitations and/or oddities of
PEST0 as a query language? Due to PESTO’s object-
oriented interaction model, relational projection is not
actually supported, though it can be simulated via at-
tribute hiding. Also, relational joins - which create
new objects out of attribute data copied from pairs of
other objects - are not supported, though matching
and pairing is supported via links and synchronizers.
The relational union operation is also not supported.
PESTO’s OR-stack allows users to specify a limited
class of union queries, where the unioned subqueries all

range over the same underlying collection. However,
PEST0 is not powerful enough-to express unions that
combine objects from multiple collections, though this
could potentially be addressed using a synchronizer-
like notion. In any case, we do not intend for PEST0
to ever support the unioning of objects of different
types that are union-compatible only in the relational
sense; that would be wholly incompatible with our
object-oriented user interaction model. Finally, while
we plan to add some degree of support to PEST0 for
sorting, aggregates, and grouping, the power of these
facilities will again be limited to what can be done
within the confines ofbur object-oriented model.

5 Implementation Details

To enable fast prototyping, PEST0 was implemented
at the University of Wisconsin using Tcl/Tk [Oust94].
PEST0 currently runs on the Garlic system [Care95],
which supports an object-extended dialect of SQL.
Garlic runs under AIX and today provides object-
based access to data managed by DB2/6000, Ob-
jectstore, and the QBIC [Nib1931 image manager.
PEST0 also runs on the 00-SQL interface to Object-
Store [Kier95]. This section touches on two aspects
of PESTO’s current implementation, portability and
support for content-based queries involving specialized
data types; more details can be found in [Care96].

5.1 Portability

For portability, PEST0 uses a small set of Tel proce-
dures to interact with the underlying object database
system. This interface is called PASTA (Portability
Abstraction for Sl%uctured Archives). It allows
PEST0 to connect to an object database, discover
its root collections, obtain type information, set up a
portal for accessing the objects in a collection, submit
a query and get a portal for its answer set, sequence
through a portal’s objects, retrieve an object’s content
by OID, apply a method, and so on.

5.2 Specialized Data Types

As mentioned earlier, PEST0 allows implementors of
specialized classes, e.g., text, image, and other mul-
timedia data types, to provide customized displayers
and/or predicate formation tools for their classes. We
refer to customized predicate formers tools as pickers.
The implementor of a new displayer or picker informs
PEST0 of its presence by adding it to an internal
Tel table. Adding a picker requires the provision of
a set of four Tel routines; this interface has been used
in Garlic to import the QBIC image query interface.
When a user clicks a reference button (in query mode)
for a data type with its own picker, PEST0 calls the

213

picker’s “pick” routine to cause a type-specific picker
window to appear; the user then interacts with this
window. When the user hits GO in the query’s top-
level window, PEST0 calls the picker’s “get” routine
to request a query string (which typically applies a
matching method of some sort to a multimedia ob-
ject) that PEST0 can and into the query; “get” also
causes the picker window to unmap itself from the dis-
play. To support PESTO’s query history, the picker
interface includes a “repick” routine to reestablish the
picker window state from a previously returned query
fragment. Finally, pickers are shut down by PEST0
via an “exit” function.

References
[AgraSO] Ft. AgrawaI, N. Gehani, and J. Srinivasan, “Ode-

View: The Graphical Interface to Ode,” Proc. ACM
SIGMOD Conf., May 1990.

[BatiSl] C. Batini et al, Visual Query Systems, Tech. Rep.
04.91, U. di Roma, March 1991.

[Bryc86] D. Bryce and R. Huh, “SNAP: A Graphics-based
Schema Manager,” Proc. IEEE Data Eng. Conf., 1986.

[Care951 M. Carey et al, “Towards Heterogeneous MuI-
timedia Information Svstems: The Garlic Armroach.”
Proc. 1995 IEEE RID& Workshop, March 1995.

6 Conclusions

[Care961 M. Carey et al, PESTO: An Integrated
Query/Browser for Object Databases, Res. Rep. No.
RJ10016, IBM Almaden Research Center, March 1996.

[Cody951 W. Cody et al, “Querying Multimedia Data from
Multiple Repositories by Content: The Garlic Project,”
Proc.IFIP 2.6 Working Conference on Visual Database
Systems - 3, March 1995.

We have described PESTO, a query/browser ‘for ob-
ject databases. Like other browsers, PEST0 allows
users to navigate a database by following the relation-
ships among its objects. In addition, PEST0 supports
a query-in-place paradigm that allows users to query
as well as browse the database in a natural and inte-
grated fashion, without actually writing object queries.
We believe that PESTO’s query facilities strike a good
balance, being intuitive yet powerful; support is pro-
vided for path predicates, structural and value-based
joins, universal quantification, negation, and a vari-
ety of complex conjunctive and disjunctive predicate
forms. In addition to its object query features, PEST0
is extensible (to support new data types) and portable
across object database systems.

[Catt88] T. Rogers and R. Cattell, “Entity-Relationship
Database User Interfaces,” in Readings in Database Sys-
tems, M. Stonebraker (ed.), Morgan Kaufman, 1988.

[Catt94] R. CatteII (ed.), The Object Database Standard:
ODMG-9.3 (Release l.l), Morgan Kaufman, 1994.

[Fogg84] D. Fogg, “Lessons from a “Living In a Database”
Graphical Query Interface,” Proc. ACM SIGMOD
Conf., June 1984.

Our future plans include rewriting PEST0 in Java
and adding support for additional features, e.g., end-
user customization, updates, methods, tabular collec-
tion views, and alternative paradigms for displaying a
nested collection hierarchy. Important long-term plans
include a usability study, comparing PEST05 ease
of use against that of textual object-oriented query
languages, and formal work to characterize PESTO’s
query power.

[Hei185] S. Heiler and A. Rosenthal, “G-Whiz, A Visual In-
terface for the Functional Model with Recursion,” Proc.
ifth VLDB Conf., Aug. 1985.

[Kier95] J. Kieman and M. Carey, “Extending SQL-92
for OODB Access: Design and Implementation Expe-
rience,” Proc. ACM OOPSLA Conf., Oct. 1995.

[Kunt89] M. Kuntz and R. Melchert, “Pasta-J’s Graph-
ical Query Language: Direct Manipulation, Coopera-
tive Queries, FuII Expressive Power,” Proc. 15th VLDB
Conf., Aug. 1989.

[Motr88] A. Motro, A. D’Atri, and L. Tarantino, “The De-
sign of KIVIEW: An Object-Oriented Browser,” Proc.
2nd Int’l. Conf. on Expert Database Sys., April 1988.

[Nib1931 W. Niblack et al., “The QBIC Project: Querying
Images by Content Using Color, Texture and Shape,”
Proc. SPIE, Feb. 1993.

7 Acknowledgements

214

[Oust941 J. Ousterhout, Tel and the Tk Toolkit, Addison-
Wesley, 1994.

[Rowe851 L. Rowe, “Fill-in-the-Form Programming,”
Proc. 11th VLDB Conf., Aug. 1985.

[Ston82] M. Stonebraker and J. KaIash, “TIMBER - A So-
phisticated Relational Browser,” Proc. 8th VLDB Conf.,
Sept. 1982.

Rakesh Agrawal was a key participant in early de-
sign discussions that gave birth to PESTO. John
Thomas implemented the PASTA protocol for Gar-
lic, and Mary Tork Roth found many bugs in early
versions of PESTO. Bill Cody and Denis Lee made
the PESTO/QBIC connection happen. Jerry Kier-
nan provided access, at the University of Wisconsin,
to his 00-SQL prototype. Finally, Roger King and
Eben Haber kindly provided us with pointers to some
of their favorite database user interface papers.

[Ston89] M. Stonebraker and E. Net&old, The Laguna
Beach Report, ICSI Tech. Rep. No. 1, Berkeley, .CA, June
1989.

[Ston93] M. Stonebraker et al, “DBMS Research at a
,Crossroads: The Vienna Update,” Proc. 19th VLDB
Conf., Aug. 1993.

[Yao84] S.B. Yao et al, “FORMANAGER: An Office
Forms Management System,” ACM Trans. on O&e
Info. Sys., 2(3), July 1984.

[Zloo77] M. Zloof, “Query By Example,” IBM Sys. J. 16,
Dec. 1977.

